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Abstract

Long-term time series forecasting (LTSF) aims to predict future trends based on
historical data. While longer lookback windows theoretically offer more com-
prehensive insights, Transformer-based models often struggle with them. On
one hand, longer windows introduce more noise and redundancy, hindering the
model’s learning process. On the other hand, Transformers suffer from atten-
tion dispersion and are prone to overfitting to noise, especially when processing
long sequences. In this paper, we introduce the Maximum Effective Window
(MEW) metric to assess a model’s ability to effectively utilize the lookback win-
dow. We also propose two model-agnostic modules to enhance MEW, enabling
models to better leverage historical data for improved performance. Specifically,
to reduce redundancy and noise, we introduce the Information Bottleneck Filter
(IBF), which employs information bottleneck theory to extract the most essential
subsequences from the input. Additionally, we propose the Hybrid-Transformer-
Mamba (HTM), which incorporates the Mamba mechanism for selective forget-
ting of long sequences while harnessing the Transformer’s strong modeling ca-
pabilities for shorter sequences. We integrate these two modules into various
Transformer-based models, and experimental results show that they effectively
enhance MEW, leading to improved overall performance. Our code is available at
https://github.com/forever-1y/PIH.

1 Introduction

Long-term time series forecasting (LTSF) [14] holds significant importance across various domains
such as traffic management, energy optimization, and financial analysis. Transformer-base meth-
ods [31]], known for their attention mechanisms that facilitate the automatic learning of sequential
dependencies, have emerged as promising tools for LTSF.

Intuitively, extending the lookback window is a natural choice to enhance the forecasting capability
of the model. This allows the model to capture long-term trends more accurately, thereby improving
its ability to predict seasonal variations, cyclical patterns, and overall trends. However, prior research
has found that current Transformer-based models are not effective in leveraging long lookback
windows [40]. To quantitatively assess a model’s efficiency in utilizing the lookback window, we
propose a new metric Maximum Effective Window (MEW): For a given model, as the lookback
window is increased while keeping other settings constant, there exists a point beyond which further
increases in the window do not result in better performance. This point is referred to as the model’s
Maximum Effective Window, which reflects the model’s potential to utilize historical information.
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Figure 1: The changes in MSE with respect to the lookback window for Transformer and PatchTST
on the ETThI dataset with a prediction length of T' = 720. “Ours” refers to the integration of our
modules into these two models. The triangular markers indicate the Maximum Effective Window
(MEW). “Ours” increases the MEW from 72 and 512 to 288 and 1024, respectively.

As shown in Fig.[T](a), point-based Transformer (where a single time point is treated as a token) only
achieve MEW of 72 for the ETThI dataset. A natural question then arises: Can we increase a model’s
MEW, thereby enabling it to perform better with longer lookback windows? Before answering this,
we first analyze the reasons behind the limitation of the MEW. From the information perspective,
longer windows may contain more redundant signals [26]], which can impede the model’s learning
process by allocating significant modeling capacity to meaningless or irrelevant noise signals [40].
From the architecture perspective, many studies have shown that Transformers suffer from issues
such as attention dispersion and overfitting to noise [37]], and these drawbacks are exacerbated with
longer sequences.

The patch strategy [23| 141]] is an effective approach to improving the MEW. By treating consecutive
time points as a single patch, this strategy significantly reduces local-level noise whihin a patch.
Additionally, it greatly reduces the number of tokens that the Transformer process, it helps mitigate
issues such as attention dispersion and overfitting to noise. As shown in Fig.[1|(b), PatchTST achieves
a MEW of 512, which is substantially higher than the 72 achieved by point-based Transformer.
However, the patch strategy is heuristic and lacks adaptability. Firstly, it assumes redundancy and
noise only within the points of each patch, which is a heuristic assumption that overlooks potential
redundancy and noise between patches. Secondly, when the number of patches increases, the issues
of attention dispersion and overfitting to noise in Transformers can still be exacerbated. Lastly, this
approach is not suited for models that do not adopt a patch-based design.

In this paper, we propose two model-agnostic modules to address the issues of information redundancy
and architectural limitations. As shown in Fig.[I] after integrating our modules, the MEW for
PatchTST (patch-based) and Vanilla Transformer (point-based) increases from 72 and 512 to 288 and
1024, respectively, achieving improved performance.

Specifically, to reduce redundancy and noise in long lookback windows, we introduce the
Information Bottleneck Filter (IBF) module based on Information Bottleneck (IB) theory. This
module aims to identify informative subsequences while minimizing redundancy and noise [3l],
enabling the model to prioritize significant subsequences within the lookback windows. However,
directly optimizing the IB objective for sequences is challenging due to their discrete nature [39,
38, often leading to training instability and degraded predictions. To address this, we propose a
probabilistic framework for sequence selection, coupled with a noise injection strategy. The core idea
is that important subsequences should have a low probability of noise injection, whereas injecting
larger noise into redundant sequences has minimal impact on predictions. By tailoring a noise prior
for each input, the IB objective can yield a manageable variational upper bound. To overcome the
challenges of attention dispersion and overfitting to noise in Transformers, we introduce Mamba [[7],
a state-space model (SSM) capable of selectively remembering historical information and filtering
out noise. Recent studies have suggested that Transformers and SSMs complement each other
in modeling [21} 24]. Therefore, rather than replacing Transformers with Mamba, we propose a
Hybrid-Transformer-Mamba (HTM) architecture. First, Mamba captures long-term information while
selectively filtering out noise from the extended lookback window. Then, the IBF further reduces
noise. Finally, leveraging the temporal characteristics of the time series, we introduce two sequence



splitting algorithms—interval split and block split—to divide the noise-filtered long lookback window
into multiple short subsequences. These subsequences are processed by the Transformer to capture
short-term dependencies. Experimental results show that HTM outperforms both pure Transformer
and pure Mamba architectures in terms of both computational overhead and predictive performance.
In summary, our primary contributions are as follows:

1. We defined a metric MEW, which reflects the model’s ability to leverage the window
effectively. We analyzed how to improve MEW of Transformer-based models from both
the information-theoretic and architectural perspectives, and proposed two model-agnostic
modules: IBF and HTM.

2. We integrated these two modules into multiple Transformer-based models and conducted
detailed experiments on seven datasets. The results demonstrate that these modules can
enhance MEW while achieving better performance.

3. Notably, by incorporating these modules into the PatchTST model, we developed the
PIH model (Patch-IBF-HTM), where the window length is extended to 1024—surpassing
the window settings of all currently existing non-LLM-based time series models, to the
best of our knowledge. The PIH model achieved state-of-the-art results, demonstrating
the effectiveness of enhancing the model’s windows. Our work paves the way for future
research to explore even longer window sizes.

2 Related Work

Transformer-based Models. Early attempts 28] [19. [11]] at directly applying vanilla Transformers
to time series data failed in long sequence forecasting tasks, as the self-attention operation scales
quadratically with the input sequence length. Existing approaches primarily address this challenge
through two avenues. Patch-based methods, exemplified by PatchTST [23]] and CrossFormer [41]],
conceptualize consecutive time steps as patches, reducing the number of input tokens and augmenting
local semantics to mitigate redundancy. Another approach focuses on sparse attention mechanisms.
Models such as Informer [42], Autoformer [35]], Pyraformer [[17], and FEDformer [43] adapt the
self-attention mechanism to achieve complexities of O(L) or O(Llog(L)). These models rely on
specific designs and often sacrifice representational capacity, thereby compromising performance.
Our work is independent of these approaches and can be effectively integrated into them.

Mamba for Time Series. Recently, several approaches have emerged to incorporate Mamba into
time series modeling. Bi-Mamba+ [12]] introduces a novel Mamba+ block by incorporating a forget
gate within Mamba. This modification enables the selective combination of new features with
historical ones in a complementary manner, boosting the model’s ability to balance past and present
information. S-Mamba [34]] adopts a different approach by autonomously tokenizing time points of
each variate using a linear layer. The method employs a bidirectional Mamba layer to extract inter-
variate correlations and a Feed-Forward Network to learn temporal dependencies. TimeMachine [2]]
takes a broader view of time series data by leveraging multi-scale contextual cues. Its architecture
integrates a quadruple-Mamba design, allowing the model to manage both channel-mixing and
channel-independence scenarios. MambaTS$ [4] challenges the necessity of causal convolution within
Mamba for LTSF. It proposes the Temporal Mamba Block (TMB) as an alternative. To further prevent
model overfitting, MambaTS$ incorporates a dropout mechanism that selectively applies to TMB’s
parameters, ensuring a more stable and generalizable model performance.

Information Bottleneck (IB). The essence of the IB principle lies in distilling a compact yet
predictive code from the input signal [30]. Pioneering work by [3] introduced the concept of
variational information bottleneck (VIB), thereby enriching deep learning methodologies. Given
random variables X and Y, IB aims to compress X into a bottleneck random variable B, while
retaining information pertinent to predicting Y':

mBian(Y;B)JrﬂI(X;B) (1)
Here, [ serves as a Lagrangian multiplier to balance the two mutual information terms. Presently,

IB and VIB find extensive applications in deep learning, predominantly in representation learning
and feature selection domains [8, 33} [36]]. Strategies such as injecting noise into intermediate



— z —
IBF - — — D
[ e le—1 |3
=
. — A s S S
2 & | 2
- I fl=al el 5] 8] e
= - - - — =
E e = 1 Noise Injection %’ L — | = e — 1) ; 'g
gl |E Fl||E Il F| — 7 |52
& E] g = Xi ~Bern(c;) + 2 e
§ g 0 | T — ||:|| ﬁ = Ed
g 1 €~ N(pz,07) T L | J__|I z g °
= L <! ®
2 — L= Mt
= ]
& [ ] ' I |8
L L B,
T L I\ — T
T T
minl (znmse, z) min — T (znmse’ Y)

Figure 2: Overview of the PIH. The input long sequence x first undergoes patching and embedding
to obtain e, which is then processed by Mamba to reduce redundancy and noise based on its selective
mechanism, resulting in z. The IBF evaluates the importance c of tokens in the sequence z and
adaptively injects noise to produce z"* = Az + (1 — \)e, where A is sampled from a Bernoulli
distribution with parameter c, and € is random Gaussian noise. The tokens within the dashed box
represent less important tokens, with corresponding \; values being smaller, thus z!°¢ is primarily
controlled by random noise (1 — A;)e. Conversely, the important tokens within the solid box
correspond to larger \;, with their values being mainly determined by their inherent semantics \;z;.
After splitting z"°'* into multiple subsequences, they are processed by the Transformer. Finally, the
output is passed through flattening and a linear head to obtain the prediction.

representations of pre-trained networks and subsequently selecting regions with optimal information
per dimension have been explored [1}, 27].

3 Method

We integrate HTM and IBF into the PatchTST, resulting in the PIH model (Patch-IBF-HTM), as
illustrated in Fig. 2]

Problem Definition. Given a collection of multivariate time series samples with a lookback window
L = (x31,...,xy1,), where each x; at time step ¢ is a vector of dimension C, we aim to forecast T’
future values (X541, ..,X5+7T)-

3.1 Patching and Embedding

Given our utilization of a channel-independent strategy [23]], we opt for simplicity by converting
multivariate time series into univariate ones. The input univariate time series x € R'*” is initially
segmented into patches, which may be either overlapping or non-overlapping. Employing patching
strategies enhances locality and captures comprehensive semantic information beyond the point level
by aggregating time steps into subseries-level patches. Furthermore, to ensure uniform partitioning
of the patch sequence into K equally-sized blocks in subsequent modules (see Section [3.3), we
employ Padding(-) to extend the input sequence. Denoting the patch length as P and the stride
(the non-overlapping region between two consecutive patches) as S, the Patch(-) process yields a

sequence of patches h € RV*¥ where N denotes the number of patches, N = [(LS_;)} * K.

Subsequently, we employ an embedding layer to map the dimension of each patch from h € RV*”
toe € RV*d,

e = Embedding (Patch (Padding (x))) 2)

After obtaining the patch embedding sequence e = {ej, e, .., en}, we use Mamba followed by a
subsequent Dropout layer to capture long-term dependency:

z = Dropout(Mamba(e)) 3)



Mamba can selectively pass or forget information, which helps reduce redundancy and noise in the
input e. However, relying solely on Mamba is not sufficient. In scenarios where the patch sequence
length NN is large, there still exists the possibility of significant redundancy. Therefore, we propose
the IBF to further filter out redundant information from z.

3.2 IBF Module for Redundancy Filtering

The IBF module seeks to retrieve the most relevant subsequence x*“° for a target prediction Y from the
input sequence x. We adopt the sufficient encoder assumption [29]], implying that the information of
the input subsequence x*** is preserved in the encoding process, resulting in I(x**?,Y) ~ I(z*"*,Y)
and I(x*"°,x) ~ I(z***, z), where z**° is a subsequence of z. The Eq.|l|are transformed into:

min —1(z*°,Y) + BI(z*", z) )

zsub

The first term encourages 7" to be informative with respect to the label Y, and the second term
minimizes the mutual information between z and z*"°, so that z*"° retains only limited information
from z. The discrete nature of sequences renders direct optimization of IB objective impractical, as
there are 2% potential subsequences z*"° for a patch sequence of length V. Here, we relax patch
selection from discrete to probabilistic sampling. Considering z; as the representation of the i-th
patch, we utilize MLP (-) to assess the importance c; of patch z;:

¢; = sigmoid (MLP (z;)) Q)

Consequently, the selection of patch z; can be obtained by sampling from A; ~ Bern(c;), where
Bern(c; ) represents a Bernoulli distribution parameterized by c;. To ensure the differentiability of
the sampling process, we utilize the gumbel sigmoid [20} 9] function for the discrete random variable

\;, defined as:
1 i
A; = Sigmoid | — log ¢ + log v 6)
T 1—c¢; 1—wu

where u ~ Uniform(0, 1), and 7 is the temperature. Subsequently, subsequence z*"* can be obtained
by z%° = \z.

Although we can employ shannon mutual information [3] to quantify the compressed and informative
nature of the distribution of subsequences z*"°, the optimization process is inefficient and unstable
due to mutual information estimation [39]]. Here, we employ an optimization strategy known as noise
injection [38]], which endows the IB objective with a tractable variational upper bound. The core
concept is to allow the model to introduce noise into less informative subsequences while minimizing
noise injection into more informative ones (i.e., z*"°). Initially, noise injection disrupts the flow of
information from the input sequence z to the perturbed sequence z"*¢ = \z + (1 — \)e, where €
follows a random Gaussian distribution. To preserve the semantic, we set € ~ N (y,, 02), where i,
and o2 denote the mean and variance of z. Subsequently, we encourage the perturbed sequence z"'*°
to maintain its informative properties relative to the label Y. Finally, z*"° is derived by removing the
noise from z"¢. Eq.[4|can be reformulated as:

min _I(Znoise, Y) + 5I(Znoise7 Z) (7

Znoise

Minimizing — 1 (z“”ise, Y). We first examine the first term —7 (z“"ise, Y) in Eq. which encour-

noise

ages z is informative of label Y:

—1 (2", Y) < Ey g — logpg (Y | 2"%) 1= Liea (2", Y) ®)

Here, py (Y | z“"ise) represents the variational approximation to the true posterior distribution
p (Y | ™) (A detailed proof can be found in Appendix @) We model pg (Y | 2"°¢) as a predictor
parametrized by 6, which outputs the model prediction Y based on the input z"***®. Thus, we can min-
imize the upper bound of —1 (z“"ise, Y) by minimizing the model prediction loss Lpreq (z“"ise, Y).
We choose to utilize the MSE as L;cq (z“"ise, Y).



Minimizing 7(z"¢,z). For the second term (2", z) in Eq. [7, we can derive its variational
upper bound:

nois 1 1 1 noi
-1 (z (”e,z) <E, (—2 log A + ﬁA + 2NB2> = Leomp (z Ose,z) 9

N i\Z; — Uz . . . . .
where A = Zjvzl (1- )\j)2 and B = M A detail proof is given in Append1x|§|

Finally, we can efficiently estimate Eq. [§] and Eq. 0] with the batched data in the training set. The
overall loss is: ' '
L = Lprea (2", Y) + BLeomp (2", z) (10)

3.3 Hybrid-Transformer-Mamba(HTM)

Modeling the input long sequence with Mamba and then using Transformer to model the partitioned
short sequences is a promising paradigm [22} 25 [13]], as it can leverage the strengths of both
architectures simultaneously. We have designed two split methods capable of retaining semantic
information: interval split and block split, denoted as:

by = {2z €2 :i=j (mod K)} (11)

bi = ZI[I(Oiis—el)*N/K:i*N/K] (12)

where b; represents the ¢-th sequence block, and K is the number of blocks. The premise for splitting
sequences into subsequences is that the latter can still retain the semantic meaning of the original
long sequences. Fortunately, time series data often adhere to this principle. The interval split is
inspired by SCINet [15], which highlights a unique property of time series: temporal relations (e.g.,
trend and seasonal components) are largely preserved after downsampling into two subsequences.
SCINet downsamples the original sequence into two subsequences by separating the even and odd
elements, our interval split extends this approach to partitioning sequence into K blocks, distributing
contiguous K patches into K distinct blocks. This method preserves the global characteristics
of the sequence. Additionally, we propose the block split, where a continuous segment of patch
subsequence forms a block. This partitioning method is based on the periodicity of time series, where
one period (or multiples of a period) is considered as a block, thus preserving the local information
of the sequence. The patch operation and partitioning reduce the length of the input sequence for
the Transformer from L to L/PK, significantly reducing the computational overhead. For short
sequences, the Transformer is highly efficient, even more so than Mamba (see Appendix [E.2)).

4 Experiments

Our experiments aim to address the following questions:

* Can the PIH model effectively reduce the noise in the input sequence and thus leverage a
longer lookback window? (Section [d.T))

* Can our approach universally improve the MEW of various Transformer-based models and
achieve better performance? (Section4.2)

* What is the impact of each component? (Section.3)

4.1 PIH Can Effectively Leverage Long Windows

Dataset. We evaluate PIH on seven popular datasets, including Weather, Traffic, Electricity, and
four ETT datasets (ETTh1l, ETTh2, ETTm1, ETTm2). We also provide results on the Solar and
PEMS datasets in Appendix

Experimental Settings and Baselines. PIH integrates the IBF and HTM modules into the PatchTST
model, making PatchTST the primary baseline. To assess how effectively our model utilizes longer
lookback windows, we set L = 1024 for both PIH and PatchTST, which is significantly longer than
in previous studies. The other experimental settings can be found in Appendix 2. We additionally



Models PIH PatchTST Bi-Mamba S-Mamba FEDformer Autoformer Informer DLinear NLinear
Ours 2023 2024 2024 2022 2021 2020 2023 2023
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 0.360 0.394 | 0.371 0.405 | 0.378 0.395 | 0.386 0.406 | 0.376 0.415 | 0.435 0.446 | 0.941 0.769 | 0.511 0.520 | 0.379 0.404
192 | 0.396 0.418 | 0.408 0.429 | 0.427 0428 | 0.448 0444 | 0423 0446 | 0456 0.457 | 1.007 0.786 | 0.414 0428 | 0.414 0.426
336 | 0.409 0.432 | 0.431 0.449 | 0.471 0.445 | 0.494 0468 | 0.444 0462 | 0.486 0.487 | 1.038 0.784 | 0453 0.458 | 0.442 0.445
720 | 0435 0.466 | 0.482 0.483 | 0.470 0.457 | 0.493 0488 | 0469 0492 | 0515 0.517 | 1.144 0.857 | 0.511 0.520 | 0.470 0.477
96 | 0.263 0.328 | 0277 0.340 | 0.291 0342 | 0.298 0.349 | 0332 0.374 | 0.332 0.368 | 1.549 0.952 | 0.294 0.361 | 0.296 0.351
192 | 0.324  0.370 | 0.343 0.385 | 0.368 0.392 | 0.379 0.398 | 0.407 0.446 | 0.426 0.434 | 3.792 1.542 | 0.430 0.448 | 0.337 0.382
336 | 0.314 0.376 | 0.338 0.394 | 0.407 0.424 | 0.417 0432 | 0400 0.447 | 0477 0479 | 4215 1.642 | 0.492 0.484 | 0.359 0.407
720 | 0.378 0.425 | 0.403 0.442 | 0.421 0439 | 0431 0449 | 0412 0469 | 0453 0490 | 3.656 1.619 | 0.905 0.683 | 0.417 0.456
96 | 0291 0.349 | 0.294 0.349 | 0.320 0.360 | 0.331 0.368 | 0.326 0.390 | 0.510 0.492 | 0.626 0.560 | 0.314 0.358 | 0.317 0.359
192 | 0.337 0.374 | 0.334 0374 | 0.361 0.383 | 0.371 0.387 | 0.365 0415 | 0.514 0495 | 0.725 0.619 | 0.356 0.391 | 0.352 0.381
336 | 0.360 0.386 | 0.363 0.392 | 0.386 0.402 | 0417 0.418 | 0392 0.425 | 0.510 0.492 | 1.005 0.741 | 0.365 0.388 | 0.374 0.393
720 | 0.405 0.411 | 0.407 0.416 | 0.445 0437 | 0471 0.448 | 0.446 0.458 | 0.527 0.493 | 1.133 0.845 | 0410 0417 | 0.409 0413
96 | 0.161 0.253 | 0.164 0259 | 0.176 0.263 | 0.179 0.263 | 0.180 0.271 | 0.205 0.293 | 0.355 0.462 | 0.164 0.260 | 0.163 0.257
192 | 0.213 0.289 | 0.216 0.295 | 0.242 0.304 | 0.253 0.310 | 0.252 0.318 | 0.278 0.336 | 0.595 0.586 | 0.238 0.317 | 0.216 0.294
336 | 0.265 0.326 | 0.268 0.331 | 0.304 0.344 | 0.312 0348 | 0.324 0.364 | 0.343 0.379 | 1.270 0.871 | 0.265 0.326 | 0.265 0.326
720 | 0.342 0375 | 0.350 0.383 | 0.402 0.402 | 0.412 0408 | 0.410 0.420 | 0.414 0419 | 3.001 1.267 | 0.338 0.375 | 0.338 0.375
96 | 0.147 0.198 | 0.147 0.197 | 0.159 0.205 | 0.166 0.210 | 0.238 0.314 | 0.249 0.329 | 0.354 0.405 | 0.167 0.225 | 0.170 0.226
192 | 0.191 0.239 | 0.190 0.241 | 0.205 0.249 | 0.215 0.253 | 0.275 0329 | 0.325 0.370 | 0.419 0434 | 0.211 0.267 | 0.215 0.265
336 | 0.241 0.280 | 0.243 0.283 | 0.264 0.291 | 0.276  0.298 | 0.339 0.377 | 0.351 0.391 | 0.583 0.543 | 0.255 0.304 | 0.259 0.298
720 | 0.309 0.329 | 0.306 0.328 | 0.343 0.344 | 0.353 0.349 | 0.389 0.409 | 0415 0426 | 0.916 0.705 | 0.313 0.351 | 0.321 0.342
96 |0.357 0.248 | 0.394 0.289 | 0.375 0.258 | 0.381 0.261 | 0.576 0.359 | 0.597 0.371 | 0.733 0.410 | 0.385 0.275 | 0.383 0.270
192 | 0.371 0.255 | 0.407 0.295 | 0.394 0.269 | 0.397 0.267 | 0.610 0.380 | 0.607 0.382 | 0.777 0.435 | 0.397 0.279 | 0.397 0.274
336 | 0.392 0.261 | 0.422 0.302 | 0.406 0.274 | 0.423 0.276 | 0.608 0.375 | 0.623 0.387 | 0.776 0.434 | 0412 0.283 | 0.410 0.281
720 | 0430 0.282 | 0.46 0319 | 0.440 0.288 | 0.458 0.300 | 0.621 0.375 | 0.639 0.395 | 0.827 0.466 | 0450 0.309 | 0.449 0.303
96 | 0.127 0.220 | 0.133  0.226 | 0.140 0.238 | 0.142 0.238 | 0.186 0.302 | 0.196 0.313 | 0.304 0.393 | 0.132 0.229 | 0.133  0.229
192 | 0.145 0.240 | 0.151 0249 | 0.155 0.253 | 0.169 0.267 | 0.197 0.311 | 0.211 0.324 | 0.327 0.417 | 0.146 0.243 | 0.148 0.242
336 | 0.160 0.256 | 0.167 0.263 | 0.170 0.269 | 0.178 0.275 | 0.213 0.328 | 0.214 0.327 | 0.333 0.422 | 0.161 0.260 | 0.164 0.259
720 | 0.192 0.287 | 0.206 0.299 | 0.196 0.293 | 0.207 0.303 | 0.233 0.344 | 0.236 0.342 | 0.351 0.427 | 0.195 0.292 | 0.203 0.292

ETThl

ETTh2

ETTml

ETTm2

‘Weather

Traffic

Electricity

Table 1: Long-term forecasting results with different prediction lengths T € {96,192, 336, 720}.
The best results are highlighted in bold.
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Figure 3: (a): The performance comparison between PIH and PatchTST at L € {96, 336, 512, 1024 }.
(b): Comparison of GPU memory (GB) and training time (minutes/epoch) for PatchTST, PatchTST,
HTM, and PIH. (c): Visualization of a sample sequence in the Electricity, highlighting the most
important 20 patches identified by the IBF module with green shading.

selected Mamba-based, Transformer-based, and Linear-based models as baselines. For Mamba-based
model, we choose S-Mamba [34] and Bi-Mamba [12]]. For Transformer-based models, in addition
to PatchTST, we selected FEDformer [43]], Autoformer [35], and Informer [42]]. Furthermore, we
include two Linear-based models, DLinear and NLinear [40]]. Given that these two models were
proposed to address the limitations of Transformer-based models in handling long lookback windows,
we also set L = 1024 for them. All models follow the same experimental setup, with prediction
lengths T € {96,192, 336, 720}. We use MSE and MAE as evaluation metrics. We conducted five
repeated experiments and provided the significance analysis in the Appendix [C.3}

Results and Analysis. As show in Table m For models like S-Mamba, Transformer, Autoformer,
and Informer, PIH significantly outperforms them. Even for models specifically designed to handle
long windows, such as PatchTST, DLinear, and NLinear, PIH still surpasses them, demonstrating its
effectiveness in processing longer sequences. It is worth noting that we did not intentionally choose
an unusual setting like L = 1024 to lower the performance of these three models. In Appendix [C.1]
we also provide their performance under shorter windows (e.g., 336 and 512), where PIH continues
to outperform them. Overall, PIH with a much longer window setting achieves better results than
other models with shorter windows. Our experiments highlight the potential for further increasing
the window size.



Transformer Informer Autoformer PatchTST

Origin Ours Origin Ours Origin Ours Origin Ours
MEW MSE | MEW MSE | MEW MSE | MEW MSE | MEW MSE | MEW MSE | MEW MSE | MEW MSE
Etthl 72 1.009 | 144 0.96 72 1.146 | 144  1.063 72 0508 | 192 0.491 | 512 0447 | 1024 0.435

Etth2 336 2297 | 512 2.087 48 3.624 96 3.289 120 0458 | 168  0.446 | 336 0379 | 1024 0.378
Weather 512 0504 | 512 0.482 48 1.028 | 120 0957 | 144 0460 | 228 0.451 | 1024 0.306 | 1024 0.309

Traffic 168  0.686 | 192  0.680 48 1.083 72 0.973 144 0.649 | 192 0.612 | 512 0432 | 1024 0.430
Ettm1 48 0974 | 228 0.843 96 0977 | 168 0910 | 192 0529 | 228 0.517 | 1024 0.407 | 1440 0.399
Ettm2 120 2784 | 168  2.436 96 3956 | 168 3.648 | 336 0419 | 336 0.410 | 1024 0.350 | 1024 0.342

Electricity 48 0.287 96 0.281 72 0372 | 120 0361 | 336 0243 | 336 0237 | 512 0.197 | 1024 0.192

Table 2: The MEW and MSE of the “origin” Transformer-based models: Transformer, Informer,
Autoformer, and PatchTST, as well as the versions integrated with our module (“ours”). Larger
MEWSs and smaller MSEs are highlighted in bold.

PIH Can Effectively Utilize Longer Lookback Windows. As shown in Fig. [3| (a), we set the
lookback window to L = {96, 336,512,1024} and used the average MSE over 7 datasets with
forecasting horizons of T' € {96,192, 336, 720} as the evaluation metric. The results indicate that
the performance of PatchTST improves steadily as the window increases from 96 to 512, but declines
when extended to 1024. In contrast, PIH exhibits a consistent performance improvement as the
window size increases from 96 to 1024. This suggests that the HTM and IBF modules help PatchTST
improve MEW, leading to better performance with longer windows. Another noteworthy observation
is that, except for L = 96, PIH consistently outperforms PatchTST for the same L. We hypothesize
that with L = 96, sequence redundancy and noise is low, and the patch strategy alone is sufficient to
manage it effectively, rendering IBF and HTM unnecessary. Consequently, PIH lags behind PatchTST
at this window size. However, as the window length increases and sequence redundancy grows, the
IBF and HTM modules become more effective, allowing PIH to surpass PatchTST.

Computational Overhead. In addition to performance comparisons, we evaluated computation
time and memory usage, as shown in Fig. 3| (b). When using only the HTM module without the
IBF (referred to as HTM), it demonstrates significant improvements in both computational time and
memory usage compared to the pure Transformer architecture (referred to as PatchTST), surpassing
it by a notable margin (2 to 3 times). Additionally, HTM outperforms the pure Mamba architecture
(referred to as PatchTSM), which can be attributed to the Transformer’s lower computational cost
when handling shorter sequences compared to Mamba (see Appendix [E.Z). Moreover, when both
HTM and IBF are integrated (i.e., PIH), the additional overhead introduced is negligible, as the IBF
module only consists of a simple MLP.

Interpretability of IBF. Another advantage of incorporating the IBF module is its ability to enhance
interpretability by identifying crucial subsequences for the final prediction. As shown in Fig.[3](c),
we provide a visualization of a sample from the Electricity dataset. Based on Eq.[5] we select the top
20 most important patches and highlight them in green. The results indicate that the model focuses
more on sequences at peak positions. This aligns with prior knowledge, as peak positions typically
represent changes in the sequence and contain more critical information.

4.2 The Generalizability of Our Modules

We conducted experiments on three different point-based Transformer models—Transformer, In-
former, and Autoformer—as well as a patch-based PatchTST. Specifically, for Transformer, Informer,
and Autoformer, we selected MEW from the following windows: 48, 72, 96, 120, 144, 168, 192,
228, 336, and 512. For PatchTST, the MEW were selected from the set: 72, 96, 120, 144, 168, 192,
228, 336, 512, 1024, and 1440. The prediction length was set to 7' = 720, with MSE used as the
evaluation metric for MEW. All other experimental settings remained the same. The default model
and the versions with the two modules integrated are denoted as “origin" and “Ours", respectively. As
shown in Table 2] the MEW of point-based models tends to be quite small, especially for Informer,
where the MEW on all 7 datasets does not exceed 96. On the other hand, the PatchTST, which is
patch-based, exhibits larger MEW. This is because the use of patches effectively reduces the noise
in the lookback window and significantly reduces the number of tokens, alleviating the issues of
attention dispersion and overfitting to noise in the Transformer. After integrating our modules, the
MEW of all four models showed significant improvement, and they also achieved better MSE. This is
because the IBF module effectively reduces the noise in the input, while the HTM further diminishes
noise and, by decomposing long token sequences into shorter ones, ensures that the Transformer
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Figure 4: Left: Ablation experiments of different modules at prediction lengths 7' =
{96, 192,336, 720}. Right: Comparison of interval split and block split. The average MSE across 7
datasets at 7' = {96, 192, 336, 720} is used as the evaluation metric.

processes a noise-filtered, shorter sequence. These experiments demonstrate the generalizability of
our modules. Furthermore, we observe that for the same model, when the MEW is improved, its
performance also increases, indicating that enhancing a model’s MEW is a promising direction.

4.3 Ablation Study

Component Ablation. To assess the effectiveness of IBF and HTM, we utilize PatchTST as a
baseline, upon which we separately introduce IBF, HTM and both simultaneously to obtain three
variants: +IB, +HTM, and PIH. Additionally, we introduce a variant of +HTM, +HMM, which
solely employs Mamba to handle both the original long sequences and the divided short sequences.
All experiments maintain consistent settings, with L = 1024 and T = {96, 192, 336, 720}. The
average MSE across 7 datasets is used as the evaluation metric. As illustrated in Fig. ] the following
observations are made: (1) Both IBF and HTM modules enhance the model’s performance, and
combining these two modules yields superior results. (2) Compared to HMM, HTM exhibits slightly
better performance, which can be attributed to the different mechanisms between Transformer and
Mamba, making each more suited to handling different types of sequences. By combining the
strengths of both, the hybrid approach achieves superior results. As discussed earlier, the Transformer
has lower computational costs for shorter sequences, while Mamba is more efficient for longer
sequences. Therefore, from both performance and computational overhead perspectives, using a
combination of both architectures is a better choice than relying solely on one. (3) At longer prediction
lengths, such as 7" = 720, our model demonstrates greater improvements compared to 7' = 96,
indicating that larger windows L provide more significant benefits for longer-term predictions (longer
T).

Interval Split vs. Block Split. We compared the performance of interval split and block split
across various datasets, as shown in Fig.[d] Overall, the effectiveness of both split methods is roughly
comparable, demonstrating their ability to preserve sequential characteristics. However, slight
variations in performance are observed across different datasets. We speculate that this discrepancy
arises from the different strengths of each partitioning method in retaining specific sequential patterns.
Intuitively, interval split emphasizes global variations, while block split focuses on variations within
specific periods. Determining the most suitable partitioning strategy remains a topic for future
exploration.

Other Hyperparameters. Our model incorporates several crucial hyperparameters, including
K, determining the number of partitions; /3, which governs the balance between prediction and
compression in the IB objective; and the temperature factor 7, influencing subsequence sampling. We
investigate the impact of K € {2,4,6,8}, 5 € {0.0001,0.001,0.1,1}, and set 7 € {0.1,0.5,1, 2}
We find that the choice of K does not significantly affect performance, whereas 7 and 3 exhibit
considerable influence on performance, likely due to variations in the redundancy levels across
different datasets. Detailed hyperparameter experiments can be found in the Appendix [C.4]



5 Conclusion

In this paper, we propose a MEW metric to evaluate the model’s ability to leverage the lookback
window. We introduce two model-agnostic modules, IBF and HTM, from both information-theoretic
and model-architectural perspectives. Experiments show that these modules can effectively improve
the model’s MEW, and with a larger MEW, the model’s performance also improves, demonstrating
the importance of enhancing MEW. Furthermore, we combine these modules with the patch strategy
to design the PIH model, which can handle longer windows than previous works and achieves
state-of-the-art results, illustrating the potential of leveraging longer windows.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have claimed the paper’s contributions and scope in abstract and introduc-
tion
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Appendix [A]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The proof could be found in Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code and data are provided.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code and data are open.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided the data splits, hyperparameters, etc.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We have provided the statistical significance of the experiments result.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide provide sufficient information on the computer resources in
Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
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Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
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faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
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A Limitations

First, our experiments demonstrate that extending the window length to L = 1024 still yields
performance improvements, suggesting that further exploration of longer windows is a promising
direction. Secondly, although the modules we propose effectively improve the model’s MEW, a
bottleneck still exists. A more promising avenue of research is to explore whether there is a scaling
law for lookback windows, meaning that larger windows consistently result in better performance.
Thirdly, the interval split and block split methods are heuristic. Designing an adaptive, end-to-end
split method tailored to each training dataset may lead to better results. Lastly, while recent large time-
series models have adopted much longer windows, we assert that our approach is orthogonal to theirs.
It is worth exploring whether our method can be integrated into these large models (e.g.,LLM-based)
to further extend their window sizes.

B Dataset Description

In the main text, we use seven popular multivariate datasets provided in [35]] for forecasting and
representation learning. The Weather dataset collects 21 meteorological indicators in Germany, such
as humidity and air temperature. The Traffic dataset records road occupancy rates from various sensors
on San Francisco freeways. The Electricity dataset describes the hourly electricity consumption of
321 customers. The ETT (Electricity Transformer Temperature) datasets are collected from two
different electric transformers labeled as 1 and 2, each containing two resolutions (15 minutes and 1
hour), denoted as m and h, respectively. Thus, there are four ETT datasets in total: ETTm1, ETTm?2,
ETThl, and ETTh2. In addition, we incorporated two additional datasets: Solar[10] and PeMS[16].
Their experimental results are shown in Table[d The results indicate that PIH also achieved the best
performance on these two datasets.

Table 3: Statistics of popular datasets for benchmark.

Datasets | Weather ~Traffic ~Electricity ETThl ETTh2 ETTml ETTm2 Solar PEMS

Features 21 862 321 7 7 7 7 137 358
Timesteps | 52696 17544 26304 17420 17420 69680 69680 52,179 21,351

C Experiments

C.1 Experiments settings

PIH is built upon the PatchTST and thus incorporates all hyperparameters from PatchTST. To ensure
a fair comparison, we adhered strictly to the settings of PatchTST for these shared hyperparameters,
with the exception of the learning rate. We conducted a hyperparameter search only for those
introduced by the HTM and IBF modules, as this was necessary. The only exception is the learning
rate. Given the introduction of the Mamba and IBF modules, the default learning rate of [» = 0.0001
in PatchTST is suboptimal. Consequently, we set the search space for the PIH learning rate to
Ir = {0.001,0.0005,0.0001}. To ensure a fair comparison, we also performed a hyperparameter
search for the learning rate in PatchTST, and selected the optimal results. The resulting mean Absolute
Error (MAE) values were 0.310 and 0.335, which are almost unchanged compared to the default
learning rate (Ir = 0.0001), yielding 0.310 and 0.336. Thus, this does not affect our result analysis.

Our model incorporates several crucial hyperparameters, including K, which determines the number
of partitions; 3, which governs the balance between prediction and compression in the information
bottleneck (IB) objective; and the temperature factor 7, which influences subsequence sampling.
We set K € {2,4}, 8 € {0.0001,0.001,0.1,1}, and 7 € {0.1,0.5,1,2}. We selected the optimal
hyperparameters based on the results from the validation set.

The original PatchTST paper discusses the impact of key hyperparameters in detail, such as the
number of Transformer layers, patch length, the number of heads in multi-head attention, and the
dimension of the latent space. The default parameters provided in their official code represent the
best-performing combination overall, so there was no need to repeat hyperparameter searches for
PatchTST. Additionally, since our PIH is based on PatchTST, any changes to PatchTST would
necessitate corresponding adjustments to PIH. Conducting performance comparisons between PIH
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and PatchTST for every parameter setting would render the ablation experiments overly redundant.
Therefore, we did not adjust the hyperparameters of PatchTST. The only exception is the learning
rate. Given the introduction of the Mamba and IBF modules, the default learning rate of I = 0.0001
in PatchTST is suboptimal. Consequently, we set the search space for the PIH learning rate to
Ir = {0.001, 0.0005,0.0001}. To ensure a fair comparison, we also performed a hyperparameter
search for the learning rate in PatchTST, using {r = {0.001,0.0005,0.0001}, and selected the
optimal results. The resulting mean Absolute Error (MAE) values were 0.310 and 0.335, which are
almost unchanged compared to the default learning rate (Ir = 0.0001), yielding 0.310 and 0.336.
Thus, this does not affect our result analysis.

C.2 Additional Experimental Results.

Due to space limitations in the main text, we only discussed the results on seven datasets. To
better evaluate our model, we also conducted experiments on the Solar and PEMS datasets, with
the experimental settings consistent with those described in the main text. As shown in Table[d] our
model also outperforms other methods on these two datasets.

Table 4: Multivariate long-term series forecasting results for the Solar and PEMS.

Models PIH PatchTST iTransformer DLinear MICN FourierGNN FEDformer Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 | 0.163 0.230 0.185 0.246 0.170 0246 0.191 0257 0.190 0243 0.183 0.232 0214 0311 0.316 0.369
192 | 0177 0.239 0201 0262 0.195 0263 0211 0273 0205 0247 0.198 0256 0.281 0.364 0418 0437

Solar 336 | 0.188 0.247 0209 0.266 0217 0282 0.228 0.285 0219 0250 0205 0.261 0294 0378 0438 0.467
720 | 0.196 0.255 0226 0283 0.208 0276 0236 0.294 0227 0263 0202 0265 0315 0406 0.618 0.550
12 ] 0.060 0.163 0.063 0.166 0.064 0.167 0.078 0.187 0.094 0204 0.091 0.202 0283 0.394 0.584 0.607
PEMS 24 | 0.075 0.179 0.080 0.185 0.081 0.187 0.113 0224 0.116 0229 0.116 0.232 0300 0431 0.672 0.664

48 | 0.100 0.204 0.109 0.213 0.111 0215 0.167 0274 0.147 0255 0.165 0.271 0396 0476 0.879 0.781
96 | 0132 0.233 0.145 0.243 0.142 0240 0.212 0313 0256 0362 0.196 0.300 0477 0537 1.100 0.895

C.3 Performance of PatchTST, DLinear, and NLinear under Different Window Lengths

In the main text, we set L to 1024. This is not done with the intention of deliberately undermining
the performance of PatchTST, DLinear, and NLinear under an unusual setting. Here, we conducted
experiments with DLinear and NLinear, two linear-based models, under two settings: L = 336 and
L = 1024, with the results shown in Table[5] For PatchTST, we set L = 336 and L = 512. As shown
in Table[5] even with the shorter window settings, their performance still lags behind that of PIH at
L = 1024. Specifically, we can draw the following conclusions:

* Linear-based models indeed perform well against noise, with NLinear(1024) generally
outperforming NLinear(336). This is consistent with the results of PIH, indicating that larger
windows are beneficial.

* NLinear(1024) generally outperforms NLinear(336), whereas DLinear(1024) underperforms
compared to DLinear(336). Thus, directly increasing the window size in linear-based
methods is not always effective.

» PIH(1024) outperforms NLinear(1024), which can be attributed to the superior represen-
tational capabilities of the Transformer and Mamba modules compared to linear modules.
Therefore, it is essential to continue exploring the potential of Transformer-based models
with longer windows rather than relying solely on linear-based models.

* Compared to PatchTST (336), PatchTST (512), and PatchTST (1024) discussed in the main
text, PIH (1024) achieves better performance. This can be attributed to the IBF and HTM
modules, which enable PIH to leverage larger windows effectively.

C.4 Hyperparameters

Our model incorporates several crucial hyperparameters, including K, determining the number of
partitions; 3, which governs the balance between prediction and compression in the IB objective;
and the temperature factor 7, influencing subsequence sampling. We investigate the impact of
K € {2,4,6,8}, 8 € {0.0001,0.001,0.1,1}, and set 7 € {0.1,0.5,1,2}. As shown in Fig.[5 we
investigate the effects of the three hyperparameters on the ETTh1, ETTm1, and Weather datasets.
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Table 5: Comparison between DLinear, NLinear, PatchTST and PIH with different lookback windows.
Traffic ETThl ETTh2
MSE MAE MSE MAE MSE MAE

0.410 0.282 0.375 0399 0289 0.353
0.423  0.287 0.405 0416 0383 0418
0.436  0.296 0.439 0443 0.448 0.465
0.466 0315 0.472  0.490 0.605 0.551

0.403
0.428
0.458
0.520
0.394
0.415
0.427
0.453
0.404
0.426
0.445
0.477
0.399
0.421
0.436
0.466
0.400
0.429
0.440
0.468
0.394
0.418
0.432
0.466

ETTml
MSE MAE

0.299 0.343
0.335  0.365
0.369  0.386
0.425 0421

ETTm2
MSE MAE

0.167  0.260
0.224  0.303
0.281 0.342
0.397 0421

Weather
MSE MAE

DLinear(336) 9 0.176  0.237
192 0.220 0.282
336 0.265 0.319
720 0.323  0.362

DLinear(1024) 96  0.167
192 0.211
336 0.255
720 0.313
NLinear(336) 96 0.182
192 0.225
336 0.271
720 0.338
NLinear(1024) 96  0.170
192 0.215
336 0.259
720 0.321
PatchTST(336) 96 0.152
192 0.197
336  0.249
720  0.320
PatchTST(512) 96  0.149
192 0.194
336 0.245
720 0.314
PIH(1024) 96  0.147
192 0.191
336  0.241
720 0.309

Electricity
MSE MAE

0.140  0.237
0.153  0.249
0.169  0.267
0.203  0.301

0.225
0.267
0.304
0.351
0.232
0.269
0.301
0.348
0.226
0.265
0.298
0.342
0.199
0.243
0.283
0.335
0.198
0.241
0.282
0.334
0.198
0.239
0.280
0.329

0.385
0.397
0.412
0.450
0.410
0.410
0.435
0.464
0.383
0.397
0.410
0.449
0.367
0.385
0.398
0.434
0.360
0.379
0.392
0.432
0.357
0.371
0.392
0.430

0.275
0.279
0.288
0.309
0.279
0.279
0.290
0.307
0.270
0.274
0.281
0.303
0.251
0.259
0.265
0.287
0.249
0.256
0.264
0.286
0.248
0.255
0.261
0.282

0.132
0.146
0.161
0.195
0.141
0.154
0.171
0.210
0.133
0.148
0.164
0.203
0.130
0.148
0.167
0.202
0.129
0.147
0.163
0.197
0.127
0.145
0.160
0.192

0.229
0.243
0.260
0.292
0.237
0.248
0.265
0.297
0.229
0.242
0.259
0.292
0.222
0.240
0.261
0.291
0.222
0.240
0.259
0.290
0.220
0.240
0.256
0.287

0.378
0.414
0.453
0.511
0.374
0.408
0.429
0.440
0.379
0.414
0.442
0.470
0.375
0.414
0.431
0.449
0.370
0.413
0.422
0.447
0.360
0.396
0.409
0.435

0.294
0.430
0.492
0.905
0.277
0.344
0.357
0.394
0.296
0.337
0.359
0.417
0.274
0.339
0.331
0.379
0.274
0.341
0.329
0.379
0.263
0.324
0.314
0.378

0.361
0.448
0.484
0.683
0.338
0.381
0.400
0.436
0.351
0.382
0.407
0.456
0.336
0.379
0.380
0.422
0.337
0.382
0.384
0.422
0.328
0.370
0.376
0.425

0.314
0.356
0.365
0.410
0.306
0.349
0.375
0.433
0.317
0.352
0.374
0.409
0.290
0.332
0.366
0.420
0.293
0.333
0.369
0.416
0.291
0.337
0.360
0.405

0.358
0.391
0.388
0.417
0.348
0.375
0.388
0.422
0.359
0.381
0.393
0.413
0.342
0.369
0.392
0.424
0.346
0.370
0.392
0.420
0.349
0.374
0.386
0.411

0.164
0.238
0.265
0.338
0.167
0.221
0.274
0.368
0.163
0.216
0.265
0.338
0.165
0.220
0.278
0.367
0.166
0.223
0.274
0.362
0.161
0.213
0.265
0.342

0.260
0.317
0.326
0.375
0.255
0.293
0.327
0.384
0.257
0.294
0.326
0.375
0.255
0.292
0.329
0.385
0.256
0.296
0.329
0.385
0.253
0.289
0.326
0.375

We find that the choice of K does not significantly affect performance, whereas 7 and 3 exhibit
considerable influence, likely due to variations in the redundancy levels across different datasets.

C.5 Robustness of Our Results

To verify whether the improvements of PIH over PatchTST are statistically significant, we utilized
p-values to evaluate the prediction results. Specifically, for a prediction length of T = 96, we
validated the significance of the improvement achieved by PIH over PatchTST. Table [§| presents the
p-values from 5 experiments conducted at 7' = 96, 192, 336, 720. The results demonstrating that the
performance improvements are significant in 5 out of 7 datasets. (p-value < 0.05)

Table 6: P-values for the significance of PIH improvements over PatchTST at different prediction
lengths.

T | Weather Traffic Electricity Etthl Etth2 Ettml | Ettm2
96 0397 | 1.19x10% [ 7.00x10°° | 1.10x 107° | 1.99 x 10-% | 032 | 0.002
192 0.49 747 x 1079 | 778 x 107% | 1.60 x 1076 | 8.65 x 1076 | 0.20 | 0.013
336 | 0.015 | 6.40x 1077 | 4.60 x 1074 | 2.30 x 107% | 2.44 x 10=7 | 0.008 | 0.007
720 0.08 6.29 x 1076 | 2.92x 1076 | 2.53 x 1076 | 2.05 x 10~7 | 0.36 | 0.0008

C.6 Integration into the iTransformer

iTransformer [18] is a special Transformer-based time series model that, instead of treating points
or patches as tokens, treats each channel as a token. Therefore, the number of input tokens for
iTransformer is determined by the number of channels rather than the length of the lookback windows.
Although this differs slightly from the main focus of this paper, we found that IBF and HTM can
also be applied to iTransformer. In this case, the goal of these two modules becomes reducing
redundancy among channels and decreasing the number of tokens fed into the Transformer to mitigate
the attention dispersion problem. We conducted experiments on datasets with a large number of
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Figure 5: The impact of hyperparameters K, 3, and 7 in the PIH model on performance across
ETThl, ETThml, and Weather datasets. The vertical axis represents the MSE at T" = 96.

Table 7: Comparison of MSE values for different datasets and horizons between our method and

iTransformer.

Dataset Ours iTransformer
MSE MAE | MSE MAE
96 0.129 0.225 | 0.133 0.229
Electricity 192 | 0.146 0.242 | 0.155 0.251
336 | 0.163 0.260 | 0.167 0.264
720 | 0.189 0.285 | 0.194  0.288
96 0.346  0.252 | 0.349 0.255
Traffic 192 | 0354 0.254 | 0359 0.263
336 | 0.370 0.261 | 0.379 0.272
720 | 0413 0.280 | 0417 0.291
12 0.059 0.158 | 0.064 0.167
24 0.075 0.178 | 0.081 0.187
PEMS 48 0.101  0.203 | 0.111 0.215
96 0.133 0.234 | 0.142 0.240

channels, including Electricity, Traffic, and PEMS. As shown in Table [C.6] after integrating our
module, the performance of iTransformer is further enhanced.
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D Proofs of IB

D.1 Proof of Eq(7)

We first examine the first term —1 (z“"is"', Y) which encourages zyo;sc 1s informative of label Y .
—1I (z""ise7Y) < Ey goie —log gy (Y | z“Oise)

_ (13)
= Epred (Znolse7 Y)

Here, pg (Y | z“"is"‘) represents the variational approximation to the true posterior distribution
P (Y \ z“"ise) .This equation illustrates that minimizing —1 (z""ise, Y) is achieved by minimizing the
prediction loss between z"*¢ and Y. We choose to utilize the Mean Squared Error (MSE) loss to
quantify the disparity between the prediction and the ground truth.

Here we provide more details about how to yield Eq. By the definition of mutual information and
introducing variational approximation py (Y | z"¢) of intractable distribution p (Y | ™) , we

have: A
noise) __ . p (Y ‘ ZHOISC)
I (Y, VA ) = EY,ZHOISE |}Og W

Do (Y | znoise)] (14)

= EY | zhoise log

p(Y)
+ Eguie [KL (p (Y | 2"%) ||Ipo (Y | 2"%))]
According to the non-negativity of the KL divergence, we have:
Do (Y | Znoise)
p(Y)
= Ey i [logpo (Y | 2")] + H(Y)

I (Y;ZHOise) Z EY7znoi>c llog

We can ignore H(Y) since it can be treated as a constant. We model py (Y | z“"ise) as a predictor pa-

rameterized by 6, which generates the model prediction Y based on the input z"**¢, Thus, minimizing
the upper bound of —7 (z“"ise, Y) entails minimizing the model prediction loss Lpred (z“"is"‘7 Y). We
opt to employ the Mean Squared Error (MSE) loss to quantify the difference between the prediction
and the ground truth.

D.2 Proof of Eq(9)

We derive the upper bound of I (2", z) by introducing the variation approximation g (z™*¢) of
distribution p (z"*¢) :

p(2)
%(ZW] (15)
q(zmo)
= g o [KL (p (2)) llg (2")) ]
According to the non-negativity of KL divergence, we have:

I (Znoise7 Z) <FE, [KL (p¢ ((Znoise ‘ Z) ||q (Znoise))} (16)

noise
I (ZHOiSe7 Z) = Ez7znoise [log pi(b (Z | Z)‘|

= Ez | zhoise |}0g

we assume that ¢ (z“"ise) is obtained by aggregating the patch representations in a fully perturbed

sequences. The noise € ~ N (Mz, ag) is sampled from a Gaussian distribution where y,, and o2 are
mean and variance of z. Choosing sum pooling as the aggregatiion function, since the summation of
Gaussian distributions is a Gaussian, we have the following equation:

q (z"%°) =N (Npg, Noy) (17)
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Then for p,, (2" | z), we have the following equation:

N N N
Po (2" |2) =N | Ny + > Njzg = Y Njpta, 3 (1= X;)° 02 (18)
1 j=1

j=1 =

Finally, we have following inequality by plugging Eq.[I7]and Eq.[18]into Eq.[I6}

‘ 1 1 1
I (2% z) <E, |—=logA+ —A+ —B? 1
(z ,z)_ z{ 5 log +2N +2N }-l—c (19)

2 N i i— Mz . . . . .
where A = ;-V:l (1- )\j)2 ,B==="173 "% 2’(2’ #2) and C'is a constant term which is ignored during
H1

optimization.

E Others

E.1 Relationship with Large Time-Series Models

Although some recent large time-series models are capable of handling longer windows, they rely
on significantly more parameters and much larger training datasets compared to our experiments.
Additionally, when tested on the same datasets we used, these models still employ smaller window
sizes. Our work does not conflict with these advancements in large time-series models. This is
because the HTM and IBF modules we propose are model-agnostic and can be integrated into large
time-series models, a direction worth exploring in future.

E.2 Mamba vs Transformer

We analyze HTM from both performance and computational overhead perspectives and find that the
hybrid architecture has distinct advantages over using only Mamba or Transformer.

From a performance perspective. The ablation experiments presented in Fig.3(b) of main paper
indicate that removing the Transformer results in slightly worse performance, highlighting the
significant advantage of the combined Transformer and Mamba architecture. This finding is further
supported by recent works such as Mamba-2-Hybrid [32], Dimba [6], and Jamba [13]].

Table 8: Comparison of GPU memory usage and training time per epoch for a single-layer Transformer
and Mamba on the Weather dataset as the lookback window L varies.

Model Metric 96 192 336 512 1024

Time (s) 18.76 21.63 28.25 36.52 58.47
Memory (G) 2.02 330 490 678 953

Time (s) 733 1794 2784 44770 96.57
Memory (G) 0.75 1.64 3.21 556 15.05

Mamba

Transformer

Considering computational overhead. Our framework employs the Transformer solely to process
the partitioned short subsequences, which generally mitigates concerns about the costs associated
with the Transformer. To validate this, we compared the computation time and GPU memory usage
between using a single layer of Mamba and a single layer of Transformer under various lookback
window settings (with nearly identical parameter counts). As shown in Table @ when L < 3306, the
computational overhead of the Transformer is even lower than that of Mamba; however, at L = 1024,
the computational cost of the Transformer is nearly twice that of Mamba. In our experiments, K is
typically set to 4, resulting in a subsequence length of L/K = 1024/4 < 336. Consequently, the
addition of the Transformer module incurs less overhead compared to using only Mamba.

In summary, we conclude that retaining the Transformer module is essential for enhancing perfor-
mance while managing computational costs effectively.
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