Enhancing the Maximum Effective Window for Long-Term Time Series Forecasting

Jiahui Zhang^{1,2}, Zhengyang Zhou^{1,2}, Wenjie Du^{1,2,†}, Yang Wang^{1,2,†}

¹University of Science and Technology of China, China ²Suzhou Institute for Advanced Research, USTC, China kongping@mail.ustc.edu.cn {zzy0929, duwenjie, angyan}@ustc.edu.cn

Abstract

Long-term time series forecasting (LTSF) aims to predict future trends based on historical data. While longer lookback windows theoretically offer more comprehensive insights, Transformer-based models often struggle with them. On one hand, longer windows introduce more noise and redundancy, hindering the model's learning process. On the other hand, Transformers suffer from attention dispersion and are prone to overfitting to noise, especially when processing long sequences. In this paper, we introduce the Maximum Effective Window (MEW) metric to assess a model's ability to effectively utilize the lookback window. We also propose two model-agnostic modules to enhance MEW, enabling models to better leverage historical data for improved performance. Specifically, to reduce redundancy and noise, we introduce the Information Bottleneck Filter (IBF), which employs information bottleneck theory to extract the most essential subsequences from the input. Additionally, we propose the Hybrid-Transformer-Mamba (HTM), which incorporates the Mamba mechanism for selective forgetting of long sequences while harnessing the Transformer's strong modeling capabilities for shorter sequences. We integrate these two modules into various Transformer-based models, and experimental results show that they effectively enhance MEW, leading to improved overall performance. Our code is available at https://github.com/forever-ly/PIH.

1 Introduction

Long-term time series forecasting (LTSF) [14] holds significant importance across various domains such as traffic management, energy optimization, and financial analysis. Transformer-base methods [31], known for their attention mechanisms that facilitate the automatic learning of sequential dependencies, have emerged as promising tools for LTSF.

Intuitively, extending the lookback window is a natural choice to enhance the forecasting capability of the model. This allows the model to capture long-term trends more accurately, thereby improving its ability to predict seasonal variations, cyclical patterns, and overall trends. However, prior research has found that current Transformer-based models are not effective in leveraging long lookback windows [40]. To quantitatively assess a model's efficiency in utilizing the lookback window, we propose a new metric **Maximum Effective Window (MEW):** For a given model, as the lookback window is increased while keeping other settings constant, there exists a point beyond which further increases in the window do not result in better performance. This point is referred to as the model's Maximum Effective Window, which reflects the model's potential to utilize historical information.

^{†:} corresponding author



Figure 1: The changes in MSE with respect to the lookback window for Transformer and PatchTST on the ETTh1 dataset with a prediction length of T=720. "Ours" refers to the integration of our modules into these two models. The triangular markers indicate the Maximum Effective Window (MEW). "Ours" increases the MEW from 72 and 512 to 288 and 1024, respectively.

As shown in Fig. 1 (a), point-based Transformer (where a single time point is treated as a token) only achieve MEW of 72 for the *ETTh1* dataset. A natural question then arises: *Can we increase a model's MEW, thereby enabling it to perform better with longer lookback windows?* Before answering this, we first analyze the reasons behind the limitation of the MEW. **From the information perspective**, longer windows may contain more redundant signals [26], which can impede the model's learning process by allocating significant modeling capacity to meaningless or irrelevant noise signals [40]. **From the architecture perspective**, many studies have shown that Transformers suffer from issues such as attention dispersion and overfitting to noise [37], and these drawbacks are exacerbated with longer sequences.

The patch strategy [23, 41] is an effective approach to improving the MEW. By treating consecutive time points as a single patch, this strategy significantly reduces local-level noise whihin a patch. Additionally, it greatly reduces the number of tokens that the Transformer process, it helps mitigate issues such as attention dispersion and overfitting to noise. As shown in Fig. 1 (b), PatchTST achieves a MEW of 512, which is substantially higher than the 72 achieved by point-based Transformer. However, the patch strategy is heuristic and lacks adaptability. Firstly, it assumes redundancy and noise only within the points of each patch, which is a heuristic assumption that overlooks potential redundancy and noise between patches. Secondly, when the number of patches increases, the issues of attention dispersion and overfitting to noise in Transformers can still be exacerbated. Lastly, this approach is not suited for models that do not adopt a patch-based design.

In this paper, we propose two model-agnostic modules to address the issues of information redundancy and architectural limitations. As shown in Fig. 1, after integrating our modules, the MEW for PatchTST (patch-based) and Vanilla Transformer (point-based) increases from 72 and 512 to 288 and 1024, respectively, achieving improved performance.

Specifically, to reduce redundancy and noise in long lookback windows, we introduce the Information Bottleneck Filter (IBF) module based on Information Bottleneck (IB) theory. This module aims to identify informative subsequences while minimizing redundancy and noise [3], enabling the model to prioritize significant subsequences within the lookback windows. However, directly optimizing the IB objective for sequences is challenging due to their discrete nature [39, 38], often leading to training instability and degraded predictions. To address this, we propose a probabilistic framework for sequence selection, coupled with a noise injection strategy. The core idea is that important subsequences should have a low probability of noise injection, whereas injecting larger noise into redundant sequences has minimal impact on predictions. By tailoring a noise prior for each input, the IB objective can yield a manageable variational upper bound. To overcome the challenges of attention dispersion and overfitting to noise in Transformers, we introduce Mamba [7], a state-space model (SSM) capable of selectively remembering historical information and filtering out noise. Recent studies have suggested that Transformers and SSMs complement each other in modeling [21, 24]. Therefore, rather than replacing Transformers with Mamba, we propose a Hybrid-Transformer-Mamba (HTM) architecture. First, Mamba captures long-term information while selectively filtering out noise from the extended lookback window. Then, the IBF further reduces noise. Finally, leveraging the temporal characteristics of the time series, we introduce two sequence

splitting algorithms—interval split and block split—to divide the noise-filtered long lookback window into multiple short subsequences. These subsequences are processed by the Transformer to capture short-term dependencies. Experimental results show that HTM outperforms both pure Transformer and pure Mamba architectures in terms of both computational overhead and predictive performance. In summary, our primary contributions are as follows:

- 1. We defined a metric MEW, which reflects the model's ability to leverage the window effectively. We analyzed how to improve MEW of Transformer-based models from both the information-theoretic and architectural perspectives, and proposed two model-agnostic modules: IBF and HTM.
- 2. We integrated these two modules into multiple Transformer-based models and conducted detailed experiments on seven datasets. The results demonstrate that these modules can enhance MEW while achieving better performance.
- 3. Notably, by incorporating these modules into the PatchTST model, we developed the PIH model (Patch-IBF-HTM), where the window length is extended to 1024—surpassing the window settings of all currently existing non-LLM-based time series models, to the best of our knowledge. The PIH model achieved state-of-the-art results, demonstrating the effectiveness of enhancing the model's windows. Our work paves the way for future research to explore even longer window sizes.

2 Related Work

Transformer-based Models. Early attempts [28, 19, 11] at directly applying vanilla Transformers to time series data failed in long sequence forecasting tasks, as the self-attention operation scales quadratically with the input sequence length. Existing approaches primarily address this challenge through two avenues. Patch-based methods, exemplified by PatchTST [23] and CrossFormer [41], conceptualize consecutive time steps as patches, reducing the number of input tokens and augmenting local semantics to mitigate redundancy. Another approach focuses on sparse attention mechanisms. Models such as Informer [42], Autoformer [35], Pyraformer [17], and FEDformer [43] adapt the self-attention mechanism to achieve complexities of O(L) or $O(L \log(L))$. These models rely on specific designs and often sacrifice representational capacity, thereby compromising performance. Our work is independent of these approaches and can be effectively integrated into them.

Mamba for Time Series. Recently, several approaches have emerged to incorporate Mamba into time series modeling. Bi-Mamba+ [12] introduces a novel Mamba+ block by incorporating a forget gate within Mamba. This modification enables the selective combination of new features with historical ones in a complementary manner, boosting the model's ability to balance past and present information. S-Mamba [34] adopts a different approach by autonomously tokenizing time points of each variate using a linear layer. The method employs a bidirectional Mamba layer to extract intervariate correlations and a Feed-Forward Network to learn temporal dependencies. TimeMachine [2] takes a broader view of time series data by leveraging multi-scale contextual cues. Its architecture integrates a quadruple-Mamba design, allowing the model to manage both channel-mixing and channel-independence scenarios. MambaTS [4] challenges the necessity of causal convolution within Mamba for LTSF. It proposes the Temporal Mamba Block (TMB) as an alternative. To further prevent model overfitting, MambaTS incorporates a dropout mechanism that selectively applies to TMB's parameters, ensuring a more stable and generalizable model performance.

Information Bottleneck (IB). The essence of the IB principle lies in distilling a compact yet predictive code from the input signal [30]. Pioneering work by [3] introduced the concept of variational information bottleneck (VIB), thereby enriching deep learning methodologies. Given random variables X and Y, IB aims to compress X into a bottleneck random variable B, while retaining information pertinent to predicting Y:

$$\min_{B} -I(Y;B) + \beta I(X;B) \tag{1}$$

Here, β serves as a Lagrangian multiplier to balance the two mutual information terms. Presently, IB and VIB find extensive applications in deep learning, predominantly in representation learning and feature selection domains [8, 33, 36]. Strategies such as injecting noise into intermediate

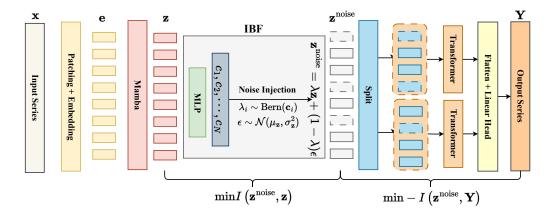


Figure 2: Overview of the PIH. The input long sequence \mathbf{x} first undergoes patching and embedding to obtain \mathbf{e} , which is then processed by Mamba to reduce redundancy and noise based on its selective mechanism, resulting in \mathbf{z} . The IBF evaluates the importance \mathbf{c} of tokens in the sequence \mathbf{z} and adaptively injects noise to produce $\mathbf{z}^{\text{noise}} = \lambda \mathbf{z} + (1 - \lambda)\epsilon$, where λ is sampled from a Bernoulli distribution with parameter \mathbf{c} , and ϵ is random Gaussian noise. The tokens within the dashed box represent less important tokens, with corresponding λ_i values being smaller, thus $\mathbf{z}_i^{\text{noise}}$ is primarily controlled by random noise $(1 - \lambda_i)\epsilon$. Conversely, the important tokens within the solid box correspond to larger λ_j , with their values being mainly determined by their inherent semantics $\lambda_j \mathbf{z}_j$. After splitting $\mathbf{z}^{\text{noise}}$ into multiple subsequences, they are processed by the Transformer. Finally, the output is passed through flattening and a linear head to obtain the prediction.

representations of pre-trained networks and subsequently selecting regions with optimal information per dimension have been explored [1, 27].

3 Method

We integrate HTM and IBF into the PatchTST, resulting in the PIH model (Patch-IBF-HTM), as illustrated in Fig. 2.

Problem Definition. Given a collection of multivariate time series samples with a lookback window $L = (\mathbf{x}_1, \dots, \mathbf{x}_L)$, where each \mathbf{x}_t at time step t is a vector of dimension C, we aim to forecast T future values $(\mathbf{x}_{L+1}, \dots, \mathbf{x}_{L+T})$.

3.1 Patching and Embedding

Given our utilization of a channel-independent strategy [23], we opt for simplicity by converting multivariate time series into univariate ones. The input univariate time series $\mathbf{x} \in \mathbb{R}^{1 \times L}$ is initially segmented into patches, which may be either overlapping or non-overlapping. Employing patching strategies enhances locality and captures comprehensive semantic information beyond the point level by aggregating time steps into subseries-level patches. Furthermore, to ensure uniform partitioning of the patch sequence into K equally-sized blocks in subsequent modules (see Section 3.3), we employ $\mathrm{Padding}(\cdot)$ to extend the input sequence. Denoting the patch length as P and the stride (the non-overlapping region between two consecutive patches) as S, the $\mathrm{Patch}(\cdot)$ process yields a sequence of patches $\mathbf{h} \in \mathbb{R}^{N \times P}$, where N denotes the number of patches, $N = \lceil \frac{(L-P)}{SK} \rceil * K$. Subsequently, we employ an embedding layer to map the dimension of each patch from $\mathbf{h} \in \mathbb{R}^{N \times P}$ to $\mathbf{e} \in \mathbb{R}^{N \times d}$.

$$\mathbf{e} = \text{Embedding} \left(\text{Patch} \left(\text{Padding} \left(\mathbf{x} \right) \right) \right)$$
 (2)

After obtaining the patch embedding sequence $e = \{e_1, e_2, \dots, e_N\}$, we use Mamba followed by a subsequent Dropout layer to capture long-term dependency:

$$\mathbf{z} = \text{Dropout}(\text{Mamba}(\mathbf{e})) \tag{3}$$

Mamba can selectively pass or forget information, which helps reduce redundancy and noise in the input e. However, relying solely on Mamba is not sufficient. In scenarios where the patch sequence length N is large, there still exists the possibility of significant redundancy. Therefore, we propose the IBF to further filter out redundant information from \mathbf{z} .

3.2 IBF Module for Redundancy Filtering

The IBF module seeks to retrieve the most relevant subsequence \mathbf{x}^{sub} for a target prediction \mathbf{Y} from the input sequence \mathbf{x} . We adopt the sufficient encoder assumption [29], implying that the information of the input subsequence \mathbf{x}^{sub} is preserved in the encoding process, resulting in $I(\mathbf{x}^{\text{sub}}, \mathbf{Y}) \approx I(\mathbf{z}^{\text{sub}}, \mathbf{Y})$ and $I(\mathbf{x}^{\text{sub}}, \mathbf{x}) \approx I(\mathbf{z}^{\text{sub}}, \mathbf{z})$, where \mathbf{z}^{sub} is a subsequence of \mathbf{z} . The Eq. 1 are transformed into:

$$\min_{\mathbf{z}^{\text{sub}}} -I(\mathbf{z}^{\text{sub}}, \mathbf{Y}) + \beta I(\mathbf{z}^{\text{sub}}, \mathbf{z})$$
(4)

The first term encourages \mathbf{z}^{sub} to be informative with respect to the label \mathbf{Y} , and the second term minimizes the mutual information between \mathbf{z} and \mathbf{z}^{sub} , so that \mathbf{z}^{sub} retains only limited information from \mathbf{z} . The discrete nature of sequences renders direct optimization of IB objective impractical, as there are 2^N potential subsequences \mathbf{z}^{sub} for a patch sequence of length N. Here, we relax patch selection from discrete to probabilistic sampling. Considering \mathbf{z}_i as the representation of the i-th patch, we utilize $\text{MLP}(\cdot)$ to assess the importance \mathbf{c}_i of patch \mathbf{z}_i :

$$\mathbf{c}_i = \operatorname{sigmoid}\left(\operatorname{MLP}\left(\mathbf{z}_i\right)\right) \tag{5}$$

Consequently, the selection of patch \mathbf{z}_i can be obtained by sampling from $\lambda_i \sim \text{Bern}(\mathbf{c}_i)$, where $\text{Bern}(\mathbf{c}_i)$ represents a Bernoulli distribution parameterized by \mathbf{c}_i . To ensure the differentiability of the sampling process, we utilize the gumbel sigmoid [20, 9] function for the discrete random variable λ_i , defined as:

$$\lambda_i = \operatorname{Sigmoid}\left(\frac{1}{\tau}\log\left[\frac{\mathbf{c}_i}{1-\mathbf{c}_i}\right] + \log\left[\frac{u}{1-u}\right]\right) \tag{6}$$

where $u \sim \text{Uniform}(0,1)$, and τ is the temperature. Subsequently, subsequence \mathbf{z}^{sub} can be obtained by $\mathbf{z}^{\text{sub}} = \lambda \mathbf{z}$.

Although we can employ shannon mutual information [5] to quantify the compressed and informative nature of the distribution of subsequences $\mathbf{z}^{\mathrm{sub}}$, the optimization process is inefficient and unstable due to mutual information estimation [39]. Here, we employ an optimization strategy known as noise injection [38], which endows the IB objective with a tractable variational upper bound. The core concept is to allow the model to introduce noise into less informative subsequences while minimizing noise injection into more informative ones (i.e., $\mathbf{z}^{\mathrm{sub}}$). Initially, noise injection disrupts the flow of information from the input sequence \mathbf{z} to the perturbed sequence $\mathbf{z}^{\mathrm{noise}} = \lambda \mathbf{z} + (1 - \lambda)\epsilon$, where ϵ follows a random Gaussian distribution. To preserve the semantic, we set $\epsilon \sim \mathcal{N}(\mu_{\mathbf{z}}, \sigma_{\mathbf{z}}^2)$, where $\mu_{\mathbf{z}}$ and $\sigma_{\mathbf{z}}^2$ denote the mean and variance of \mathbf{z} . Subsequently, we encourage the perturbed sequence $\mathbf{z}^{\mathrm{noise}}$ to maintain its informative properties relative to the label \mathbf{Y} . Finally, $\mathbf{z}^{\mathrm{sub}}$ is derived by removing the noise from $\mathbf{z}^{\mathrm{noise}}$. Eq. 4 can be reformulated as:

$$\min_{\mathbf{z}^{\text{noise}}} -I(\mathbf{z}^{\text{noise}}, Y) + \beta I(\mathbf{z}^{\text{noise}}, \mathbf{z})$$
 (7)

Minimizing $-I(\mathbf{z}^{\text{noise}}, \mathbf{Y})$. We first examine the first term $-I(\mathbf{z}^{\text{noise}}, \mathbf{Y})$ in Eq. 7 which encourages $\mathbf{z}^{\text{noise}}$ is informative of label \mathbf{Y} :

$$-I\left(\mathbf{z}^{\text{noise}}, \mathbf{Y}\right) \leq \mathbb{E}_{\mathbf{Y}, \mathbf{z}^{\text{noise}}} - \log p_{\theta}\left(\mathbf{Y} \mid \mathbf{z}^{\text{noise}}\right) := \mathcal{L}_{\text{pred}}\left(\mathbf{z}^{\text{noise}}, \mathbf{Y}\right)$$
(8)

Here, $p_{\theta}\left(\mathbf{Y}\mid\mathbf{z}^{\text{noise}}\right)$ represents the variational approximation to the true posterior distribution $p\left(\mathbf{Y}\mid\mathbf{z}^{\text{noise}}\right)$ (A detailed proof can be found in Appendix D). We model $p_{\theta}\left(\mathbf{Y}\mid\mathbf{z}^{\text{noise}}\right)$ as a predictor parametrized by θ , which outputs the model prediction \mathbf{Y} based on the input $\mathbf{z}^{\text{noise}}$. Thus, we can minimize the upper bound of $-I\left(\mathbf{z}^{\text{noise}},\mathbf{Y}\right)$ by minimizing the model prediction loss $\mathcal{L}_{\text{pred}}\left(\mathbf{z}^{\text{noise}},\mathbf{Y}\right)$. We choose to utilize the MSE as $\mathcal{L}_{\text{pred}}\left(\mathbf{z}^{\text{noise}},\mathbf{Y}\right)$.

Minimizing $I(\mathbf{z}^{\text{noise}}, \mathbf{z})$. For the second term $I(\mathbf{z}^{\text{noise}}, \mathbf{z})$ in Eq. 7, we can derive its variational upper bound:

$$-I\left(\mathbf{z}^{\text{noise}}, \mathbf{z}\right) \le \mathbb{E}_{\mathbf{z}}\left(-\frac{1}{2}\log A + \frac{1}{2N}A + \frac{1}{2N}B^2\right) := \mathcal{L}_{\text{comp}}\left(\mathbf{z}^{\text{noise}}, \mathbf{z}\right)$$
(9)

where $A = \sum_{j=1}^{N} (1 - \lambda_j)^2$ and $B = \frac{\sum_{j=1}^{N} \lambda_j(\mathbf{z}_j - \mu_{\mathbf{z}})}{\sigma_{\mathbf{z}}}$. A detail proof is given in Appendix D.

Finally, we can efficiently estimate Eq. 8 and Eq. 9 with the batched data in the training set. The overall loss is:

$$\mathcal{L} = \mathcal{L}_{\text{pred}} \left(\mathbf{z}^{\text{noise}}, \mathbf{Y} \right) + \beta \mathcal{L}_{\text{comp}} \left(\mathbf{z}^{\text{noise}}, \mathbf{z} \right)$$
 (10)

Hybrid-Transformer-Mamba(HTM)

Modeling the input long sequence with Mamba and then using Transformer to model the partitioned short sequences is a promising paradigm [22, 25, 13], as it can leverage the strengths of both architectures simultaneously. We have designed two split methods capable of retaining semantic information: interval split and block split, denoted as:

$$b_i = \{ \mathbf{z}_j^{\text{noise}} \in \mathbf{z}^{\text{noise}} : i \equiv j \pmod{K} \}$$
 (11)

$$b_{i} = \{\mathbf{z}_{j}^{\text{noise}} \in \mathbf{z}^{\text{noise}} : i \equiv j \pmod{K}\}$$

$$b_{i} = \mathbf{z}_{[(i-1)*N/K:i*N/K]}^{\text{noise}}$$
(11)

where b_i represents the i-th sequence block, and K is the number of blocks. The premise for splitting sequences into subsequences is that the latter can still retain the semantic meaning of the original long sequences. Fortunately, time series data often adhere to this principle. The interval split is inspired by SCINet [15], which highlights a unique property of time series: temporal relations (e.g., trend and seasonal components) are largely preserved after downsampling into two subsequences. SCINet downsamples the original sequence into two subsequences by separating the even and odd elements, our *interval split* extends this approach to partitioning sequence into K blocks, distributing contiguous K patches into K distinct blocks. This method preserves the global characteristics of the sequence. Additionally, we propose the block split, where a continuous segment of patch subsequence forms a block. This partitioning method is based on the periodicity of time series, where one period (or multiples of a period) is considered as a block, thus preserving the local information of the sequence. The patch operation and partitioning reduce the length of the input sequence for the Transformer from L to L/PK, significantly reducing the computational overhead. For short sequences, the Transformer is highly efficient, even more so than Mamba (see Appendix E.2).

Experiments

Our experiments aim to address the following questions:

- Can the PIH model effectively reduce the noise in the input sequence and thus leverage a longer lookback window? (Section 4.1)
- Can our approach universally improve the MEW of various Transformer-based models and achieve better performance? (Section 4.2)
- What is the impact of each component? (Section 4.3)

4.1 PIH Can Effectively Leverage Long Windows

Dataset. We evaluate PIH on seven popular datasets, including Weather, Traffic, Electricity, and four ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2). We also provide results on the Solar and PEMS datasets in Appendix C.1.

Experimental Settings and Baselines. PIH integrates the IBF and HTM modules into the PatchTST model, making PatchTST the primary baseline. To assess how effectively our model utilizes longer lookback windows, we set L=1024 for both PIH and PatchTST, which is significantly longer than in previous studies. The other experimental settings can be found in Appendix 2. We additionally

Mo	odels	PI	Н	Patcl	nTST	Bi-M	amba	S-M	amba	FEDf	ormer	Autof	ormer	Info	rmer	DLi	near	NLi	near
		Οι	ırs	20	23	20	24	20	24	20	22	20	21	20	20	20	23	20	123
Me	etric	MSE	MAE																
_	96	0.360	0.394	0.371	0.405	0.378	0.395	0.386	0.406	0.376	0.415	0.435	0.446	0.941	0.769	0.511	0.520	0.379	0.404
ETTh1	192	0.396	0.418	0.408	0.429	0.427	0.428	0.448	0.444	0.423	0.446	0.456	0.457	1.007	0.786	0.414	0.428	0.414	0.426
듐	336	0.409	0.432	0.431	0.449	0.471	0.445	0.494	0.468	0.444	0.462	0.486	0.487	1.038	0.784	0.453	0.458	0.442	0.445
	720	0.435	0.466	0.482	0.483	0.470	0.457	0.493	0.488	0.469	0.492	0.515	0.517	1.144	0.857	0.511	0.520	0.470	0.477
- 2	96	0.263	0.328	0.277	0.340	0.291	0.342	0.298	0.349	0.332	0.374	0.332	0.368	1.549	0.952	0.294	0.361	0.296	0.351
ETTh2	192	0.324	0.370	0.343	0.385	0.368	0.392	0.379	0.398	0.407	0.446	0.426	0.434	3.792	1.542	0.430	0.448	0.337	0.382
듐	336	0.314	0.376	0.338	0.394	0.407	0.424	0.417	0.432	0.400	0.447	0.477	0.479	4.215	1.642	0.492	0.484	0.359	0.407
	720	0.378	0.425	0.403	0.442	0.421	0.439	0.431	0.449	0.412	0.469	0.453	0.490	3.656	1.619	0.905	0.683	0.417	0.456
_	96	0.291	0.349	0.294	0.349	0.320	0.360	0.331	0.368	0.326	0.390	0.510	0.492	0.626	0.560	0.314	0.358	0.317	0.359
3TTm1	192	0.337	0.374	0.334	0.374	0.361	0.383	0.371	0.387	0.365	0.415	0.514	0.495	0.725	0.619	0.356	0.391	0.352	0.381
늄	336	0.360	0.386	0.363	0.392	0.386	0.402	0.417	0.418	0.392	0.425	0.510	0.492	1.005	0.741	0.365	0.388	0.374	0.393
_	720	0.405	0.411	0.407	0.416	0.445	0.437	0.471	0.448	0.446	0.458	0.527	0.493	1.133	0.845	0.410	0.417	0.409	0.413
2	96	0.161	0.253	0.164	0.259	0.176	0.263	0.179	0.263	0.180	0.271	0.205	0.293	0.355	0.462	0.164	0.260	0.163	0.257
ETTm2	192	0.213	0.289	0.216	0.295	0.242	0.304	0.253	0.310	0.252	0.318	0.278	0.336	0.595	0.586	0.238	0.317	0.216	0.294
늄	336	0.265	0.326	0.268	0.331	0.304	0.344	0.312	0.348	0.324	0.364	0.343	0.379	1.270	0.871	0.265	0.326	0.265	0.326
	720	0.342	0.375	0.350	0.383	0.402	0.402	0.412	0.408	0.410	0.420	0.414	0.419	3.001	1.267	0.338	0.375	0.338	0.375
5	96	0.147	0.198	0.147	0.197	0.159	0.205	0.166	0.210	0.238	0.314	0.249	0.329	0.354	0.405	0.167	0.225	0.170	0.226
Weather	192	0.191	0.239	0.190	0.241	0.205	0.249	0.215	0.253	0.275	0.329	0.325	0.370	0.419	0.434	0.211	0.267	0.215	0.265
×e.	336	0.241	0.280	0.243	0.283	0.264	0.291	0.276	0.298	0.339	0.377	0.351	0.391	0.583	0.543	0.255	0.304	0.259	0.298
	720	0.309	0.329	0.306	0.328	0.343	0.344	0.353	0.349	0.389	0.409	0.415	0.426	0.916	0.705	0.313	0.351	0.321	0.342
၁	96	0.357	0.248	0.394	0.289	0.375	0.258	0.381	0.261	0.576	0.359	0.597	0.371	0.733	0.410	0.385	0.275	0.383	0.270
Traffic	192	0.371	0.255	0.407	0.295	0.394	0.269	0.397	0.267	0.610	0.380	0.607	0.382	0.777	0.435	0.397	0.279	0.397	0.274
Ë	336	0.392	0.261	0.422	0.302	0.406	0.274	0.423	0.276	0.608	0.375	0.623	0.387	0.776	0.434	0.412	0.288	0.410	0.281
	720	0.430	0.282	0.46	0.319	0.440	0.288	0.458	0.300	0.621	0.375	0.639	0.395	0.827	0.466	0.450	0.309	0.449	0.303
it	96	0.127	0.220	0.133	0.226	0.140	0.238	0.142	0.238	0.186	0.302	0.196	0.313	0.304	0.393	0.132	0.229	0.133	0.229
Ęį.	192	0.145	0.240	0.151	0.249	0.155	0.253	0.169	0.267	0.197	0.311	0.211	0.324	0.327	0.417	0.146	0.243	0.148	0.242
Electricity	336	0.160	0.256	0.167	0.263	0.170	0.269	0.178	0.275	0.213	0.328	0.214	0.327	0.333	0.422	0.161	0.260	0.164	0.259
ш	720	0.192	0.287	0.206	0.299	0.196	0.293	0.207	0.303	0.233	0.344	0.236	0.342	0.351	0.427	0.195	0.292	0.203	0.292

Table 1: Long-term forecasting results with different prediction lengths $T \in \{96, 192, 336, 720\}$. The best results are highlighted in bold.

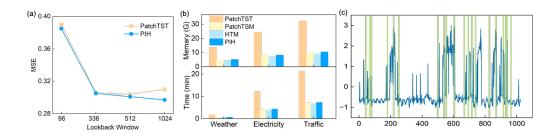


Figure 3: (a): The performance comparison between PIH and PatchTST at $L \in \{96, 336, 512, 1024\}$. (b): Comparison of GPU memory (GB) and training time (minutes/epoch) for PatchTST, PatchTST, HTM, and PIH. (c): Visualization of a sample sequence in the *Electricity*, highlighting the most important 20 patches identified by the IBF module with green shading.

selected Mamba-based, Transformer-based, and Linear-based models as baselines. For Mamba-based model, we choose S-Mamba [34] and Bi-Mamba [12]. For Transformer-based models, in addition to PatchTST, we selected FEDformer [43], Autoformer [35], and Informer [42]. Furthermore, we include two Linear-based models, DLinear and NLinear [40]. Given that these two models were proposed to address the limitations of Transformer-based models in handling long lookback windows, we also set L=1024 for them. All models follow the same experimental setup, with prediction lengths $T\in\{96,192,336,720\}$. We use MSE and MAE as evaluation metrics. We conducted five repeated experiments and provided the **significance analysis** in the Appendix C.5.

Results and Analysis. As show in Table 1. For models like S-Mamba, Transformer, Autoformer, and Informer, PIH significantly outperforms them. Even for models specifically designed to handle long windows, such as PatchTST, DLinear, and NLinear, PIH still surpasses them, demonstrating its effectiveness in processing longer sequences. It is worth noting that we did not intentionally choose an unusual setting like L=1024 to lower the performance of these three models. In Appendix C.1, we also provide their performance under shorter windows (e.g., 336 and 512), where PIH continues to outperform them. Overall, PIH with a much longer window setting achieves better results than other models with shorter windows. Our experiments highlight the potential for further increasing the window size.

		Transi	former		Informer				Autoformer				PatchTST			
	Ori	igin	Oı	ırs	Ori	gin	Οι	ırs	Ori	gin	Οι	ırs	Ori	gin	Οι	ırs
	MEW	MSE	MEW	MSE	MEW	MSE	MEW	MSE	MEW	MSE	MEW	MSE	MEW	MSE	MEW	MSE
Etth1	72	1.009	144	0.96	72	1.146	144	1.063	72	0.508	192	0.491	512	0.447	1024	0.435
Etth2	336	2.297	512	2.087	48	3.624	96	3.289	120	0.458	168	0.446	336	0.379	1024	0.378
Weather	512	0.504	512	0.482	48	1.028	120	0.957	144	0.460	228	0.451	1024	0.306	1024	0.309
Traffic	168	0.686	192	0.680	48	1.083	72	0.973	144	0.649	192	0.612	512	0.432	1024	0.430
Ettm1	48	0.974	228	0.843	96	0.977	168	0.910	192	0.529	228	0.517	1024	0.407	1440	0.399
Ettm2	120	2.784	168	2.436	96	3.956	168	3.648	336	0.419	336	0.410	1024	0.350	1024	0.342
Electricity	48	0.287	96	0.281	72	0.372	120	0.361	336	0.243	336	0.237	512	0.197	1024	0.192

Table 2: The MEW and MSE of the "origin" Transformer-based models: Transformer, Informer, Autoformer, and PatchTST, as well as the versions integrated with our module ("ours"). Larger MEWs and smaller MSEs are highlighted in bold.

PIH Can Effectively Utilize Longer Lookback Windows. As shown in Fig. 3 (a), we set the lookback window to $L=\{96,336,512,1024\}$ and used the average MSE over 7 datasets with forecasting horizons of $T\in\{96,192,336,720\}$ as the evaluation metric. The results indicate that the performance of PatchTST improves steadily as the window increases from 96 to 512, but declines when extended to 1024. In contrast, PIH exhibits a consistent performance improvement as the window size increases from 96 to 1024. This suggests that the HTM and IBF modules help PatchTST improve MEW, leading to better performance with longer windows. Another noteworthy observation is that, except for L=96, PIH consistently outperforms PatchTST for the same L. We hypothesize that with L=96, sequence redundancy and noise is low, and the patch strategy alone is sufficient to manage it effectively, rendering IBF and HTM unnecessary. Consequently, PIH lags behind PatchTST at this window size. However, as the window length increases and sequence redundancy grows, the IBF and HTM modules become more effective, allowing PIH to surpass PatchTST.

Computational Overhead. In addition to performance comparisons, we evaluated computation time and memory usage, as shown in Fig. 3 (b). When using only the HTM module without the IBF (referred to as HTM), it demonstrates significant improvements in both computational time and memory usage compared to the pure Transformer architecture (referred to as PatchTST), surpassing it by a notable margin (2 to 3 times). Additionally, HTM outperforms the pure Mamba architecture (referred to as PatchTSM), which can be attributed to the Transformer's lower computational cost when handling shorter sequences compared to Mamba (see Appendix E.2). Moreover, when both HTM and IBF are integrated (i.e., PIH), the additional overhead introduced is negligible, as the IBF module only consists of a simple MLP.

Interpretability of IBF. Another advantage of incorporating the IBF module is its ability to enhance interpretability by identifying crucial subsequences for the final prediction. As shown in Fig. 3 (c), we provide a visualization of a sample from the *Electricity* dataset. Based on Eq. 5, we select the top 20 most important patches and highlight them in green. The results indicate that the model focuses more on sequences at peak positions. This aligns with prior knowledge, as peak positions typically represent changes in the sequence and contain more critical information.

4.2 The Generalizability of Our Modules

We conducted experiments on three different point-based Transformer models—Transformer, Informer, and Autoformer—as well as a patch-based PatchTST. Specifically, for Transformer, Informer, and Autoformer, we selected MEW from the following windows: 48, 72, 96, 120, 144, 168, 192, 228, 336, and 512. For PatchTST, the MEW were selected from the set: 72, 96, 120, 144, 168, 192, 228, 336, 512, 1024, and 1440. The prediction length was set to T=720, with MSE used as the evaluation metric for MEW. All other experimental settings remained the same. The default model and the versions with the two modules integrated are denoted as "origin" and "Ours", respectively. As shown in Table 2, the MEW of point-based models tends to be quite small, especially for Informer, where the MEW on all 7 datasets does not exceed 96. On the other hand, the PatchTST, which is patch-based, exhibits larger MEW. This is because the use of patches effectively reduces the noise in the lookback window and significantly reduces the number of tokens, alleviating the issues of attention dispersion and overfitting to noise in the Transformer. After integrating our modules, the MEW of all four models showed significant improvement, and they also achieved better MSE. This is because the IBF module effectively reduces the noise in the input, while the HTM further diminishes noise and, by decomposing long token sequences into shorter ones, ensures that the Transformer

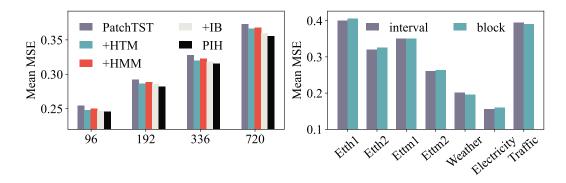


Figure 4: Left: Ablation experiments of different modules at prediction lengths $T = \{96, 192, 336, 720\}$. Right: Comparison of *interval split* and *block split*. The average MSE across 7 datasets at $T = \{96, 192, 336, 720\}$ is used as the evaluation metric.

processes a noise-filtered, shorter sequence. These experiments demonstrate the generalizability of our modules. Furthermore, we observe that for the same model, when the MEW is improved, its performance also increases, indicating that enhancing a model's MEW is a promising direction.

4.3 Ablation Study

Component Ablation. To assess the effectiveness of IBF and HTM, we utilize PatchTST as a baseline, upon which we separately introduce IBF, HTM and both simultaneously to obtain three variants: +IB, +HTM, and PIH. Additionally, we introduce a variant of +HTM, +HMM, which solely employs Mamba to handle both the original long sequences and the divided short sequences. All experiments maintain consistent settings, with L = 1024 and $T = \{96, 192, 336, 720\}$. The average MSE across 7 datasets is used as the evaluation metric. As illustrated in Fig. 4, the following observations are made: (1) Both IBF and HTM modules enhance the model's performance, and combining these two modules yields superior results. (2) Compared to HMM, HTM exhibits slightly better performance, which can be attributed to the different mechanisms between Transformer and Mamba, making each more suited to handling different types of sequences. By combining the strengths of both, the hybrid approach achieves superior results. As discussed earlier, the Transformer has lower computational costs for shorter sequences, while Mamba is more efficient for longer sequences. Therefore, from both performance and computational overhead perspectives, using a combination of both architectures is a better choice than relying solely on one. (3) At longer prediction lengths, such as T=720, our model demonstrates greater improvements compared to T=96, indicating that larger windows L provide more significant benefits for longer-term predictions (longer T).

Interval Split vs. Block Split. We compared the performance of *interval split* and *block split* across various datasets, as shown in Fig. 4. Overall, the effectiveness of both split methods is roughly comparable, demonstrating their ability to preserve sequential characteristics. However, slight variations in performance are observed across different datasets. We speculate that this discrepancy arises from the different strengths of each partitioning method in retaining specific sequential patterns. Intuitively, *interval split* emphasizes global variations, while *block split* focuses on variations within specific periods. Determining the most suitable partitioning strategy remains a topic for future exploration.

Other Hyperparameters. Our model incorporates several crucial hyperparameters, including K, determining the number of partitions; β , which governs the balance between prediction and compression in the IB objective; and the temperature factor τ , influencing subsequence sampling. We investigate the impact of $K \in \{2,4,6,8\}$, $\beta \in \{0.0001,0.001,0.1,1\}$, and set $\tau \in \{0.1,0.5,1,2\}$. We find that the choice of K does not significantly affect performance, whereas τ and β exhibit considerable influence on performance, likely due to variations in the redundancy levels across different datasets. Detailed hyperparameter experiments can be found in the Appendix C.4.

5 Conclusion

In this paper, we propose a MEW metric to evaluate the model's ability to leverage the lookback window. We introduce two model-agnostic modules, IBF and HTM, from both information-theoretic and model-architectural perspectives. Experiments show that these modules can effectively improve the model's MEW, and with a larger MEW, the model's performance also improves, demonstrating the importance of enhancing MEW. Furthermore, we combine these modules with the patch strategy to design the PIH model, which can handle longer windows than previous works and achieves state-of-the-art results, illustrating the potential of leveraging longer windows.

6 Acknowledgement

This paper is partially supported by the National Natural Science Foundation of China (No.12227901). The AI-driven experiments, simulations and model training were performed on the robotic AI-Scientist platform of Chinese Academy of Sciences., Anhui Science Foundation for Distinguished Young Scholars (No.1908085J24), Natural Science Foundation of China (No.62502491).

References

- [1] Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations through noisy computation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 40(12):2897–2905, 2018.
- [2] Md Atik Ahamed and Qiang Cheng. Timemachine: A time series is worth 4 mambas for long-term forecasting, 2024.
- [3] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information bottleneck. *CoRR*, abs/1612.00410, 2016.
- [4] Xiuding Cai, Yaoyao Zhu, Xueyao Wang, and Yu Yao. Mambats: Improved selective state space models for long-term time series forecasting, 2024.
- [5] Tyrone E Duncan. On the calculation of mutual information. *SIAM Journal on Applied Mathematics*, 19(1):215–220, 1970.
- [6] Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, Youqiang Zhang, and Junshi Huang. Dimba: Transformer-mamba diffusion models, 2024.
- [7] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *CoRR*, abs/2312.00752, 2023.
- [8] Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin, and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and information bottleneck. In *Advances in neural information processing systems*, 2019.
- [9] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
- [10] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference on research & development in information retrieval*, pages 95–104, 2018.
- [11] Sheng Li, Xiaoyu Jin, Yue Xuan, Xiang Zhou, Weihua Chen, Yi-Xin Wang, and Xia Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. *arXiv*, abs/1907.00235, 2019.
- [12] Aobo Liang, Xingguo Jiang, Yan Sun, Xiaohou Shi, and Ke Li. Bi-mamba+: Bidirectional mamba for time series forecasting, 2024.

- [13] Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi, Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida, Amir Bergman, Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam Rozen, Erez Shwartz, Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba language model. *CoRR*, abs/2403.19887, 2024.
- [14] Bryan Lim and Stefan Zohren. Time series forecasting with deep learning: A survey. CoRR, abs/2004.13408, 2020.
- [15] Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet: Time series modeling and forecasting with sample convolution and interaction. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 December 9, 2022, 2022.
- [16] Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet: Time series modeling and forecasting with sample convolution and interaction. *Advances in Neural Information Processing Systems*, 35:5816–5828, 2022.
- [17] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting. In *International Conference on Learning Representations*, 2022.
- [18] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer: Inverted transformers are effective for time series forecasting. *CoRR*, abs/2310.06625, 2023.
- [19] Jiajun Ma, Zheng Shou, Alireza Zareian, Hamed Mansour, Anthony Vetro, and Shih-Fu Chang. Cdsa: Cross-dimensional self-attention for multivariate, geo-tagged time series imputation. *arXiv*, abs/1905.09904, 2019.
- [20] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of discrete random variables. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
- [21] Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language modeling via gated state spaces. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.
- [22] Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language modeling via gated state spaces. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.* OpenReview.net, 2023.
- [23] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. In *The Eleventh International Conference* on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
- [24] Jonathan Pilault, Mahan Fathi, Orhan Firat, Chris Pal, Pierre-Luc Bacon, and Ross Goroshin. Block-state transformers. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.
- [25] Jonathan Pilault, Mahan Fathi, Orhan Firat, Chris Pal, Pierre-Luc Bacon, and Ross Goroshin. Block-state transformers. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

- [26] Dean Prichard and James Theiler. Generalized redundancies for time series analysis. *Physica D: Nonlinear Phenomena*, 84:476–493, 1994.
- [27] Karl Schulz and et al. Restricting the flow: Information bottlenecks for attribution. In ICLR, 2020.
- [28] Haichao Song, Deepak Rajan, Jayaraman J Thiagarajan, and Andreas Spanias. Attend and diagnose: Clinical time series analysis using attention models. In *AAAI*, 2018.
- [29] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What makes for good views for contrastive learning? In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.*
- [30] Naftali Tishby, Fernando C. N. Pereira, and William Bialek. The information bottleneck method. *CoRR*, physics/0004057, 2000.
- [31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems*, volume 30, 2017.
- [32] Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha, Vartika Singh, Jared Casper, Jan Kautz, Mohammad Shoeybi, and Bryan Catanzaro. An empirical study of mamba-based language models, 2024.
- [33] Rundong Wang, Xu He, Runsheng Yu, Wei Qiu, Bo An, and Zinovi Rabinovich. Learning efficient multi-agent communication: An information bottleneck approach. In *Proceedings of the 37th International Conference on Machine Learning*, 2020.
- [34] Zihan Wang, Fanheng Kong, Shi Feng, Ming Wang, Xiaocui Yang, Han Zhao, Daling Wang, and Yifei Zhang. Is mamba effective for time series forecasting?, 2024.
- [35] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with Auto-Correlation for long-term series forecasting. In *Advances in Neural Information Processing Systems*, 2021.
- [36] Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. In *NeurIPS*, 2020.
- [37] Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu Wei. Differential transformer. CoRR, abs/2410.05258, 2024.
- [38] Junchi Yu, Jie Cao, and Ran He. Improving subgraph recognition with variational graph information bottleneck. CoRR, abs/2112.09899, 2021.
- [39] Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Graph information bottleneck for subgraph recognition. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.* OpenReview.net, 2021.
- [40] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? *arXiv preprint arXiv:2205.13504*, 2022.
- [41] Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In *International Conference on Learning Representa*tions, 2023.
- [42] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *The Thirty-Fifth AAAI Conference on Artificial Intelligence*, volume 35, pages 11106–11115, 2021.
- [43] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting. In *Proc. 39th International Conference on Machine Learning*, 2022.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We have claimed the paper's contributions and scope in abstract and introduction

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Appendix A

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The proof could be found in Appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code and data are provided.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

swci. [10s]

Justification: The code and data are open.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have provided the data splits, hyperparameters, etc.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided the statistical significance of the experiments result.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide provide sufficient information on the computer resources in Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is within the Code of Ethics

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed it.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: : All of them are properly respected.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- · Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- · For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Limitations

First, our experiments demonstrate that extending the window length to L=1024 still yields performance improvements, suggesting that further exploration of longer windows is a promising direction. Secondly, although the modules we propose effectively improve the model's MEW, a bottleneck still exists. A more promising avenue of research is to explore whether there is a scaling law for lookback windows, meaning that larger windows consistently result in better performance. Thirdly, the *interval split* and *block split* methods are heuristic. Designing an adaptive, end-to-end split method tailored to each training dataset may lead to better results. Lastly, while recent large time-series models have adopted much longer windows, we assert that our approach is orthogonal to theirs. It is worth exploring whether our method can be integrated into these large models (e.g.,LLM-based) to further extend their window sizes.

B Dataset Description

In the main text, we use seven popular multivariate datasets provided in [35] for forecasting and representation learning. The Weather dataset collects 21 meteorological indicators in Germany, such as humidity and air temperature. The Traffic dataset records road occupancy rates from various sensors on San Francisco freeways. The Electricity dataset describes the hourly electricity consumption of 321 customers. The ETT (Electricity Transformer Temperature) datasets are collected from two different electric transformers labeled as 1 and 2, each containing two resolutions (15 minutes and 1 hour), denoted as m and h, respectively. Thus, there are four ETT datasets in total: ETTm1, ETTm2, ETTh1, and ETTh2. In addition, we incorporated two additional datasets: Solar[10] and PeMS[16]. Their experimental results are shown in Table 4. The results indicate that PIH also achieved the best performance on these two datasets.

Table 3: Statistics of popular datasets for benchmark.

Datasets	Weather	Traffic	Electricity	ETTh1	ETTh2	ETTm1	ETTm2	Solar	PEMS
Features	21	862	321	7	7	7	7	137	358
Timesteps	52696	17544	26304	17420	17420	69680	69680	52,179	21,351

C Experiments

C.1 Experiments settings

PIH is built upon the PatchTST and thus incorporates all hyperparameters from PatchTST. To ensure a fair comparison, we adhered strictly to the settings of PatchTST for these shared hyperparameters, with the exception of the learning rate. We conducted a hyperparameter search only for those introduced by the HTM and IBF modules, as this was necessary. The only exception is the learning rate. Given the introduction of the Mamba and IBF modules, the default learning rate of lr=0.0001 in PatchTST is suboptimal. Consequently, we set the search space for the PIH learning rate to $lr=\{0.001,0.0005,0.0001\}$. To ensure a fair comparison, we also performed a hyperparameter search for the learning rate in PatchTST, and selected the optimal results. The resulting mean Absolute Error (MAE) values were 0.310 and 0.335, which are almost unchanged compared to the default learning rate (lr=0.0001), yielding 0.310 and 0.336. Thus, this does not affect our result analysis.

Our model incorporates several crucial hyperparameters, including K, which determines the number of partitions; β , which governs the balance between prediction and compression in the information bottleneck (IB) objective; and the temperature factor τ , which influences subsequence sampling. We set $K \in \{2,4\}$, $\beta \in \{0.0001,0.001,0.1,1\}$, and $\tau \in \{0.1,0.5,1,2\}$. We selected the optimal hyperparameters based on the results from the validation set.

The original PatchTST paper discusses the impact of key hyperparameters in detail, such as the number of Transformer layers, patch length, the number of heads in multi-head attention, and the dimension of the latent space. The default parameters provided in their official code represent the best-performing combination overall, so there was no need to repeat hyperparameter searches for PatchTST. Additionally, since our PIH is based on PatchTST, any changes to PatchTST would necessitate corresponding adjustments to PIH. Conducting performance comparisons between PIH

and PatchTST for every parameter setting would render the ablation experiments overly redundant. Therefore, we did not adjust the hyperparameters of PatchTST. The only exception is the learning rate. Given the introduction of the Mamba and IBF modules, the default learning rate of lr=0.0001 in PatchTST is suboptimal. Consequently, we set the search space for the PIH learning rate to $lr=\{0.001,0.0005,0.0001\}$. To ensure a fair comparison, we also performed a hyperparameter search for the learning rate in PatchTST, using $lr=\{0.001,0.0005,0.0001\}$, and selected the optimal results. The resulting mean Absolute Error (MAE) values were 0.310 and 0.335, which are almost unchanged compared to the default learning rate (lr=0.0001), yielding 0.310 and 0.336. Thus, this does not affect our result analysis.

C.2 Additional Experimental Results.

Due to space limitations in the main text, we only discussed the results on seven datasets. To better evaluate our model, we also conducted experiments on the Solar and PEMS datasets, with the experimental settings consistent with those described in the main text. As shown in Table 4, our model also outperforms other methods on these two datasets.

Mod	els	P	ΙH	Patcl	nTST	iTrans	former	DLi	near	MI	ICN	Fourie	erGNN	FEDf	ormer	Autofo	ormer
Met	ric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	0.163	0.230	0.185	0.246	0.170	0.246	0.191	0.257	0.190	0.243	0.183	0.232	0.214	0.311	0.316	0.369
C-1	192	0.177	0.239	0.201	0.262	0.195	0.263	0.211	0.273	0.205	0.247	0.198	0.256	0.281	0.364	0.418	0.437
Solar	336	0.188	0.247	0.209	0.266	0.217	0.282	0.228	0.285	0.219	0.250	0.205	0.261	0.294	0.378	0.438	0.467
	720	0.196	0.255	0.226	0.283	0.208	0.276	0.236	0.294	0.227	0.263	0.202	0.265	0.315	0.406	0.618	0.550
	12	0.060	0.163	0.063	0.166	0.064	0.167	0.078	0.187	0.094	0.204	0.091	0.202	0.283	0.394	0.584	0.607
DEMC	24	0.075	0.179	0.080	0.185	0.081	0.187	0.113	0.224	0.116	0.229	0.116	0.232	0.300	0.431	0.672	0.664
PEMS	48	0.100	0.204	0.109	0.213	0.111	0.215	0.167	0.274	0.147	0.255	0.165	0.271	0.396	0.476	0.879	0.781
	96	0.132	0.233	0.145	0.243	0.142	0.240	0.212	0.313	0.256	0.362	0.196	0.300	0.477	0.537	1.100	0.895

Table 4: Multivariate long-term series forecasting results for the Solar and PEMS.

C.3 Performance of PatchTST, DLinear, and NLinear under Different Window Lengths

In the main text, we set L to 1024. This is not done with the intention of deliberately undermining the performance of PatchTST, DLinear, and NLinear under an unusual setting. Here, we conducted experiments with DLinear and NLinear, two linear-based models, under two settings: L=336 and L=1024, with the results shown in Table 5. For PatchTST, we set L=336 and L=512. As shown in Table 5, even with the shorter window settings, their performance still lags behind that of PIH at L=1024. Specifically, we can draw the following conclusions:

- Linear-based models indeed perform well against noise, with NLinear(1024) generally outperforming NLinear(336). This is consistent with the results of PIH, indicating that larger windows are beneficial.
- NLinear(1024) generally outperforms NLinear(336), whereas DLinear(1024) underperforms compared to DLinear(336). Thus, directly increasing the window size in linear-based methods is not always effective.
- PIH(1024) outperforms NLinear(1024), which can be attributed to the superior representational capabilities of the Transformer and Mamba modules compared to linear modules. Therefore, it is essential to continue exploring the potential of Transformer-based models with longer windows rather than relying solely on linear-based models.
- Compared to PatchTST (336), PatchTST (512), and PatchTST (1024) discussed in the main text, PIH (1024) achieves better performance. This can be attributed to the IBF and HTM modules, which enable PIH to leverage larger windows effectively.

C.4 Hyperparameters

Our model incorporates several crucial hyperparameters, including K, determining the number of partitions; β , which governs the balance between prediction and compression in the IB objective; and the temperature factor τ , influencing subsequence sampling. We investigate the impact of $K \in \{2,4,6,8\}, \beta \in \{0.0001,0.001,0.1,1\}$, and set $\tau \in \{0.1,0.5,1,2\}$. As shown in Fig. 5, we investigate the effects of the three hyperparameters on the ETTh1, ETTm1, and Weather datasets.

Table 5: Comparison between DLinear, NLinear, PatchTST and PIH with different lookback windows.

		Wea	ther	Tra	ffic	Elect	ricity	ET	Th1	ET	Th2	ET.	Γm1	ET.	Γm2
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
DLinear(336)	96	0.176	0.237	0.410	0.282	0.140	0.237	0.375	0.399	0.289	0.353	0.299	0.343	0.167	0.260
	192	0.220	0.282	0.423	0.287	0.153	0.249	0.405	0.416	0.383	0.418	0.335	0.365	0.224	0.303
	336	0.265	0.319	0.436	0.296	0.169	0.267	0.439	0.443	0.448	0.465	0.369	0.386	0.281	0.342
	720	0.323	0.362	0.466	0.315	0.203	0.301	0.472	0.490	0.605	0.551	0.425	0.421	0.397	0.421
DLinear(1024)	96	0.167	0.225	0.385	0.275	0.132	0.229	0.378	0.403	0.294	0.361	0.314	0.358	0.164	0.260
	192	0.211	0.267	0.397	0.279	0.146	0.243	0.414	0.428	0.430	0.448	0.356	0.391	0.238	0.317
	336	0.255	0.304	0.412	0.288	0.161	0.260	0.453	0.458	0.492	0.484	0.365	0.388	0.265	0.326
	720	0.313	0.351	0.450	0.309	0.195	0.292	0.511	0.520	0.905	0.683	0.410	0.417	0.338	0.375
NLinear(336)	96	0.182	0.232	0.410	0.279	0.141	0.237	0.374	0.394	0.277	0.338	0.306	0.348	0.167	0.255
	192	0.225	0.269	0.410	0.279	0.154	0.248	0.408	0.415	0.344	0.381	0.349	0.375	0.221	0.293
	336	0.271	0.301	0.435	0.290	0.171	0.265	0.429	0.427	0.357	0.400	0.375	0.388	0.274	0.327
	720	0.338	0.348	0.464	0.307	0.210	0.297	0.440	0.453	0.394	0.436	0.433	0.422	0.368	0.384
NLinear(1024)	96	0.170	0.226	0.383	0.270	0.133	0.229	0.379	0.404	0.296	0.351	0.317	0.359	0.163	0.257
	192	0.215	0.265	0.397	0.274	0.148	0.242	0.414	0.426	0.337	0.382	0.352	0.381	0.216	0.294
	336	0.259	0.298	0.410	0.281	0.164	0.259	0.442	0.445	0.359	0.407	0.374	0.393	0.265	0.326
	720	0.321	0.342	0.449	0.303	0.203	0.292	0.470	0.477	0.417	0.456	0.409	0.413	0.338	0.375
PatchTST(336)	96	0.152	0.199	0.367	0.251	0.130	0.222	0.375	0.399	0.274	0.336	0.290	0.342	0.165	0.255
	192	0.197	0.243	0.385	0.259	0.148	0.240	0.414	0.421	0.339	0.379	0.332	0.369	0.220	0.292
	336	0.249	0.283	0.398	0.265	0.167	0.261	0.431	0.436	0.331	0.380	0.366	0.392	0.278	0.329
	720	0.320	0.335	0.434	0.287	0.202	0.291	0.449	0.466	0.379	0.422	0.420	0.424	0.367	0.385
PatchTST(512)	96	0.149	0.198	0.360	0.249	0.129	0.222	0.370	0.400	0.274	0.337	0.293	0.346	0.166	0.256
	192	0.194	0.241	0.379	0.256	0.147	0.240	0.413	0.429	0.341	0.382	0.333	0.370	0.223	0.296
	336	0.245	0.282	0.392	0.264	0.163	0.259	0.422	0.440	0.329	0.384	0.369	0.392	0.274	0.329
	720	0.314	0.334	0.432	0.286	0.197	0.290	0.447	0.468	0.379	0.422	0.416	0.420	0.362	0.385
PIH(1024)	96	0.147	0.198	0.357	0.248	0.127	0.220	0.360	0.394	0.263	0.328	0.291	0.349	0.161	0.253
	192	0.191	0.239	0.371	0.255	0.145	0.240	0.396	0.418	0.324	0.370	0.337	0.374	0.213	0.289
	336	0.241	0.280	0.392	0.261	0.160	0.256	0.409	0.432	0.314	0.376	0.360	0.386	0.265	0.326
	720	0.309	0.329	0.430	0.282	0.192	0.287	0.435	0.466	0.378	0.425	0.405	0.411	0.342	0.375

We find that the choice of K does not significantly affect performance, whereas τ and β exhibit considerable influence, likely due to variations in the redundancy levels across different datasets.

C.5 Robustness of Our Results

To verify whether the improvements of PIH over PatchTST are statistically significant, we utilized p-values to evaluate the prediction results. Specifically, for a prediction length of T=96, we validated the significance of the improvement achieved by PIH over PatchTST. Table 6 presents the p-values from 5 experiments conducted at T=96,192,336,720. The results demonstrating that the performance improvements are significant in 5 out of 7 datasets. (p-value <0.05)

Table 6: P-values for the significance of PIH improvements over PatchTST at different prediction lengths.

\overline{T}	Weather	Traffic	Electricity	Etth1	Etth2	Ettm1	Ettm2
96	0.397						0.002
192	0.49		7.78×10^{-5}			0.20	0.013
336	0.015					0.008	0.007
720	0.08	6.29×10^{-6}	2.92×10^{-6}	2.53×10^{-6}	2.05×10^{-7}	0.36	0.0008

C.6 Integration into the iTransformer

iTransformer [18] is a special Transformer-based time series model that, instead of treating points or patches as tokens, treats each channel as a token. Therefore, the number of input tokens for iTransformer is determined by the number of channels rather than the length of the lookback windows. Although this differs slightly from the main focus of this paper, we found that IBF and HTM can also be applied to iTransformer. In this case, the goal of these two modules becomes reducing redundancy among channels and decreasing the number of tokens fed into the Transformer to mitigate the attention dispersion problem. We conducted experiments on datasets with a large number of

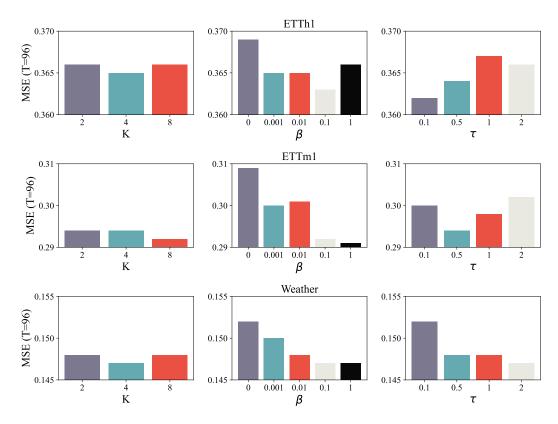


Figure 5: The impact of hyperparameters K, β , and τ in the PIH model on performance across ETTh1, ETThm1, and Weather datasets. The vertical axis represents the MSE at T=96.

Table 7: Comparison of MSE values for different datasets and horizons between our method and iTransformer.

— Dataset		Oı	urs	iTrans	former
Dataset		MSE	MAE	MSE	MAE
	96	0.129	0.225	0.133	0.229
Electricity	192	0.146	0.242	0.155	0.251
Electricity	336	0.163	0.260	0.167	0.264
	720	0.189	0.285	0.194	0.288
	96	0.346	0.252	0.349	0.255
Traffic	192	0.354	0.254	0.359	0.263
Hanne	336	0.370	0.261	0.379	0.272
	720	0.413	0.280	0.417	0.291
	12	0.059	0.158	0.064	0.167
PEMS	24	0.075	0.178	0.081	0.187
LUIS	48	0.101	0.203	0.111	0.215
	96	0.133	0.234	0.142	0.240

channels, including Electricity, Traffic, and PEMS. As shown in Table C.6, after integrating our module, the performance of iTransformer is further enhanced.

D Proofs of IB

D.1 Proof of Eq(7)

We first examine the first term $-I(\mathbf{z}^{\text{noise}}, \mathbf{Y})$ which encourages $\mathbf{z}_{\text{noise}}$ is informative of label \mathbf{Y} .

$$-I\left(\mathbf{z}^{\text{noise}}, \mathbf{Y}\right) \leq \mathbb{E}_{\mathbf{Y}, \mathbf{z}^{\text{noise}}} - \log q_{\theta}\left(\mathbf{Y} \mid \mathbf{z}^{\text{noise}}\right)$$

$$:= \mathcal{L}_{\text{pred}}\left(\mathbf{z}^{\text{noise}}, Y\right)$$
(13)

Here, $p_{\theta}\left(\mathbf{Y}\mid\mathbf{z}^{\text{noise}}\right)$ represents the variational approximation to the true posterior distribution $p\left(\mathbf{Y}\mid\mathbf{z}^{\text{noise}}\right)$. This equation illustrates that minimizing $-I\left(\mathbf{z}^{\text{noise}},\mathbf{Y}\right)$ is achieved by minimizing the prediction loss between $\mathbf{z}^{\text{noise}}$ and \mathbf{Y} . We choose to utilize the Mean Squared Error (MSE) loss to quantify the disparity between the prediction and the ground truth.

Here we provide more details about how to yield Eq. 13. By the definition of mutual information and introducing variational approximation $p_{\theta}\left(\mathbf{Y}\mid\mathbf{z}^{\text{noise}}\right)$ of intractable distribution $p\left(\mathbf{Y}\mid\mathbf{z}^{\text{noise}}\right)$, we have:

$$I\left(\mathbf{Y}, \mathbf{z}^{\text{noise}}\right) = \mathbb{E}_{\mathbf{Y}, \mathbf{z}^{\text{noise}}} \left[\log \frac{p\left(\mathbf{Y} \mid \mathbf{z}^{\text{noise}}\right)}{p(\mathbf{Y})} \right]$$

$$= \mathbb{E}_{\mathbf{Y}, \mathbf{z}^{\text{noise}}} \left[\log \frac{p_{\theta}\left(\mathbf{Y} \mid \mathbf{z}^{\text{noise}}\right)}{p(\mathbf{Y})} \right]$$

$$+ \mathbb{E}_{\mathbf{z}^{\text{noise}}} \left[KL\left(p\left(\mathbf{Y} \mid \mathbf{z}^{\text{noise}}\right) \| p_{\theta}\left(\mathbf{Y} \mid \mathbf{z}^{\text{noise}}\right)\right) \right]$$
(14)

According to the non-negativity of the KL divergence, we have:

$$egin{aligned} I\left(\mathbf{Y}; \mathbf{z}^{ ext{noise}}
ight) &\geq \mathbb{E}_{\mathbf{Y}, \mathbf{z}^{ ext{noise}}} \left[\log rac{p_{ heta}\left(\mathbf{Y} \mid \mathbf{z}^{ ext{noise}}
ight)}{p(\mathbf{Y})}
ight] \ &= \mathbb{E}_{\mathbf{Y}, \mathbf{z}^{ ext{noise}}} \left[\log p_{ heta}\left(\mathbf{Y} \mid \mathbf{z}^{ ext{noise}}
ight)
ight] + H(\mathbf{Y}) \end{aligned}$$

We can ignore $H(\mathbf{Y})$ since it can be treated as a constant. We model $p_{\theta}\left(\mathbf{Y} \mid \mathbf{z}^{\text{noise}}\right)$ as a predictor parameterized by θ , which generates the model prediction \mathbf{Y} based on the input $\mathbf{z}^{\text{noise}}$. Thus, minimizing the upper bound of $-I\left(\mathbf{z}^{\text{noise}},\mathbf{Y}\right)$ entails minimizing the model prediction loss $\mathcal{L}_{\text{pred}}\left(\mathbf{z}^{\text{noise}},\mathbf{Y}\right)$. We opt to employ the Mean Squared Error (MSE) loss to quantify the difference between the prediction and the ground truth.

D.2 Proof of Eq(9)

We derive the upper bound of $I\left(\mathbf{z}^{\text{noise}}, \mathbf{z}\right)$ by introducing the variation approximation $q\left(\mathbf{z}^{\text{noise}}\right)$ of distribution $p\left(\mathbf{z}^{\text{noise}}\right)$:

$$I\left(\mathbf{z}^{\text{noise}}, \mathbf{z}\right) = \mathbb{E}_{\mathbf{z}, \mathbf{z}^{\text{noise}}} \left[\log \frac{p_{\phi}\left(\mathbf{z}^{\text{noise}} \mid \mathbf{z}\right)}{p(\mathbf{z})} \right]$$

$$= \mathbb{E}_{\mathbf{z}, \mathbf{z}^{\text{noise}}} \left[\log \frac{p_{\phi}\left(\mathbf{z}^{\text{noise}} \mid \mathbf{z}\right)}{q(\mathbf{z}^{\text{noise}})} \right]$$

$$- \mathbb{E}_{\mathbf{z}^{\text{noise}}, \mathbf{z}} \left[KL\left(p\left(\mathbf{z}^{\text{noise}}\right)\right) \| q\left(\mathbf{z}^{\text{noise}}\right)\right) \right]$$
(15)

According to the non-negativity of KL divergence, we have:

$$I\left(\mathbf{z}^{\text{noise}}, \mathbf{z}\right) \leq \mathbb{E}_{\mathbf{z}}\left[KL\left(p_{\phi}\left(\left(\mathbf{z}^{\text{noise}} \mid \mathbf{z}\right) \| q\left(\mathbf{z}^{\text{noise}}\right)\right)\right]$$
(16)

we assume that $q\left(\mathbf{z}^{\text{noise}}\right)$ is obtained by aggregating the patch representations in a fully perturbed sequences. The noise $\epsilon \sim \mathcal{N}\left(\mu_{\mathbf{z}}, \sigma_{\mathbf{z}}^2\right)$ is sampled from a Gaussian distribution where $\mu_{\mathbf{z}}$ and $\sigma_{\mathbf{z}}^2$ are mean and variance of \mathbf{z} . Choosing sum pooling as the aggregation function, since the summation of Gaussian distributions is a Gaussian, we have the following equation:

$$q\left(\mathbf{z}^{\text{noise}}\right) = \mathcal{N}\left(N\mu_{\mathbf{z}}, N\sigma_{\mathbf{z}}^{2}\right) \tag{17}$$

Then for p_{ϕ} ($\mathbf{z}^{\text{noise}} \mid \mathbf{z}$), we have the following equation:

$$p_{\phi}\left(\mathbf{z}^{\text{noise}} \mid \mathbf{z}\right) = \mathcal{N}\left(N\mu_{\mathbf{z}} + \sum_{j=1}^{N} \lambda_{j}\mathbf{z}_{j} - \sum_{j=1}^{N} \lambda_{j}\mu_{\mathbf{z}}, \sum_{j=1}^{N} \left(1 - \lambda_{j}\right)^{2} \sigma_{\mathbf{z}}^{2}\right)$$
(18)

Finally, we have following inequality by plugging Eq. 17 and Eq. 18 into Eq. 16:

$$I\left(\mathbf{z}^{\text{noise}}, \mathbf{z}\right) \le \mathbb{E}_{\mathbf{z}}\left[-\frac{1}{2}\log A + \frac{1}{2N}A + \frac{1}{2N}B^2\right] + C$$
 (19)

where $A = \sum_{j=1}^{N} (1 - \lambda_j)^2$, $B = \frac{\sum_{j=1}^{N} \lambda_j (\mathbf{z}_j - \mu_{\mathbf{z}})}{\sigma_{\mathbf{H}^1}}$ and C is a constant term which is ignored during optimization.

E Others

E.1 Relationship with Large Time-Series Models

Although some recent large time-series models are capable of handling longer windows, they rely on significantly more parameters and much larger training datasets compared to our experiments. Additionally, when tested on the same datasets we used, these models still employ smaller window sizes. Our work does not conflict with these advancements in large time-series models. This is because the HTM and IBF modules we propose are model-agnostic and can be integrated into large time-series models, a direction worth exploring in future.

E.2 Mamba vs Transformer

We analyze HTM from both performance and computational overhead perspectives and find that the hybrid architecture has distinct advantages over using only Mamba or Transformer.

From a performance perspective. The ablation experiments presented in Fig.3(b) of main paper indicate that removing the Transformer results in slightly worse performance, highlighting the significant advantage of the combined Transformer and Mamba architecture. This finding is further supported by recent works such as Mamba-2-Hybrid [32], Dimba [6], and Jamba [13].

Table 8: Comparison of GPU memory usage and training time per epoch for a single-layer Transformer and Mamba on the Weather dataset as the lookback window L varies.

Model	Metric	96	192	336	512	1024
Mamba	Time (s) Memory (G)				36.52 6.78	58.47 9.53
Transformer	Time (s) Memory (G)				44.70 5.56	96.57 15.05

Considering computational overhead. Our framework employs the Transformer solely to process the partitioned short subsequences, which generally mitigates concerns about the costs associated with the Transformer. To validate this, we compared the computation time and GPU memory usage between using a single layer of Mamba and a single layer of Transformer under various lookback window settings (with nearly identical parameter counts). As shown in Table 8, when $L \leq 336$, the computational overhead of the Transformer is even lower than that of Mamba; however, at L=1024, the computational cost of the Transformer is nearly twice that of Mamba. In our experiments, K is typically set to 4, resulting in a subsequence length of L/K=1024/4<336. Consequently, the addition of the Transformer module incurs less overhead compared to using only Mamba.

In summary, we conclude that retaining the Transformer module is essential for enhancing performance while managing computational costs effectively.