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ABSTRACT

Vision Transformers (ViTs) have achieved state-of-the-art performance across var-
ious computer vision tasks. To reduce the high computational cost of ViTs, token
pruning has been proposed to selectively remove tokens that are not crucial. While
effective in vision tasks by discarding non-object regions, applying this technique
to audio tasks presents unique challenges. In audio processing, distinguishing rel-
evant from non-relevant regions is less straightforward. In this study, we applied
token pruning to a ViT-based audio classification model using Mel-spectrograms
and analyzed the trade-offs between model performance and computational cost.
We show AudioMAE-TopK model can reduce MAC operations by 2× with less
than a 1% decrease in accuracy for both speech command recognition and envi-
ronmental sound classification. Notably, while many tokens from signal (high-
intensity) regions were pruned, tokens from background (low-intensity) regions
were frequently retained, indicating the model’s reliance on these regions. Our
analysis showed that both signal and background regions significantly contribute
to classification outcomes. In the ablation study, forcing the model to focus only
on signal (high-intensity) regions led to lower accuracy, suggesting that back-
ground (low-intensity) regions contain unique, irreplaceable information for Au-
dioMAE. We also show that the supervised pre-trained AST model focuses more
on tokens from the signal compared to AudioMAE, when token pruning is applied.

1 INTRODUCTION

Figure 1: Token pruning patterns with image classification tasks. Images within red, green and
blue boxes are from previous works (Rao et al., 2023; Liang et al., 2022; Fayyaz et al., 2022).

The Vision Transformer (ViT) has achieved various SOTA (state-of-the-art) results in several down-
stream tasks. To reduce the computational load of ViT, several token reduction methods have been
proposed. In the case of image classification tasks, these methods tend to remove tokens originat-
ing from background components as shown in Fig. 1. This is a reasonable selection because such
components are unrelated to the labels.

Several studies have shown that ViT is applicable to audio downstream tasks as well, as audio can be
represented as 2D data using Mel-spectrograms. However, for audio classification tasks, it is unclear
which tokens should be discarded. There are several reasons for this. For instance, background (low-
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intensity) regions in Mel-spectrograms do not necessarily indicate a lack of information. In the task
of classifying the sound of a baby crying, losing the brief silences between cries could make it more
difficult to distinguish from the sound of a siren. Furthermore, empty regions in certain frequency
bands of a Mel-spectrogram can be a characteristic of the sound source, which should not be ignored.

Figure 2: Visualization of pruned tokens in AudioMAE-TopK. The two Mel-spectrogram sets on
the left are from ESC-50 and the one on the right is from SPC-2. The model’s keep-rate was set
to 0.5. For each Mel-spectrogram, the input is shown in the top-left corner (marked as ’0’), and
the number in each box indicates the corresponding pruning stage. More results can be found in
Appendix J.

We applied token pruning to audio classification tasks and found that the pruning patterns are dras-
tically different from image classification. Fig. 2 shows a visualization of the token pruning process
using the TopK selection scheme. In Fig. 2, we observe that both signal and background tokens are
pruned as the pruning progresses. In some cases, most of the signal tokens are pruned, which leads
us to ask the following questions.

• What is the role of signal versus background (noise) tokens in audio classification, and
which type is more important for downstream tasks?

• What is the best way to select tokens for pruning, and should we preferentially retain signal
or background tokens?

• Can we achieve a significant speedup in inference time by pruning a sufficient number of
tokens while maintaining accuracy?

• Does the attention-based token pruning method used in vision classification tasks effec-
tively prune the tokens?

In this study, we show an AudioMAE-TopK model, which prunes tokens according to attention
scores can achieve a 2× reduction in multiply-accumulate (MAC) operations with less than a 1%
drop in accuracy for speech command recognition and environmental sound classification. Through
further analysis, we confirm that the model prunes tokens with substantial confidence, and both
signal and background tokens are pruned based on their attention values. In the ablation study,
we show that some background tokens, along with signal tokens, are crucial for classification, and
pruning them impacts overall accuracy. In addition, we find that AST-TopK model retains more
signal tokens than AudioMAE-TopK. To the best of our knowledge, this is the first work to apply
token pruning to audio classification tasks using ViT while providing an in-depth analysis of the
resulting patterns.

2 RELATED WORKS

2.1 AUDIO SPECTROGRAM TRANSFORMERS

Since the great success of the transformer architecture (Vaswani, 2017) in Natural Language Pro-
cessing (NLP), numerous works have adopted it in a variety of fields. Vision Transformer (Doso-
vitskiy et al., 2021) is one of the successful examples of applying the transformer to vision tasks,
achieving state-of-the-art results consistently. Audio Spectrogram Transformer (AST) (Gong et al.,
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2021) demonstrated that the ViT is also applicable to several audio tasks by using Mel-spectrograms,
which represent raw audio waveforms. Using AST, many studies have been conducted to train
audio features using large amounts of unlabeled data represented as Mel-spectrograms. SS-AST
(Gong et al., 2022) explored audio feature learning through a self-supervised learning method called
Masked Spectrogram Patch Modeling (MSPM). AudioMAE (Huang et al., 2022) extended the
masked auto-encoders (He et al., 2021) approach to audio tasks. HTS-AT (Chen et al., 2022) com-
bined window attention and token semantic module for audio classification tasks. DFT-AT (Alex
et al., 2024) introduced time-frequency decoupling techniques based on MaxViT. Recent studies
such as (Niizumi et al., 2023; Li et al., 2024; Chen et al., 2024) showed that the bootstrapping
method (Grill et al., 2020) can be applied to audio tasks as well.

2.2 ACCELERATING TRANSFORMERS USING TOKEN REDUCTION METHODS

ViT-based models have achieved SOTA results across several domains, but the large computational
requirements hinder their deployment. Various approaches have been studied, including efficient
architecture designs (Liu et al., 2021a; Fan et al., 2021), quantization (Liu et al., 2021b), knowledge
distillation (Liu et al., 2024b), and early exit branches (Bakhtiarnia et al., 2021). In our work, we
focus on token reduction methods, which reduce the number of tokens based on the characteristics
of the input data.

A-ViT (Yin et al., 2022) proposed using a single embedding dimension as a pruning score, without
modifying network architecture or adding parameters. DynamicVit and SPViT (Rao et al., 2023;
Kong et al., 2022) determined which token to prune using prediction modules made of MLPs. EViT
(Liang et al., 2022) used the attention scores of tokens to determine which tokens carry more im-
portant information. ATS (Fayyaz et al., 2022) additionally considered the norm of the value matrix
in the transformer when calculating token importance scores. METR (Liu et al., 2024a) showed
integrating multi-exit layers with token pruning enables tokens originating from object regions to
receive higher attention scores, making them more likely to be retained during the token reduction
process. These methods extract attention matrix scores from the classification token, i.e. [CLS] to-
ken, as it gathers information from all tokens to form the final prediction. Along the token pruning,
token merging have been also studied. ToMe (Bolya et al., 2023) showed that the number of tokens
can be reduced through a merging strategy using the similarity between tokens without additional
training. ToFu (Kim et al., 2024) suggested applying token pruning in the earlier layers and token
merging in the later layers by functional linearity analysis.

2.3 EARLY EXIT METHODS ON AUDIO TASKS WITH TRANSFORMERS

HuBERT-EE (Yoon et al., 2022) introduced multiple early exit branches for speech recognition tasks,
while DAISY (Lin et al., 2024) leveraged the entropy of self-supervised loss to guide early exit
decisions. (Wright et al., 2024) found that training Conformer models with early exit layers from
scratch yields better performance than fine-tuning a pretrained model. FastAST (Ranjan Behera
et al., 2024) combined token merging and cross-model knowledge distillation in the AST framework.

3 APPLYING TOKEN PRUNING TO AUDIO CLASSIFICATION TASKS

3.1 AUDIOMAE-TOPK MODEL

To apply token pruning in audio classification tasks, we adopt AudioMAE as the backbone model
due to its state-of-the-art performance across various benchmarks. We use TopK as a token pruning
method since (Haurum et al., 2023) demonstrates that it’s a competitive method and to easily distin-
guish the origin of tokens, which will be discussed in the following Section 4. After the raw audio
waveform is converted into a Mel-spectrogram, it is regarded as an image so that patch embedding
and positional embeddings can be applied. The token pruning module is placed between the multi-
head self attention and MLP module of selected ViT blocks (the 4th, 7th, and 10th block).1 Using
all tokens in a block, the attention score for each token is calculated based on how much attention
it receives from other tokens. Among N input tokens of a block, we retain only N × keep-rate
tokens with highest scores (In Fig. 3, keep-rate is set to 0.6, 3 tokens are retained among the 5 input

1The choice of pruning location follows previous token pruning works (DynamicViT, EViT and METR).
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Figure 3: AudioMAE-TopK: selecting TopK attentive tokens for audio classification tasks.

tokens). After that, the tokens not selected are pruned and only the retained tokens are passed to the
next stages in the block. The same keep-rate is applied to all pruning-enabled blocks.

We downloaded a checkpoint of AudioMAE pre-trained on AudioSet-2M (Gemmeke et al., 2017)
with a ViT-Base (ViT-B) transformer. We followed AudioMAE’s configuration for pre-processing
audio data: 128 Mel-spectrogram bins and (16, 16) shaped patches without overlapping regions and
fixed positional embeddings.

3.2 APPLYING TOKEN PRUNING TO AN AUDIO SPECTROGRAM TRANSFORMER

The Multi-Head Self-Attention (MHSA) is the key component of the Transformer (Vaswani, 2017).
Tokens are transformed into three matrices: Q (Query), K (Key), and V (Value) through linear
projections. The attention mechanism is applied as follows:

Attention(Q,K,V) = Softmax
(
QK⊤
√
d

)
V = AV. (1)

a
(b)
i,global =

1

HN

H∑
h=1

N∑
n=1

A[b, h, n, i] (2a)

a
(b)
i,cls =

1

H

H∑
h=1

A[b, h, 0, i] (2b)

For a batch size of B, H attention heads, and N tokens, A is a tensor called the attention map
with a shape of (B,H,N,N) AudioMAE uses mean pooling for both pretraining and downstream
tasks. For the input sample b, TopK method measures each token’s importance using token-to-token
attention score averaged over multiple heads, which is described in Eq. 2a. At each pruning enabled
block of AudioMAE-TopK, tokens having the largest K attention values, a(b)i,global, are retained (not
pruned) where K = N × keep-rate. For the ablation study using the AST model in Section 5.3, we
use the [cls] token based attention scores for pruning, which is described in Eq. 2b.2

2The index 0 is used as the position of the [CLS] token.
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3.3 EXPERIMENT SETUPS

3.3.1 DATASETS

We evaluated our approach on two audio classification datasets, measuring performance using top-
1 accuracy. The Speech Commands V2 (SPC-2) (Warden, 2018) consists of 1-second recordings
of 35 common speech commands, including 84,843 training samples, 9,981 validation samples,
and 11,005 test samples. We fine-tuned the model using the training set and assessed its accuracy
on the test data. The Environmental Sound Classification (ESC-50) (Piczak, 2015) contains 2,000
audio recordings, each 5 seconds long, across 50 classes. All results for this dataset are reported as
the average of a 5-fold cross-validation, following (Gong et al., 2022). The VoxCeleb-1 (Nagrani
et al., 2020) includes 150K audio samples for identification of 1,251 different speakers. We used
138,361 training samples and 8,251 testing samples. For general audio classification task, we choose
balanced AudioSet task (AS-20K) consists of 21K clips and 19K evaluation clips whose lengths are
10 seconds. Before being processed by the first transformer block, the input data is converted by the
patch embedding layer, producing 64 / 256 / 512 / 512 tokens for SPC-2 / ESC-50 / VoxCeleb-1 /
AS-20K.

3.3.2 TRAINING HYPERPARAMETERS

Unlike AudioMAE, we did not use any masking strategy during fine-tuning, including SpecAug
(Park et al., 2019), because training with reduced tokens already imposes a large amount of masking.
We found that using layer-wise learning rate decay (Bao et al., 2022) helps ESC-50 perform better
in token pruning. We used a higher minimum learning rate of 10−5 except for VoxCeleb-1. We use
the different settings for starting epoch for shrinking and the shrinking period for each dataset. We
used padding with minimum values for the samples that were too short to fill the target time. Other
configurations follow AudioMAE and detailed numbers are listed in Appendix A. We trained the
model with mixed precision (Micikevicius et al., 2018) and evaluated using float32.

3.4 BENCHMARK RESULTS AND VISUALIZATION OF PRUNED TOKENS

Keep SPC-2 ESC-50 VoxCeleb-1 AS-20K
rate Top-1 Acc MACs Top-1 Acc MACs Top-1 Acc MACs mAP MACs
(kr) (%) (G) (%) (G) (%) (G) - (G)
1.0 97.95 5.61 94.30 23.11 94.26 48.57 0.372 48.57
0.9 97.79 4.93 93.90 20.02 94.28 41.79 0.366 41.79
0.8 97.67 4.30 93.55 17.29 94.24 36.04 0.362 36.04
0.7 97.64 3.72 93.50 15.02 93.90 31.12 0.357 31.12
0.6 97.59 3.27 93.75 13.05 92.87 27.12 0.352 27.12
0.5 97.28 2.81 93.40 11.37 91.32 23.65 0.344 23.65

Table 1: Results of AudioMAE-TopK. torchprofile (Liu, 2021) was used to measure Multiply-
Accumulate Computations (MACs). Comparing to AudioMAE, our baseline accuracy without token
pruning was slightly higher on ESC-50 (+0.2%), AS-20K (+0.2%) and lower on SPC-2 (-0.3%),
VoxCeleb-1 (-0.5%). Throughput comparison is shown in appendix B.

As demonstrated in Tab. 1, token pruning by AudioMAE-TopK shows tradeoff relationship between
reduction of MACs and drop of accuracy compared to the baseline (keep-rate=1.0). Specifically,
MACs are reduced by roughly a factor of two, while accuracy decreases by 0.67% and 0.90% for
SPC-2 and ESC-50, respectively, when using a keep-rate of 0.5.

As shown in Fig. 1, the token reduction methods for image classification tasks (Yin et al., 2022;
Rao et al., 2023; Liang et al., 2022; Yin et al., 2022; Fayyaz et al., 2022; Liu et al., 2024a) tend to
retain tokens relevant to the label while discarding background components. However, it is unclear
which types of patches (tokens) are most important for audio classification. Initially, we expected
that tokens representing signal (high-intensity) patches would receive higher attention and thus to
be mostly retained. Contrary to our expectations, the visualization results indicated the opposite.
In Mel-spectrograms of the SPC-2 dataset, we can easily distinguish between tokens representing
signals and those representing noise/background, as each sample contains only a single word. In-
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terestingly, the right box in Fig. 2 shows that most tokens covering the voice region were discarded.
This trend was observed across various speech commands in the SPC-2 dataset, prompting us to
investigate the effects of pruning on different types of tokens.

4 ANALYSIS OF TOKEN PRUNING IN AUDIOMAE-TOPK

4.1 SIGNAL VS. BACKGROUND TOKENS
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Figure 4: Histogram of normalized Mel-spectrogram intensity values obtained from 1024 sam-
ples for each dataset. The histogram reveals that high-intensity values (yellow regions in the Mel-
spectrogram) are infrequent and not visible due to their small proportion in the dataset. We pick
the threshold value, τ , for each dataset from the 2nd bin of each histogram. For SPC-2, ESC-50,
VoxCeleb-1 and AS-20K, τ is set to -0.65, -0.65, -1.25 and -1.0. Signal areas account for 63% in
SPC-2, 81% in ESC-50, 65% in VoxCeleb-1, and 90% in AS-20K, with the rest classified as back-
ground. Histrogram for other datasets are in appendix C.

We begin our analysis of the visualization results by quantifying how many signal tokens are re-
tained during the pruning process. We define threshold values, τ , for each dataset to distinguish
background/noise/pad tokens from signal tokens. Based on the observations from Fig. 4, we classify
tokens as originating from signal areas if the corresponding patch’s mean intensity value is greater
than τ ; Otherwise, they are considered as background tokens. Let N represent the total number of
input tokens, and R the set of retained tokens. A set of tokens retained from signal areas is denoted
as Rs, while one for background areas is denoted as Rb, such that R = Rs ∪ Rb. Similarly, we
denote the sets for the pruned tokens as P = Ps ∪ Pb. Superscripts are used to indicate tokens at
different pruning stages; for example, R2

s refers to the set of signal tokens retained after the second
pruning stage. This classification allows us to analyze the impact of different token types based on
their retention status throughout the pruning stages.

Keep rate SPC-2 ESC-50 VoxCeleb-1 AS-20K
0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5

loc 1/A 60.0 46.8 33.1 74.9 58.4 41.6 60.0 46.7 33.3 83.5 65.0 46.4
loc 2/A 60.5 47.1 33.0 74.8 58.2 41.5 60.0 46.7 33.3 83.5 65.1 46.3
loc 3/A 60.0 47.6 33.1 75.1 58.6 41.5 60.0 46.8 33.4 83.6 65.1 46.3
loc 1/B 90.7 70.4 50.0 90.3 70.5 50.2 90.1 70.1 50.0 90.0 70.1 50.0
loc 2/B 82.8 50.0 25.0 81.3 49.3 25.1 81.1 49.2 25.0 81.0 49.2 25.0
loc 3/B 75.0 36.0 12.5 73.6 34.8 12.5 73.1 34.6 12.5 73.0 34.5 12.5

Table 2: Percentage (%) of retained signal tokens to available tokens at each pruning stage (A)
and to the total number of signal tokens in the input (B) with varying keep-rates. Loc 1,2, and
3 represent the 4th, 7th, and 10th attention blocks respectively.

We measured two different ratios for retained signal tokens. Ratio A is defined as |Ri
s|/(|Ri−1| +

|P i−1|), which denotes the number of retained signal tokens at stage i divided by the number of all
tokens before pruning, except for the first location where the ratio is |R1

s|/|N | . Ratio B is defined
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Figure 5: Distribution of signal token ratios retained during token pruning. While the average
ratio of retained signal tokens to total candidate tokens (ratio A) remains similar across different
pruning stages, the variance is high across the dataset. More results are in Appendix F.

as |Ri
s|/|Ns|, which measures the ratio of retained signal tokens at stage i to the total number of

signal tokens in the input Mel-spectrogram. Interestingly, Tab. 2 shows that the portion of signals in
retained tokens with respect to the number of signals in input (ratio B) decreases proportionally to
the keep-rate. The ratio A tends to differ across different tasks, while the ratio B tends to be similar
throughout multiple datasets.

4.2 COMPARING THE ATTENTION SCORE OF RETAINED AND PRUNED TOKENS

Keep rate SPC-2 ESC-50 VoxCeleb-1 AS-20K
0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5

Γ(G1, Rs) 1.31 1.12 1.11 1.15 1.11 1.11 1.38 1.27 1.22 1.17 1.13 1.13
Γ(G2, Rs) 5.29 1.82 1.47 1.84 1.58 1.45 2.86 1.96 1.42 1.60 1.41 1.35
Γ(G3, Rs) 13.03 4.10 2.17 2.60 1.86 1.73 11.31 5.51 3.03 2.58 2.04 1.88
Γ(G1, Rb) 1.30 1.11 1.11 1.13 1.12 1.10 1.38 1.30 1.28 1.12 1.09 1.11
Γ(G2, Rb) 5.28 1.82 1.46 1.75 1.51 1.52 2.89 2.14 1.52 1.52 1.33 1.20
Γ(G3, Rb) 13.14 4.05 2.13 2.54 2.04 1.83 10.99 5.40 3.20 2.00 1.60 1.98

Table 3: Ratio of the attention scores of retained and pruned tokens for signals and back-
grounds, averaged over groups.

We compare the attention scores of the retained and pruned tokens because AudioMAE-TopK uses
the scores to prune tokens. For analysis, we group attention blocks with respect to the pruning
locations: G1 = (1, 2, 3, 4) / G2 = (5, 6, 7) / G3 = (8, 9, 10) and split tokens at each group into
two sets for retained and pruned tokens. For block l, Rl

s, R
l
b and P l denotes the set of retained

signal, retained background, and pruned tokens at their corresponding pruning block (i.e. R1
s =

R2
s = R3

s = R4
s). We define γ(l, Rl

s) as attn score(Rl
s) / attn score(P l), representing the ratio of

retained signal tokens’ average attention score to pruned tokens’ average attention score at block
l. Similarly, γ(l, Rl

b) is attn score(Rl
b) / attn score(P l) at block l. Using this ratio, we wanted to

keep track of attention values for retained tokens over pruned tokens at each block. Γ(Gi, Rs) is
defined as 1

|Gi|
∑

j γ(Gi[j], R
Gi[j]
s ), representing the averaged ratio value across the blocks in the

same group. Tab. 3 presents the average ratio values over groups of blocks, and Fig. 6 illustrates the
trend of ratios at the block level, rather than the group level.

In Fig. 6, retained tokens show much larger attention scores than pruned ones as tokens are pro-
cessed, regardless of their origins, as Γ is greater than 1. The drop of attention score ratio right after
1st and 2nd pruning location indicates that after the tokens are pruned, the model is relatively un-
sure which tokens need to be pruned among retained ones before computing next level of attention
values. Tab. 3 shows model becomes more confident about its token selection for pruning when the
keep-rate increases.
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Figure 6: Ratio of the attention scores of retained and pruned tokens for signals and back-
grounds. In the left plot (SPC-2), the two graphs nearly overlap because of the similarity in the
ratio values. Red dashed lines indicate the locations of token pruning at the 4th, 7th, and 10th
blocks. More results can be found in Appendix D.

4.3 ANALYZING THE PRUNING OF SIGNAL TOKENS

Each ViT block includes a residual connection over the self-attention layer. One of the mysterious
behaviors in pruning was the pruning of signal tokens. To understand this, we examined the effect of
the residual connection on the output of the multi-headed self-attention block as pruning progresses
by comparing their L2-norms.

We measured the L2-norm ratio,R(x) = ||x||2/||self attention(x)||2, where x represents a tensor
for the residual path from the output of the previous block as depicted in Fig. 3. In Fig. 7, the norm
ratios are reported. Interestingly, they become smaller in the later blocks, indicating that the self-
attention layer is giving more influence to the model’s classification result. This trend was consistent
regardless of pruning level. Our interpretation of this behavior is as follows. Initially, many tokens
merge their information gradually into representative signal and background tokens. Then, only a
small number of representative signal and background tokens are retained throughout the pruning
process, and they are highly attentive with each other in the later blocks to perform classification,
which explains why many signal tokens can be pruned without a loss of accuracy.

In contrast to this result, ViT in image classification tasks observe an opposite trend to our find-
ings (Raghu et al., 2021). In image classification tasks, the L2-norm ratio increases in the later
blocks. That is because final objects identified in the later layers are not necessarily related (atten-
tive) to background to perform the image classification task.

We also observed that the norm ratio normalized to the model without pruning (keep-rate=1.0)
becomes smaller if we prune more tokens by setting a lower keep-rate, as illustrated in the right plot
of Fig. 7.
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Figure 7: Ratios of the residual connection norm to the self-attention norm (left) and the same
ratios normalized to the model without token pruning (right). More results can be found in
Appendix E.
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5 ABLATION STUDY

5.1 SWAPPING TOKENS IN DIFFERENT GROUPS

To find out how much signal and background tokens contribute to the classification accuracy, we
conducted three perturbation tests over the set of retained tokens. For the token selection, we en-
force the following rules. Let X and Y be the list of tokens sorted in decreasing order by their
attention scores given by Eq. 2a. The swapping algorithm is described in Algorithm 1. We denote
Rs, Rb, Ps, Pb as sorted lists of retained signal/background and pruned signal/background tokens
respectively. In test I and test II, we perform Perturb(Rs, Ps) and Perturb(Rb, Pb) for each pruning
location to measure the impact of swapping retained and pruned tokens of the same category. In test
III, we perform Perturb(Rb, Ps) to see whether forcing the usage of pruned signal tokens instead of
retained background tokens can improve the model’s prediction. The results are reported in Tab. 4.

Algorithm 1 Swapping Tokens in Different Groups
1: function PERTURB(X, Y)
2: if len(X) ≤ len(Y ) then
3: X ← Y [: len(X)]
4: else
5: n← len(X)− len(Y )
6: X ← concat(X[: n], Y )
7: end if
8: end function

Keep rate SPC-2 ESC-50
0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5

baseline 97.79 97.67 97.64 97.59 97.28 93.90 93.55 93.50 93.75 93.40
Test I 97.74 97.33 95.87 89.47 83.30 93.40 92.90 93.10 91.30 76.40
Test II 97.69 97.14 96.78 95.85 94.76 93.85 93.45 93.50 92.90 90.95
Test III 97.27 93.88 92.98 92.60 92.66 93.35 93.20 92.85 92.50 91.85

Table 4: Top-1 accuracy results from perturbation tests.

In test I and II, accuracy drops show that Rs carry more information than Rb related to the final
prediction. With the lower keep-rates, the role of Rs becomes more important. Nevertheless, we
cannot ignore the impact of Rb because the accuracy drops more than about 2% when it is swapped
with Pb. Interestingly, test III does not show improvement over the baseline model. In addition,
except for one case with keep-rate=0.5 in ESC-50, test III reported lower scores than test II. This
implies that background tokens carry distinct and irreplaceable information to the signal tokens.
This explains why AudioMAE-TopK model maintains accuracy even when retaining a high ratio of
background tokens in the low keep-rate case.

5.2 USING [CLS] TOKEN FOR TOKEN SELECTION

In AudioMAE-TopK, we used the attention score based on Eq. 2a whereas EViT, ATS, and METR
used attention scores with respect to the [CLS] token as in Eq. 2b. To investigate whether retaining
a large number of background tokens is attributable to token-to-token attention scores and the use
of mean pooling for prediction, we observed pruning behavior of AudioMAE-TopK-CLS, which
prunes using the [CLS] based attention score. For this test, we used the same hyper-parameters as
training AudioMAE-TopK. As depicted in Fig.12 and Fig.13, the pruning pattern exhibits similar
behavior when compared to that of the AudioMAE-TopK, retaining both signal and background
tokens. We also find that the accuracy dropped more in ESC-50 task (Tab. 5, MAE).

5.3 USING SUPERVISED PRETRAINED MODEL (AST)

We also compare the pruning patterns of AudioMAE-TopK with those of AST-TopK, which is pre-
trained using supervised learning. We downloaded a checkpoint of AST-CLS (ViT-B, stride=16,

9
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0.442 mAP on AS-2M) which uses a [CLS] token and pretrain AST-MP on AudioSet-2M using
mean pooling for prediction, following the same recipe in (Gong et al., 2021). AST-MP records
0.435 mAP on AS-2M. AST-TopK gives higher attention scores to signal tokens than to back-
ground tokens (Appendix. I), and its pruning patterns are also visually distinguishable from those of
AudioMAE-TopK, whether a CLS token or mean pooling is used (Appendix. K). AST-TopK-CLS
retains accuracy better than AudioMAE-TopK on ESC-50 (Tab. 5, AST).

Keep rate SPC-2 (MAE) ESC-50 (MAE) SPC-2 (AST) ESC-50 (AST)
0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5

Top-1 97.7 97.5 97.1 90.2 88.0 83.3 97.2 97.0 97.0 94.7 94.9 94.5
loc 1/A 60.0 46.5 33.1 74.9 58.3 41.4 65.2 57.9 47.2 75.9 60.6 44.3
loc 2/A 60.1 47.1 33.2 74.7 58.0 41.4 67.8 65.0 48.7 76.6 62.4 46.9
loc 3/A 60.0 47.6 33.2 75.1 58.6 41.4 72.6 67.7 49.3 76.5 62.7 47.0
loc 1/B 90.6 70.3 50.0 90.3 70.0 49.9 99.0 88.6 73.3 92.5 76.3 58.4
loc 2/B 82.9 50.0 25.0 81.2 49.0 24.8 93.5 70.7 38.3 85.3 57.9 33.7
loc 3/B 75.0 35.9 12.5 73.4 34.6 12.4 91.6 52.7 19.6 76.5 41.0 17.5

Table 5: Percentage(%) of retained signal tokens to available tokens at each pruning stage (A)
and to the total number of signal tokens in the input (B) with varying keep-rates of AudioMAE-
TopK-CLS and AST-TopK-CLS. AST-CLS / AST-MP achieved accuracies of 97.1 / 97.1 on SPC-2
and 95.0 / 94.5 on ESC-50 without pruning. For AST-TopK-MP with keep rates of 0.9, 0.7, and 0.5,
the model achieved accuracies of 94.5, 94.3, and 93.5 on ESC-50, and 97.0, 97.1, and 97.0 on SPC-
2, respectively.

6 CONCLUSION

In conclusion, this study shows that the attention-based token pruning method can be successfully
applied to audio tasks, reducing computational costs by 2× MACs with less than a 1% accuracy drop
in both speech command recognition and environmental sound classification. We find that token
pruning patterns differ from those in image classification tasks and can vary based on the pretrained
model. AudioMAE distinguishes retained tokens by assigning them larger attention scores compared
to pruned ones, regardless of whether they originate from signal or background regions. In contrast,
AST assigns higher attention scores to signal tokens than to background tokens. Additionally, we
show that for AudioMAE, while signal tokens play a more prominent role in the model’s predictions,
background tokens also provide essential and irreplaceable information that contributes to the overall
model performance.

7 LIMITATIONS AND DISCUSSIONS

Due to limited computational resources, our study focuses on the ViT-B configuration. Pruning
patterns may vary with different model capacities and pretraining methods. Other pruning
methods such as DynamicViT, which uses MLP modules as token score predictor, may exhibit
different pruning patterns. Expanding our experiments to a wider range of audio classification
tasks like emotion recognition could offer deeper insights, as each task has unique characteristics.
AudioMAE shows more accuracy drop than AST when token pruning is applied but still maintains
competitive performance by retaining lots of background tokens. This difference can be attributed to
their pretraining objectives: In AudioMAE, the model processes audio by considering not only sig-
nal but also background tokens, as all patches are masked during training. In contrast, AST focuses
primarily on signal tokens with higher intensity values. This distinction can lead to different pruning
behaviors: AudioMAE-TopK pruning retains both signal and background tokens for classification
tasks, while AST-TopK pruning primarily preserves signal tokens. We also believe that there are
opportunities to develop token pruning methods tailored for specific audio tasks, such as speech
recognition, using domain knowledge.
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A HYPERPARAMETER SETTINGS

Hyperparameters SPC-2 ESC-50 VoxCeleb-1 AS-20K

Optimizer AdamW (Loshchilov & Hutter, 2019)
Optimizer momentum β1 = 0.9, β2 = 0.95
Layer decay (Bao et al., 2022) 0.75
Weight decay 0.0001
Learning rate schedule (lrbase) Cosine (Loshchilov & Hutter, 2017)
Base learning rate 0.001
Minimum learning rate 0.00001 0.000001 0.00001
Warm-up epochs 4
Total epochs 90 / 30∗ 120 / 30∗ 60 60
Shrink start epoch 10 / 5∗ 20 / 5∗ 10 30
Shrink epochs (Liang et al., 2022) 30 / 15∗ 40 / 15∗ 20 20
Batch Size 64 256 32 16
GPUs 2
Drop path 0.1
Mixup (Zhang et al., 2018) 0.5 0.0 0.0 0.5
Loss Function BCE CE CE BCE
Dataset Mean for Normalization -6.846 -6.627 -6.370 -4.268
Dataset Std for Normalization 5.565 5.359 3.074 4.569

Table 6: Hyperparameter configurations of AudioMAE-TopK. Following AudioMAE, the effec-
tive learning rate lreff is lrbase × batch size

256 . For AS-20K task, we applied AudioMAE recipe until
shrink start epoch since the model suffers large mAP drop without masking augmentations. Our
implementation is primarily based on both AudioMAE (Huang et al., 2022) and EViT (Liang et al.,
2022). We used two RTX 4090 for fine-tuning. ∗ For fine-tuning on AST, we only add those param-
eters for applying token pruning and the rest follows the original paper (Gong et al., 2021).
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B THROUGHPUT MEASUREMENTS OF AUDIOMAE-TOPK

Keep SPC-2 ESC-50 VoxCeleb-1 AS-20K
rate Top-1 Throughput Top-1 Throughput Top-1 Throughput mAP Throughput

(%) (sample/s) (%) (sample/s) (%) (sample/s) - (sample/s)
1.0 97.95 2625 94.30 639 94.26 270 0.371 269
0.9 97.79 2982 93.90 740 94.28 314 0.366 317
0.8 97.67 3307 93.55 851 94.24 370 0.362 359
0.7 97.64 3702 93.50 970 93.90 431 0.357 428
0.6 97.59 4251 93.75 1112 92.87 489 0.352 493
0.5 97.28 4650 93.40 1247 91.32 554 0.344 544

Table 7: Throughput measurements of AudioMAE-TopK. Throughput was measured using a
single RTX 4090 with a batch size of 128 (SPC-2 & ESC-50) and 16 (VoxCeleb-1 & AS-20K),
averaged over 50 runs. The number of tokens of VoxCeleb-1 and AS-20K tasks are the same.

C INTENSITY HISTOGRAM OF VOXCELEB-1 & AUDIOSET-20K DATASET
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Figure 8: Histogram of normalized Mel-spectrogram values obtained from 1024 samples.

D MORE ATTENTION SCORE GRAPHS OF AUDIOMAE-TOPK
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Figure 9: Ratio of the attention scores of retained and pruned tokens for signals and back-
grounds (AudioMAE-TopK)
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E MORE ATTENTION NORM RATIO GRAPHS OF AUDIOMAE-TOPK
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Figure 10: Ratio of residual connections’ norm to the self-attention norm (left) and normalized
ratios compared to the one without token pruning (right).
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F SIGNAL TOKEN RATIO FIGURES OF AUDIOMAE-TOPK
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Figure 11: Distribution of signal token ratios retained during token pruning.
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G MORE FIGURES OF AUDIOMAE-TOPK-CLS

Figure 12: Visualization of pruned tokens in AudioMAE-TopK-CLS. The chosen samples are the
same as in Fig. 2. For two ESC-50 samples (left), keep-rates are set to 0.7 as with a lower keep-rate
the model suffers significant accuracy loss and thus its results may be unusable. keep-rate is set to
0.5 for a sample from SPC-2 (right).
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Figure 13: Ratio of the attention scores of retained and pruned tokens for signals and back-
grounds (AudioMAE-TopK-CLS).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

H SIGNAL TOKEN RATIO FIGURES OF AST
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Figure 14: Distribution of signal token ratios retained during token pruning (AST-TopK).
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I ATTENTION SCORE GRAPHS OF AST
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Figure 15: Ratio of the attention scores of retained and pruned tokens for signals and back-
grounds extracted from AST-TopK. The zero value of retained background tokens indicate that
there are no retained tokens from background.
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J MORE VISUALIZATION RESULTS OF TOKEN PRUNING USING
AUDIOMAE-TOPK

Figure 16: Visualization of pruned tokens in AudioMAE-TopK, VoxCeleb-1). keep-rate = 0.5

Figure 17: Visualization of pruned tokens in AudioMAE-TopK, VoxCeleb-1). keep-rate = 0.7

Figure 18: Visualization of pruned tokens in AudioMAE-TopK, AS-20K). keep-rate = 0.5

Figure 19: Visualization of pruned tokens in AudioMAE-TopK, AS-20K). keep-rate = 0.7
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Figure 20: Visualization of pruned tokens in AudioMAE-TopK, SPC-2). keep-rate = 0.5
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(a) Visualization of pruned tokens in AudioMAE-TopK, ESC-50). keep-rate = 0.5

(b) Visualization of pruned tokens in AudioMAE-TopK, ESC-50). keep-rate = 0.7
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K MORE VISUALIZATION RESULTS OF TOKEN PRUNING USING AST

(a) keep-rate = 0.5

(b) keep-rate = 0.7

Figure 22: Visualization of pruned tokens of AST-TopK-CLS with different keep rates.

(a) keep-rate = 0.5

(b) keep-rate = 0.7

Figure 23: Visualization of pruned tokens of AST-TopK-MP with different keep rates.
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