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Abstract

Density ratio estimation in high dimensions can
be reframed as integrating a certain quantity, the
time score, over probability paths which interpo-
late between the two densities. In practice, the
time score has to be estimated based on samples
from the two densities. However, existing meth-
ods for this problem remain computationally ex-
pensive and can yield inaccurate estimates. In-
spired by recent advances in generative modeling,
we introduce a novel framework for time score es-
timation, based on a conditioning variable. Choos-
ing the conditioning variable judiciously enables
a closed-form objective function. We demonstrate
that, compared to previous approaches, our ap-
proach results in faster learning of the time score
and competitive or better estimation accuracies
of the density ratio on challenging tasks. Further-
more, we establish theoretical guarantees on the
error of the estimated density ratio.

1. Introduction
Estimating the ratio of two densities is a fundamental task
in machine learning, with diverse applications (Sugiyama
et al., 2010). For instance, by assuming that one of the
densities is tractable, often a standard Gaussian, we can
construct an estimator for the other density by estimating
their ratio (Gutmann & Hyvärinen, 2012; Gao et al., 2019;
Rhodes et al., 2020; Choi et al., 2022). It is also possible to
consider a scenario where both densities are not tractable.
As noted by previous works (Choi et al., 2022), density
ratio estimation finds broad applications across machine
learning, from mutual information estimation (Song & Er-
mon, 2020), generative modelling (Goodfellow et al., 2020),
importance sampling (Sinha et al., 2020), likelihood-free
inference (Izbicki et al., 2014) to domain adaptation (Wang
et al., 2023).
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Figure 1: Densities are shown in blue. Left: A bi-modal
probability path transitioning from a Gaussian distribution
(t = 0) to a mixture of Diracs (t = 1). This path is esti-
mated using “time scores”, which are not available in closed
form in general; they are depicted by arrows, with magni-
tudes ranging from low (gray) to high (red). Right: A useful
decomposition of the probability path and time scores is
obtained by conditioning on a final data point. The ensuing
conditional density is Gaussian, and thus, the ensuing con-
ditional time scores are analytically tractable. We propose
to use this decomposition to estimate the “time scores”.

The seminal work by Gutmann & Hyvärinen (2012) pro-
posed a learning objective for estimating the ratio of two
densities, by identifying from which density a sample is
drawn. This can be done by binary classification. However,
their estimator has a high variance when the densities have
little overlap, which makes it impractical for problems in
high dimensions (Lee et al., 2023; Chehab et al., 2023b).

To address this issue, Rhodes et al. (2020) proposed connect-
ing the two densities with a probability path and estimating
density ratios between consecutive distributions. Since two
consecutive distributions are “close” to each other, the sta-
tistical efficiency may improve at the cost of increased com-
putation, as there are multiple binary classification tasks
to solve. Choi et al. (2022) examined the limiting case
where the intermediate distributions become infinitesimally
close. In this limit, the density ratio converges to a quantity
known as the time score, which is learnt by optimizing a
Time Score Matching (TSM) objective. While this limiting
case leads to empirical improvements, the TSM objective
is computationally inefficient to optimize, and the resulting
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estimator may be inaccurate. Moreover, it is unclear what
are the theoretical guarantees associated with the estimators.

In this work, we address these limitations. First, in Section 3
we introduce a novel learning objective for the time score,
which we call Conditional Time Score Matching (CTSM).
It is based on recent advancements in generative modeling
(Vincent, 2011; Pooladian et al., 2023; Tong et al., 2024a),
which consider probability paths that are explicitly decom-
posed into mixtures of simpler paths, and where the time
score is obtained in closed form. We demonstrate empiri-
cally that the CTSM objective significantly accelerates opti-
mization in high-dimensional settings, and is several times
faster compared to TSM.

Second, in Section 4 we modify our CTSM objective with a
number of techniques that are popular in generative model-
ing (Song et al., 2021b; Choi et al., 2022; Tong et al., 2024a)
to ease the learning. In particular, we derive a closed-form
weighting function for the objective, as well as a vectorized
version of the objective which we call Vectorized Condi-
tional Time Score Matching (CTSM-v). Together, these
modifications substantially improve the estimation of the
density-ratio in high dimensions, leading to stable estima-
tors and significant speedups.

Third, in Section 5 we provide theoretical guarantees for
density ratio estimation using probability paths, addressing
a gap in prior works (Rhodes et al., 2020; Choi et al., 2022).

2. Background
Our goal is to estimate the ratio between two densities p0
and p1, given samples from both. We start by defining a
distribution over labels t and data points x,

p(x, t) = p(t)p(x |t) (1)

constructed such that we recover p0 and p1 for t = 0 and
t = 1 respectively. We next show how several relevant
methods can be viewed as variations on this formalism.

Binary label Fundamental approaches to density-ratio es-
timation consider a binary label t ∈ {0, 1}. Among them,
Noise Contrastive Estimation (NCE) is based on the obser-
vation that the density ratio is related to the binary classifier
p(t|x) (Gutmann & Hyvärinen, 2012, Eq. 5). NCE esti-
mates that classifier by minimizing a binary classification
loss based on logistic regression, computed using samples
drawn from p0 and p1. In practice, using NCE is challeng-
ing when p0 and p1 are “far apart”. In that case, both the
binary classification loss becomes harder to optimize (Liu
et al., 2022) and the sample-efficiency of its minimizer de-
terioriates (Gutmann & Hyvärinen, 2012; Lee et al., 2023;
Chehab et al., 2023a;b).

Continuous label More recent developments relax the
label so that it is continuous t ∈ [0, 1]. Now, conditioning
on t defines intermediate distributions p(x |t), equivalently
noted pt(x), along a probability path that connects p0 to p1.
Then, the following identity is used (Choi et al., 2022)

log
p1(x)

p0(x)
=

∫ 1

0

∂t log pt(x)dt, (2)

or its discretization in time (Rhodes et al., 2020).

Probability path We next consider a popular use-case,
where p0 is a Gaussian and p1 is the data density (Rhodes
et al., 2020; Choi et al., 2022); since p0 is known analyt-
ically, the ratio of the two provides directly an estimator
for p1. In practice, one can construct a probability path
where the intermediate distributions can be sampled from
but their densities cannot be evaluated. This is because the
probability path is defined by interpolating samples from
p0 and p1. There are multiple ways to define such interpo-
lations (Rhodes et al., 2020; Albergo & Vanden-Eijnden,
2023), which we will further discuss in Section 4. A widely
used approach is the Variance-Preserving (VP) probability
path, which can be simulated by (Song et al., 2021b; Lipman
et al., 2023; Choi et al., 2022)

x =
»
α2
t x1 +

»
1− α2

t x0, (3)

where x0 ∼ N (0, I), x1 ∼ p1 follows the data distribution,
time is drawn uniformly t ∼ U [0, 1] and αt ∈ [0, 1] is a
positive function that increases from 0 to 1. By conditioning
on t, we obtain densities pt(x) = 1√

1−α2
t

p0(
x√
1−α2

t

) ∗
1
αt
p1(

x
αt
) that cannot be computed in closed-form, given

that the density p1 is unknown and that the convolution
requires solving a difficult integral.

Estimating the time score Importantly, the identity
in Eq. 2 requires estimating the time score ∂t log pt(x),
which is the Fisher score where the parameter is the label
t. It can also be related to the binary classifier between
two infinitesimally close distributions pt and pt+dt (Choi
et al., 2022, Proposition 3). Formally, this time score can
be approximated by minimizing the following Time Score
Matching (TSM) objective

LTSM(θ) = Ep(t,x)

[
λ(t)

(
∂t log pt(x)− sθ(x, t)

)2]
, (4)

where λ(t) is any positive weighting function. This objec-
tive requires evaluating the time score ∂t log pt(x). How-
ever, as previously explained, the formula for the time score
is unavailable because the densities pt, while well-defined,
are not known in closed form.

To make the learning objective in Eq. 4 tractable, an insight
from Hyvärinen (2005) led Choi et al. (2022); Williams et al.
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(2025) to rewrite it using integration by parts. This yields

LTSM(θ) = 2Ep0(x)[sθ(x, 0)]− 2Ep1(x)[sθ(x, 1)]+

Ep(t,x)[2∂tsθ(x, t) + 2λ̇(t)sθ(x, t) + λ(t)sθ(x, t)
2],

(5)

which no longer requires evaluating the time score
∂t log pt(x). However, this approach has one clear com-
putational drawback: differentiating the term ∂tsθ(x, t) in
the loss Eq. 5 involves using automatic differentiation twice
— first in t and then in θ — which can be time-consuming
(we verify this in Section 6). This motivates us to find better
ways of learning the time score.

3. Novel Objectives for Time Score Estimation
In this section, we propose novel methods to estimate the
time score.

3.1. Basic Method

Augmenting the state space First, we rewrite Eq. 4 so that
it is tractable. The idea is to further augment the state space
to (x, t, z) by introducing a conditioning variable z, as in
related literature. Thus, we extend the model from Eq. 1
into

p(x, t, z) = p(t)p(z)p(x |t, z), (6)

such that the intermediate distributions p(x |t, z) — now
conditioned on z — can be sampled from and evaluated.
We remark that this insight is shared by previous research in
score matching Vincent (2011) and flow matching (Lipman
et al., 2023; Pooladian et al., 2023; Tong et al., 2024a).

Consider for example Eq. 3. By choosing to condition on
z = x1, we get a closed-form p(x |t, z) = N (x;αt z, (1−
α2
t )I). In this example, z is a sample of “raw” data (for ex-

ample, real observed data) while x is a corrupted version of
data, and t controls the corruption level, ranging from 0 (full
corruption) to 1 (no corruption), as in Vincent (2011). In the
following, we explain how to relate the descriptions of the
intractable marginal probability path pt(x) to descriptions
of the tractable conditional probability path pt(x | z).

Tractable objective for learning the time score As a
result of Eq. 6, we relate the time scores, obtained with and
without conditioning on z (derivations are in Appendix D.1)

∂t log pt(x) = Ept(z |x) [∂t log pt(x | z)] (7)

and exploit this identity to learn the time score, by plug-
ging Eq. 7 into the original loss in Eq. 4. This way, we can
reformulate the intractable objective in Eq. 4 into a tractable
objective which we call the Conditional Time Score Match-
ing (CTSM) objective

LCTSM(θ) = Ep(x,z,t)

[
λ(t)

(
∂t log pt(x | z)− sθ(x, t)

)2]
.

(8)

Note that the regression target is given by the time score of
the conditional distribution, ∂t log pt(x | z). The reformula-
tion is justified by the following theorem:

Theorem 1 (Regressing the time score) The TSM loss Eq. 4
and CTSM loss Eq. 8 are equal, up to an additive constant.

The proof can be found in Appendix D.2. This new ob-
jective is useful, as it requires evaluating the time score of
the tractable distribution pt(x | z) instead of the intractable
distribution pt(x). By minimizing this objective, the model
sθ(x, t) learns to output ∂t log pt(x). A similar observation
was made in De Bortoli et al. (2022, Appendix L.3.), how-
ever they did not translate this observation into the CTSM
objective and use it for learning. Furthermore, their set-
ting was more restrictive, as the conditioning variable was
specifically chosen to be x1.

3.2. Vectorized Variant

We propose a further objective for learning the time score,
called Vectorized Conditional Time Score Matching (CTSM-
v). The idea is that we can easily vectorize the learning task,
by forming a joint objective over the D dimensions. The
intuition is that the time score can be written as a sum of
autoregressive terms, and that we learn each term of the
sum instead of the final result only. We verify in section 6
that this approach empirically leads to better performance.
Formally, define the vectorization of the conditional time
score as the result of stacking its components as

vec(∂t log pt(x | z)) = [∂t log pt(x
i|x<i, z)]⊤i∈J1,DK. (9)

The time score is then obtained by summing these compo-
nents. Our vectorized objective is given by

LCTSM-v(θ) = Ep(t,z,x)î
λ(t)∥vec(∂t log pt(x | z))− svec

θ (x, t)∥2
ó
. (10)

Theorem 2 (Regressing the vectorized time score) The
CTSM-v objective Eq. 10 is minimized when the sum of
the entries of the score network equals the time score.

This is proven in Appendix D.2. By minimizing
this objective, the model svec

θ (x, t) learns to output
[Ept(z |x)[∂t log pt(x

i|x<i | z)]]⊤i∈J1,DK; this is further jus-
tified in the next Theorem 3. The original time score can
be obtained from the learnt svec

θ (x, t) by summing all the
entries. Further, while the components of the regression
target are formally given by [∂t log pt(x

i|x<i, z)]⊤i∈J1,DK,
for commonly used probability paths like the VP path, the
dependency on x<i is dropped. We remark that Meng et al.
(2020) proposed autoregressive score matching which shares
similar spirit, albeit for the purpose of training scalable au-
toregressive models and based on Stein score.
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3.3. General Framework

We next show that our learning objectives, i.e., both the con-
ditional time score matching one and the vectorized variant,
are actually special cases of a more general framework.

Just as we related the marginal and conditional time scores,
∂t log pt(x) and ∂t log pt(x | z) in Eq. 7, let us now con-
sider the same identity for general, vector or scalar valued
functions g(x, t) and f(x, t, z), where t ∈ [0, 1]

g(x, t) = Ept(z |x)[f(x, t, z)]. (11)

By analogy to previous paragraphs, we call the functions g
and f , “marginal” and “conditional”. We consider the sce-
nario where g(x, t) is intractable, yet f(x, t, z) is tractable.
Similarly, we obtain a theorem that states that a regression
problem over the “marginal” function g(x, t) can be re-
formulated as a regression problem over the “conditional”
function f(x, t| z), thus resulting in a tractable training ob-
jective.

Theorem 3 (Regressing a function) Consider vector
or scalar valued functions f(x, t| z) and g(x, t) =
Ept(z |x)[f(x, t| z)]. Then, the following two loss functions
are equal up to an additive constant that does not depend
on θ:

Lf (θ) = Ep(t,z,x)

î
λ(t)∥f(x, t| z)− sθ(x, t)∥2

ó
, (12)

Lg(θ) = Ep(t,x)

î
λ(t)∥g(x, t)− sθ(x, t)∥2

ó
. (13)

We prove this result in Appendix D.2. Our Theorem 1
is a special case when f(x, t| z) = ∂t log pt(x | z) and
g(x, t) = ∂t log pt(x). Similarly, our Theorem 2 is a
special case when f(x, t| z) = vec(∂t log pt(x | z)) and
g(x, t) = Ept(z |x) [f(x, t)].

Versions of Theorem 3 appear multiple times in the liter-
ature, yet they have always been stated for specific func-
tions g that are Stein scores ∂x log pt(x) (Vincent, 2011;
Song et al., 2021b) or velocities that generate the proba-
bility path (Lipman et al., 2023; Pooladian et al., 2023;
Tong et al., 2024a). For example, in Vincent (2011),
f(x, t| z) = ∂x log pt(x | z) and p(t) is a Dirac. In Tong
et al. (2024a), f(x, t| z) = vt(x | z) which is a velocity
such that the solution to the ordinary differential equation
ẋt = vt(x | z) has marginals pt(x | z). To our knowledge,
it has not been stated for general functions, whose output
may have any dimensionality, nor has it been applied to time
scores or vectorized time scores, as we do.

4. Design Choices
In the previous section, we derived two novel and tractable
learning objectives for the density ratio of two distribu-
tions, CTSM Eq. 8 and CTSM-v Eq. 10. In this section,

we consider two design choices for both of these learning
objectives — the conditional probability path pt(x | z) and
the weighting function λ(t).

Choice of probability path Our regression objectives
require computing the time score and its vectorization of a
conditional density that is analytically known. One natural
choice is a Gaussian pt(x | z) = N (x;µt(z), kt I) (Lipman
et al., 2023), so that the conditional time score is obtained
in closed form. We specify popular choices of z, µt(z), kt
in Appendix B.

In particular, previous works on density ratio estima-
tion Rhodes et al. (2020); Choi et al. (2022) focused on
the VP probability path Eq. 3, which is also popular in the
literature of diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021b). By conditioning Eq. 3
on z = x1, we obtain the conditional densities

pt(x | z) = N
(
x;αt x1, (1− α2

t ) I
)
. (14)

The conditional time score is

∂t log pt(x | z) = D
αtα

′
t

1− α2
t

− αtα
′
t

1− α2
t

∥ϵ∥2 (15)

+
1√

1− α2
t

ϵ⊤ α′
t x1, (16)

where ϵ = x−αt x1√
1−α2

t

. Finally, the vectorized conditional time

score is

vec (∂t log pt(x | z)) = αtα
′
t

1− α2
t

− αtα
′
t

1− α2
t

ϵ2 (17)

+
1√

1− α2
t

ϵ α′
t x1, (18)

where the square and the product are element-wise opera-
tions. More discussion can be found in Appendix B.1.

Choice of weighting function The cost function in 8 com-
bines multiple regression tasks, indexed by t, into a single
objective, representing a multi-task learning problem. A
practical challenge is determining how to weigh the differ-
ent tasks (Ruder, 2017; Rhodes et al., 2020).

Some approaches estimate a weighting function during train-
ing (Kendall et al., 2017; Nichol & Dhariwal, 2021; Choi
et al., 2022; Kingma & Gao, 2023), while others use an ap-
proximation which does not depend on the parameter (Song
et al., 2021b; Tong et al., 2024b). We follow the latter
approach and draw inspiration from the diffusion models
literature (Ho et al., 2020; Song et al., 2021b), where it is
common to choose as weighting function

λ(t) ∝ 1

Ep(x,z)

î
∥∂x log pt(x | z)∥2

ó , (19)
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which is also the default weighting scheme from Choi
et al. (2022). It was derived for estimating the Stein score
∂x log pt(x | z) (Song et al., 2021b), and we refer to this
weighting scheme as Stein score normalization. We show
in Appendix B that it simplifies to λ(t) ∝ kt.

However, as the name and the equation itself suggest, Stein
score normalization is derived based on Stein score, thus
not directly relating to the time score. One benefit of Stein
score normalization is that its scaling essentially results in
the regression targets having unit variances (Ho et al., 2020).
However, the variance of the time score does not equal to
the variance of the Stein score. We instead consider

λ(t) ∝ 1

Ep(x,z) [∂t log pt(x | z)2]
(20)

for CTSM and CTSM-v. This new weighting, which we call
time score normalization, keeps the regressands roughly
equal in magnitude. We explicitly compute this novel
weighting function in Appendix B: its formula depends on
a quantity c that is a function of the data distribution’s mean
and variance. A natural choice for c is to compute these
statistics from the data, but in our experiments, setting c = 1
often yields better results. In our initial experiments, we
found that using the time score normalization was important
to achieve stable training. We remark that it is possible to
apply time score normalization Eq. 20 to CTSM-v as well:
upon assuming each dimensionality having equal scales,
one can calculate the variances of the objective in each indi-
vidual dimension and employ the same weighting scheme.

For the specific case of the VP path Eq. 3, the time score
normalization can be defined as

λ̂(t) =

(
1− α2

t

)2
2α2

t (α
′
t)

2
+ (α′

t)
2
(1− α2

t ) c
. (21)

Importance sampling While time score normalization
yields stable training in general, we empirically observe
that it may not always yield the best results. Specifically,
when the variance of the time score is large, for instance,
when αt → 1, time score normalization results in heavy
down weighting. In certain cases it is beneficial to employ
a weighting scheme that is approximately uniform over
different values of t.

Inspired by diffusion models literature (Song et al., 2021a),
we employ importance sampling. Specifically, samples of t
are drawn from another distribution p̃(t),

L(θ) = Ep(x,z),p̃(t)

ï
λ̄(t)

p̃(t)

(
∂t log pt(x | z)− sθ(x, t)

)2ò
,

(22)
with the goal being that, ideally, λ̄(t)

p̃(t) = λ(t) and λ̄(t) ≈
1. Further details on the employed importance sampling
scheme can be found in Section C.1.

5. Theoretical Guarantees
In this section, we provide theoretical guarantees on the
density estimated by CTSM or CTSM-v. All proofs are
included in Appendix D.

In practice, we can approximate Eq. 2 as

log p̂1(x) =
1

K

K∑
i=1

ŝ(x, ti) + log p0(x), (23)

introducing two sources of error, namely the error due to
discretizing the integral with K steps and the error due to
using the approximate time score ŝ(x, t). We quantify these
errors in the following theorem. We focus on KL divergence
for convenience of the derivations, and remark that the same
proof can be used to bound the error between the learned
and true density ratios.
Theorem 4 (General error bound) Denote by p1 and p̂1 the
densities obtained from Eq. 2 and Eq. 23, using the true
and approximate time scores, s(x, t) := ∂t log pt(x) and
ŝ(x, t) respectively. Assume that the correct time score
evolves smoothly with time, specifically t 7→ s(x, t) is L(x)-
Lipschitz. Denote as follows the time-discretized distribu-
tion pK(t) = 1

K

∑K
i=1 δti(t). The error between the two

distributions p1 and p̂1 is bounded as

KL(p1, p̂1)
2 ≤ 1

2K2
Ep1(x)[L(x)

2]

+2Ep1(x),pK(t)[(s(x, t)− ŝ(x, t))
2
].

(24)

The first term quantifies a discretization error of the integral:
it is null when using discretization steps K → ∞, or when
using paths whose time-evolution t → p(x, t) is smooth,
even stationary L(x) → 0 for any point x ∈ Rd where
the density is evaluated. Comparing the constants L(x) of
different probability paths is left for future work.

The second term in Eq. 24 quantifies the estimation error
of the time score, collected over the times ti where it is
evaluated. While such an estimation error is assumed to
be constant in related works (De Bortoli et al., 2022), we
specify it for both CTSM and CTSM-v in our next result.
Proposition 5 (Error bound for CTSM and CTSM-v) Now
consider a parametric model for the time score, sθ(x, t).
Denote by θ ∗ the parameter for the actual time score
∂t log pt(x), obtained by minimizing the loss from Eq. 8.
Denote by θ̂ the parameter obtained from minimizing that
same loss when the expectation is approximated using a
finite sample (xi, zi, ti)i∈J1,NK. Then, the expected error
over all estimates p̂1, obtained by integrating the estimated
score sθ̂(x, t) over time, is

Ep̂1 [KL(p1, p̂1)
2] ≤ 1

2K2
Ep1(x)[L(x)

2]

+
2

N
e(θ∗, λ, p) + o

( 1

N

)
,

(25)
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Note that the expectation of the KL is taken over all esti-
mates p̂1. The error function e(·) is specified in Appendix D,
specifically Eq. 107, with the matrices for CTSM specified
in Eq. 114 and the matrices for CTSM-v specified in Eq. 121.

Again, note that the final error decreases with the sample
size N and discretization steps K. Moreover, the estimation
error of the time score depends on three design choices: the
parameterization of the model θ → sθ(x, t), the chosen
probability path pt(x | z), and the weighting function λ(t).
Interestingly, there is an edge case that is independent of the
parameterization of the score (and therefore of the choice
of neural network architecture) where the error is zero. That
is when the conditional and marginal scores are equal for
CTSM, ∂t log pt(x | z) = ∂t log pt(x), and when the vec-
torized version of that statement ∂t log pt(xi|x<i, z) =
Ept(z |x)

[
∂t log pt(x

i|x<i, z)
]

holds true for CTSM-v.
Choosing paths that approximately verify these condition
could reduce the estimation error and would be interesting
future work.

6. Experiments
To benchmark the accuracy of our CTSM objectives, we
closely follow the experimental setup of Rhodes et al. (2020)
and Choi et al. (2022) and also provide further experi-
ments. Our code is available at https://github.com/
ksnxr/dre-prob-paths.

We mainly compare with the TSM objective (Choi et al.,
2022), as it was shown to outperform baseline methods like
NCE (Gutmann & Hyvärinen, 2012) and TRE (Rhodes et al.,
2020). Unless otherwise specified, we use the same score
network, VP path, and experimental setup as in Choi et al.
(2022). In these experiments, the TSM estimator is obtained
using Stein score normalization as in Choi et al. (2022),
while our CTSM estimators are always obtained using time
score normalization; both weighting functions were defined
in Section 4. In fact, we consider time score normalization
an integral part of the CTSM method instead of an optional
add-on, and thus do not evaluate its effect separately. Details
on experiments are specified in Appendix F.

Overall, these experiments show that vectorized CTSM
achieves competitive or better performance to TSM but
is orders of magnitude faster, especially in higher dimen-
sions. We note the importance of our vectorized CTSM, as
in preliminary experiments, the non-vectorized CTSM is
essentially not trainable on MNIST.

6.1. Evaluation Metrics

We follow the metrics established by prior work on density
ratio estimation (Rhodes et al., 2020; Choi et al., 2022).

Mean-Squared Error of the density ratio. As a basic
measure of estimation error, we approximate the following
quantity Eq(x)∥ log p1

p0
(x)−’log p1

p0
(x)∥2 using Monte-Carlo.

The distribution q(x) is chosen to be the mixture 1
2p0 +

1
2p1

as in the implementation of Choi et al. (2022).

Log-likelihood of the target distribution. As a second
measure of success, we approximate the following quantity
−Ep1(x)[

’log p1(x)] using Monte-Carlo. We report the result
in bits per dimension (BPD), obtained by taking the negative
log-likelihood, and then dividing by D log 2 where D is the
dimensionality of the data.

We note that the metric of log-likelihood should be inter-
preted with caution. While commonly reported in related
literature (Gao et al., 2019; Rhodes et al., 2020; Choi et al.,
2022; Du et al., 2023), that same literature acknowledges
that it is specifically designed to measure the likelihood of a
normalized model. A model obtained through density-ratio
estimation is only normalized in the limit of infinite samples
and perfect optimization, meaning it may remain unnor-
malized in practice. In such cases, BPD becomes invalid
because unnormalized models introduce an additive con-
stant that distorts the BPD value. Some literature attempts
to address this by re-normalizing the learned model using
estimates of the log normalizing constant (Gao et al., 2019;
Rhodes et al., 2020; Choi et al., 2022; Du et al., 2023). How-
ever, our experiments show these estimates can be unreliable
and may even worsen the unnormalization. For example,
the Annealed Importance Sampling estimator (Neal, 1998)
produces highly variable log normalizing constants (e.g.,
ranging between [−1100, 650] depending on the step size
in the sampling method). Similarly, the Reverse Annealed
Importance Sampling Estimator (Burda et al., 2015) can
be numerically unstable for realistic distributions, such as
mixtures (Du et al., 2023).

6.2. Model Accuracy in Synthetic Distributions with
High Discrepancies

We consider synthetic data where two distributions have
high discrepancies; this type of problem is considered in
previous works (Choi et al., 2022) as it highlights the chal-
lenge of the density-chasm problem (Rhodes et al., 2020).
For a fair comparison, we use the same model architecture,
the same interpolation scheme and train for the same number
of steps while tuning the learning rates for each scenario.

Gaussians Consider two distant Gaussians,

p0(x) = N (x; [0, . . . , 0]⊤, I), (26)

p1(x) = N (x; [4, . . . , 4]⊤, I) (27)

with varying dimensionality. Their density ratio is modeled
by a fully-connected neural network ending with a linear
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layer. Results are reported in Figure 2. We observe that
our CTSM methods consistently improve upon TSM in
terms of accuracy for the same number of iterations of the
optimization algorithm. Moreover, a single iteration of the
optimization algorithm is more than two times faster for our
methods than for TSM: CTSM and CTSM-v take around
5ms per iteration, against around 15ms for TSM 1.

TSM CTSM CTSM-v

Figure 2: For estimating the density ratio between two Gaus-
sians, CTSM-v outperforms other methods as the dimen-
sionality increases. Full and shaded lines are respectively
the means and standard deviations over 3 runs.

Gaussian mixtures Consider two bi-modal Gaussian mix-
tures, centered at vectors of entries 2 and −2,

p0 =
1

2
N (2− kσ

2
, σ2I) +

1

2
N (2+

kσ

2
, σ2I) (28)

p1 =
1

2
N (−2− kσ

2
, σ2I) +

1

2
N (−2+

kσ

2
, σ2I), (29)

with σ =
»

4
4+k2 . We choose the distribution in this way,

such that k controls the between-mode distance as a multiple
of σ, while either side has unit variance in each dimension.

In this experiment specifically, the default VP path Eq. 3
cannot be used because p0 is not Gaussian. We therefore
use another path specified in Appendix B.2.

Results are reported in Appendix E. We observe that CTSM
and CTSM-v are, again, significantly faster to run than TSM,
while being able to achieve competitive performances within
the same number of iterations.

6.3. Mutual Information Estimation for
High-Dimensional Gaussians

Following Rhodes et al. (2020); Choi et al. (2022), we con-
duct an experiment where the goal is to estimate the mutual
information between two high dimensional Gaussian distri-
butions

p0(x) = N (x;0, I), p1(x) = N (x;0,Σ), (30)

where Σ is a structured matrix; specifically it is block-
diagonal, where each block is 2× 2 with 1 on the diagonal

1For this experiment, Choi et al. (2022)’s implementation of
TSM had a bug (see Appendix F.1), thus the results that we report
are better than the ones in their paper.

and 0.8 on the off-diagonal, thus making the ground truth
MI a function of dimensionality. Their density ratio defines
the mutual information between two random variables, x
restricted to even indices and x restricted to odd indices, as
explained in Rhodes et al. (2020, Appendix D). Also fol-
lowing Rhodes et al. (2020); Choi et al. (2022), we directly
parameterize a quantity related to the covariance; further
details can be found in Appendix F.4.

Estimating the mutual information is a difficult task in high
dimensions. Yet, as noted by Choi et al. (2022), TSM can
efficiently do so. As shown in Figure 3 (right panel), all
methods — TSM, CTSM and CTSM-v — can estimate
the mutual information accurately after a sufficiently large
number of optimization steps. However, CTSM-v is orders
of magnitude faster to converge in terms of optimization
step. What is more, each optimization step is consistently
faster for CTSM and CTSM-v than TSM, and this effect
is exacerbated in higher dimensions, as seen in Figure 3
(left panel). Overall, when running these methods with a
fixed compute budget, CTSM-v outperforms both CTSM
and TSM, as seen in Figure 3 (middle panel).

TSM CTSM CTSM-v

Figure 3: Mutual information estimation. Left: Time per
iteration. Middle: Estimated and true (in dashed black)
Mutual Information for different dimensions, where we
directly report the estimates obtained after a few thousand
iterations (see Appendix, Table 8). Right: Error between the
estimated and true mutual information for dimensionality
320, during the first steps of optimization. Full and shaded
lines are respectively the means and standard deviations
over 3 runs.

6.4. Energy-based Modeling of Images

Similar to Rhodes et al. (2020) and Choi et al. (2022), we
consider Energy-based Modeling (EBM) tasks on MNIST
(LeCun et al., 2010). Here, we have

p0(x) = N (x;0, I), p1(x) = π(x), (31)

where π(x) is a distribution over images of digits. These
images may be mapped back to an (approximately) normal
distribution using a pre-trained normalizing flow (multivari-
ate Gaussian normalizing flow).

7
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Table 1: EBM results on MNIST. Training is done either
in the ambient pixel space, or in a latent space obtained
using a pre-trained Gaussian normalizing flow. CTSM-v
can achieve comparable results as TSM, while being much
faster. For BPD, lower is better.

Space Methods Approx. BPD Time per step

Latent TSM 1.30 347 ms
CTSM-v 1.26 58 ms

Ambient TSM unstable 1103 ms
CTSM-v 1.03 142 ms

We note that in practice, CTSM could not be used for this
task. Hence, we compare CTSM-v with TSM. To model
the vectorized time score used in CTSM-v, we use the same,
small U-Net architecture as in Choi et al. (2022), with one
modification: to condition the network on time, we use
popular Fourier feature embeddings (Tancik et al., 2020;
Song et al., 2021b) instead of linear embeddings as in Choi
et al. (2022). Preliminary experiments showed this led to
more stable training and better final performance.

Based on preliminary experiments, we employ importance
sampling to adjust the effective weighting scheme. For the
implementation of the TSM loss, we directly use the original
code as provided by Choi et al. (2022). We remark that the
exact speed naturally depends on both the score matching
algorithm and implementation details, and in our case may
also depend on the way that the flow is utilized; for details
we refer readers to Section F.5.

We observe that, CTSM objective can train models competi-
tive to TSM, while being much faster. Annealed Importance
Sampling, which has been used by previous works to verify
the estimated log densities (Rhodes et al., 2020; Choi et al.,
2022), appears to be highly unstable for time score match-
ing algorithms, with the estimated log constants varying
significantly depending on the step size of HMC algorithm.

Additionally, unlike previous related work (Rhodes et al.,
2020; Choi et al., 2022), we were able to use our algorithms
to successfully model MNIST images directly in the ambient
pixel space. We employ as architecture a U-Net that is closer
to the one used by Song et al. (2021b). We observe that these
ResNet (He et al., 2016)-based architectures may result in
unstable training for TSM, coinciding with the observation
of Choi et al. (2022). Interestingly, the model achieves an
approximate BPD value at 1.03, surpassing the best reported
results in Choi et al. (2022) utilizing pre-trained flows.

Sampling So far, we have used the estimated time scores
to compute the target density, but they can also be used
to sample from the target. To do so, we run two sam-
pling processes, annealed MCMC and the probability flow

ODE (Song et al., 2021b): both require computing the Stein
scores ∇ log pt(x). Based on Eq. 2, we relate these Stein
scores to the time scores

∇ log pt(x) = ∇
∫ t

0

∂τ log pτ (x)dτ +∇ log p0(x).

(32)

Stein scores are computed by differentiating through the
time scores estimated using the U-Net trained directly in
the pixel space. While the time scores themselves may
be well-estimated, their gradients might not be, potentially
leading to inaccurate Stein scores (Liu et al., 2024). In
turn, using inaccurate Stein scores in the sampling process
can degrade sample quality (Chen et al., 2023). Yet, the
generated samples in Figure 4 appear realistic, suggesting
that, in practice, the Stein scores are well-estimated.

Figure 4: We report the samples obtained using ambient
pixel space CTSM-v. Left: samples generated using an-
nealed MCMC. Right: samples generated using probability
flow ODE.

7. Discussion
Other estimators of time score In this paper, we compare
time score estimators based on different learning objectives.
An alternative is to use a simple Monte Carlo estimator,
replacing the expectation in Eq. 7 with finite samples. Sim-
ilarly, Monte Carlo methods can estimate other quantities
like the Stein score Scarvelis et al. (2024), though they are
rarely used in practice. Recent works suggest that estimators
obtained by minimizing a learning objective are preferable
when the neural network architecture is well-suited to mod-
eling the Stein score (Kadkhodaie et al., 2024; Kamb &
Ganguli, 2024). A more careful exploration of these estima-
tion methods is left for future work.

Connections with generative modeling literature The
learning objectives in this paper rely on probability paths
that can be explicitly decomposed into mixtures of simpler
probability paths. We used such simpler paths to compute
the time score in closed form. Related literature has used
these simpler paths to compute other quantities in closed
form, such as the Stein score ∂x log pt(x | z) (Song et al.,
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2021b), or the velocity (Lipman et al., 2023; Liu et al., 2023;
Albergo & Vanden-Eijnden, 2023; Pooladian et al., 2023;
Tong et al., 2024a) which is a vector field that transports
samples from p0 to p1. Despite the similarities, we learn
a fundamentally different quantity and our method differs
from the previous ones in terms of the weighting function
and an additional vectorization technique.

Connections with multi-class classification Recent
works have proposed to perform density ratio estimation by
learning a multi-class classifier between all intermediate dis-
tributions, instead of multiple binary classifiers between con-
secutive intermediate distributions (Srivastava et al., 2023;
Yair & Michaeli, 2023; Yadin et al., 2024). Multi-class clas-
sification seems to empirically improve the estimation of
the density ratio, but compared with TSM, it has limitations
in high dimensions (Srivastava et al., 2023). The limiting
case where the intermediate distributions are infinitesimally
close is an interesting direction for future work.

Optimal design choices In this work, we introduce novel
estimators of the time score that depend on many design
choices. One of them is the choice of probability path. Xu
et al. (2025) considered using the learned approximate opti-
mal transport path, Wu & Xie (2025) considered using the
learned approximate probability path given by annealing
and Kimura & Bondell (2025) considered an information
geometry formulation. Finding optimal probability paths, in
the sense that the final error is minimized, is an active area of
research, for example applied to estimating normalizing con-
stants Chehab et al. (2023a),or sampling from challenging
distributions (Guo et al., 2025). Another important design
choice is the weighting function that has been empirically in-
vestigated in related literature (Kingma & Gao, 2023; Chen,
2023). A rigorous study of which design choice influences
the final performance is left for future work.

8. Conclusion
We propose a new method for learning density ratios. We
address a number of problems in previous work (Rhodes
et al., 2020; Choi et al., 2022) that culminated in the TSM
objective. First, TSM is computationally inefficient, sec-
ond, the resulting estimator can be inaccurate, and third,
the theoretical guarantees are not clear. Inspired by recent
advances in diffusion models and flow matching, we pro-
pose the CTSM objective and directly address these three
limitations. CTSM drastically reduces the running times
while improving the estimation accuracy of the density ratio,
especially in higher dimensions. Additionally, we develop
techniques for increasing the numerical stability through,
for example, novel weighting functions. Finally, we provide
theoretical guarantees on the resulting estimators.
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A. Useful Identities
We here organize useful identities that will be used to prove subsequent results in the form of a lemma.

Lemma 6 (Variance of a specific random variable) Consider two independent random variables, ϵ ∼ N (0, I) and x with
mean µ and covariance Σ. Then for scalars a, b ∈ R,

Var[a∥ϵ∥2 + b ϵ⊤ x] = 2a2D + b2cD, (33)

where c = (Trace (Σ) + ∥µ∥2)/D depends on the first two moments of x and on the dimensionality D.

Proof of Lemma 6. ∥ϵ∥2 follows a χ2
D-distribution, which has mean D and variance 2D.

E
î
∥ϵ∥4
ó
= Var

î
∥ϵ∥2
ó
+ E
î
∥ϵ∥2
ó2

= 2D +D2, (34)

E
[
ϵ⊤ x

]
= E

[∑
i

ϵixi

]
=
∑
i

E [ϵi]E [xi] = 0, (35)

E
[
x2
i

]
= Var [xi] + (E [xi])

2
= Σii + µ2

i , (36)

E
[(
ϵ⊤ x

)2]
= E

∑
i,j

ϵixiϵjxj

 =
∑
i,j

E [ϵixiϵjxj ] =
∑
i

E
[
ϵ2ix

2
i

]
(37)

=
∑
i

E
[
ϵ2i
]
E
[
x2
i

]
=
∑
i

(
Σii + µ2

i

)
= Tr(Σ) + ∥µ∥2, (38)

Var
[
ϵ⊤ x

]
= E

[(
ϵ⊤ x

)2]− (E [ϵ⊤ x
])2

= E
[(
ϵ⊤ x

)2]
= Tr(Σ) + ∥µ∥2, (39)

E
î
∥ϵ∥2 ϵ⊤ x

ó
= E

(∑
i

ϵ2i

)∑
j

ϵjxj

 = E

∑
j

ϵ3jxj

+ E

Ñ∑
i ̸=j

ϵ2i

é∑
j

ϵjxj

 (40)

=

Ñ∑
j

E
[
ϵ3j
]é

E [xj ] + E

∑
i ̸=j

ϵ2i

∑
j

E [ϵj ]E [xj ] = 0, (41)

Var
î
a∥ϵ∥2 + b ϵ⊤ x

ó
= E

[Ä
a∥ϵ∥2 + b ϵ⊤ x

ä2]
−
Ä
E
î
a∥ϵ∥2 + b ϵ⊤ x

óä2
(42)

= E
[
a2∥ϵ∥4 + 2ab∥ϵ∥2 ϵ⊤ x+b2

(
ϵ⊤ x

)2]− ÄE îa∥ϵ∥2 + b ϵ⊤ x
óä2

(43)

= a2
(
2D +D2

)
+ 0 + b2

Ä
Tr(Σ) + ∥µ∥2

ä
− (aD)

2
= 2a2D + b2

Ä
Tr(Σ) + ∥µ∥2

ä
(44)

= 2a2D + b2cD. (45)
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B. Probability Paths
Definition In this paper, we consider probability paths pt(x) that are explicitly decomposed as a mixture of simpler
probability paths pt(x | z), where z indexes the mixture. Formally, this is written as

pt(x) = Ep(z)[pt(x | z)] = Ep(z) [N (x;µt(z), kt I)] . (46)

The conditional paths are chosen to be Gaussian pt(x | z) = N (x;µt(z), kt I). We will specify popular choices of z, µt(z),
and kt in Sections B.1 and B.2.

Time score We have

log pt(x | z) = −1

2
log det(kt I)−

1

2
(x−µt)

⊤
k−1
t (x−µt) + const (47)

= −1

2
log
(
kDt
)
− 1

2kt
∥x−µt∥

2
+ const (48)

= −1

2
D log(kt)−

1

2kt
∥x−µt∥

2
+ const, (49)

∂t log pt(x | z) = −1

2
D
∂tkt
kt

− 1

2

Å
−∂tkt

k2t
∥x−µt∥

2
+ k−1

t 2 (x−µt)
⊤
(−∂t µt)

ã
(50)

= −1

2
D
∂tkt
kt

+
∂tkt
2k2t

∥x−µt∥
2
+

1

kt
(x−µt)

⊤
∂t µt . (51)

As such, the time score is

∂t log pt(x | z) = −Dk̇t
2kt

+
1√
kt
µ̇⊤

t ϵt(x, z) +
k̇t
2kt

∥ϵt(x, z)∥2, ϵt(x, z) =
1√
kt
(x−µt(z)). (52)

In fact, we can formally write the time score without the conditioning variable,

∂t log pt(x) = Ept(z |x)[∂t log pt(x | z)], pt(z |x) ∝ p(z) exp

Å
− 1

2kt
∥x−µt(z)∥

2
ã
. (53)

Vectorized time score The vectorized version is simply given by

vec(∂t log pt(x | z)) = −k̇t
2kt

+
1√
kt
µ̇t ϵt(x, z) +

k̇t
2kt

ϵt(x, z)
2
, (54)

which can be obtained by decomposing the time score as the sum of D terms.

Stein score The Stein score is (Kingma & Gao, 2023)

∂x log pt(x | z) = − 1√
kt

ϵt(x, z), ϵt(x, z) =
1√
kt
(x−µt(z)). (55)

Stein score normalization Observe that for a fixed t, ϵ is, by definition, sampled from a standard normal distribution. As
such, the Stein score in Equation Eq. 55 has variance 1

kt
. The Stein score normalization in Eq. 19 is therefore given by

λ(t) ∝ kt. (56)

B.1. Variance-Preserving Probability Path

Simulating the path This path is simulated by interpolating the random variables (x0,x1) ∼ p0 ⊗ p1,

x = αt x1 +
»
1− α2

t x0 . (57)
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Definition Conditioning on t and z = x1, and choosing a Gaussian reference distribution p0(x) = N (x; 0, I), yields

µt(z) = αt x1, kt = 1− α2
t . (58)

These choices define a popular probability path, sometimes called “variance-preserving” as the variance of pt(x) is constant
for all t ∈ [0, 1] (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b; Lipman et al., 2023). This path is in
fact the default choice in the work most related to ours (Choi et al., 2022). In the above, αt is positive and increasing,
such that α0 = 0 and α1 = 1. It is sometimes referred to as the noise schedule (Chen, 2023). Popular choices include
exponential αt = min(1, e−2(T−t)) (Song et al., 2021b) for some fixed T ≥ 0, or linear αt = min(1, t) functions (Albergo
& Vanden-Eijnden, 2023; Gao et al., 2024).

We remark that in diffusion models literature (Song et al., 2021b), p0 denotes data and p1 denotes noise. We follow the flow
matching convention, and use p0 to denote noise and p1 to denote data.

Stein score The resulting Stein score from Eq. 55 is

∂x log p(x | z) = − 1√
1− α2

t

ϵt(x, z). (59)

Stein score normalization We have
λ(t) ∝ 1− α2

t . (60)

Time score The resulting time score from Eq. 52 is

∂t log pt(x | z) = D
αtα

′
t

1− α2
t

− αtα
′
t

(1− α2
t )

2 ∥x−αt x1∥2 +
1

1− α2
t

(x−αt x1)
⊤
α′
t x1 (61)

= D
αtα

′
t

1− α2
t

− αtα
′
t

1− α2
t

∥ϵ∥2 + 1√
1− α2

t

ϵ⊤ α′
t x1 . (62)

Vectorized time score The vectorized version of the time score can be obtained as

∂t log pt(x | z) = D
αtα

′
t

1− α2
t

− αtα
′
t

(1− α2
t )

2 (x−αt x1)
2
+

1

1− α2
t

(x−αt x1)α
′
t x1 (63)

= D
αtα

′
t

1− α2
t

− αtα
′
t

1− α2
t

ϵ2 +
1√

1− α2
t

ϵ α′
t x1 . (64)

Time score normalization We have

Varpt(z,x)[∂t log pt(x | z)] =
2α2

t (α
′
t)

2
+ (α′

t)
2 (

1− α2
t

)
c

(1− α2
t )

2 . (65)

where c = (Trace (Σ) + ∥µ∥2)/D depends on the mean µ, covariance Σ and dimensionality D of x.

To compute the variance of the time score, observe that the first term is deterministic and therefore does not participate in
the computation of the variance. To obtain the variance of the two remaining terms, we apply Lemma 6 with a = −α(t)α′(t)

1−α(t)2

and b = 1√
1−α(t)2

.

Interestingly, the variance can explode Var [∂t log pt(x | z)] → ∞ near the target distribution α(t) → 1.

B.2. Schrödinger Bridge Probability Path

Simulating the path This path is simulated by interpolating the random variables (x0,x1) ∼ π(x0,x1), generated from a
coupling π of the marginals p0 and p1, and adding Gaussian noise ϵ ∼ N (0, I) between the endpoints,

x = tx1 +(1− t)x0 +σ
»
t(1− t) ϵ . (66)
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Definition Conditioning on t and z = (x1,x0), yields

µt(z) = (1− t)x0 +tx1, kt = t(1− t)σ2. (67)

These choices define another path of distributions in the literature. Typically, the coupling from which z is drawn is either
the product distribution p0 ⊗ p1 or a coupling π that satisfies optimal transport. In the latter case, the ensuing path is known
as a Schrödinger bridge (Föllmer, 1988; Tong et al., 2024b). In practice, the optimal transport coupling can be approximated
using limited samples from both p0 and p1 (Pooladian et al., 2023; Tong et al., 2024a). For simplicity, we use the product
distribution. Note that for this path, p0 need not be a Gaussian.

When using independent couplings with p0 and p1 having equal variance var, arguably the most natural choice of σ is to set
σ =

√
2var. In this case, the variance is preserved along the path. In order to see that, observe that under this setting the

variance of xt is given by
t2var + (1− t)2var + 2t(1− t)var = var.

However, empirically one may achieve better results with other choices of σ.

Stein score The resulting Stein score from Eq. 55 is

∂x log p(x | z) = − 1

σ
√

t(1− t)
ϵt(x, z). (68)

Stein score normalization The Stein score normalization is given by

λ(t) ∝ t(1− t)σ2. (69)

Time score The resulting time score from Eq. 52 is

∂t log pt(x | z) = −1

2
D

1− 2t

t(1− t)
+

1− 2t

2 (t(1− t))
2
σ2

∥x− (1− t)x0 −tx1∥2 (70)

+
1

t(1− t)σ2
(x− (1− t)x0 −tx1)

⊤
(x1 −x0) (71)

= −1

2
D

1− 2t

t(1− t)
+

1− 2t

2t(1− t)
∥ϵ∥2 + 1√

t(1− t)σ
ϵ⊤ (x1 −x0) . (72)

Vectorized time score The vectorized time score is given by

vec(∂t log pt(x | z)) = −1

2
D

1− 2t

t(1− t)
+

1− 2t

2 (t(1− t))
2
σ2

(x− (1− t)x0 −tx1)
2 (73)

+
1

t(1− t)σ2
(x− (1− t)x0 −tx1) (x1 −x0) (74)

= −1

2
D

1− 2t

t(1− t)
+

1− 2t

2t(1− t)
ϵ2 +

1√
t(1− t)σ

ϵ (x1 −x0) . (75)

Time score normalization To compute the variance, treat x1 −x0

σ as a random variable with mean µ and covariance Σ,
we observe that, similar to VP path, it can be written as a = 1−2t

2t(1−t) and b = 1√
t(1−t)

.

We have

Varpt(z,x)[∂t log pt(x | z)] = 1− 4t+ 4t2 + 2ct− 2ct2

2t2(1− t)2
D. (76)

Note that as t approaches 0 or 1, the variance may be infinite.
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C. Weighting Scheme
C.1. Details on Importance Sampling

We consider the simple VP path, given by x = tx1 +
√
1− t2 x0, where x0 is standard Gaussian, and x1 is a distribution

with c = 1. One divided by the time score normalization is given by 1+t2

(1−t2)2
. Treating this as an unnormalized probability

density defined between 0 and t1, one can derive that the normalization constant is given by Z = t1
1−t21

, and the CDF is

given by y(t) = 1
Z

t
1−t2 . We can calculate the inverse CDF as

−1 +
√
1 + 4y2Z2

2yZ
=

2yZ√
1 + 4y2Z2 + 1

. (77)

As such, we can draw samples between 0 and t1 using the inverse CDF transform. Re-normalize t1 to lie between 0 and
1− ϵ yields the final samples.

In practice, we choose t1 = 0.9 and employ this heuristic scheme for EBM experiments though we are using a different
variant of the VP path.

D. Theoretical Results
D.1. Proof of Eq. 7

Proof of Eq. 7. The derivations are similar to denoising score matching (Vincent, 2011; Bortoli et al., 2024).

We wish to relate the time score ∂t log pt(x) and the conditional time score ∂t log pt(x | z).

We have

pt(x) =

∫
pt(x | z)p(z)d z, (78)

∂tpt(x) =

∫
∂tpt(x | z)p(z)d z =

∫
∂t log pt(x | z)pt(x | z)p(z)d z, (79)

therefore

∂t log pt(x) =
∂tpt(x)

pt(x)
=

∫
∂t log pt(x | z)pt(x | z)p(z)

pt(x)
d z =

∫
∂t log pt(x | z)pt(z |x)d z . (80)

D.2. Proofs of Theorems 1, 2 and 3

We note that Theorems 1 and 2 are special cases of Theorem 3.

For Theorem 1, f(x, t| z) = ∂t log pt(x | z), in which case g(x, t) = Ept(z |x) [∂t log pt(x | z)] = ∂t log pt(x), i.e. the time
score itself.

For Theorem 2, f(x, t| z) = vec(∂t log pt(x | z)), in which case g(x, t) = Ept(z |x) [vec(∂t log pt(x | z))]. It is clear that

∑
i

Ept(z |x)
[
∂t log pt(x

i|x<i, z)
]
= Ept(z |x)

[∑
i

∂t log pt(x
i|x<i, z)

]
= Ept(z |x) [∂t log pt(x | z)] = ∂t log pt(x),

(81)
i.e. the sum of g(x, t) gives the time score.

We prove Theorem 3 in what follows.

Proof of Theorem 3. The derivations are similar to Lipman et al. (2023); Tong et al. (2024a). First, we compute the gradients
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of both cost functions, Jg and Jf .

∇θJg(θ) = ∇θEp(t),pt(x)

î
λ(t)∥g(x, t)− sθ(x, t)∥2

ó
(82)

= ∇θEp(t),pt(x)

î
λ(t)
Ä
∥g(x, t)∥2 − 2 ⟨g(x, t), sθ(x, t)⟩+ ∥sθ(x, t)∥2

äó
(83)

= ∇θEp(t),pt(x)

î
λ(t)
Ä
−2 ⟨g(x, t), sθ(x, t)⟩+ ∥sθ(x, t)∥2

äó
. (84)

∇θJf (θ) = ∇θEp(t),p(z),pt(x | z)
î
λ(t)∥f(x, t| z)− sθ(x, t)∥2

ó
(85)

= ∇θEp(t),p(z),pt(x | z)
î
λ(t)
Ä
∥f(x, t| z)∥2 − 2 ⟨f(x, t| z), sθ(x, t)⟩+ ∥sθ(x, t)∥2

äó
(86)

= ∇θEp(t),p(z),pt(x | z)
î
λ(t)
Ä
−2 ⟨f(x, t| z), sθ(x, t)⟩+ ∥sθ(x, t)∥2

äó
. (87)

We then proceed to show that the two terms coincide:

Ept(x)∥sθ(x, t)∥
2
= Ep(z)pt(x | z)∥sθ(x, t)∥

2
, (88)

g(x, t) =

∫
pt(x | z)p(z)

pt(x)
f(x, t| z)d z, (89)

Ept(x) ⟨g(x, t), sθ(x, t)⟩ = Ept(x)

≠∫
pt(x | z)p(z)

pt(x)
f(x, t| z)d z, sθ(x, t)

∑
(90)

=

∫ ≠∫
pt(x | z)p(z)

pt(x)
f(x, t| z)d z, sθ(x, t)

∑
pt(x)dx (91)

=

∫ ≠∫
pt(x | z)p(z) f(x, t| z)d z, sθ(x, t)

∑
dx (92)

=

∫ ∫
⟨f(x, t| z), sθ(x, t)⟩ pt(x | z)p(z)d z dx . (93)

D.3. Proof of Theorem 4

Proof of Theorem 4. We have

KL(p1, p̂1)
2 =

(
Ep1(x) [log p1(x)− log p̂1(x)]

)2 (94)

≤ Ep1(x)

[
(log p1(x)− log p̂1(x))

2
]

(95)

= Ep1(x)

(∫ 1

0

s(x, t)dt− 1

K

K∑
i=1

ŝ(x, ti)

)2
 (96)

= Ep1(x)

(∫ 1

0

s(x, t)dt− 1

K

K∑
i=1

s(x, ti) +
1

K

K∑
i=1

s(x, ti)−
1

K

K∑
i=1

ŝ(x, ti)

)2
 (97)

≤ Ep1(x)

2(∫ 1

0

s(x, t)dt− 1

K

K∑
i=1

s(x, ti)

)2

+ 2

(
1

K

K∑
i=1

s(x, ti)−
1

K

K∑
i=1

ŝ(x, ti)

)2
 (98)

≤ Ep1(x)

[
2

Å
L(x)

2K

ã2
+ 2

1

K

K∑
i=1

(s(x, ti)− ŝ(x, ti))
2

]
(99)

=
1

2K2
Ep1(x)[L(x)

2] + 2Ep1(x),pK(t)

î
(s(x, t)− ŝ(x, t))

2
ó
, (100)

where we used Jensen’s inequality and bound the discretization error of a Riemannian integral using the left rectangular sum.
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D.4. Proof of Proposition 5

Proof of Proposition 5. Denote by s(x, z, t) = ∂t log pt(x | z) the conditional score and by lθ(x, z, t) =

λ(t) (s(x, z, t)− sθ(x, t))
2. The population and empirical losses defined from Eq. 8 are respectively

LCTSM(θ) = Ep(t,x,z)[lθ(x, z, t)], L̂CTSM(θ) =
1

N

N∑
i=1

lθ(xi, zi, ti), (101)

where the empirical loss uses i.i.d. samples (xi, zi, ti)i∈J1,NK. In the following, we suppose that the model is well-specified,
which means that there exists a θ∗ that parameterizes the true score.

Error formulas First, we compute the error in the parameters. Using Bach (2024, Section 4.7) and van der Vaart (2000,
Theorem 5.23),

√
N(θ̂ − θ∗) ∼ N (0, H(θ∗)−1G(θ∗)H(θ∗)−1), (102)

where G(θ∗) and H(θ∗) are matrices that will be later specified.

Then, we obtain the error in the scores, using the delta method
√
N(sθ̂(x, t)− sθ∗(x, t)) ∼ N (0,∇θsθ(x, t)|⊤θ∗H(θ∗)−1G(θ∗)H(θ∗)−1∇θsθ(x, t)|θ∗). (103)

From there, we compute the squared error in the scores. We now specify the remainder term in the asymptotic N → ∞
analysis: it is in o(N) and justified under the standard technical conditions of van der Vaart (2000, Th. 5.23). We write it in
expectation with respect to the law of θ̂,

Ep(θ̂)[(sθ̂(x, t)− sθ∗(x, t))2] =
1

N
e(x, t, λ∗, λ, p) + o(N−1) (104)

where

e(x, t, λ∗, λ, p) = trace
(
H(θ∗)−1G(θ∗)H(θ∗)−1∇θsθ(x, t)|θ∗∇θsθ(x, t)|⊤θ∗

)
. (105)

And then in expectation with respect to the law of (x, t)

Ep1(x),pK(t),p(θ̂)[(sθ̂(x, t)− sθ∗(x, t))2] =
1

N
e(θ∗, λ, p) + o(N−1) (106)

where

e(θ∗, λ, p) = trace
(
H(θ∗)−1G(θ∗)H(θ∗)−1Ep1(x),pK(t),p(θ̂)[∇θsθ(x, t)|θ∗∇θsθ(x, t)|⊤θ∗ ]

)
(107)

Specifying the matrices The following matrices were used above: we now recall their definition, using the same notation
as in Bach (2024, Section 4.7).

G(θ∗) = Ep(t),p(z),pt(x | z)[∇θlθ(x, z, t)|θ∗∇θlθ(x, z, t)|⊤θ∗ ] (108)

H(θ∗) = Ep(t),p(z),pt(x | z)[∇2
θlθ(x, z, t)|θ∗ ]. (109)

Case of CTSM We specify

∇θlθ(x, z, t) = −2λ(t) (s(x, z, t)− sθ(x, t)) · ∇θsθ(x, t), (110)

∇2
θlθ(x, z, t) = 2λ(t) · ∇θsθ(x, t)∇θsθ(x, t)

⊤ − 2λ(t) (s(x, z, t)− sθ(x, t)) · ∇2
θsθ(x, t) (111)

and evaluate them at θ∗. To simplify notations, we write w(x, z, t) = s(x, z, t)− sθ∗(x, t) = ∂t log pt(x | z)− ∂t log pt(x).

∇θlθ(x, z, t)|θ∗ = −2λ(t)w(x, z, t) · ∇θsθ(x, t)|θ∗ , (112)

∇2
θlθ(x, z, t)|θ∗ = 2λ(t)∇θsθ(x, t)|θ∗∇θsθ(x, t)|⊤θ∗ − 2λ(t)w(x, z, t) · ∇2

θsθ(x, t)|θ∗ . (113)
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Finally, this yields

G(θ∗) = 4Ep(t),p(z),pt(x | z)
[
λ(t)2w(x, z, t)2 · ∇θsθ(x, t)|θ∗∇θsθ(x, t)|⊤θ∗

]
, (114)

H(θ∗) = 2Ep(t),p(z),pt(x | z)
[
λ(t) · ∇θsθ(x, t)|θ∗∇θsθ(x, t)|⊤θ∗ − λ(t) · w(x, z, t) · ∇2

θsθ(x, t)|θ∗
]
. (115)

A sufficient condition to make the error null in Eq. 107, is to have w(x, z, t) = 0.

Case of CTSM-v The derivations are largely the same. We have

lθ(x, z, t) = λ(t)∥vec(s(x, z, t))− vec(sθ(x, t))∥2 = λ(t)
∑
i

((s(x, z, t))i − sθ(x, t)i)
2
, (116)

where vec(s(x, z, t))i := ∂t log pt(x
i|x<i, z) indicates the i-th component of the vector vec(s(x, z, t)) =

[∂t log pt(x
i|x<i, z)]⊤i∈J1,DK.

All that remains to specify the error are the matrices G and H . We have

∇θlθ(x, z, t) = −2λ(t)
∑
i

(s(x, z, t)i − sθ(x, t)i)∇θsθ(x, t)i, (117)

∇2
θlθ(x, z, t) = 2λ(t)

∑
i

∇θsθ(x, t)i∇θsθ(x, t)
⊤
i − 2λ(t)

∑
i

(s(x, z, t)i − sθ(x, t)i)∇2
θsθ(x, t)i. (118)

We now wish to evaluate these at θ∗. To simplify notations, we now denote by w(x, z, t)i = s(x, z, t)i − sθ∗(x, t)i =
∂t log pt(x

i|x<i, z)− Ept(z |x)
[
∂t log pt(x

i|x<i, z)
]
. Now we can write

∇θlθ(x, z, t) = −2λ(t)
∑
i

w(x, z, t)i∇θsθ(x, t)i|θ∗ , (119)

∇2
θlθ(x, z, t) = 2λ(t)

∑
i

∇θsθ(x, t)i|θ∗∇θsθ(x, t)i|⊤θ∗ − 2λ(t)
∑
i

w(x, z, t)i∇2
θsθ(x, t)|θ∗ . (120)

As a result, we have

G(θ∗) = 4Ep(t),p(z),pt(x | z)

λ(t)2(∑
i

w(x, z, t)i∇θsθ(x, t)i|θ∗

)2
 , (121)

H(θ∗) = 2Ep(t),p(z),pt(x | z)

[
λ(t)

∑
i

∇θsθ(x, t)i|θ∗∇θsθ(x, t)i|⊤θ∗ − λ(t)
∑
i

w(x, z, t)i∇2
θsθ(x, t)|θ∗

]
. (122)

A sufficient condition to make the error null in Eq. 107, is to have w(x, z, t)i = 0 for all i.
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Table 2: Results on Gaussians with D being 2, 5 or 10. D is dimensionality, MSE is MSE to ground truth reported in
the form of [mean, std], T is average time per step in ms. Unif indicates uniform weighting, Stein indicates Stein score
normalization and Time indicates time score normalization, with Time 0 indicating using the real c and Time 1 indicating
using c = 1.

D = 2 D = 5 D = 10
Algo MSE T MSE T MSE T
TSM+Unif [0.21, 0.036] 11.1 [2.982, 1.738] 12.5 [12.478, 6.026] 12.1
TSM+Stein [0.253, 0.142] 13.4 [2.408, 1.205] 15.4 [7.343, 1.378] 14.0
CTSM+Time 0 [0.158, 0.049] 3.9 [1.37, 0.821] 6.3 [16.285, 11.047] 5.3
CTSM+Time 1 [0.078, 0.017] 4.5 [0.987, 0.28] 6.0 [10.032, 5.476] 4.8
CTSM-v+Time 0 [0.175, 0.045] 8.3 [0.86, 0.199] 5.2 [4.331, 0.727] 5.1
CTSM-v+Time 1 [0.104, 0.014] 4.0 [0.814, 0.219] 5.0 [1.616, 0.203] 4.9

Table 3: Results on Gaussians with D being 15 or 20. D is dimensionality, MSE is MSE to ground truth reported in the form
of [mean, std], T is average time per step in ms. Unif indicates uniform weighting, Stein indicates Stein score normalization
and Time indicates time score normalization, with Time 0 indicating using the real c and Time 1 indicating using c = 1.

D = 15 D = 20
Algo MSE T MSE T
TSM+Unif [74.932, 60.02] 13.8 [335.45, 83.226] 13.0
TSM+Stein [91.328, 48.905] 14.3 [329.779, 156.634] 12.9
CTSM+Time 0 [36.922, 20.238] 6.2 [125.234, 30.715] 3.9
CTSM+Time 1 [61.902, 19.891] 5.5 [50.756, 12.708] 4.7
CTSM-v+Time 0 [16.529, 3.101] 5.4 [41.945, 13.973] 5.0
CTSM-v+Time 1 [8.88, 1.921] 4.8 [43.861, 17.132] 5.9

E. Additional Experimental Results
Distributions with high discrepancies We report the results of the algorithms under different settings and different
weighting schemes. For TSM we additionally report the results under uniform weighting, i.e. λ(t) = 1.

Gaussians We report the main results in Table 2 and Table 3. CTSM-v is consistently among the fastest and the best. The
plot in the main paper is generated using TSM with Stein score normalization, CTSM with time score normalization and
c = 1 and CTSM with time score normalization and c = 1.

We additionally report the results of using time score normalization for TSM in Table 4. We did not observe decisive
improvements, and remark that CTSM-v yields better results with the same weighting scheme.

Table 4: Additional results on Gaussians. D is dimensionality, MSE is MSE to ground truth reported in the form of [mean,
std], T is average time per step in ms. Unif indicates uniform weighting, Stein indicates Stein score normalization and Time
indicates time score normalization, with Time 0 indicating using the real c and Time 1 indicating using c = 1.

TSM+Time 0 TSM+Time 1
D MSE T MSE T
2 [0.217, 0.063] 11.7 [0.451, 0.206] 11.6
5 [3.764, 2.107] 13.1 [5.088, 4.481] 12.0
10 [13.647, 2.953] 13.9 [30.196, 12.414] 12.3
15 [96.588, 53.982] 14.5 [99.062, 34.036] 31.8
20 [218.046, 70.411] 14.2 [135.942, 53.202] 13.9
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Table 5: Results on GMMs with σ = 1.0. k determines the distance between two GMM components, MSE is MSE to
ground truth reported in the form of [mean, std], T is average time per step in ms. Unif indicates uniform weighting, Stein
indicates Stein score normalization and Time indicates time score normalization, with Time 0 indicating using the real c and
Time 1 indicating using c = 1.

k=0.5 k=1.0 k=2.0
Algo MSE T MSE T MSE T
TSM+Unif [173.473, 52.466] 28.9 [276.545, 97.042] 12.6 [14643.815, 13997.568] 61.8
TSM+Stein [232.948, 133.647] 14.6 [459.645, 260.768] 17.6 [3427.258, 3545.452] 12.0
CTSM+Time 0 [880.47, 172.594] 4.1 [480.847, 151.097] 4.5 [646.945, 210.44] 4.7
CTSM+Time 1 [923.082, 131.758] 4.6 [460.546, 186.5] 4.2 [547.603, 200.504] 4.8
CTSM-v+Time 0 [173.804, 108.326] 4.8 [211.046, 69.472] 4.0 [319.981, 100.91] 7.4
CTSM-v+Time 1 [221.519, 98.112] 5.8 [181.082, 68.879] 4.7 [266.486, 150.877] 4.3

Table 6: Results on GMMs with σ =
√
2.0. k determines the distance between two GMM components, MSE is MSE to

ground truth reported in the form of [mean, std], T is average time per step in ms. Unif indicates uniform weighting, Stein
indicates Stein score normalization and Time indicates time score normalization, with Time 0 indicating using the real c and
Time 1 indicating using c = 1.

k=0.5 k=1.0 k=2.0
Algo MSE T MSE T MSE T
TSM+Unif [1106.178, 550.442] 33.3 [1293.421, 270.072] 12.5 [6614.483, 1169.068] 13.5
TSM+Stein [1460.023, 502.921] 39.0 [1564.266, 360.361] 36.0 [5180.453, 1786.018] 12.7
CTSM+Time 0 [1934.401, 269.515] 4.5 [1872.342, 467.047] 4.6 [5961.52, 683.578] 4.6
CTSM+Time 1 [2113.975, 403.59] 8.0 [2238.267, 123.69] 4.6 [6017.094, 344.537] 4.0
CTSM-v+Time 0 [745.15, 158.202] 4.6 [1558.495, 379.161] 4.5 [5009.627, 1943.244] 8.5
CTSM-v+Time 1 [762.231, 288.029] 5.3 [1762.826, 431.333] 4.8 [9226.993, 861.191] 9.2

Gaussian mixtures We report the main results on Gaussian mixtures in Table 5. We set σ in the Schrödinger bridge
probability path to 1.0 due to strong empirical results while enabling direct comparisons between TSM and CTSM(-v).

We additionally report the results with σ =
√
2.0 in Table 6 and the results with σ = 0.0 in Table 7. We observe that,

setting σ =
√
2.0 results in worse performances for all methods. For TSM under uniform weighting, one can consider using

σ = 0.0, in which case the performance improves, though CTSM-v under σ = 1.0 remains competitive.

Table 7: Results on GMMs with σ = 0.0. k determines the distance between two GMM components, MSE is MSE to
ground truth reported in the form of [mean, std], T is average time per step in ms. Unif indicates uniform weighting, Stein
indicates Stein score normalization and Time indicates time score normalization, with Time 0 indicating using the real c and
Time 1 indicating using c = 1.

k=0.5 k=1.0 k=2.0
Algo MSE T MSE T MSE T
TSM+Unif [148.688, 97.058] 14.6 [70.908, 5.85] 12.9 [898.016, 847.255] 49.1
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F. Experimental Details
F.1. Bug of TSM Implementation for Toy Experiments in Choi et al. (2022)

We observed a bug for the TSM implementation of the code of Choi et al. (2022). Recall that the TSM objective is given by

LTSM(θ) = 2Ep0(x)[sθ(x, 0)]− 2Ep1(x)[sθ(x, 1)]+

Ep(t,x)[2∂tsθ(x, t) + 2λ̇(t)sθ(x, t) + λ(t)sθ(x, t)
2].

(123)

However, Choi et al. (2022) implemented

LTSM(θ) = 2Ep0(x)[sθ(x, 0)]− 2Ep1(x)[sθ(x, 1)]+

Ep(t,x)[2∂tsθ(x, t) + λ̇(t)sθ(x, t) + λ(t)sθ(x, t)
2],

(124)

i.e. the scaling in front of λ̇(t)sθ(x, t) is incorrect. We remark that this bug only applies when attempting to train purely
based on TSM objective on toy experiments.

F.2. Implementation Details

Our implementation of TSM is largely based on the code provided by Choi et al. (2022). However, especially for other than
the EBM experiments, we improve their code in several ways. Apart from bug fixes, we use analytical expressions for the
weighting quantities.

For both TSM and CTSM, following Choi et al. (2022), we add a small number ϵ to the time during training and inference.
We follow the convention that ϵ is added when the probability path results in approximately degenerate distribution at that
time. For the toy experiments, we set ϵ = 1e − 5, while for EBM experiments we set ϵ = 1e − 4 during training and
ϵ = 1e− 5 during inference.

For experiments apart from EBM, for each task we employ a fixed validation set of size 10000 and select the learning
rates based on results on the sets. After a certain number of steps, an evaluation step is performed, and the model is
evaluated based on both the validation set and a test set, consisting of 10000 samples dynamically generated based on the
data generation process. The best test set results are obtained by selecting the steps corresponding to the best validation set
results.

Following Choi et al. (2022), the density ratios are evaluated using the initial value problem ODE solver as implemented in
SciPy (Virtanen et al., 2020), where we use the default RK45 integrator (Dormand & Prince, 1980) with rtol = 1e− 6 and
atol = 1e− 6.

F.3. Distributions with High Discrepancies

The experimental setup is similar to Choi et al. (2022). We use as score model a simple MLP with structure [D +
1, 256, 256, 256, Noutput] and ELU activation (Clevert et al., 2016) based on Choi et al. (2022), where D is the dimensionality
of the data and Noutput = D for CTSM-v and 1 otherwise. Note that the input shape is D + 1, as the time t is concatenated
to the input. All models are trained for 20000 iterations. After each 1000 iterations, the model is evaluated. For each
scenario, the best learning rate is selected based on the best val set performances of a single run. Afterwards two runs under
the same learning rate but different random seeds are run, and the final results on the test set is reported.

Gaussians Following Choi et al. (2022), we employ the variance-preserving probability path, with αt = t.

The learning rate is tuned between [5e − 4, 1e − 3, 2e − 3, 5e − 3, 1e − 2]. Following Choi et al. (2022), the MSEs are
evaluated using samples from both p0 and p1.

Gaussian mixtures The learning rate is tuned between [1e− 4, 2e− 4, 5e− 4, 1e− 3, 2e− 3, 2e− 3, 5e− 3, 1e− 2, 2e−
2, 5e− 2]. There is one case where the selected learning rate for each algorithm is the smallest, and we manually verify that
using lrs 5e− 5 or 2e− 5 does not result in improved results. Following Choi et al. (2022), the MSEs are evaluated using
samples from both p0 and p1.
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The two components are isotropic, with the covariance given by σ2 I. We use k to specify the distance between the means
of the two components as a multiple of the standard deviation σ.

We know that the mean of a GMM is simply given by the mean of the means of each component, while the covariance of a
GMM with two components of equal weights is given by the following formula

Σ =
1

2
Σ1 +

1

2
Σ2 +

1

4
(µ1 −µ2)(µ1 −µ2)

⊤. (125)

Consider the case where µ1 −µ2 = kσ. One has that, in order for the GMM to have variance equal to 1 in each dimension,
σ =
»

4/(4 + k2). The means of the two components are given by µ− 1
2kσ and µ+ 1

2kσ, respectively.

In principle, using var = 2 for SB path results in preserved variance along the path. However, empirically we observe that
it is beneficial to use a smaller variance, e.g. var = 1.

F.4. Mutual Information Estimation

The probability path is given by
pt(x | z) = N (x |tx1,

(
1− t2

)
I). (126)

The derivations for the objective of TSM objective can be found in Choi et al. (2022). Here we derive the training objective
for the CTSM-v objective.

Using similar settings and notations as in Choi et al. (2022), we parameterize a single matrix S, as defined below.

Denote the covariance matrix of p1 as Σ. Use S to denote Σ− I.

Recall that the true time score is given by the posterior expectation of ∂t log pt(x | z). We have

log p(z) = logN (z |0,Σ) = −1

2
z⊤ Σ−1 z+const., (127)

log pt(x | z) = logN (x |t z, (1− t2) I) = −1

2
t z⊤

1

1− t2
t z+const.. (128)

The posterior distribution pt(z |x) can be solved in closed-form, which is a Gaussian distribution, with covariance

Σ̄ =
Ä
Σ−1 + t2

1−t2 I
ä−1

and mean t
1−t2 Σ̄ x. Similar to Choi et al. (2022), the above quantities can be expressed in terms of

the inverse of I+t2 (Σ− I) = (1− t2)
Ä
I+ t2

1−t2 Σ
ä

; we haveÅ
Σ−1 +

t2

1− t2
I

ã−1

=

Å
Σ−1

Å
I+

t2

1− t2
Σ

ãã−1

(129)

=

Å
I+

t2

1− t2
Σ

ã−1

Σ =
(
1− t2

) (
I+t2 (Σ− I)

)−1
Σ . (130)

The expectation of ∂t log pt(x | z), which by definition is also the value of ∂t log pt(x), can also be obtained in closed-form.
The expectation of the individual entries of ∂t log pt(x | z) are also given in closed-form.

[∂t log pt(x | z)]i =
t

1− t2
− t

(1− t2)
2

î
(x−tx1)

2
ó
i
+

1

1− t2
[(x−tx1)x1]i , (131)

Ept(z |x) [∂t log pt(x | z)]i =
t(1− t2)− t

Ä
∥µ̄i∥

2
+ Σ̄ii

ä
− t∥xi∥2 + (t2 + 1)xi µ̄i

(1− t2)
2 , (132)

where µ̄ and Σ̄ are the mean and covariance of the posterior distribution as discussed above. As such, perhaps unsurprisingly,
CTSM-v does not induce much computational overhead above TSM.

For CTSM objective, the model is trained to match the time score, while for CTSM-v objective, the model is trained to
match the entire vec (∂t log pt(x | z)).

The hyperparameters are inspired by Choi et al. (2022) and listed in Table 8. For all methods, the learning rates are tuned
between 1e− 4, 1e− 3 and 1e− 2.
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Table 8: Hyperparameters for MI experiment. After every eval freq steps, an evaluation is performed, with the first result
after the first eval freq steps.

D n iters eval freq batch size
40 20001 2000 512
80 50001 5000 512
160 200001 5000 512
320 400001 8000 256

F.5. Energy-based Modeling

F.5.1. GENERAL METHODOLOGY

We employ the same variance-preserving probability path as used in Choi et al. (2022), which in turn comes from diffusion
models literature (Ho et al., 2020; Song et al., 2021b).

For reproducing TSM results, we use a batch size of 500 and use polynomial interpolation with buffer size 100, matching
the reported hyperparameters in Choi et al. (2022). Following Choi et al. (2022), we tune the step size of TSM between
[2e − 4, 5e − 4, 1e − 3]. For CTSM-v, we largely reuse the hyperparameters, while tuning the step size between [5e −
4, 1e− 3, 2e− 3].

For CTSM-v objective, we parameterize the model to output the time score normalized by the approximate variance.
Specifically, for a given t, we calculate Var (∂t log pt(x | z)) where c is assumed to be 1, and the score network is trained to
predict ∂t log pt(x)

Std(∂t log pt(x | z)) ; this ensures that the regression target is zero mean and having reasonable variances across t.

In previous works (Rhodes et al., 2020; Choi et al., 2022), different normalizing flows are fitted to the data, and DRE is
carried out making use of the flows.

The flows can naturally be utilized in different ways. Denote the latent space of the flow as u, and the ambient space of the
flow as x. Choi et al. (2022) consider the following scheme:

1. An SDE is defined on u space, interpolating between Gaussian and the empirical distribution induced by final samples
on u space obtained by transforming the data points from x space,

2. Intermediate samples on u space are transformed into x space using the flow, inducing a time varying distribution on x
space,

3. The score network takes as input x and t, and is trained to predict the time score.

Note that a flow is a bijection. Consider a time-varying density pt(x). For any t, we use the same bijective transformation T
to obtain the pair of u and x. We have

∂t log pt(x) = ∂t log
Ä
pt(u) |detJT (u)|−1

ä
= ∂t log pt(u) + ∂t log |detJT (u)|−1

= ∂t log pt(u). (133)

As such, the time score is invariant across bijections.

With CTSM, inspired by previous approaches, we also consider a probability path in u space. One needs the time score of
the conditional distribution, which needs to be computed in u space. One can in principle train the score network either by
feeding in coordinates of points in the u space or the corresponding coordinates in x space, where the conditional target
vector field is computed in u space.

1. An probability path is defined on u space, interpolating between Gaussian and the empirical distribution induced by
samples,

2. The score network takes as input either x or u along with t, and learns the time score.

Note that it is correct to feed in the score network either x or u; when the model takes as input x, one can interpret that
the normalizing flows is a part of the score network, i.e. s̃θ(u, t) = sθ(f

−1 (x) , t), where f is the normalizing flows that is
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fixed and does not need to be learned and s is the score network that we parameterize. As such, the correctness is guaranteed
by standard CTSM / CTSM-v identities. We empirically observe that directly feeding in x coordinates leads to better BPD
estimates.

We remark that both TSM and CTSM need to map between u and x coordinates using the normalizing flows. However,
while CTSM only need to map both u to x and x to u exactly once, TSM requires an extra u to x map due to needed by the
boundary condition.

F.5.2. EXPERIMENTAL DETAILS

In terms of EBM with Gaussian flows, we observe that, possibly due to the parameterization, models trained using CTSM-v
may require a larger number of integration steps compared with TSM when evaluating the density ratio using an ODE
integrator with specific error tolerances as described in Section F.2: on MNIST test set with batch size 1000, TSM requires
on average 489.2 evaluations, while CTSM-v requires on average 830.6 evaluations. However, we remark that it is unclear
what the true time scores are like.

Especially with TSM, the BPD estimate on the validation set can vary greatly. In general, we report the final results using the
checkpoint that resulted in the best validation set result, unless the BPD estimate falls below 0, in which case we consider
the training as unstable.

Previous works (Rhodes et al., 2020; Choi et al., 2022) experimented with performing DRE utilizing copula flows and
RQ-NSF flows. We observe that CTSM-v suffers from unstable optimization, with the BPD dropping at first but shoots back
to a large value afterwards. We hypothesize that the parameterization does not agree with the inductive bias of the employed
score network.

When training CTSM-v in the ambient space, we employ as score network a more advanced U-Net largely based on Song
et al. (2021b) and Choi et al. (2022), which, among others, employs residual blocks. As noted by Choi et al. (2022),
residual blocks result in unstable training for TSM. However, CTSM-v works well with this version of the U-Net. We also
experimented with training using TSM with the U-Net as used by Choi et al. (2022) in the ambient space, but found the
BPD estimates on the val set to be generally larger than 5 and did not explore it further.

With Gaussian flows, all experiments were run using one NVIDIA V100 GPU each. With ambient space, the models were
trained and evaluated using one NIVDIA A100 GPU each, while the running times were obtained based on 10000 steps
using one NVIDIA V100 GPU each. We observed that the training dynamics of the models may vary across the employed
GPUs, even with the other settings kept the same.

F.6. Sampling

We employ annealed MCMC to draw samples from the learned score network. We draw a total of 100 samples. For each
sample, we construct 1000 intermediate distributions, where each intermediate distribution is targeted using a single HMC
step. The intermediate distributions are constructed by linearly interpolating between 0 and 1 and setting

log pt(x) = log p0(x) +

∫ t

τ=0

∂τ log pτ (x)dτ. (134)

After which, we run another 100 steps of HMC to further refine the samples.

Each step of HMC contains 10 leapfrog steps. When using Gaussian flows, we observe a correlation between sample quality
and the estimated log constant, where the sample quality is good when the estimated log constant is close to 0. Based on the
observation, we tune the step size of HMC on a grid in the form of [1e− n, 2.5e− n, 5e− n, 7.5e− n].

For Gaussian flows, we run annealed MCMC with a batch size of 100. The first 64 samples drawn from models trained
using TSM and CTSM-v are shown in Figure 5.

For pixel space CTSM-v, we consider both annealed MCMC and the Probability Flow (PF) ODE (Song et al., 2021b). For
annealed MCMC, we use a batch size of 50 and run 2 individual batches. For PF ODE, we use a batch size of 64. The first
64 samples were reported in the main paper.
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Figure 5: Left: samples drawn from a model trained with TSM, Gaussian flows; right: samples drawn from a model trained
with CTSM-v, Gaussian flows.
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