
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A Stitch in Time Forecasts Nine: TOWARDS END-TO-
END AGENTIC TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series forecasting is central to decision-making in domains as diverse as
energy, finance, climate, and public health. In practice, forecasters face thou-
sands of short, noisy series that vary in frequency, quality, and horizon, where the
dominant cost lies not in model fitting, but in the labor-intensive preprocessing,
validation, and ensembling required to obtain reliable predictions. Prevailing sta-
tistical and deep learning models are tailored to specific datasets or domains and
generalize poorly. A general, domain-agnostic framework that minimizes human
intervention is urgently in demand. In this paper, we introduce TimeSeriesS-
cientist (TSci), the first LLM-driven agentic framework for general time series
forecasting. The framework comprises four specialized agents: Curator performs
LLM-guided diagnostics augmented by external tools that reason over data statis-
tics to choose targeted preprocessing; Planner narrows the hypothesis space of
model choice by leveraging multi-modal diagnostics and self-planning over the
input; Forecaster performs model fitting and validation and based on the results
to adaptively select the best model configuration as well as ensemble strategy to
make final predictions; and Reporter synthesizes the whole process into a com-
prehensive, transparent report. With transparent natural-language rationales and
comprehensive reports, TSci transforms the forecasting workflow into a white-
box system that is both interpretable and extensible across tasks. Empirical results
on eight established benchmarks demonstrate that TSci consistently outperforms
both statistical and LLM-based baselines, reducing forecast error by an average of
10.4% and 38.2%, respectively. Moreover, TSci produces a clear and rigorous re-
port that makes the forecasting workflow more transparent and interpretable. Our
codes are available at Anonymous GitHub for reproducibility.

1 INTRODUCTION

Time series forecasting guides decision making in domains as diverse as energy (Liu et al., 2023),
finance (Zhu & Shasha, 2002), climate (Schneider & Dickinson, 1974), and public health (Matsubara
et al., 2014). In practice, organizations manage tens of thousands of short, noisy time series data with
heterogeneous sampling, missing values, and shifting horizons (Makridakis et al., 2020; Taylor &
Letham, 2018; Makridakis et al., 2022). The dominant cost in forecasting is often not model fitting,
but rather building reliable data processing and evaluation pipelines. This process is non-trivial for
short and noisy series with irregular sampling and intermittent observations, and they remain largely
manual in practice (Tawakuli et al., 2025; Shukla & Marlin, 2021; Moritz & Bartz-Beielstein, 2017).
Despite the availability of strong libraries that streamline modeling itself (Alexandrov et al., 2019;
Herzen et al., 2022; Jiang et al., 2022), end-to-end pipelines still require substantial human effort to
tailor preprocessing, validation, and ensembling to each new collection of series.

Most advances in forecasting now arrive as expert models tuned to specific domains, or universal
approaches that optimize only the model while leaving the rest of the pipeline untouched (Shchur
et al., 2023; Gruver et al., 2024; Roque et al., 2024). Such systems can reach SOTA in-domain
performance yet degrade under distribution shift because they rely on dataset or distribution-specific
tuning rather than generalizable reasoning about the series (Zhang et al., 2023a). AutoML for fore-
casting (Shchur et al., 2023) centers on model selection and ensembling, but with limited attention
to data quality. And it lacks the capacity to reason about temporal structure, adapt tools to hetero-
geneous series, and justify choices in natural language. Meanwhile, Time-LLM (Jin et al., 2023)

1

https://anonymous.4open.science/r/TimeSeriesScientist-9F87

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ETTh1

ETTh2

ETTm1

ETTm2

Weather

ECL

Exchange

ILI

20

40

60

80

100

GPT-4o
Gemini-2.5 Flash
Qwen-Plus
DeepSeek-v3
Claude-3.7
TSS (Ours)

(a)

AS

MJ

ICAQ

SC

20 40 60 80 100

Ours vs GPT-4o
Ours vs Gemini-2.5 Flash
Ours vs Qwen-Plus
Ours vs DeepSeek-v3
Ours vs Claude-3.7

(b)
Figure 1: Performance comparison of TSci with five LLM-based baselines. TSci outperforms
LLM-based baselines on eight benchmarks spanning five domains (Figure 1a). The comprehensive
report generated by TSci outperforms LLM-based baselines across five rubrics (Figure 1b).

achieves strong in-domain performance, yet it still primarily targets the model rather than the end-
to-end pipeline (Gruver et al., 2024). These limitations motivate an agentic approach, one that treats
time series forecasting as a sequential decision process over data preparation, model selection, vali-
dation, and ensembling, with explicit planning, tool use, and transparent rationales.

To this end, we introduce TimeSeriesScientist (TSci), the first end-to-end, agentic framework that
leverages multimodal knowledge to automate the entire workflow a human scientist would follow
for univariate time series forecasting. Rather than committing to a single universal model, TSci
orchestrates four specialized agents throughout the process. First, Curator performs LLM-guided
diagnostics augmented by external tools that reason over data statistics. It generates a compact
set of visualizations leveraging LLM multimodal ability and outputs an analysis summary of tem-
poral structure that guides subsequent steps. Next, Planner selects candidate models from a pre-
defined model library based on the multimodal diagnostics and optimizes hyperparameters through
a validation-driven search. Then, Forecaster reasons over validation results and adaptively selects
an ensemble strategy to produce the final prediction along with natural-language rationales. Finally,
Reporter consolidates all intermediate statistical analyses and forecasting results and outputs a com-
prehensive report. This design transforms forecasting into an adaptive, interpretable, and extensible
pipeline, bridging the gap between human expertise and automated decision-making.

Across eight public benchmarks spanning five domains, TSci consistently outperforms both statisti-
cal and LLM-driven baselines, reducing forecasting error by 10.4% and 38.3% on average, respec-
tively. Ablations show that each module contributes materially to the performance. Our evaluation
of the report generator further demonstrates its technical rigor and clear communication, supporting
practical deployment in settings that demand transparency and auditability.

Our main contributions are as follows: 1) We introduce TimeSeriesScientist, the first end-to-
end, agentic framework for univariate time series forecasting with tool-augmented LLM reasoning;
2) We propose plot-informed multimodal diagnostics, where a lightweight vision encoder converts
plots into descriptors guiding preprocessing, analysis, and model selection; 3) We show that TSci
outperforms both statistical and LLM-diven baselines across diverse benchmarks; and 4) We pro-
vide a comprehensive evaluation of its generated reports, demonstrating both technical rigor and
communication quality.

2 RELATED WORK

Time Series Forecasting. Univariate time series forecasting has evolved from classical statisti-
cal methods (e.g., ARIMA, ETS, and TBATS), which exploit linear trends and seasonalities (Box
et al., 2015; Hyndman & Khandakar, 2008; De Livera et al., 2011), to global deep learning models
(e.g., DeepAR, N-BEATS, and PatchTST) that capture nonlinear patterns and long-term dependen-
cies (Salinas et al., 2020; Oreshkin et al., 2019; Nie et al., 2023). More recently, foundation-style
approaches (e.g., Chronos, TimesFM, Lag-Llama) and prompt-based adaptations of LLMs (e.g.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Overview of our proposed TSci framework. This collaborative multi-agent system
is designed to analyze and forecast general time series data, just like a human scientist. Upon
receiving input time series data, the framework executes a structured four-agent workflow. Curator
generates analytical reports (Section 3.2), Planner selects model configurations through reasoning
and validation (Section 3.3), Forecaster integrates model results to produce the final forecast (Section
3.4), Reporter generates a comprehensive report as the final output of our framework (Section 3.5).

GPT4TS, Time-LLM) have demonstrated zero-shot and few-shot forecasting capabilities (Ansari
et al., 2024; Das et al., 2024; Rasul et al., 2023; Zhou et al., 2023; Jin et al., 2023), treating time
series as sequences to be modeled in analogy with language. While these advances highlight a trend
toward general-purpose and transferable forecasters, existing work remains largely model-centric:
the broader pipeline of preprocessing, evaluation design, and ensemble synthesis continues to rely
heavily on manual effort. This gap motivates our pursuit of an end-to-end, LLM-powered agentic
framework that integrates reasoning, tool use, and automation across the entire forecasting workflow.

Multi-agent System. Large language models have enabled the rise of multi-agent systems, where
specialized agents collaborate via communication and tool use to tackle complex analytical tasks.
Frameworks such as CAMEL (Li et al., 2023), AutoGen (Wu et al., 2023b), and DSPy (Khattab
et al., 2024) demonstrate how planner–executor architectures can coordinate agents for reasoning,
retrieval, and problem solving (Khattab et al., 2024). Recent applications show their utility for
domains like business intelligence and financial forecasting (Wawer & Chudziak, 2025). Despite
this progress, existing systems rarely address the unique challenges of time series: heterogeneous
sampling and multimodal data that are often irregular or asynchronous (Chang et al., 2025), and
the need for transparent ensemble reporting of forecasts (Zhao & jiekai ma, 2025). This leaves
open the opportunity for a multi-agent, domain-agnostic framework that leverages LLM reasoning
to automate forecasting pipelines while ensuring interpretability and auditability.

3 TIMESERIESSCIENTIST

TSci acts as a human scientist, having the ability to systematically perform data analysis, model
selection, forecasting, and report generation by utilizing LLM reasoning abilities. TSci integrates
four specialized agents, each assigned a distinct role, and collaboratively engages in the whole pro-
cess: (1) Curator: Performs LLM-guided diagnoses augmented by external tools that reason over
data statistics and output a multimodel summary guiding subsequent steps; (2) Planner: Narrows
the model configuration space by leveraging multimodal diagnostics and a validation-driven search;
(3) Forecaster: Reasons over validation results to adaptively select model ensemble strategy and
produces the final forecast; and (4) Reporter: Generates a comprehensive report consolidating all
intermediate statistical analyses and forecasting results.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Workflow of Curator. The raw dataset D is first diagnosed and processed into a cleaned
dataset D̃. Next, the agent generates tailored visualizations V to expose temporal structures and
facilitate interpretability. Finally, the agent integrates the processed data and visualizations to extract
trends, seasonality, and stationarity, producing a comprehensive analysis summary S.

3.1 PROBLEM FORMULATION

We first formally formulate the univariate time series forecasting problem. Let x =
{xt−T+1, ..., xt−1, xt} ∈ R1×T be a given univariate time series with T values in the historical
data, where each xt−i, for i = 0, ..., T − 1, represents a recorded value of the variable x at time
t − i. The forecasting process consists of estimating the value of yt+i ∈ R1×H , denoted as ŷt+i,
i = 1, ...,H , where H is the horizon of prediction. The overall objective is to minimize the mean
average errors (MAE) between the ground truths and predictions, i.e., 1

H

∑H
i=1 ||yt+i − ŷt+i||.

In our proposed framework, given a univariate time series dataD, the system generates a comprehen-
sive report R containing: statistics of the input data, visualizations, proposed model combinations
that best fit the data, and the final forecasting result. This framework significantly reduces manual
effort and time cost, while providing human scientists with a detailed and reliable analytical output.

3.2 CURATOR

Data preprocessing is critical in time series forecasting, as it ensures data quality, improves model
accuracy, and directly impacts the reliability of analytical results (Chakraborty & Joseph, 2017;
Esmael et al., 2012; Zhang et al., 2022; Shih et al., 2023). Curator leverages LLM reasoning ability,
augmented with specialized tools to transform the raw series into a clean and informative form that
downstream agents can depend on. It operates in three coordinated steps. Details are in Figure 3.

Quality Diagnostics & Preprocessing. High-quality input is critical for reliable forecasting. Rather
than computing fixed summaries, Curator leverages LLM-driven reasoning to both diagnose issues
and execute appropriate preprocessing. Specifically, given a univariate series D = {xt}Tt=1, the
agent first outputs a vector Q containing data statistics S, missing value information M , outlier
information O, and data-process strategy π. This process can be formalized as:

Q = Af (D)=
(
S, M, O, π

)
, (1)

where Af denotes the quality diagnostics operator, S = (µ, σ, xmin, xmax, τtrend) denotes basic
data statistics containing mean, standard deviation, min/max value, and trend, π = (m∗, h∗) denotes
LLM-recommended missing value and outlier handling strategies.

Based on processing strategy π, the agent applies transformation ϕ : RT → RT to the raw input
series D, and get a processed series D̃ = ϕ(D) = {x̃t}Tt=1, where x̃t denotes the processed value
at time step t. By coupling quality diagnostics with preprocessing, the agent tailors data-aware

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

strategies, yielding a well-conditioned preprocessed dataset that supports subsequent steps. Details
about strategies and transformations can be found in Appendix A.

Visualization Generation. Visualizations greatly aid human scientists in comprehending complex
time series data and identifying critical temporal patterns. Inspired by this practice, the agent au-
tomates the creation of insightful visualizations leveraging natural language prompts and reasoning
from an LLM. This step can be formalized as generating a visualization suite given a processed
dataset: V = Av(D̃), where Av denotes the visualization generator. Specifically, it generates
three primary visualization types tailored to input data characteristics: (1) Time series overview
plot: Visualize data statistics, illustrate moving averages and standard deviations. (2) Time series
decomposition analysis plot: Reveals temporal patterns, long-term trends, and seasonal cycles. (3)
Autocorrelation analysis plot: Identify temporal dependencies, detect non-stationarity, and guide the
later selection of appropriate model parameters. Details about the plots are provided in Appendix E.

Temporal Structure Profiling. To effectively support downstream forecasting, an overall anal-
ysis is important in uncovering temporal structures and statistical properties that are essential for
informed model selection and interpretation. This step conducts analysis through prompting to ex-
tract meaningful patterns and features from preprocessed time series data. The objective is to detect
trends, seasonality, and stationarity, thereby guiding the selection of suitable forecasting models.
Formally, given the processed dataset D̃ and visualizations V , the agent generates an analysis report
A through LLM reasoning: A = Ac(D̃, V) = {t, s, u}, where Ac denotes the profiling step, t, s, u
denote trend, seasonality, and stationary, respectively.

The outcome of Curator is a comprehensive analysis summary C = {Q, V, A}, where Q,V,A are
the outputs from each step, respectively.

3.3 PLANNER

Planner narrows the hypothesis space of model configurations by reasoning on the analysis summary
C. Rather than exhaustively trying all candidates, it prioritizes models that are most consistent with
data characteristics. Concretely, Planner operates in three coordinated steps.

Model Selection. Planner extracts visual features from visualizations V via lightwise pattern recog-
nition and LLM reasoning. It then maps the recognized data pattern to suitable model families and
forms a candidate poolMp, which has np candidate models from a pre-defined model libraryM:
Mp = Select(M;np),where |Mp| = np. Concretely, the agent may choose to use Prophet when
recognizing a weak trend with a long seasonal span. Details about the model library M can be
found in Appendix C. Moreover, for each mi ∈ Mp, the agent generates a rationale ri explaining
how data patterns in analysis report A motivate the choice of mi.

Hyperparameter Optimization. For each model mi ∈ Mp, let Θi denote its hyperparameter
space. We sample up to N configurations Ci = {θ(j)i }Nj=1 ⊆ Θi and evaluate each on the validation
set D̃val. The optimal configuration θ∗i is selected by minimizing validation MAPE (Mean Absolute
Percentage Error):

θ∗i = arg min
θi∈Ci

MAPEval

(
mi(θi)

)
, (2)

where

MAPEval(mi(θi)) =
100%

|D̃val|

∑
t∈D̃val

∣∣∣∣∣xt − x̂
(i,θi)
t

xt

∣∣∣∣∣ . (3)

Here x̂
(i,θi)
t denotes the prediction at time step t produced by model mi instantiated with hyperpa-

rameters θi, and xt is the corresponding ground-truth value. Analogously, we also compute MAEval

for a comprehensive performance profile, which allows for robustness checks against different error
metrics. The detailed hyperparameter optimization procedure is summarized in Algorithm 1.

Model Ranking. After hyperparameter optimization, each candidate model mi is instantiated with
its optimal configuration θ∗i and associated validation metrics. To select a high-quality subset for
ensemble construction, the np tuned models are ranked by their validation performance. We primar-
ily adopt validation MAPE for ranking. Specifically, the top k models with the lowest validation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Hyperparameter Optimization for Candidate Models

Input: Validation set D̃val = {x̃t}Tval
t=1 , Candidate model poolMp

Output: Validation metrics Sval, Optimal hyperparameter set Θ∗

1: for mi ∈Mp do
2: Θi ← PROPOSEHYPERPARAMS(mi) # define hyperparameter space
3: Sample Ci ∼ (Θi, N) # sample N configs from the hyperparameter space
4: θ∗i ← argminθi∈Ci

MAPEval

(
mi(θi), D̃val

)
select best hyperparameters

5: m∗
i ← mi(θ

∗
i) # instantiate tuned model

6: Sval[mi]← EVALUATE(m∗
i , D̃val) # record validation metrics

7: Θ∗[mi]← θ∗i # record chosen hyperparameters
8: end for
9:

10: return Sval, Θ∗

MAPE scores are retained:

Mselected =
{
m(1)(θ

∗
(1)), . . . , m(k)(θ

∗
(k))

}
, MAPEval

(
m(1)

)
≤ · · · ≤ MAPEval

(
m(k)

)
.

Here m(j)(θ
∗
(j)) denotes the j-th ranked model, ordered by ascending validation MAPE. The out-

put of this stage is the selected models setMselected together with tuned hyperparameters Θ∗ and
validation metrics Sval, which serve as the foundation for ensemble construction.

3.4 FORECASTER

Ensemble forecasting combines complementary biases to surpass single models, cutting error under
concept drift (Zhang et al., 2023b), yielding broad gains across heterogeneous patterns (Liu et al.,
2025), excelling on benchmarks (Oreshkin et al., 2020), and maintaining robustness across epidemic
phases (Adiga et al., 2023). Forecaster takes the top-k selected modelsMselected and their validation
metrics Sval as input. The agent leverages an LLM-guided policy to select an ensemble strategy from
among three families: single–best selection, performance-aware averaging, or robust aggregation.
The ensemble strategy and (if applicable) weights are fixed before touching the test set to avoid data
leakage. With the ensemble strategy determined, Forecaster tests the ensemble model on the held-
out test horizon of length H to output the final forecast, and reports test metrics Stest for comparative
evaluation. This procedure balances performance and stability while attenuating outliers and regime-
specific brittleness. Implementation details and ensembling rules can be found in Appendix B.

Figure 4: Demonstration of the output comprehensive reportR. The report consists of five parts,
consolidating results, diagnostics, interpretations, and decision provenance into a transparent output.

3.5 REPORTER

A clear, well-structured output is essential for human scientists. Reporter outputs a comprehensive
reportR that consolidates all intermediate statistical analyses and forecasting results. Specifically,R

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

includes: (1) an ensemble forecast x̂ens
t+1:t+H completed with confidence intervals; (2) a performance

summary presenting test metrics for each model alongside the ensemble; (3) an interpretability
report in which an LLM generates natural-language explanations of (i) the rationale for selecting
specific models, (ii) the derivation of ensemble weights, (iii) the system’s confidence in its forecast,
and (iv) any underlying assumptions or limitations; (4) a visualization suite containing detailed plots
for exploratory analysis and presentation; and (5) full workflow documentation that records every
decision made at each phase of the pipeline. A demonstration of the generated report is in Figure 4.

The system achieves interpretability through LLM reasoning at each decision point, providing natu-
ral language explanations for model selection, hyperparameter choices, and ensemble construction
strategies. This transparency enables users to understand and trust the forecasting process while
benefiting from the automated optimization capabilities of the multi-agent architecture.

4 EXPERIMENT

In this section, we present the experiment results of TSci in comparison with both statistical and
LLM-based baselines and provide a comprehensive analysis. Our framework achieves superior per-
formance over statistical models and state-of-the-art large language models across diverse bench-
marks and settings. To ensure fairness, we strictly follow the same evaluation protocols for all
baselines. Unless otherwise specified, we adopt GPT-4o (Wu et al., 2023a) as the default backbone.

4.1 PERFORMANCE ANALYSIS

Results. Our brief results in Table 1 demonstrate that TSci consistently outperforms LLM-based
baselines across eight benchmarks and significantly so for the majority of them. Compared with the
second-best baseline, TSci reduces MAE by an average of 38.2%. The results highlight the robust-
ness and generalization capability of TSci across heterogeneous domains, confirming its advantage
as a unified solution for time series forecasting. Figure 1a visualizes the performance comparison
using min-max inversion (maps the lowest-MAE method to 100, the highest-MAE maps to 20, and
others scale proportionally).

Figure 5 reports MAE on four ETT-small datasets across multiple horizons. TSci dominates statis-
tical methods on most datasets and horizons, particularly as the forecast length increases. At short
horizons, locally autoregressive structure can make simple linear models (e.g., linear regression)
competitive, which match or slightly exceed TSci. But their advantage diminishes as horizon in-
creases or patterns deviate from near-linear dynamics. The aggregate trend favors TSci, reflecting
its capacity to adapt to diverse regimes while preserving short-term fidelity. Full results by datasets
and horizons are provided in Appendix G.

Table 1: Time Series forecasting results compared with five LLM-based baselines. A lower value
indicates better performance. Red : the best, Blue : the second best.
Method GPT-4o Gemini-2.5 Flash Qwen-Plus DeepSeek-v3 Claude-3.7 TSci (Ours)

Metric MAE MAPE(%) MAE MAPE(%) MAE MAPE(%) MAE MAPE(%) MAE MAPE(%) MAE MAPE(%)

ETTh1 2.01e1 183.8 5.20 61.1 1.15e1 113.8 1.22e1 134.9 9.16 111.0 2.02 23.3
ETTh2 1.82e1 264.6 1.10e1 81.0 3.27e1 175.6 2.01e1 121.6 1.16e1 118.6 4.91 24.7
ETTm1 5.75 85.7 7.31 59.9 5.09 48.4 8.17 117.2 6.22 65.9 2.73 29.8
ETTm2 9.94 50.7 1.60e1 74.7 1.07e1 71.7 9.01 39.7 6.94 41.1 4.87 31.6
Weather 6.13e1 10.9 6.52e1 11.8 4.29e1 6.4 5.20e1 8.3 4.56e1 6.9 2.91e1 4.4

ECL 6.33e3 260.2 8.86e2 45.4 1.66e3 62.9 68.3e3 235.7 8.44e2 32.2 6.67e2 40.2
Exchange 1.60e-1 26.2 1.28e-1 19.9 8.5e-2 13.6 1.75e-1 26.7 7.3e-2 11.8 4.50e-2 6.8

ILI 2.17e5 26.2 2.46e5 29.3 3.37e5 37.0 2.24e5 26.5 1.79e5 19.7 1.41e5 16.2

1st Count 0 0 0 0 1 8

4.2 GENERATED REPORT EVALUATION

The final comprehensive report serves as a crucial interface to access and interpret the outcomes of
the framework. We evaluate the quality of the generated reports from a comprehensive perspective.

Evaluation Metrics. We adopt pairwise LLM-based comparison across five rubrics: AS, MJ (tech-
nical rigor), and IC, AQ, SC (communication quality). Details can be found in Appendix F. For

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Performance comparison of TSci with statistical baselines on ETT-small benchmarks.

each rubric, we compute the win rate, defined as the proportion of pairwise comparisons in which
our framework’s report is judged superior to a baseline, excluding ties.

Results. As shown in Table 2, TSci consistently outperforms all baselines across the five rubrics.
The largest gains appear in AS and MJ, where win rates exceed 80% for all comparisons, under-
scoring the rigor and appropriateness of our analyses and model choices. Strong performance is also
observed in IC and AQ (mostly above 75%), indicating coherent reasoning and actionable recom-
mendations. While the advantages of SC are smaller, our framework still delivers consistently struc-
tured and professional reports. Taken together, these results validate that TSci not only surpasses
baselines in predictive quality, but also generates reports that are technically rigorous, interpretable,
and practically useful. Figure 1b visualizes the win rate comparison (highest win rate maps to 100,
the lowest to 20, and others scale linearly).

Table 2: Win rate (%) of TSci against LLM-based baselines across five rubrics.

Baseline AS MJ IC AQ SC
TSci vs GPT-4o 80.8 84.6 80.8 76.9 71.4
TSci vs Gemini-2.5 Flash 81.8 81.8 63.6 68.2 53.8
TSci vs Qwen-Plus 83.3 83.3 79.2 75.0 75.0
TSci vs DeepSeek-v3 92.3 84.6 80.8 76.9 76.9
TSci vs Claude-3.7 84.7 87.5 84.6 80.8 53.8

4.3 MODEL ANALYSIS

Our results in Figure 6 indicate that ablating any of the data pre-processing, data analysis, or model
optimization module degrades time-series forecasting performance.

Effect of data preprocessing module. Removing the data preprocessing module in Curator leads
to an average of 41.80% increase in MAE, which is the largest increase among the three mod-
ules. More specifically, the performance degeneration increases with increasing prediction horizons
within one dataset. These findings demonstrate that data pre-processing contributes the most to the
robustness of TSci, and underscore that cleaning, resampling, and outlier handling are crucial for
analysis and especially long-horizon forecasts.

Effect of data analysis module. The analysis module in Curator profiles each series and serves for
downstream strategies. Removing the module harms MAE of 28.3% on average. Two minute-level
cases show small improvements (ETTm1-96 and ETTm-720), suggesting minute-level data at very
short/long horizons may benefit from further tuning of preprocessing and search. Overall, analysis
guidance stabilizes model choice and horizon-specific settings.

Effect of model optimization module. The model optimization module performs parameter search
for selected forecast models. Removing this module leaves a reasonable but suboptimal configu-
ration, producing a 36.2% MAE drop on average and a marked decline on long horizons or high-
variance series where horizon chunking and window sizing matter.

4.4 CASE STUDY

We present a case study on the ECL dataset with horizon H = 96, a case where our framework
surpasses other baselines by a large margin. We analyze the analysis summary generated by Curator

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ET
Th

1-9
6

ET
Th

1-1
92

ET
Th

1-3
36

ET
Th

1-7
20

ET
Tm

1-9
6

ET
Tm

1-1
92

ET
Tm

1-3
36

ET
Tm

1-7
20

0

1

2

3

4

5

6

7

8

M
AE

1.81
2.05

2.68

1.53
1.68

1.89

3.25

4.10

3.25 3.29

4.61

7.79

1.63

3.14

5.02

3.89

3.45 3.35

3.94

2.00

1.57

2.29

5.26

4.62

2.84

3.64

4.61

5.21

1.69

2.68

5.32

3.75

MAE of Ablation study on TimeSeriesScientist with its variants
TimeSeriesScientist
w/o Data Pre-process

w/o Data Analysis
w/o Parameter Optimization

Figure 6: Ablation study of TSci with three variants: w/o Data Pre-process, w/o Data Analysis,
and w/o Parameter Optimization. TSci attains the lowest MAE on six out of eight settings.

and the final report to highlight the effectiveness and interpretability of our agentic design. The data
analysis summary, visualization, and final comprehensive report are provided in Appendix H.

The whole dataset is first divided into 25 slices, and we take one slice for study. The analysis
summary in Appendix H.1 shows that the series exhibits strong cyclical fluctuations with noticeable
peaks and troughs, but no persistent long-term trend. Statistical summaries indicate a symmetric
distribution with light tails, as evidenced by near-zero skewness and negative kurtosis. Seasonal
decomposition further confirms a strong seasonal component, while stationarity tests suggest that
the data is non-stationary. Based on the analysis, Planner selected three models capable of handling
non-stationary and seasonal signals, including ARIMA, Prophet, and Exponential Smoothing from
the model library. The Visualization highlighted the cyclical nature of the data and irregular spikes,
reinforcing the importance of models that adapt to seasonality. Following this, Forecaster produced
ensemble forecasts and assigned higher weights to models capturing seasonal dynamics.

Figure 14 shows the ensemble forecast with individual model predictions. While individual models
such as ARIMA and Prophet struggled with accumulated errors over the horizon H = 96, our
ensemble remained stable and aligned with the seasonal cycles. The ensemble strategy given by
the LLM mitigates errors from the individual model and produces a more stable forecast. The
final comprehensive report further provided human-readable explanations, linking the model choices
directly to the identified seasonality and non-stationarity in the data.

This case study demonstrates that our framework is not only more accurate than baselines but also
produces interpretable outputs. The generated reports bridge the gap between automated forecast-
ing and human reasoning by explaining why certain models are preferred, how data characteristics
influence forecasts, and where potential risks (e.g., non-stationarity, irregular spikes) lie.

5 CONCLUSIONS AND FUTURE WORK

We introduced TimeSeriesScientist, the first end-to-end, agentic framework that automates univari-
ate time series forecasting via LLM reasoning. Extensive experiments across diverse benchmarks
show consistent gains over state-of-the-art LLM baselines, demonstrating both prediction accuracy
and report interpretability. This work provides the first step toward a unified, domain-agnostic ap-
proach for univariate time series forecasting, bridging the gap between traditional forecasting meth-
ods and the emerging capabilities of foundation models. Future directions include extending to
multimodal settings for broader applicability and incorporating external knowledge and efficiency-
oriented designs to enhance interpretability and scalability. We hope this work inspires further
research at the intersection of time series forecasting, agentic reasoning, and foundation models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All datasets used in this
work are publicly available, and we provide a complete description of the datasets in Appendix D.2.
The implementation details of our proposed framework, including model configurations, training
protocols, and evaluation metrics, are described in Section 4, with further hyperparameter settings
reported in Appendix D. To facilitate replication, we release the source code and experiment scripts
in an anonymous repository as supplementary material. Additional information is also included in
the appendix. Together, these resources ensure that our results can be independently verified and
extended.

REFERENCES

Aniruddha Adiga, Gursharn Kaur, Lijing Wang, Benjamin Hurt, Przemyslaw Porebski, Srinivasan
Venkatramanan, Bryan Lewis, and Madhav V Marathe. Phase-informed bayesian ensemble mod-
els improve performance of covid-19 forecasts. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 37, pp. 15647–15653, 2023.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, Lorenzo Stella, Ali Caner Türkmen, and Yuyang Wang. Gluonts: Probabilistic time
series models in python, 2019. URL https://arxiv.org/abs/1906.05264.

Abdul Fatir Ansari, Anastasia Borovykh, Marin Biloš, and et al. Chronos: Learning the language of
time series. arXiv preprint arXiv:2403.07815, 2024.

George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. Time Series
Analysis: Forecasting and Control. John Wiley & Sons, 5th edition, 2015.

Suman Chakraborty and Antony Paul Joseph. Preprocessing of time series data for prediction with
neural networks: Case study with stock market data. In 2017 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC), pp. 1–4. IEEE, 2017.

Ching Chang, Jeehyun Hwang, Yidan Shi, Haixin Wang, Wen-Chih Peng, Tien-Fu Chen, and Wei
Wang. Time-imm: A dataset and benchmark for irregular multimodal multivariate time series,
2025. URL https://arxiv.org/abs/2506.10412.

Alibaba Cloud. Qwen-plus: Enhanced large language model with balanced performance, speed,
and cost. Alibaba Cloud Model Studio Documentation, 2025a. URL https://www.
alibabacloud.com/help/en/model-studio/use-qwen-by-calling-api.
Model belonging to Qwen3 series, supports large context window (131K tokens).

Google Cloud. Claude 3.7 sonnet — extended thinking hybrid reasoning model. Ver-
tex AI Documentation, 2025b. URL https://cloud.google.com/vertex-ai/
generative-ai/docs/partner-models/claude. Describes Claude 3.7 Sonnet ca-
pabilities, including extended thinking and agentic coding.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting, 2024. URL https://arxiv.org/abs/2310.10688.

Alysha M. De Livera, Rob J. Hyndman, and Ralph D. Snyder. Forecasting time series with complex
seasonal patterns using exponential smoothing. Journal of the American Statistical Association,
106(496):1513–1527, 2011.

Beshah Ayalew Esmael, Abera Teshome, Ayalew Teklu, Belete Tesfaye, and Luiz F. Scavarda. A
study on preprocessing techniques, feature selection and classification approaches for road traffic
prediction. Procedia-Social and Behavioral Sciences, 54:1115–1124, 2012.

Gemini Team, Google. Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multi-
modality, Long Context, and Next Generation Agentic Capabilities. Technical report, Google,
June 2025. URL https://storage.googleapis.com/deepmind-media/gemini/
gemini_v2_5_report.pdf. Includes discussion of the Gemini 2.5 Flash model.

10

https://arxiv.org/abs/1906.05264
https://arxiv.org/abs/2506.10412
https://www.alibabacloud.com/help/en/model-studio/use-qwen-by-calling-api
https://www.alibabacloud.com/help/en/model-studio/use-qwen-by-calling-api
https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/claude
https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/claude
https://arxiv.org/abs/2310.10688
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
zero-shot time series forecasters, 2024. URL https://arxiv.org/abs/2310.07820.

Julien Herzen, Francesco Lässig, Samuele Giuliano Piazzetta, Thomas Neuer, Léo Tafti, Guillaume
Raille, Tomas Van Pottelbergh, Marek Pasieka, Andrzej Skrodzki, Nicolas Huguenin, Maxime
Dumonal, Jan Kościsz, Dennis Bader, Frédérick Gusset, Mounir Benheddi, Camila Williamson,
Michal Kosinski, Matej Petrik, and Gaël Grosch. Darts: User-friendly modern machine learning
for time series, 2022. URL https://arxiv.org/abs/2110.03224.

Rob J. Hyndman and Yeasmin Khandakar. Automatic time series forecasting: The forecast package
for R. Journal of Statistical Software, 27(3):1–22, 2008.

Xiaodong Jiang, Sudeep Srivastava, Sourav Chatterjee, Yang Yu, Jeffrey Handler, Peiyi Zhang,
Rohan Bopardikar, Dawei Li, Yanjun Lin, Uttam Thakore, Michael Brundage, Ginger Holt,
Caner Komurlu, Rakshita Nagalla, Zhichao Wang, Hechao Sun, Peng Gao, Wei Cheung, Jun
Gao, Qi Wang, Marius Guerard, Morteza Kazemi, Yulin Chen, Chong Zhou, Sean Lee, Niko-
lay Laptev, Tihamér Levendovszky, Jake Taylor, Huijun Qian, Jian Zhang, Aida Shoydokova,
Trisha Singh, Chengjun Zhu, Zeynep Baz, Christoph Bergmeir, Di Yu, Ahmet Koylan, Kun
Jiang, Ploy Temiyasathit, and Emre Yurtbay. Kats, 3 2022. URL https://github.com/
facebookresearch/Kats.

Mingxuan Jin, Haixu Zhang, Wenjie Wang, Yasha Wang, et al. Time-llm: Time series forecasting
by reprogramming large language models. arXiv preprint arXiv:2310.01728, 2023.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into
self-improving pipelines. In The Twelfth International Conference on Learning Representations
(ICLR), 2024.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for ”mind” exploration of large language model society, 2023.
URL https://arxiv.org/abs/2303.17760.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Hengbo Liu, Ziqing Ma, Linxiao Yang, Tian Zhou, Rui Xia, Yi Wang, Qingsong Wen, and Liang
Sun. Sadi: A self-adaptive decomposed interpretable framework for electric load forecasting
under extreme events. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Zhining Liu, Ze Yang, Xiao Lin, Ruizhong Qiu, Tianxin Wei, Yada Zhu, Hendrik Hamann, Jin-
grui He, and Hanghang Tong. Breaking silos: Adaptive model fusion unlocks better time series
forecasting, 2025. URL https://arxiv.org/abs/2505.18442.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition:
100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36(1):
54–74, 2020.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. M5 accuracy competition:
Results, findings, and conclusions. International journal of forecasting, 38(4):1346–1364, 2022.

Yasuko Matsubara, Yasushi Sakurai, Willem G Van Panhuis, and Christos Faloutsos. Funnel: au-
tomatic mining of spatially coevolving epidemics. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 105–114, 2014.

Steffen Moritz and Thomas Bartz-Beielstein. imputets: Time series missing value imputation in r.
R Journal, 9(1):207–218, 2017.

Yuqi Nie, Guolin Zhang, Jiyan Wang, and Vincent Y. F. Tan. A time series is worth 64 words:
Long-term forecasting with transformers. In Proceedings of the 11th International Conference on
Learning Representations (ICLR), 2023.

11

https://arxiv.org/abs/2310.07820
https://arxiv.org/abs/2110.03224
https://github.com/facebookresearch/Kats
https://github.com/facebookresearch/Kats
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2505.18442

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: Neural basis
expansion analysis for time series forecasting. In Proceedings of the 33rd Conference on Neural
Information Processing Systems (NeurIPS), pp. 1–12, 2019.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting, 2020. URL https://arxiv.
org/abs/1905.10437.

Kashif Rasul, Dhruv Dalal, Malte Müller, et al. Lag-llama: Towards foundation models for proba-
bilistic time series forecasting. arXiv preprint arXiv:2310.08278, 2023.

12

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1905.10437
https://arxiv.org/abs/1905.10437

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Luis Roque, Carlos Soares, Vitor Cerqueira, and Luis Torgo. Cherry-picking in time series forecast-
ing: How to select datasets to make your model shine, 2024. URL https://arxiv.org/
abs/2412.14435.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. In International Journal of Forecasting, vol-
ume 36, pp. 1181–1191. Elsevier, 2020.

Stephen H Schneider and Robert E Dickinson. Climate modeling. Reviews of Geophysics, 12(3):
447–493, 1974.

Oleksandr Shchur, Caner Turkmen, Nick Erickson, Huibin Shen, Alexander Shirkov, Tony Hu, and
Yuyang Wang. Autogluon-timeseries: Automl for probabilistic time series forecasting, 2023.
URL https://arxiv.org/abs/2308.05566.

Po-Chun Shih, Yung-Chun Chen, and Yao-Hsin Tseng. Time series preprocessing and feature en-
gineering for forecasting tasks. In Proceedings of the 2023 International Conference on Data
Science, pp. 22–31. ACM, 2023.

Satya Narayan Shukla and Benjamin M. Marlin. A survey on principles, models and methods
for learning from irregularly sampled time series, 2021. URL https://arxiv.org/abs/
2012.00168.

Amal Tawakuli, Bastian Havers, Vincenzo Gulisano, Daniel Kaiser, and Thomas Engel.
Survey:time-series data preprocessing: A survey and an empirical analysis. Journal of Engi-
neering Research, 13(2):674–711, 2025. ISSN 2307-1877. doi: https://doi.org/10.1016/j.jer.
2024.02.018. URL https://www.sciencedirect.com/science/article/pii/
S2307187724000452.

Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–45,
2018.

Michał Wawer and Jarosław Chudziak. Integrating traditional technical analysis with ai: A multi-
agent llm-based approach to stock market forecasting. In Proceedings of the 17th International
Conference on Agents and Artificial Intelligence, pp. 100–111. SCITEPRESS - Science and Tech-
nology Publications, 2025. doi: 10.5220/0013191200003890. URL http://dx.doi.org/
10.5220/0013191200003890.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Times-
net: Temporal 2d-variation modeling for general time series analysis, 2023a. URL https:
//arxiv.org/abs/2210.02186.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023b.
URL https://arxiv.org/abs/2308.08155.

Yi-Fan Zhang, Qingsong Wen, Xue Wang, Weiqi Chen, Liang Sun, Zhang Zhang, Liang Wang,
Rong Jin, and Tieniu Tan. Onenet: Enhancing time series forecasting models under concept drift
by online ensembling, 2023a. URL https://arxiv.org/abs/2309.12659.

Yifan Zhang, Chenglin Wu, Zhifang Liu, Hao Zhao, Qiang Zhu, and Dawei Zhan. A survey on time
series data preprocessing for ai applications. IEEE Transactions on Artificial Intelligence, 3(1):
1–18, 2022.

YiFan Zhang, Qingsong Wen, Xue Wang, Weiqi Chen, Liang Sun, Zhang Zhang, Liang Wang,
Rong Jin, and Tieniu Tan. Onenet: Enhancing time series forecasting models under concept drift
by online ensembling. In Thirty-seventh Conference on Neural Information Processing Systems,
2023b. URL https://openreview.net/forum?id=Q25wMXsaeZ.

Yikai Zhao and jiekai ma. Faithful and interpretable explanations for complex ensemble time series
forecasts using surrogate models and forecastability analysis. In KDD 2025 Workshop on AI for
Supply Chain: Today and Future, 2025. URL https://openreview.net/forum?id=
hrONr7A1yC.

13

https://arxiv.org/abs/2412.14435
https://arxiv.org/abs/2412.14435
https://arxiv.org/abs/2308.05566
https://arxiv.org/abs/2012.00168
https://arxiv.org/abs/2012.00168
https://www.sciencedirect.com/science/article/pii/S2307187724000452
https://www.sciencedirect.com/science/article/pii/S2307187724000452
http://dx.doi.org/10.5220/0013191200003890
http://dx.doi.org/10.5220/0013191200003890
https://arxiv.org/abs/2210.02186
https://arxiv.org/abs/2210.02186
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2309.12659
https://openreview.net/forum?id=Q25wMXsaeZ
https://openreview.net/forum?id=hrONr7A1yC
https://openreview.net/forum?id=hrONr7A1yC

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tian Zhou, Weijia Ma, Yuxuan He, Ziqing Liu, et al. Gpt4ts: Large language models are zero-shot
time series forecasters. arXiv preprint arXiv:2310.02029, 2023.

Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands of data streams
in real time. In VLDB’02: Proceedings of the 28th International Conference on Very Large
Databases, pp. 358–369. Elsevier, 2002.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A DATA PROCESSING STRATEGIES

We formalize a leakage-safe toolkit for detecting and repairing data issues in time series {xt}Tt=1.
All statistics are estimated on rolling (local) windows to accommodate non-stationarity. Let O and
M denote the sets of outlier and missing indices, respectively. The agent reasons on data statistics
and

A.1 OUTLIER DETECTION

Rolling IQR. On a windowWt of length w, compute its first and third quantile:

Q1(Wt), Q3(Wt), IQRt = Q3 −Q1. (4)

The outlier criterion:

xt is outlier if xt < Q1 − α · IQRt or xt > Q3 + α · IQRt, (5)

with a common choice α=1.5. If strong seasonality exists, set w to one or two seasonal cycles.

Rolling Z-Score. Estimate µt, σt within windowWt and define

zt =
|xt − µt|

σt
, xt is outlier if zt > α, (6)

typically α ∈ [3, 4] for online detection. For skewed/heavy-tailed data, replace µt and σt by the
median and MAD:

µt ← median(Wt), σt ← 1.4826 ·MAD(Wt), (7)

then apply the same threshold on zt.

Percentile Rule. Using empirical quantiles within Wt (adaptive) or from the training segment
(frozen),

xt is outlier if xt < Plower or xt > Pupper, (8)

e.g., (Plower, Pupper) = (1%, 99%) or (0.5%, 99.5%).

A.2 OUTLIER HANDLING

Clipping / Winsorization. Let L and U be lower/upper bounds from non-outliers (or from quan-
tiles such as P1%, P99%):

xclean
t =


L, xt < L,

U, xt > U,

xt, otherwise.
(9)

Interpolation (Segment-Aware). For a contiguous outlier segment t ∈ [a, b] with nearest clean
neighbors τ0 < a and τ1 > b,

xclean
t = xτ0 +

t− τ0
τ1 − τ0

(
xτ1 − xτ0

)
, t = a, . . . , b. (10)

For isolated points, this reduces to the two-point linear case (xclean
t = xt−1+xt+1

2).

Forward/Backward Fill. Short gaps in level-like processes:

xclean
t = xt−1 (FFill), xclean

t = xt+1 (BFill). (11)

Local Mean/Median Replacement. Within a causal neighborhood Nt (e.g., last w points),

xclean
t =

1

|Nt|
∑
i∈Nt

xi or xclean
t = median{xi : i ∈ Nt}. (12)

Median is preferred under heavy tails or residual outliers.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Light Causal Smoothing. After replacement, apply a causal moving average to suppress residual
spikes:

xclean
t =

1

w

w−1∑
i=0

xt−i. (13)

Use small w to limit lag and peak attenuation.

A.3 MISSING-VALUE HANDLING

Linear Interpolation (Segment-Aware). For a missing segment t ∈ [a, b] bounded by clean
points τ0 < a and τ1 > b,

xt = xτ0 +
t− τ0
τ1 − τ0

(
xτ1 − xτ0

)
, t = a, . . . , b. (14)

Forward/Backward Fill.

xt = xt−1 (FFill), xt = xt+1 (BFill). (15)

Local Mean/Median Fill. Estimate within a local window (prefer causal in evaluation):

xt =
1

n

n∑
i=1

xi or xt = median{x1, . . . , xn}. (16)

Zero Fill (Semantic Zero Only).

xt = 0, (17)

used only when zero has a clear meaning (e.g., counts/absence).

B ENSEMBLE

Here we introduce the detailed

Setup. LetMselected = {mi(θ
∗
i)}ki=1 be the top-k models returned by Planner with tuned hyper-

parameters θ∗i and validation scores Sval. For each model mi, we compute a scalar validation loss
si (lower is better) by aggregating the normalized metric vector ℓi ∈ RM (e.g., MAE, MAPE):

si =

M∑
m=1

αm norm(ℓi,m) , αm ≥ 0,
∑
m

αm = 1. (18)

On the test horizon of length H , model mi outputs x̂(i)
1:H . An ensemble produces x̂h =

∑k
i=1 wi x̂

(i)
h

with horizon-wise fixed weights wi ≥ 0,
∑

i wi = 1. All choices below depend only on Sval and
pre-specified hyperparameters; no test data is touched.

(A) Single–Best Selection. Pick the model with the best validation score and use it alone:

i⋆ = arg min
i∈[k]

si, wi⋆ = 1, wj ̸=i⋆ = 0. (19)

When used. Prefer (19) if the leader is clearly ahead:

gap =
s(2) − s(1)

s(1)
≥ δ, with s(1) ≤ s(2) ≤ · · · ≤ s(k), (20)

where δ is a small margin (default δ = 0.05). This avoids diluting a dominant model with weaker
ones.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(B) Performance-Aware Averaging. Assign higher weights to better validation performance while
preventing over-concentration. We use a temperatured inverse-loss scheme with shrinkage:

w̃i = (si + ε)−β , β > 0, ε > 0, (21)

wperf
i =

exp
(
− log w̃i/τ

)∑k
j=1 exp

(
− log w̃j/τ

) =
w̃

1/τ
i∑k

j=1 w̃
1/τ
j

, (22)

wi = (1− λ) clip
(
wperf

i , wmin, wmax

)
+ λ · 1

k
, (23)

with defaults β=1, τ=1, λ=0.1, wmin=0.02, wmax=0.80, and ε=10−8. When multiple metrics are
used, si comes from (18) with min–max normalization inside norm(·) across the k candidates. The
shrinkage in (23) stabilizes weights in small-k regimes and under close scores.

(C) Robust Aggregation. When candidate predictions disagree substantially, use distribution-
robust, order-statistic based pooling at each horizon index h:

Median: x̂med
h = median

{
x̂
(1)
h , . . . , x̂

(k)
h

}
, (24)

Trimmed mean: x̂trim
h =

1

k − 2⌊ρk⌋

k−⌊ρk⌋∑
i=⌊ρk⌋+1

x̂
(i)
h:↑, (25)

where x̂
(i)
h:↑ denotes the i-th smallest prediction at step h and ρ ∈ [0, 0.25) is the trimming fraction

(default ρ = 0.1). Median (24) has a 50% breakdown point; the trimmed mean (25) trades slightly
lower robustness for variance reduction.

Notes on implementation. (i) Weights wi are horizon-wise constant to avoid step-wise overfitting;
(ii) when Curator applies scaling (e.g., z-score), ensembling is performed in the scaled space and
then inverted; (iii) performance aggregation (18) can emphasize a primary metric by setting its αm

larger (we use αMAE=αMAPE=0.5 by default); (iv) computational cost is O(kH) for all strategies;
(v) for k=1, (19) is used by definition.

C MODEL LIBRARY

Here is a full list of time series models that we implement. The 21 models can be divided into 5
categories: 1) Traditional Statistical models; 2) Regression-based machine learning (ML) models; 3)
Tree-based Models (Ensemble method); 4) Neural Network Models (Deep Learning); 5) Specialized
Time Series Models. Details are listed in Table 3.

D EXPERIMENTAL DETAILS

D.1 IMPLEMENTATIONS

We use OpenAI GPT-4o (OpenAI et al., 2024) as the default backbone model. Due to a limited
budget, we divided all datasets into 25 slices and conducted experiments on these slices instead of
the entire dataset. The input time series length T for each slice is set as 512, and we use four different
prediction horizons H ∈ {96, 192, 336, 720}. The evaluation metrics include mean absolute error
(MAE) and mean absolute percentage error (MAPE). We report the averaged results from the 25
slices.

D.2 DATASET DETAILS

Dataset statistics are summarized in Table 4. We evaluate the univariate time series forecasting per-
formance on the well-established eight different benchmarks, including four ETT datasets, Weather,
Electricity, Exchange, and ILI from Wu et al. (2023a).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Implemented time series forecasting model library in model library.py.

Category Model Function name

Statistical (7)

ARIMA predict arima
RandomWalk predict random walk
ExponentialSmoothing predict exponential smoothing
MovingAverage predict moving average
TBATS predict tbats
Theta predict theta
Croston predict croston

ML regression (6)

LinearRegression predict linear regression
PolynomialRegression predict polynomial regression
RidgeRegression predict ridge regression
LassoRegression predict lasso regression
ElasticNet predict elastic net
SVR predict svr

Tree-based (4)

RandomForest predict random forest
GradientBoosting predict gradient boosting
XGBoost predict xgboost
LightGBM predict lightgbm

Neural networks (2) NeuralNetwork predict neural network
LSTM predict lstm

Specialized (2) Prophet predict prophet
Transformer predict transformer

Table 4: Summary of datasets across different domains.

Dataset Domain Length Frequency Duration

ETTh1, ETTh2 Electricity 17,420 1 hour 2016.07.01 - 2018.06.26
ETTm1, ETTm2 Electricity 69,680 15 mins 2016.07.01 - 2018.06.26

Weather Environment 52,696 10 mins 2020.01.01 - 2021.01.01
Electricity Electricity 26,304 1 hour 2016.07.01 - 2019.07.02
Exchange Economic 7,588 1 day 1990.01.01 - 2010.10.10

ILI Health 966 1 week 2002.01.01 - 2020.06.30

D.3 BASELINES

We benchmark TSci against several leading large language models, including GPT-4o, Gemini-2.5
Flash (Gemini Team, Google, 2025), Qwen-Plus (Cloud, 2025a), DeepSeek-v3 (Liu et al., 2024),
and Claude-3.7 (Cloud, 2025b).

E VISUALIZATIONS

E.1 LLM GUIDED DATA VISUALIZATIONS

Our framework generates comprehensive visualizations during the pre-processing stage to facili-
tate data understanding and quality assessment. The visualization pipeline employs a multi-panel
approach to systematically examine time series characteristics.

Time Series Overview Plot. The primary visualization component displays the raw time series data
with temporal indexing on the x-axis and corresponding values on the y-axis. This panel serves as
the foundational view for identifying global patterns, potential anomalies, and overall data structure.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The visualization incorporates grid lines with reduced opacity (α = 0.3) to enhance readability
while maintaining focus on the data trajectory, as shown in Figure 7.

(a) Time Series Plot (b) Rolling Statistics Plot

Figure 7: Example of time series overview plot on one slice of ECL dataset with input length
T = 512. Figure 7a displays the raw data. Figure 7b shows the rolling mean and rolling standard
deviation of the data slice.

Time Series Decomposition Analysis Plot. To comprehensively understand the underlying struc-
ture of the time series data, we employ seasonal decomposition to decompose the original series
into four interpretable components, as shown in Figure 8. The decomposition follows the additive
model Xt = Tt + St + Rt, where Xt represents the original observed values, Tt denotes the trend
component capturing long-term systematic changes, St indicates the seasonal component revealing
periodic patterns with a fixed frequency, and Rt represents the residual component containing ran-
dom noise and unexplained variations. The trend component helps identify the overall direction and
magnitude of change over time, while the seasonal component exposes recurring patterns that may
be crucial for forecasting accuracy. The residual component serves as a diagnostic tool to assess
the adequacy of the decomposition and identify potential anomalies or structural breaks. This four-
panel visualization provides essential insights for selecting appropriate preprocessing strategies and
forecasting models, as the presence of strong trends or seasonality directly informs the choice of
detrending methods and seasonal adjustment techniques.

Autocorrelation Analysis Plot. To assess the temporal dependencies and identify potential patterns
in the time series data, we employ the autocorrelation function (ACF) and partial autocorrelation
function (PACF) plots, as shown in Figure 9. The ACF measures the linear relationship between
observations at different time lags, revealing the overall memory structure and helping identify sea-
sonal patterns, trends, and the presence of unit roots. The PACF, on the other hand, measures the
correlation between observations at a specific lag while controlling for the effects of intermediate
lags, providing insights into the optimal order of autoregressive models and helping distinguish
between autoregressive and moving average components. These diagnostic plots are essential for
model identification in ARIMA modeling, as they reveal the underlying stochastic process charac-
teristics and guide the selection of appropriate differencing operations and model parameters. The
ACF and PACF analysis enables us to understand the temporal structure of the data, identify poten-
tial non-stationarity issues, and inform the choice of appropriate forecasting models based on the
observed correlation patterns.

E.2 TECHNICAL IMPLEMENTATION DETAILS

All visualizations are generated using Matplotlib and seaborn libraries with consistent styling pa-
rameters to ensure reproducibility and professional presentation. The time series plots employ a line
width of 2.0 pixels with a standardized color palette (#c83e4b for primary series), while distribution
plots utilize a 2×2 subplot layout combining time series visualization, histogram with kernel den-
sity estimation (KDE), box plots, and Q-Q plots for comprehensive distributional analysis. Rolling
statistics plots compute moving averages and standard deviations using configurable window sizes
(default 24 periods) with distinct color coding for trend and volatility components. Seasonal de-
composition leverages the statsmodels.tsa.seasonal.seasonal decompose function with additive de-
composition and configurable seasonal periods, while autocorrelation analysis employs plot acf and
plot pacf functions with 40-lag windows for optimal model identification. All plots feature white

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 8: Example of time series decomposition analysis plot on ECL dataset with input length
T=512. Figure 7(a) is the plot of the original time series Xt. Figure 7(b) is the plot of the trend
Tt. Figure 7(c) is the plot of the seasonal component St. Figure 7(d) is the plot of the residual
component Rt.

backgrounds with black grid lines (major grid: solid lines, 0.5px width, 30% opacity; minor grid:
dotted lines, 0.3px width, 20% opacity) and are saved as high-resolution PDF files (300 DPI) with
tight bounding boxes to ensure publication-quality output. The visualization generation process is
fully automated through LLM-driven configuration, allowing dynamic adaptation of plot parameters
based on data characteristics and analysis requirements.

E.3 OUTPUT AND INTEGRATION

The visualization pipeline generates standardized output files in PDF format, with configurable save
paths and automatic directory creation. Each visualization includes comprehensive logging for au-
dit trails and debugging purposes. The system integrates seamlessly with the broader time series
prediction framework, automatically generating visualizations during the pre-processing stage and
storing them for subsequent analysis and reporting phases.

These pre-processing visualizations serve as the foundation for data-driven decision making, en-
abling researchers and practitioners to understand their time series data characteristics before pro-
ceeding to model selection and forecasting stages.

F REPORT EVALUATION RUBRICS

Here, we describe the details of the five rubrics that comprehensively evaluate the generated report:

Analysis Soundness (AS): Evaluates the rigor and correctness of exploratory data analysis, includ-
ing the handling of missing values, anomaly detection, and identification of seasonality or trends.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: Example of autocorrelation analysis plot on ECL dataset with input length T = 512.
Figure 8(a) is the ACF plot, and Figure 8(b) is the PACF plot.

Model Justification (MJ): Assesses whether the chosen forecasting models are appropriate for the
data characteristics and whether the selection is supported by clear, evidence-based justification.

Interpretive Coherence (IC): Measures the logical consistency and alignment of the report’s rea-
soning, ensuring interpretations of diagnostics, errors, and results form a coherent narrative.

Actionability Quotient (AQ): Judges the extent to which the report provides concrete, evidence-
backed, and practically useful recommendations for decision making or system improvement.

Structural Clarity (SC): Examines the organization, readability, and professionalism of the report,
including section structure, flow, and correct referencing of figures and tables.

The five rubrics comprehensively evaluate the generated report along two dimensions: AS and MJ
assess the technical rigor of analysis and modeling choices, while IC, AQ, and SC assess the com-
munication quality and practical usefulness of the report. For each rubric, we compute the win
rate, defined as the proportion of pairwise comparisons in which our framework’s report is judged
superior to a baseline, excluding ties.

G FULL EXPERIMENT RESULTS

Here we present the full experiment results of our TSci on eight datasets against five LLM-based
baselines, as shown in Table 5 and Table 6. 1st Count row at the end of Table 6 indicates the number
of test cases where the model achieves the best performance across all datasets. TSci achieves supe-
rior performance across the majority of datasets and forecasting horizons (Figure 10), demonstrating
its LLM-driven reasoning capacity in time series forecasting. Figure 11 shows the complete result
of TSci compared with three statistical baselines on eight datasets. Figure 12 and 13 show the MAE
and MAPE distribution across datasets and horizons.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 5: Time series forecasting results. A lower value indicates better performance. Red : the
best, Blue : the second best.

Methods GPT-4o Gemini-2.5 Flash Qwen-Plus DeepSeek-v3 Claude-3.7 TSci (Ours)

Metric MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

E
TT

h1

96 6.39 69.3 4.99 71.8 6.50 74.8 7.24 90.9 5.58 75.3 1.81 13.9
192 1.10e1 89.9 5.04 57.4 9.79 108.3 8.60 104.8 5.99 82.9 2.05 31.0
336 2.18e1 319.2 5.29 51.6 1.30e1 143.0 1.55e1 198.4 7.99 124.8 2.68 31.7
720 4.14e1 256.9 5.46 63.5 1.67e1 129.2 1.76e1 145.6 1.71e1 161.0 1.53 16.7
Avg 2.01e1 183.8 5.20 61.1 1.15e1 113.8 1.22e1 134.9 9.16 111.0 2.02 23.3

E
TT

h2

96 1.09e1 190.9 1.16e1 74.7 3.34e1 320.1 1.02e1 47.2 8.56 202.7 4.50 18.9
192 1.45e1 304.2 1.30e1 102.3 1.65e1 118.7 1.27e1 147.2 9.62 107.0 4.47 12.8
336 2.21e1 441.2 8.76 65.5 2.49e1 74.5 1.62e1 118.6 9.95 70.4 3.81 10.7
720 2.53e1 121.9 1.08e1 81.6 5.58e1 189.0 4.13e1 173.4 1.82e1 94.0 6.88 56.2
Avg 1.82e1 264.6 1.10e1 81.0 3.27e1 175.6 2.01e1 121.6 1.16e1 118.5 4.91 24.7

E
TT

m
1

96 2.68 24.3 5.91 43.0 4.01 43.9 3.53 31.7 3.09 26.8 1.68 15.7
192 5.84 78.8 8.21 56.1 5.56 67.4 7.94 91.4 5.80 52.0 1.89 19.9
336 6.86 147.9 8.06 61.5 8.48 70.6 1.23e1 206.1 8.23 67.1 3.26 31.5
720 7.62 91.7 7.04 79.0 2.31 11.9 8.97 139.4 7.78 117.9 4.10 52.0
Avg 5.75 85.7 7.31 59.9 5.09 48.4 8.17 117.1 6.22 65.9 2.73 29.8

E
TT

m
2

96 5.52 29.6 1.30e1 58.2 7.84 109.2 4.81 20.7 4.35 47.8 3.63 40.5
192 9.22 43.2 1.41e1 58.7 7.24 28.6 7.06 35.2 9.08 39.1 4.77 30.5
336 1.11e1 61.5 1.33e1 78.6 1.18e1 46.0 1.09e1 44.9 7.97 34.3 5.12 27.6
720 1.39e1 68.4 2.34e1 103.4 1.57e1 102.9 1.33e1 57.9 6.38 43.0 5.96 27.6
Avg 9.94 50.7 1.60e1 74.7 1.07e1 71.7 9.01 39.7 6.94 41.1 4.87 31.6

Table 6: Time series forecasting results (continuing). A lower value indicates better performance.
Red : the best, Blue : the second best.

Methods GPT-4o Gemini-2.5 Flash Qwen-Plus DeepSeek-v3 Claude-3.7 TSci (Ours)

Metric MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

W
ea

th
er

96 2.16e1 5.1 6.59e1 15.5 2.25e1 5.2 1.54e1 3.6 1.83e1 4.3 1.63e1 3.8
192 4.07e1 9.5 3.84e1 9.0 3.17e1 7.4 2.84e1 6.6 3.97e1 9.3 1.60e1 3.6
336 6.89e1 6.6 5.92e1 4.4 6.96e1 6.4 8.06e1 8.5 7.24e1 6.6 6.13e1 5.0
720 1.14e2 22.4 9.74e1 18.5 4.79e1 6.6 8.37e1 14.4 5.19e1 7.5 2.29e1 5.1
Avg 6.13e1 10.9 6.52e1 11.8 4.29e1 6.4 5.20e1 8.3 4.56e1 6.9 2.91e1 4.4

E
C

L

96 2.09e3 63.6 7.37e2 22.8 1.09e3 32.6 1.36e3 42.2 8.21e2 23.9 3.94e2 11.2
192 3.64e3 109.0 1.35e3 41.1 1.42e3 42.6 2.06e3 62.1 5.05e2 15.2 4.50e2 13.6
336 5.85e3 252.3 7.79e2 63.5 1.18e3 72.6 4.89e3 182.1 1.26e3 39.8 9.68e2 77.3
720 1.38e4 615.9 6.75e2 54.2 2.97e3 103.8 1.90e4 656.5 7.93e2 50.0 8.56e2 58.8
Avg 6.33e3 260.2 8.86e2 45.4 1.66e3 62.9 6.83e3 235.7 8.44e2 32.2 6.67e2 40.2

E
xc

ha
ng

e 96 6.21e-2 9.5 5.46e-2 8.8 3.21e-2 5.1 5.46e-2 8.3 3.08e-2 4.8 2.46e-2 3.8
192 1.09e-1 17.6 2.34e-1 35.3 6.04e-2 10.2 8.40e-2 13.5 8.75e-2 14.6 3.85e-2 5.8
336 1.52e-1 26.0 1.06e-1 17.1 7.96e-2 12.3 2.25e-1 35.9 6.65e-2 10.8 5.76e-2 8.9
720 3.14e-1 51.9 1.15e-1 18.4 1.70e-1 26.9 3.37e-1 49.1 1.06e-1 17.1 5.76e-2 8.8
Avg 1.60e-1 26.2 1.28e-1 19.9 8.50e-2 13.6 1.75e-1 26.7 7.30e-2 11.8 4.50e-2 6.8

IL
I

24 1.58e5 18.4 2.48e5 28.5 3.49e5 38.9 1.86e5 21.6 1.56e5 17.4 1.41e5 16.5
36 1.93e5 24.0 2.53e5 32.0 3.05e5 32.5 1.92e5 22.8 1.86e5 20.3 1.48e5 16.8
48 2.45e5 28.9 2.83e5 34.1 3.67e5 41.3 2.58e5 30.5 1.76e5 19.0 1.34e5 15.6
60 2.72e5 33.4 1.98e5 22.6 3.29e5 35.5 2.62e5 31.3 1.98e5 22.1 1.40e5 16.2

Avg 2.17e5 26.2 2.46e5 29.3 3.37e5 37.1 2.24e5 26.5 1.79e5 19.7 1.41e5 16.3

1st Count 0 3 2 2 3 35

H CASE STUDY ON ECL DATASET

H.1 ANALYSIS SUMMARY

This analysis summary presents the findings from a time series forecasting experiment conducted
on the ECL dataset. The analysis focused on understanding the trend, seasonality, and stationarity
of the data, and potential improvements for future forecasting efforts.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 10: Performance comparison of TSci with five LLM-based baselines across eight datasets.

Figure 11: Performance comparison of TSci with three statistical baselines across eight datasets.

Analysis Summary generated from Curator

”Trend Analysis”: {
”Description”: ”The time series data exhibits an overall upward trend over the observed pe-
riod. This is evident from the increasing values towards the end of the series compared to the
beginning. The trend is not strictly linear, as there are fluctuations and periods of decline,
but the general direction is upward.”,
”Strength”: ”Moderate to strong, with noticeable periods of growth, particularly towards the
latter part of the series.”,
”Supporting Evidence”: ”The Basic Time Series Plot and Rolling Statistics visualizations
show a clear upward trajectory, especially in the latter half of the data.”
},
”Seasonality Analysis”: {
”Description”: ”There are indications of seasonality in the data, with recurring patterns that
suggest periodic fluctuations. These patterns are not strictly regular but suggest some form
of cyclical behavior.”,
”Periodicity”: ”The exact periodicity is not immediately clear from the data provided, but
the Seasonal Decomposition visualization should provide insights into the seasonal compo-
nent.”,
”Supporting Evidence”: ”The Seasonal Decomposition visualization will help identify and
confirm any seasonal patterns present in the data.”

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 12: Slice-level MAE distributions across datasets and horizons. The 2×4 grid organizes
subplots by dataset; within each subplot, four horizons are separated by dashed lines, and six meth-
ods are shown as grouped boxplots. Y-axis uses log10 scale; lower is better.

Figure 13: Slice-level MAPE distributions across datasets and horizons. The 2×4 grid organizes
subplots by dataset; within each subplot, four horizons are separated by dashed lines, and six meth-
ods are shown as grouped boxplots. Y-axis uses log10 scale; lower is better.

},
”Stationarity”: {
”Description”: ”The time series appears to be non-stationary, as indicated by the presence of
a trend and potential seasonality. Non-stationarity is also suggested by the rolling statistics,
which show changing mean and variance over time.”,
”Implications”: ”Non-stationarity implies that the data may need to be transformed (e.g.,
differencing, detrending) before applying certain forecasting models that assume stationar-
ity.”,
”Supporting Evidence”: ”The Rolling Statistics visualization shows variations in mean and
variance, indicating non-stationarity.”
},

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

”Potential Issues for Forecasting”: { ”Non-Stationarity”: ”The presence of a trend and po-
tential seasonality suggests non-stationarity, which may require transformation.”,
”Structural Breaks”: ”There may be structural breaks or regime shifts, particularly around
periods of rapid change in the data.”,
”Data Quality”: ”No explicit data quality issues are mentioned, but any missing values or
outliers should be addressed before modeling.”,
”Supporting Evidence”: ”The Basic Time Series Plot and Rolling Statistics visualizations
highlight periods of rapid change and variability.”
},
”Summary of Key Findings”: {
”Trend”: ”The data shows a moderate to strong upward trend.”,
”Seasonality”: ”Potential seasonal patterns are present, though further analysis is needed to
confirm periodicity.”,
”Stationarity”: ”The series is non-stationary, requiring transformation for certain models.”,
”Forecasting Challenges”: ”Addressing non-stationarity and potential structural breaks will
be crucial for accurate forecasting.”,
”Actionable Insights”: ”Consider transformations such as differencing or detrending to
achieve stationarity. Use models that can handle non-stationary data or incorporate trend
and seasonality components.”
}

H.2 VISUALIZATION

Figure 14 shows the ensemble forecast with individual model predictions and confidence intervals
on the ECL dataset.

Figure 14: Case study of ensemble forecast with individual model predictions on ECL dataset.

H.3 COMPREHENSIVE REPORT

Comprehensive report

This report presents the findings from a time series forecasting experiment conducted on
an industrial dataset. The primary objective was to evaluate the performance of various
forecasting models and their ensemble on a specific data slice. The analysis focused on un-
derstanding data characteristics, model performance, and potential improvements for future
forecasting efforts.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Key Findings and Model Performance
Data Characteristics
- **Trend**: The dataset exhibits a strong upward trend.
- **Seasonality**: Presence of seasonal patterns, though not strongly pronounced.
- **Stationarity**: The data is non-stationary, necessitating transformations for certain
models.

Model Performance
- **Ensemble Model**: Utilized a weighted average approach with weights assigned to
Exponential Smoothing (35%), ARIMA (40%), and Random Forest (25%).
- **MSE**: 209,950.78
- **MAE**: 393.83
- **MAPE**: 11.20%
- **Individual Models**:
- **Exponential Smoothing**:
- MSE: 192,879.83
- MAE: 377.15
- MAPE: 10.73%
- **ARIMA**:
- MSE: 205,582.59
- MAE: 390.10
- MAPE: 11.09%
- **Random Forest**:
- MSE: 242,977.49
- MAE: 423.16
- MAPE: 12.02%

Issues and Limitations
- **Non-Stationarity**: The presence of a trend complicates modeling and may require dif-
ferencing or transformation.
- **Structural Breaks**: Potential structural breaks or regime shifts were noted, particularly
around the midpoint of the series.
- **Model Performance**: While Exponential Smoothing and ARIMA performed relatively
well, Random Forest showed higher error metrics, indicating potential overfitting or inade-
quacy for this dataset.
Recommendations
1. **Data Preprocessing**: Further address non-stationarity through differencing or trans-
formation techniques.
2. **Model Selection**: Consider refining model hyperparameters and exploring additional
models like SARIMA or advanced machine learning techniques.
3. **Ensemble Strategy**: Re-evaluate the ensemble weighting strategy to optimize perfor-
mance based on individual model strengths.
This analysis provides a comprehensive overview of the current forecasting capabilities and
outlines actionable steps for enhancing future model performance.

I PROMPTS

Prompt for Curator

PREPROCESS SYSTEM PROMPT =
You are the Data Preprocessing Chief Agent for an advanced time series forecasting system.
Your mission is to ensure that all input data is of the highest possible quality before it enters
the modeling pipeline.
Background:
- You have deep expertise in time series data cleaning, anomaly detection, and preparation

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

for machine learning and statistical forecasting.
- You understand the downstream impact of preprocessing choices on model performance
and interpretability.
Your responsibilities:
- Rigorously assess the quality of the input time series, identifying missing values, outliers,
and structural issues.
- For each issue, recommend the most appropriate handling strategy, considering both sta-
tistical best practices and the needs of advanced forecasting models.
- Justify your recommendations with clear reasoning, referencing both the data characteris-
tics and potential modeling implications.
- If relevant, suggest additional preprocessing steps (e.g., resampling, detrending, feature
engineering) that could improve results.
- Always return your decisions in a structured Python dict, and ensure your reasoning is
transparent and actionable.
You have access to:
- The raw time series data (as a Python dict)
- Any prior preprocessing history or known data issues
Your output will directly determine how the data is prepared for all subsequent analysis and
modeling.

DATA PREPROCESS PROMPT =
You are a time series data preprocessing expert.
Given the following time series data (as a Python dict):
{{data.to dict(orient=’list’)}}
Please:
1. Assess the overall data quality.
2. Recommend a missing value handling strategy (choose from: interpolate, forward fill,
backward fill, mean, median, drop, zero).
3. Recommend an outlier handling strategy (choose from: clip, drop, zero, interpolate, ffill,
bfill, mean, median, smooth).
4. Optionally, suggest any other preprocessing steps if needed.
Return your answer as a Python dict: {
”quality assessment”: ”string”,
”missing value strategy”: ”string”,
”outlier strategy”: ”string”,
”other suggestions”: ”string”
}

ANALYSIS REPORT GENERATION PROMPT =
Given the following preprocessed time series data and generated visualizations, please pro-
vide a comprehensive analysis report.
Data (as a Python dict):
{{sample}}
Generated Visualizations:
{{visualizations}}
Note: This data has already been preprocessed - missing values and outliers have been
handled.
Please provide a comprehensive analysis including:
1. Data Overview:
- basic stats: mean, std, min, max, trend
- data characteristics: seasonality, stationarity, patterns
2. Data Quality Assessment:
- data quality score: overall quality score (0-1) after preprocessing
- data characteristics: key characteristics of the cleaned data
3. Insights from Visualizations:
- key patterns: patterns observed in the data
- seasonal components: any seasonal patterns

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

- trend analysis: overall trend direction and strength
- distribution characteristics: data distribution insights
4. Forecasting Readiness:
- data suitability: how suitable this data is for forecasting
- potential challenges: any challenges for forecasting models
- data strengths: strengths of this dataset
5. Model and Feature Recommendations:
- model suggestions: suitable model types for this data
- feature engineering: suggested features to create
- preprocessing effectiveness: how well the preprocessing worked
IMPORTANT: Return ONLY the JSON object below, with NO markdown formatting, NO
code blocks, NO explanations. Just the raw JSON.
{

"data_overview": {
"basic_stats": {

"mean": float,
"std": float,
"min": float,
"max": float,
"trend": "string"

},
"data_characteristics": {

"seasonality": "string",
"stationarity": "string",
"patterns": ["string"]

}
},
"quality_assessment": {

"data_quality_score": float,
"data_characteristics": "string"

},
"visualization_insights": {

"key_patterns": ["string"],
"seasonal_components": "string",
"trend_analysis": "string",
"distribution_characteristics": "string"

},
"forecasting_readiness": {

"data_suitability": "string",
"potential_challenges": ["string"],
"data_strengths": ["string"]

},
"recommendations": {

"model_suggestions": ["string"],
"feature_engineering": ["string"],
"preprocessing_effectiveness": "string"

}
}

DATA VISUALIZATION PROMPT =
Given the following preprocessed time series data and generated visualizations, please pro-
vide a comprehensive analysis report.
Data (as a Python dict):
{{sample}}
Generated Visualizations:
{{visualizations}}
Note: This data has already been preprocessed - missing values and outliers have been
handled.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Please provide a comprehensive analysis including:
1. Data Overview:
- basic stats: mean, std, min, max, trend
- data characteristics: seasonality, stationarity, patterns
2. Data Quality Assessment:
- data quality score: overall quality score (0-1) after preprocessing
- data characteristics: key characteristics of the cleaned data
3. Insights from Visualizations:
- key patterns: patterns observed in the data
- seasonal components: any seasonal patterns
- trend analysis: overall trend direction and strength
- distribution characteristics: data distribution insights
4. Forecasting Readiness:
- data suitability: how suitable this data is for forecasting
- potential challenges: any challenges for forecasting models
- data strengths: strengths of this dataset
5. Model and Feature Recommendations:
- model suggestions: suitable model types for this data
- feature engineering: suggested features to create
- preprocessing effectiveness: how well the preprocessing worked
IMPORTANT: Return ONLY the JSON object below, with NO markdown formatting, NO
code blocks, NO explanations. Just the raw JSON.
{{

"data_overview": {{
"basic_stats": {{

"mean": float,
"std": float,
"min": float,
"max": float,
"trend": "string"

}},
"data_characteristics": {{

"seasonality": "string",
"stationarity": "string",
"patterns": ["string"]

}}
}},
"quality_assessment": {{

"data_quality_score": float,
"data_characteristics": "string"

}},
"visualization_insights": {{

"key_patterns": ["string"],
"seasonal_components": "string",
"trend_analysis": "string",
"distribution_characteristics": "string"

}},
"forecasting_readiness": {{

"data_suitability": "string",
"potential_challenges": ["string"],
"data_strengths": ["string"]

}},
"recommendations": {{

"model_suggestions": ["string"],
"feature_engineering": ["string"],
"preprocessing_effectiveness": "string"

}}

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

}}

DATA ANALYSIS PROMPT = Given the following time series data (as a Python dict):
{{sample}}
Please analyze the data quality and provide the following information as a JSON file:
1. Basic statistics for each column:
- mean: float
- std: float
- min: float
- max: float
- trend: ’increasing’/’decreasing’/’stable’
2. Missing value information:
- missing count: int (total missing values)
- missing percentage: float (percentage of missing values)
3. Outlier information:
- outlier count: int (total outliers detected)
- outlier percentage: float (percentage of outliers in the data, between 0 and 1)
4. Data quality assessment:
- data quality score: float (0-1, where 1 is perfect quality)
- main issues: list of strings (e.g., [’missing values’, ’outliers’, ’noise’, ...])
5. Recommended preprocessing strategies:
- missing value strategy: string (choose from: ’interpolate’, ’forward fill’, ’backward fill’,
’mean’, ’median’, ’drop’, ’zero’)
- outlier detect strategy: string (choose from: ’iqr’, ’zscore’, ’percentile’, ’none’)
- outlier handle strategy: string (choose from: ’clip’, ’drop’, ’interpolate’, ’ffill’, ’bfill’,
’mean’, ’median’, ’smooth’)
IMPORTANT: Return ONLY the JSON object below, with NO markdown formatting, NO
code blocks, NO explanations. Just the raw JSON:
{{

"basic_stats": {{
"mean": float,
"std": float,
"min": float,
"max": float,
"trend": "string"

}},
"missing_info": {{

"missing_count": int,
"missing_percentage": float

}},
"outlier_info": {{

"outlier_count": int,
"outlier_percentage": float

}},
"quality_assessment": {{

"data_quality_score": float,
"main_issues": ["string"]

}},
"recommended_strategies": {{

"missing_value_strategy": "string",
"outlier_detect_strategy": "string",
"outlier_handle_strategy": "string"

}}
}}

VISUALIZATION DECISION PROMPT= Given the following time series data:
Data shape:
{{data.shape}}

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Data columns:
{{list(data.columns)}}
Please decide what visualizations would be most useful for understanding this data.
Consider the data characteristics and quality issues.
Choose from these visualization types:
- time series: Basic time series plot
- distribution: Histogram, box plot, KDE
- rolling stats: Rolling mean, std, etc.
- autocorrelation: ACF/PACF plots
- seasonal decomposition: Trend, seasonal, residual components
IMPORTANT: Return ONLY the JSON object below, with NO markdown formatting, NO
code blocks, NO explanations. Just the raw JSON:
{{

"visualizations": [
{{

"name": "string",
"type": "string",
"description": "string",
"features": ["string"],
"title": "string",
"xlabel": "string",
"ylabel": "string",
"additional_elements": ["string"],
"plot_specific_params": {{}}

}}
]

}}

Prompt for Planner

SYSTEM PROMPT = You are the Principal Data Analyst Agent for a state-of-the-art time
series forecasting platform.
Background:
- You are an expert in time series statistics, pattern recognition, and exploratory data analysis.
- Your insights will guide model selection, hyperparameter tuning, and risk assessment.
Your responsibilities:
- Provide a comprehensive statistical summary of the input data, including central tendency,
dispersion, skewness, and kurtosis.
- Detect and describe any trends, seasonality, regime shifts, or anomalies.
- Assess stationarity and discuss its implications for modeling.
- Identify potential challenges for forecasting, such as non-stationarity, structural breaks, or
data quality issues.
- Justify all findings with reference to the data and, where possible, relate them to best
practices in time series modeling.
- Always return your analysis in a structured Python dict, with clear, concise, and actionable
insights.
You have access to:
- The cleaned time series data (as a Python dict)
- Visualizations (if available) to support your analysis
Your output will be used by downstream agents to select and configure forecasting models.
ANALYSIS PROMPT = Given the following time series data and visualizations, please
provide a comprehensive analysis.
Data (as a Python dict):
{{sample}}
{{viz info}}

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Please analyze:
1. Trend analysis - overall direction and strength
2. Seasonality analysis - any recurring patterns
3. Stationarity - whether the data is stationary
4. Potential issues for forecasting
5. Summary of key findings
Return your analysis in a clear, structured format.

Prompt for Planner

SYSTEM PROMPT = You are the Model Selection and Validation Lead Agent for an
industrial time series forecasting system.
Background:
- You are highly skilled in matching data characteristics to appropriate forecasting models
and in designing robust validation strategies.
- You understand the strengths, weaknesses, and requirements of a wide range of statistical
and machine learning models.
Your responsibilities:
- Review the data analysis summary and select the top 3 most suitable forecasting models
from the provided list.
- For each model, recommend a hyperparameter search space tailored to the data’s charac-
teristics and modeling goals.
- Justify each model choice and hyperparameter range, referencing both the analysis and
your domain expertise.
- Consider diversity in model selection to maximize ensemble robustness.
- Always return your decisions in a structured Python dict, with clear reasoning for each
choice.
You have access to:
- The data analysis summary (as a Python dict)
- The list of available models
Your output will directly determine which models are trained and how they are tuned.
MODEL SELECTION PROMPT= You are a time series model selection agent. Given
the analysis report analysis and available models available models, select the best
n candidates models that are most suitable for the data and propose hyperparameters for
each model.
For each model, you should propose a hyperparameter search space tailored to the data
characteristics and modeling goals.
Justify each model choice and hyperparameter range, referencing both the analysis and your
domain expertise.
Return your answer in the following JSON format with an array of selected models:
{{

"selected_models": [
{{

"model": "string",
"hyperparameters": {{...}},
"reason": "string"

}},
{{

"model": "string",
"hyperparameters": {{...}},
"reason": "string"

}},
]

}}

Below is an example of the output:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

{{
"selected_models": [

{{
"model": "ARIMA",
"hyperparameters": {{

"p": [0, 1, 2],
"d": [0, 1],
"q": [0, 1, 2],

}},
"reason": "string"

}},
]

}}

IMPORTANT REQUIREMENTS: 1. Return EXACTLY n candidates models in the se-
lected models array
2. Each model must have ”model”, ”hyperparameters”, and ”reason” fields
3. The ”model” field must be one of the available models: available models
4. The ”hyperparameters” field should contain 2-3 parameter search spaces as arrays
5. Return ONLY the JSON object, no markdown formatting, no explanations before or after
6. Ensure the JSON is valid and properly formatted

Prompt for Forecaster

SYSTEM PROMPT = You are the Ensemble Forecasting Integration Agent for a high-
stakes time series prediction system.
Background:
- You are an expert in ensemble methods, model averaging, and uncertainty quantification
for time series forecasting.
- Your integration strategy can significantly impact the accuracy and reliability of the final
forecast.
Your responsibilities:
- Review the individual model forecasts and any available visualizations.
- Decide the most appropriate ensemble integration strategy (e.g., best model, weighted av-
erage, trimmed mean, median, custom weights).
- If using weights, specify them and explain your rationale.
- Justify your integration choice, considering model diversity, agreement, and historical per-
formance.
- Assess your confidence in the ensemble and note any risks or caveats.
- Always return your decision in a structured Python dict, with transparent reasoning.
You have access to:
- The individual model forecasts (as a Python dict)
- Visualizations of the forecasts and historical data
- Prediction tools for different models (ARMA, LSTM, RandomForest, etc.)
Your output will be used as the final forecast for this time series slice.
ENSEMBLE DECISION PROMPT= You are an ensemble forecasting expert.
Given the following individual model forecasts:
json.dumps(individual forecasts, indent=2)
{{viz info}}
Please:
1. Decide the best ensemble integration strategy (choose from: best model,
weighted average, trimmed mean, median, custom weights).
2. If using weights, specify the weights for each model.
3. Justify your choice.
4. Assess your confidence in the ensemble.
IMPORTANT: Return your answer ONLY as a JSON object, with NO markdown formatting,
NO code blocks, NO explanations. Just the raw JSON:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

{{
"integration_strategy": "string",
"weights": {{"model_name": "float"}} (if applicable),
"selected_model": "string" (if best_model),
"reasoning": "string",
"confidence": "string"

}}

MODEL WEIGHTS PROMPT = You are an ensemble forecasting expert.
Given the following individual model forecasts:
json.dumps(individual forecasts, indent=2)
viz info
Please:
1. Decide the best ensemble integration strategy (choose from: best model,
weighted average, trimmed mean, median, custom weights).
2. If using weights, specify the weights for each model.
3. Justify your choice.
4. Assess your confidence in the ensemble.
IMPORTANT: Return your answer ONLY as a JSON object, with NO markdown formatting,
NO code blocks, NO explanations. Just the raw JSON:
{{

"integration_strategy": "string",
"weights": {{"model_name": "float"}} (if applicable),
"selected_model": "string" (if best_model),
"reasoning": "string",
"confidence": "string"

}}

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used as assistive tools in the preparation of this work. Specif-
ically, we employed ChatGPT (OpenAI GPT-5) to make minor edits to academic writing, such as
drafting and refining sections (e.g., introduction, related work). All scientific claims, methodological
contributions, and experimental results were conceived, implemented, and validated by the authors.
The authors take full responsibility for the content presented in this paper.

34

	Introduction
	Related work
	TimeSeriesScientist
	Problem Formulation
	Curator
	Planner
	Forecaster
	Reporter

	Experiment
	Performance Analysis
	Generated Report Evaluation
	Model Analysis
	Case Study

	Conclusions and Future Work
	Reproducibility Statement
	Data Processing Strategies
	Outlier Detection
	Outlier Handling
	Missing-Value Handling

	Ensemble
	Model Library
	Experimental Details
	Implementations
	Dataset Details
	Baselines

	Visualizations
	LLM Guided Data Visualizations
	Technical Implementation Details
	Output and Integration

	Report Evaluation Rubrics
	Full Experiment Results
	Case Study on ECL Dataset
	Analysis Summary
	Visualization
	Comprehensive Report

	Prompts
	The Use of Large Language Models (LLMs)

