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ABSTRACT

Time series forecasting is central to decision-making in domains as diverse as
energy, finance, climate, and public health. In practice, forecasters face thou-
sands of short, noisy series that vary in frequency, quality, and horizon, where the
dominant cost lies not in model fitting, but in the labor-intensive preprocessing,
validation, and ensembling required to obtain reliable predictions. Prevailing sta-
tistical and deep learning models are tailored to specific datasets or domains and
generalize poorly. A general, domain-agnostic framework that minimizes human
intervention is urgently in demand. In this paper, we introduce TimeSeriesS-
cientist (TSci), the first LLM-driven agentic framework for general time series
forecasting. The framework comprises four specialized agents: Curator performs
LLM-guided diagnostics augmented by external tools that reason over data statis-
tics to choose targeted preprocessing; Planner narrows the hypothesis space of
model choice by leveraging multi-modal diagnostics and self-planning over the
input; Forecaster performs model fitting and validation and based on the results
to adaptively select the best model configuration as well as ensemble strategy to
make final predictions; and Reporter synthesizes the whole process into a com-
prehensive, transparent report. With transparent natural-language rationales and
comprehensive reports, TSci transforms the forecasting workflow into a white-
box system that is both interpretable and extensible across tasks. Empirical results
on eight established benchmarks demonstrate that TSci consistently outperforms
both statistical and LLM-based baselines, reducing forecast error by an average of
10.4% and 38.2%, respectively. Moreover, TSci produces a clear and rigorous re-
port that makes the forecasting workflow more transparent and interpretable. Our
codes are available at Anonymous GitHub for reproducibility.

1 INTRODUCTION

Time series forecasting guides decision making in domains as diverse as energy (Liu et al., 2023),
finance (Zhu & Shasha, 2002), climate (Schneider & Dickinson, 1974), and public health (Matsubara
et al., 2014). In practice, organizations manage tens of thousands of short, noisy time series data with
heterogeneous sampling, missing values, and shifting horizons (Makridakis et al., 2020; Taylor &
Letham, 2018; Makridakis et al., 2022). The dominant cost in forecasting is often not model fitting,
but rather building reliable data processing and evaluation pipelines. This process is non-trivial for
short and noisy series with irregular sampling and intermittent observations, and they remain largely
manual in practice (Tawakuli et al., 2025; Shukla & Marlin, 2021; Moritz & Bartz-Beielstein, 2017).
Despite the availability of strong libraries that streamline modeling itself (Alexandrov et al., 2019;
Herzen et al., 2022; Jiang et al., 2022), end-to-end pipelines still require substantial human effort to
tailor preprocessing, validation, and ensembling to each new collection of series.

Most advances in forecasting now arrive as expert models tuned to specific domains, or universal
approaches that optimize only the model while leaving the rest of the pipeline untouched (Shchur
et al., 2023; Gruver et al., 2024; Roque et al., 2024). Such systems can reach SOTA in-domain
performance yet degrade under distribution shift because they rely on dataset or distribution-specific
tuning rather than generalizable reasoning about the series (Zhang et al., 2023a). AutoML for fore-
casting (Shchur et al., 2023) centers on model selection and ensembling, but with limited attention
to data quality. And it lacks the capacity to reason about temporal structure, adapt tools to hetero-
geneous series, and justify choices in natural language. Meanwhile, Time-LLM (Jin et al., 2023)
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Figure 1: Performance comparison of TSci with five LLM-based baselines. TSci outperforms
LLM-based baselines on eight benchmarks spanning five domains (Figure 1a). The comprehensive
report generated by TSci outperforms LLM-based baselines across five rubrics (Figure 1b).

achieves strong in-domain performance, yet it still primarily targets the model rather than the end-
to-end pipeline (Gruver et al., 2024). These limitations motivate an agentic approach, one that treats
time series forecasting as a sequential decision process over data preparation, model selection, vali-
dation, and ensembling, with explicit planning, tool use, and transparent rationales.

To this end, we introduce TimeSeriesScientist (TSci), the first end-to-end, agentic framework that
leverages multimodal knowledge to automate the entire workflow a human scientist would follow
for univariate time series forecasting. Rather than committing to a single universal model, TSci
orchestrates four specialized agents throughout the process. First, Curator performs LLM-guided
diagnostics augmented by external tools that reason over data statistics. It generates a compact
set of visualizations leveraging LLM multimodal ability and outputs an analysis summary of tem-
poral structure that guides subsequent steps. Next, Planner selects candidate models from a pre-
defined model library based on the multimodal diagnostics and optimizes hyperparameters through
a validation-driven search. Then, Forecaster reasons over validation results and adaptively selects
an ensemble strategy to produce the final prediction along with natural-language rationales. Finally,
Reporter consolidates all intermediate statistical analyses and forecasting results and outputs a com-
prehensive report. This design transforms forecasting into an adaptive, interpretable, and extensible
pipeline, bridging the gap between human expertise and automated decision-making.

Across eight public benchmarks spanning five domains, TSci consistently outperforms both statisti-
cal and LLM-driven baselines, reducing forecasting error by 10.4% and 38.3% on average, respec-
tively. Ablations show that each module contributes materially to the performance. Our evaluation
of the report generator further demonstrates its technical rigor and clear communication, supporting
practical deployment in settings that demand transparency and auditability.

Our main contributions are as follows: 1) We introduce TimeSeriesScientist, the first end-to-
end, agentic framework for univariate time series forecasting with tool-augmented LLM reasoning;
2) We propose plot-informed multimodal diagnostics, where a lightweight vision encoder converts
plots into descriptors guiding preprocessing, analysis, and model selection; 3) We show that TSci
outperforms both statistical and LLM-diven baselines across diverse benchmarks; and 4) We pro-
vide a comprehensive evaluation of its generated reports, demonstrating both technical rigor and
communication quality.

2 RELATED WORK

Time Series Forecasting. Univariate time series forecasting has evolved from classical statisti-
cal methods (e.g., ARIMA, ETS, and TBATS), which exploit linear trends and seasonalities (Box
et al., 2015; Hyndman & Khandakar, 2008; De Livera et al., 2011), to global deep learning models
(e.g., DeepAR, N-BEATS, and PatchTST) that capture nonlinear patterns and long-term dependen-
cies (Salinas et al., 2020; Oreshkin et al., 2019; Nie et al., 2023). More recently, foundation-style
approaches (e.g., Chronos, TimesFM, Lag-Llama) and prompt-based adaptations of LLMs (e.g.,
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Figure 2: Overview of our proposed TSci framework. This collaborative multi-agent system
is designed to analyze and forecast general time series data, just like a human scientist. Upon
receiving input time series data, the framework executes a structured four-agent workflow. Curator
generates analytical reports (Section 3.2), Planner selects model configurations through reasoning
and validation (Section 3.3), Forecaster integrates model results to produce the final forecast (Section
3.4), Reporter generates a comprehensive report as the final output of our framework (Section 3.5).

GPT4TS, Time-LLM) have demonstrated zero-shot and few-shot forecasting capabilities (Ansari
et al., 2024; Das et al., 2024; Rasul et al., 2023; Zhou et al., 2023; Jin et al., 2023), treating time
series as sequences to be modeled in analogy with language. While these advances highlight a trend
toward general-purpose and transferable forecasters, existing work remains largely model-centric:
the broader pipeline of preprocessing, evaluation design, and ensemble synthesis continues to rely
heavily on manual effort. This gap motivates our pursuit of an end-to-end, LLM-powered agentic
framework that integrates reasoning, tool use, and automation across the entire forecasting workflow.

Multi-agent System. Large language models have enabled the rise of multi-agent systems, where
specialized agents collaborate via communication and tool use to tackle complex analytical tasks.
Frameworks such as CAMEL (Li et al., 2023), AutoGen (Wu et al., 2023b), and DSPy (Khattab
et al., 2024) demonstrate how planner–executor architectures can coordinate agents for reasoning,
retrieval, and problem solving (Khattab et al., 2024). Recent applications show their utility for
domains like business intelligence and financial forecasting (Wawer & Chudziak, 2025). Despite
this progress, existing systems rarely address the unique challenges of time series: heterogeneous
sampling and multimodal data that are often irregular or asynchronous (Chang et al., 2025), and
the need for transparent ensemble reporting of forecasts (Zhao & jiekai ma, 2025). This leaves
open the opportunity for a multi-agent, domain-agnostic framework that leverages LLM reasoning
to automate forecasting pipelines while ensuring interpretability and auditability.

3 TIMESERIESSCIENTIST

TSci acts as a human scientist, having the ability to systematically perform data analysis, model
selection, forecasting, and report generation by utilizing LLM reasoning abilities. TSci integrates
four specialized agents, each assigned a distinct role, and collaboratively engages in the whole pro-
cess: (1) Curator: Performs LLM-guided diagnoses augmented by external tools that reason over
data statistics and output a multimodel summary guiding subsequent steps; (2) Planner: Narrows
the model configuration space by leveraging multimodal diagnostics and a validation-driven search;
(3) Forecaster: Reasons over validation results to adaptively select model ensemble strategy and
produces the final forecast; and (4) Reporter: Generates a comprehensive report consolidating all
intermediate statistical analyses and forecasting results.
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Figure 3: Workflow of Curator. The raw dataset D is first diagnosed and processed into a cleaned
dataset D̃. Next, the agent generates tailored visualizations V to expose temporal structures and
facilitate interpretability. Finally, the agent integrates the processed data and visualizations to extract
trends, seasonality, and stationarity, producing a comprehensive analysis summary S.

3.1 PROBLEM FORMULATION

We first formally formulate the univariate time series forecasting problem. Let x =
{xt−T+1, ..., xt−1, xt} ∈ R1×T be a given univariate time series with T values in the historical
data, where each xt−i, for i = 0, ..., T − 1, represents a recorded value of the variable x at time
t − i. The forecasting process consists of estimating the value of yt+i ∈ R1×H , denoted as ŷt+i,
i = 1, ...,H , where H is the horizon of prediction. The overall objective is to minimize the mean
average errors (MAE) between the ground truths and predictions, i.e., 1

H

∑H
i=1 ||yt+i − ŷt+i||.

In our proposed framework, given a univariate time series dataD, the system generates a comprehen-
sive report R containing: statistics of the input data, visualizations, proposed model combinations
that best fit the data, and the final forecasting result. This framework significantly reduces manual
effort and time cost, while providing human scientists with a detailed and reliable analytical output.

3.2 CURATOR

Data preprocessing is critical in time series forecasting, as it ensures data quality, improves model
accuracy, and directly impacts the reliability of analytical results (Chakraborty & Joseph, 2017;
Esmael et al., 2012; Zhang et al., 2022; Shih et al., 2023). Curator leverages LLM reasoning ability,
augmented with specialized tools to transform the raw series into a clean and informative form that
downstream agents can depend on. It operates in three coordinated steps. Details are in Figure 3.

Quality Diagnostics & Preprocessing. High-quality input is critical for reliable forecasting. Rather
than computing fixed summaries, Curator leverages LLM-driven reasoning to both diagnose issues
and execute appropriate preprocessing. Specifically, given a univariate series D = {xt}Tt=1, the
agent first outputs a vector Q containing data statistics S, missing value information M , outlier
information O, and data-process strategy π. This process can be formalized as:

Q = Af (D)=
(
S, M, O, π

)
, (1)

where Af denotes the quality diagnostics operator, S = (µ, σ, xmin, xmax, τtrend) denotes basic
data statistics containing mean, standard deviation, min/max value, and trend, π = (m∗, h∗) denotes
LLM-recommended missing value and outlier handling strategies.

Based on processing strategy π, the agent applies transformation ϕ : RT → RT to the raw input
series D, and get a processed series D̃ = ϕ(D) = {x̃t}Tt=1, where x̃t denotes the processed value
at time step t. By coupling quality diagnostics with preprocessing, the agent tailors data-aware
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strategies, yielding a well-conditioned preprocessed dataset that supports subsequent steps. Details
about strategies and transformations can be found in Appendix A.

Visualization Generation. Visualizations greatly aid human scientists in comprehending complex
time series data and identifying critical temporal patterns. Inspired by this practice, the agent au-
tomates the creation of insightful visualizations leveraging natural language prompts and reasoning
from an LLM. This step can be formalized as generating a visualization suite given a processed
dataset: V = Av(D̃), where Av denotes the visualization generator. Specifically, it generates
three primary visualization types tailored to input data characteristics: (1) Time series overview
plot: Visualize data statistics, illustrate moving averages and standard deviations. (2) Time series
decomposition analysis plot: Reveals temporal patterns, long-term trends, and seasonal cycles. (3)
Autocorrelation analysis plot: Identify temporal dependencies, detect non-stationarity, and guide the
later selection of appropriate model parameters. Details about the plots are provided in Appendix E.

Temporal Structure Profiling. To effectively support downstream forecasting, an overall anal-
ysis is important in uncovering temporal structures and statistical properties that are essential for
informed model selection and interpretation. This step conducts analysis through prompting to ex-
tract meaningful patterns and features from preprocessed time series data. The objective is to detect
trends, seasonality, and stationarity, thereby guiding the selection of suitable forecasting models.
Formally, given the processed dataset D̃ and visualizations V , the agent generates an analysis report
A through LLM reasoning: A = Ac(D̃, V ) = {t, s, u}, where Ac denotes the profiling step, t, s, u
denote trend, seasonality, and stationary, respectively.

The outcome of Curator is a comprehensive analysis summary C = {Q, V, A}, where Q,V,A are
the outputs from each step, respectively.

3.3 PLANNER

Planner narrows the hypothesis space of model configurations by reasoning on the analysis summary
C. Rather than exhaustively trying all candidates, it prioritizes models that are most consistent with
data characteristics. Concretely, Planner operates in three coordinated steps.

Model Selection. Planner extracts visual features from visualizations V via lightwise pattern recog-
nition and LLM reasoning. It then maps the recognized data pattern to suitable model families and
forms a candidate poolMp, which has np candidate models from a pre-defined model libraryM:
Mp = Select(M;np),where |Mp| = np. Concretely, the agent may choose to use Prophet when
recognizing a weak trend with a long seasonal span. Details about the model library M can be
found in Appendix C. Moreover, for each mi ∈ Mp, the agent generates a rationale ri explaining
how data patterns in analysis report A motivate the choice of mi.

Hyperparameter Optimization. For each model mi ∈ Mp, let Θi denote its hyperparameter
space. We sample up to N configurations Ci = {θ(j)i }Nj=1 ⊆ Θi and evaluate each on the validation
set D̃val. The optimal configuration θ∗i is selected by minimizing validation MAPE (Mean Absolute
Percentage Error):

θ∗i = arg min
θi∈Ci

MAPEval

(
mi(θi)

)
, (2)

where

MAPEval(mi(θi)) =
100%

|D̃val|

∑
t∈D̃val

∣∣∣∣∣xt − x̂
(i,θi)
t

xt

∣∣∣∣∣ . (3)

Here x̂
(i,θi)
t denotes the prediction at time step t produced by model mi instantiated with hyperpa-

rameters θi, and xt is the corresponding ground-truth value. Analogously, we also compute MAEval

for a comprehensive performance profile, which allows for robustness checks against different error
metrics. The detailed hyperparameter optimization procedure is summarized in Algorithm 1.

Model Ranking. After hyperparameter optimization, each candidate model mi is instantiated with
its optimal configuration θ∗i and associated validation metrics. To select a high-quality subset for
ensemble construction, the np tuned models are ranked by their validation performance. We primar-
ily adopt validation MAPE for ranking. Specifically, the top k models with the lowest validation
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Algorithm 1 Hyperparameter Optimization for Candidate Models

Input: Validation set D̃val = {x̃t}Tval
t=1 , Candidate model poolMp

Output: Validation metrics Sval, Optimal hyperparameter set Θ∗

1: for mi ∈Mp do
2: Θi ← PROPOSEHYPERPARAMS(mi) # define hyperparameter space
3: Sample Ci ∼ (Θi, N) # sample N configs from the hyperparameter space
4: θ∗i ← argminθi∈Ci

MAPEval

(
mi(θi), D̃val

)
# select best hyperparameters

5: m∗
i ← mi(θ

∗
i ) # instantiate tuned model

6: Sval[mi]← EVALUATE(m∗
i , D̃val) # record validation metrics

7: Θ∗[mi]← θ∗i # record chosen hyperparameters
8: end for
9:

10: return Sval, Θ∗

MAPE scores are retained:

Mselected =
{
m(1)(θ

∗
(1)), . . . , m(k)(θ

∗
(k))

}
, MAPEval

(
m(1)

)
≤ · · · ≤ MAPEval

(
m(k)

)
.

Here m(j)(θ
∗
(j)) denotes the j-th ranked model, ordered by ascending validation MAPE. The out-

put of this stage is the selected models setMselected together with tuned hyperparameters Θ∗ and
validation metrics Sval, which serve as the foundation for ensemble construction.

3.4 FORECASTER

Ensemble forecasting combines complementary biases to surpass single models, cutting error under
concept drift (Zhang et al., 2023b), yielding broad gains across heterogeneous patterns (Liu et al.,
2025), excelling on benchmarks (Oreshkin et al., 2020), and maintaining robustness across epidemic
phases (Adiga et al., 2023). Forecaster takes the top-k selected modelsMselected and their validation
metrics Sval as input. The agent leverages an LLM-guided policy to select an ensemble strategy from
among three families: single–best selection, performance-aware averaging, or robust aggregation.
The ensemble strategy and (if applicable) weights are fixed before touching the test set to avoid data
leakage. With the ensemble strategy determined, Forecaster tests the ensemble model on the held-
out test horizon of length H to output the final forecast, and reports test metrics Stest for comparative
evaluation. This procedure balances performance and stability while attenuating outliers and regime-
specific brittleness. Implementation details and ensembling rules can be found in Appendix B.

Figure 4: Demonstration of the output comprehensive reportR. The report consists of five parts,
consolidating results, diagnostics, interpretations, and decision provenance into a transparent output.

3.5 REPORTER

A clear, well-structured output is essential for human scientists. Reporter outputs a comprehensive
reportR that consolidates all intermediate statistical analyses and forecasting results. Specifically,R

6
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includes: (1) an ensemble forecast x̂ens
t+1:t+H completed with confidence intervals; (2) a performance

summary presenting test metrics for each model alongside the ensemble; (3) an interpretability
report in which an LLM generates natural-language explanations of (i) the rationale for selecting
specific models, (ii) the derivation of ensemble weights, (iii) the system’s confidence in its forecast,
and (iv) any underlying assumptions or limitations; (4) a visualization suite containing detailed plots
for exploratory analysis and presentation; and (5) full workflow documentation that records every
decision made at each phase of the pipeline. A demonstration of the generated report is in Figure 4.

The system achieves interpretability through LLM reasoning at each decision point, providing natu-
ral language explanations for model selection, hyperparameter choices, and ensemble construction
strategies. This transparency enables users to understand and trust the forecasting process while
benefiting from the automated optimization capabilities of the multi-agent architecture.

4 EXPERIMENT

In this section, we present the experiment results of TSci in comparison with both statistical and
LLM-based baselines and provide a comprehensive analysis. Our framework achieves superior per-
formance over statistical models and state-of-the-art large language models across diverse bench-
marks and settings. To ensure fairness, we strictly follow the same evaluation protocols for all
baselines. Unless otherwise specified, we adopt GPT-4o (Wu et al., 2023a) as the default backbone.

4.1 PERFORMANCE ANALYSIS

Results. Our brief results in Table 1 demonstrate that TSci consistently outperforms LLM-based
baselines across eight benchmarks and significantly so for the majority of them. Compared with the
second-best baseline, TSci reduces MAE by an average of 38.2%. The results highlight the robust-
ness and generalization capability of TSci across heterogeneous domains, confirming its advantage
as a unified solution for time series forecasting. Figure 1a visualizes the performance comparison
using min-max inversion (maps the lowest-MAE method to 100, the highest-MAE maps to 20, and
others scale proportionally).

Figure 5 reports MAE on four ETT-small datasets across multiple horizons. TSci dominates statis-
tical methods on most datasets and horizons, particularly as the forecast length increases. At short
horizons, locally autoregressive structure can make simple linear models (e.g., linear regression)
competitive, which match or slightly exceed TSci. But their advantage diminishes as horizon in-
creases or patterns deviate from near-linear dynamics. The aggregate trend favors TSci, reflecting
its capacity to adapt to diverse regimes while preserving short-term fidelity. Full results by datasets
and horizons are provided in Appendix G.

Table 1: Time Series forecasting results compared with five LLM-based baselines. A lower value
indicates better performance. Red : the best, Blue : the second best.
Method GPT-4o Gemini-2.5 Flash Qwen-Plus DeepSeek-v3 Claude-3.7 TSci (Ours)

Metric MAE MAPE(%) MAE MAPE(%) MAE MAPE(%) MAE MAPE(%) MAE MAPE(%) MAE MAPE(%)

ETTh1 2.01e1 183.8 5.20 61.1 1.15e1 113.8 1.22e1 134.9 9.16 111.0 2.02 23.3
ETTh2 1.82e1 264.6 1.10e1 81.0 3.27e1 175.6 2.01e1 121.6 1.16e1 118.6 4.91 24.7
ETTm1 5.75 85.7 7.31 59.9 5.09 48.4 8.17 117.2 6.22 65.9 2.73 29.8
ETTm2 9.94 50.7 1.60e1 74.7 1.07e1 71.7 9.01 39.7 6.94 41.1 4.87 31.6
Weather 6.13e1 10.9 6.52e1 11.8 4.29e1 6.4 5.20e1 8.3 4.56e1 6.9 2.91e1 4.4

ECL 6.33e3 260.2 8.86e2 45.4 1.66e3 62.9 68.3e3 235.7 8.44e2 32.2 6.67e2 40.2
Exchange 1.60e-1 26.2 1.28e-1 19.9 8.5e-2 13.6 1.75e-1 26.7 7.3e-2 11.8 4.50e-2 6.8

ILI 2.17e5 26.2 2.46e5 29.3 3.37e5 37.0 2.24e5 26.5 1.79e5 19.7 1.41e5 16.2

1st Count 0 0 0 0 1 8

4.2 GENERATED REPORT EVALUATION

The final comprehensive report serves as a crucial interface to access and interpret the outcomes of
the framework. We evaluate the quality of the generated reports from a comprehensive perspective.

Evaluation Metrics. We adopt pairwise LLM-based comparison across five rubrics: AS, MJ (tech-
nical rigor), and IC, AQ, SC (communication quality). Details can be found in Appendix F. For
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Figure 5: Performance comparison of TSci with statistical baselines on ETT-small benchmarks.

each rubric, we compute the win rate, defined as the proportion of pairwise comparisons in which
our framework’s report is judged superior to a baseline, excluding ties.

Results. As shown in Table 2, TSci consistently outperforms all baselines across the five rubrics.
The largest gains appear in AS and MJ, where win rates exceed 80% for all comparisons, under-
scoring the rigor and appropriateness of our analyses and model choices. Strong performance is also
observed in IC and AQ (mostly above 75%), indicating coherent reasoning and actionable recom-
mendations. While the advantages of SC are smaller, our framework still delivers consistently struc-
tured and professional reports. Taken together, these results validate that TSci not only surpasses
baselines in predictive quality, but also generates reports that are technically rigorous, interpretable,
and practically useful. Figure 1b visualizes the win rate comparison (highest win rate maps to 100,
the lowest to 20, and others scale linearly).

Table 2: Win rate (%) of TSci against LLM-based baselines across five rubrics.

Baseline AS MJ IC AQ SC
TSci vs GPT-4o 80.8 84.6 80.8 76.9 71.4
TSci vs Gemini-2.5 Flash 81.8 81.8 63.6 68.2 53.8
TSci vs Qwen-Plus 83.3 83.3 79.2 75.0 75.0
TSci vs DeepSeek-v3 92.3 84.6 80.8 76.9 76.9
TSci vs Claude-3.7 84.7 87.5 84.6 80.8 53.8

4.3 MODEL ANALYSIS

Our results in Figure 6 indicate that ablating any of the data pre-processing, data analysis, or model
optimization module degrades time-series forecasting performance.

Effect of data preprocessing module. Removing the data preprocessing module in Curator leads
to an average of 41.80% increase in MAE, which is the largest increase among the three mod-
ules. More specifically, the performance degeneration increases with increasing prediction horizons
within one dataset. These findings demonstrate that data pre-processing contributes the most to the
robustness of TSci, and underscore that cleaning, resampling, and outlier handling are crucial for
analysis and especially long-horizon forecasts.

Effect of data analysis module. The analysis module in Curator profiles each series and serves for
downstream strategies. Removing the module harms MAE of 28.3% on average. Two minute-level
cases show small improvements (ETTm1-96 and ETTm-720), suggesting minute-level data at very
short/long horizons may benefit from further tuning of preprocessing and search. Overall, analysis
guidance stabilizes model choice and horizon-specific settings.

Effect of model optimization module. The model optimization module performs parameter search
for selected forecast models. Removing this module leaves a reasonable but suboptimal configu-
ration, producing a 36.2% MAE drop on average and a marked decline on long horizons or high-
variance series where horizon chunking and window sizing matter.

4.4 CASE STUDY

We present a case study on the ECL dataset with horizon H = 96, a case where our framework
surpasses other baselines by a large margin. We analyze the analysis summary generated by Curator
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and w/o Parameter Optimization. TSci attains the lowest MAE on six out of eight settings.

and the final report to highlight the effectiveness and interpretability of our agentic design. The data
analysis summary, visualization, and final comprehensive report are provided in Appendix H.

The whole dataset is first divided into 25 slices, and we take one slice for study. The analysis
summary in Appendix H.1 shows that the series exhibits strong cyclical fluctuations with noticeable
peaks and troughs, but no persistent long-term trend. Statistical summaries indicate a symmetric
distribution with light tails, as evidenced by near-zero skewness and negative kurtosis. Seasonal
decomposition further confirms a strong seasonal component, while stationarity tests suggest that
the data is non-stationary. Based on the analysis, Planner selected three models capable of handling
non-stationary and seasonal signals, including ARIMA, Prophet, and Exponential Smoothing from
the model library. The Visualization highlighted the cyclical nature of the data and irregular spikes,
reinforcing the importance of models that adapt to seasonality. Following this, Forecaster produced
ensemble forecasts and assigned higher weights to models capturing seasonal dynamics.

Figure 14 shows the ensemble forecast with individual model predictions. While individual models
such as ARIMA and Prophet struggled with accumulated errors over the horizon H = 96, our
ensemble remained stable and aligned with the seasonal cycles. The ensemble strategy given by
the LLM mitigates errors from the individual model and produces a more stable forecast. The
final comprehensive report further provided human-readable explanations, linking the model choices
directly to the identified seasonality and non-stationarity in the data.

This case study demonstrates that our framework is not only more accurate than baselines but also
produces interpretable outputs. The generated reports bridge the gap between automated forecast-
ing and human reasoning by explaining why certain models are preferred, how data characteristics
influence forecasts, and where potential risks (e.g., non-stationarity, irregular spikes) lie.

5 CONCLUSIONS AND FUTURE WORK

We introduced TimeSeriesScientist, the first end-to-end, agentic framework that automates univari-
ate time series forecasting via LLM reasoning. Extensive experiments across diverse benchmarks
show consistent gains over state-of-the-art LLM baselines, demonstrating both prediction accuracy
and report interpretability. This work provides the first step toward a unified, domain-agnostic ap-
proach for univariate time series forecasting, bridging the gap between traditional forecasting meth-
ods and the emerging capabilities of foundation models. Future directions include extending to
multimodal settings for broader applicability and incorporating external knowledge and efficiency-
oriented designs to enhance interpretability and scalability. We hope this work inspires further
research at the intersection of time series forecasting, agentic reasoning, and foundation models.
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6 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All datasets used in this
work are publicly available, and we provide a complete description of the datasets in Appendix D.2.
The implementation details of our proposed framework, including model configurations, training
protocols, and evaluation metrics, are described in Section 4, with further hyperparameter settings
reported in Appendix D. To facilitate replication, we release the source code and experiment scripts
in an anonymous repository as supplementary material. Additional information is also included in
the appendix. Together, these resources ensure that our results can be independently verified and
extended.
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A DATA PROCESSING STRATEGIES

We formalize a leakage-safe toolkit for detecting and repairing data issues in time series {xt}Tt=1.
All statistics are estimated on rolling (local) windows to accommodate non-stationarity. Let O and
M denote the sets of outlier and missing indices, respectively. The agent reasons on data statistics
and

A.1 OUTLIER DETECTION

Rolling IQR. On a windowWt of length w, compute its first and third quantile:

Q1(Wt), Q3(Wt), IQRt = Q3 −Q1. (4)

The outlier criterion:

xt is outlier if xt < Q1 − α · IQRt or xt > Q3 + α · IQRt, (5)

with a common choice α=1.5. If strong seasonality exists, set w to one or two seasonal cycles.

Rolling Z-Score. Estimate µt, σt within windowWt and define

zt =
|xt − µt|

σt
, xt is outlier if zt > α, (6)

typically α ∈ [3, 4] for online detection. For skewed/heavy-tailed data, replace µt and σt by the
median and MAD:

µt ← median(Wt), σt ← 1.4826 ·MAD(Wt), (7)

then apply the same threshold on zt.

Percentile Rule. Using empirical quantiles within Wt (adaptive) or from the training segment
(frozen),

xt is outlier if xt < Plower or xt > Pupper, (8)

e.g., (Plower, Pupper) = (1%, 99%) or (0.5%, 99.5%).

A.2 OUTLIER HANDLING

Clipping / Winsorization. Let L and U be lower/upper bounds from non-outliers (or from quan-
tiles such as P1%, P99%):

xclean
t =


L, xt < L,

U, xt > U,

xt, otherwise.
(9)

Interpolation (Segment-Aware). For a contiguous outlier segment t ∈ [a, b] with nearest clean
neighbors τ0 < a and τ1 > b,

xclean
t = xτ0 +

t− τ0
τ1 − τ0

(
xτ1 − xτ0

)
, t = a, . . . , b. (10)

For isolated points, this reduces to the two-point linear case (xclean
t = xt−1+xt+1

2 ).

Forward/Backward Fill. Short gaps in level-like processes:

xclean
t = xt−1 (FFill), xclean

t = xt+1 (BFill). (11)

Local Mean/Median Replacement. Within a causal neighborhood Nt (e.g., last w points),

xclean
t =

1

|Nt|
∑
i∈Nt

xi or xclean
t = median{xi : i ∈ Nt}. (12)

Median is preferred under heavy tails or residual outliers.
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Light Causal Smoothing. After replacement, apply a causal moving average to suppress residual
spikes:

xclean
t =

1

w

w−1∑
i=0

xt−i. (13)

Use small w to limit lag and peak attenuation.

A.3 MISSING-VALUE HANDLING

Linear Interpolation (Segment-Aware). For a missing segment t ∈ [a, b] bounded by clean
points τ0 < a and τ1 > b,

xt = xτ0 +
t− τ0
τ1 − τ0

(
xτ1 − xτ0

)
, t = a, . . . , b. (14)

Forward/Backward Fill.

xt = xt−1 (FFill), xt = xt+1 (BFill). (15)

Local Mean/Median Fill. Estimate within a local window (prefer causal in evaluation):

xt =
1

n

n∑
i=1

xi or xt = median{x1, . . . , xn}. (16)

Zero Fill (Semantic Zero Only).

xt = 0, (17)

used only when zero has a clear meaning (e.g., counts/absence).

B ENSEMBLE

Here we introduce the detailed

Setup. LetMselected = {mi(θ
∗
i )}ki=1 be the top-k models returned by Planner with tuned hyper-

parameters θ∗i and validation scores Sval. For each model mi, we compute a scalar validation loss
si (lower is better) by aggregating the normalized metric vector ℓi ∈ RM (e.g., MAE, MAPE):

si =

M∑
m=1

αm norm(ℓi,m) , αm ≥ 0,
∑
m

αm = 1. (18)

On the test horizon of length H , model mi outputs x̂(i)
1:H . An ensemble produces x̂h =

∑k
i=1 wi x̂

(i)
h

with horizon-wise fixed weights wi ≥ 0,
∑

i wi = 1. All choices below depend only on Sval and
pre-specified hyperparameters; no test data is touched.

(A) Single–Best Selection. Pick the model with the best validation score and use it alone:

i⋆ = arg min
i∈[k]

si, wi⋆ = 1, wj ̸=i⋆ = 0. (19)

When used. Prefer (19) if the leader is clearly ahead:

gap =
s(2) − s(1)

s(1)
≥ δ, with s(1) ≤ s(2) ≤ · · · ≤ s(k), (20)

where δ is a small margin (default δ = 0.05). This avoids diluting a dominant model with weaker
ones.
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(B) Performance-Aware Averaging. Assign higher weights to better validation performance while
preventing over-concentration. We use a temperatured inverse-loss scheme with shrinkage:

w̃i = (si + ε)−β , β > 0, ε > 0, (21)

wperf
i =

exp
(
− log w̃i/τ

)∑k
j=1 exp

(
− log w̃j/τ

) =
w̃

1/τ
i∑k

j=1 w̃
1/τ
j

, (22)

wi = (1− λ) clip
(
wperf

i , wmin, wmax

)
+ λ · 1

k
, (23)

with defaults β=1, τ=1, λ=0.1, wmin=0.02, wmax=0.80, and ε=10−8. When multiple metrics are
used, si comes from (18) with min–max normalization inside norm(·) across the k candidates. The
shrinkage in (23) stabilizes weights in small-k regimes and under close scores.

(C) Robust Aggregation. When candidate predictions disagree substantially, use distribution-
robust, order-statistic based pooling at each horizon index h:

Median: x̂med
h = median

{
x̂
(1)
h , . . . , x̂

(k)
h

}
, (24)

Trimmed mean: x̂trim
h =

1

k − 2⌊ρk⌋

k−⌊ρk⌋∑
i=⌊ρk⌋+1

x̂
(i)
h:↑, (25)

where x̂
(i)
h:↑ denotes the i-th smallest prediction at step h and ρ ∈ [0, 0.25) is the trimming fraction

(default ρ = 0.1). Median (24) has a 50% breakdown point; the trimmed mean (25) trades slightly
lower robustness for variance reduction.

Notes on implementation. (i) Weights wi are horizon-wise constant to avoid step-wise overfitting;
(ii) when Curator applies scaling (e.g., z-score), ensembling is performed in the scaled space and
then inverted; (iii) performance aggregation (18) can emphasize a primary metric by setting its αm

larger (we use αMAE=αMAPE=0.5 by default); (iv) computational cost is O(kH) for all strategies;
(v) for k=1, (19) is used by definition.

C MODEL LIBRARY

Here is a full list of time series models that we implement. The 21 models can be divided into 5
categories: 1) Traditional Statistical models; 2) Regression-based machine learning (ML) models; 3)
Tree-based Models (Ensemble method); 4) Neural Network Models (Deep Learning); 5) Specialized
Time Series Models. Details are listed in Table 3.

D EXPERIMENTAL DETAILS

D.1 IMPLEMENTATIONS

We use OpenAI GPT-4o (OpenAI et al., 2024) as the default backbone model. Due to a limited
budget, we divided all datasets into 25 slices and conducted experiments on these slices instead of
the entire dataset. The input time series length T for each slice is set as 512, and we use four different
prediction horizons H ∈ {96, 192, 336, 720}. The evaluation metrics include mean absolute error
(MAE) and mean absolute percentage error (MAPE). We report the averaged results from the 25
slices.

D.2 DATASET DETAILS

Dataset statistics are summarized in Table 4. We evaluate the univariate time series forecasting per-
formance on the well-established eight different benchmarks, including four ETT datasets, Weather,
Electricity, Exchange, and ILI from Wu et al. (2023a).
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Table 3: Implemented time series forecasting model library in model library.py.

Category Model Function name

Statistical (7)

ARIMA predict arima
RandomWalk predict random walk
ExponentialSmoothing predict exponential smoothing
MovingAverage predict moving average
TBATS predict tbats
Theta predict theta
Croston predict croston

ML regression (6)

LinearRegression predict linear regression
PolynomialRegression predict polynomial regression
RidgeRegression predict ridge regression
LassoRegression predict lasso regression
ElasticNet predict elastic net
SVR predict svr

Tree-based (4)

RandomForest predict random forest
GradientBoosting predict gradient boosting
XGBoost predict xgboost
LightGBM predict lightgbm

Neural networks (2) NeuralNetwork predict neural network
LSTM predict lstm

Specialized (2) Prophet predict prophet
Transformer predict transformer

Table 4: Summary of datasets across different domains.

Dataset Domain Length Frequency Duration

ETTh1, ETTh2 Electricity 17,420 1 hour 2016.07.01 - 2018.06.26
ETTm1, ETTm2 Electricity 69,680 15 mins 2016.07.01 - 2018.06.26

Weather Environment 52,696 10 mins 2020.01.01 - 2021.01.01
Electricity Electricity 26,304 1 hour 2016.07.01 - 2019.07.02
Exchange Economic 7,588 1 day 1990.01.01 - 2010.10.10

ILI Health 966 1 week 2002.01.01 - 2020.06.30

D.3 BASELINES

We benchmark TSci against several leading large language models, including GPT-4o, Gemini-2.5
Flash (Gemini Team, Google, 2025), Qwen-Plus (Cloud, 2025a), DeepSeek-v3 (Liu et al., 2024),
and Claude-3.7 (Cloud, 2025b).

E VISUALIZATIONS

E.1 LLM GUIDED DATA VISUALIZATIONS

Our framework generates comprehensive visualizations during the pre-processing stage to facili-
tate data understanding and quality assessment. The visualization pipeline employs a multi-panel
approach to systematically examine time series characteristics.

Time Series Overview Plot. The primary visualization component displays the raw time series data
with temporal indexing on the x-axis and corresponding values on the y-axis. This panel serves as
the foundational view for identifying global patterns, potential anomalies, and overall data structure.
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The visualization incorporates grid lines with reduced opacity (α = 0.3) to enhance readability
while maintaining focus on the data trajectory, as shown in Figure 7.

(a) Time Series Plot (b) Rolling Statistics Plot

Figure 7: Example of time series overview plot on one slice of ECL dataset with input length
T = 512. Figure 7a displays the raw data. Figure 7b shows the rolling mean and rolling standard
deviation of the data slice.

Time Series Decomposition Analysis Plot. To comprehensively understand the underlying struc-
ture of the time series data, we employ seasonal decomposition to decompose the original series
into four interpretable components, as shown in Figure 8. The decomposition follows the additive
model Xt = Tt + St + Rt, where Xt represents the original observed values, Tt denotes the trend
component capturing long-term systematic changes, St indicates the seasonal component revealing
periodic patterns with a fixed frequency, and Rt represents the residual component containing ran-
dom noise and unexplained variations. The trend component helps identify the overall direction and
magnitude of change over time, while the seasonal component exposes recurring patterns that may
be crucial for forecasting accuracy. The residual component serves as a diagnostic tool to assess
the adequacy of the decomposition and identify potential anomalies or structural breaks. This four-
panel visualization provides essential insights for selecting appropriate preprocessing strategies and
forecasting models, as the presence of strong trends or seasonality directly informs the choice of
detrending methods and seasonal adjustment techniques.

Autocorrelation Analysis Plot. To assess the temporal dependencies and identify potential patterns
in the time series data, we employ the autocorrelation function (ACF) and partial autocorrelation
function (PACF) plots, as shown in Figure 9. The ACF measures the linear relationship between
observations at different time lags, revealing the overall memory structure and helping identify sea-
sonal patterns, trends, and the presence of unit roots. The PACF, on the other hand, measures the
correlation between observations at a specific lag while controlling for the effects of intermediate
lags, providing insights into the optimal order of autoregressive models and helping distinguish
between autoregressive and moving average components. These diagnostic plots are essential for
model identification in ARIMA modeling, as they reveal the underlying stochastic process charac-
teristics and guide the selection of appropriate differencing operations and model parameters. The
ACF and PACF analysis enables us to understand the temporal structure of the data, identify poten-
tial non-stationarity issues, and inform the choice of appropriate forecasting models based on the
observed correlation patterns.

E.2 TECHNICAL IMPLEMENTATION DETAILS

All visualizations are generated using Matplotlib and seaborn libraries with consistent styling pa-
rameters to ensure reproducibility and professional presentation. The time series plots employ a line
width of 2.0 pixels with a standardized color palette (#c83e4b for primary series), while distribution
plots utilize a 2×2 subplot layout combining time series visualization, histogram with kernel den-
sity estimation (KDE), box plots, and Q-Q plots for comprehensive distributional analysis. Rolling
statistics plots compute moving averages and standard deviations using configurable window sizes
(default 24 periods) with distinct color coding for trend and volatility components. Seasonal de-
composition leverages the statsmodels.tsa.seasonal.seasonal decompose function with additive de-
composition and configurable seasonal periods, while autocorrelation analysis employs plot acf and
plot pacf functions with 40-lag windows for optimal model identification. All plots feature white
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Figure 8: Example of time series decomposition analysis plot on ECL dataset with input length
T=512. Figure 7(a) is the plot of the original time series Xt. Figure 7(b) is the plot of the trend
Tt. Figure 7(c) is the plot of the seasonal component St. Figure 7(d) is the plot of the residual
component Rt.

backgrounds with black grid lines (major grid: solid lines, 0.5px width, 30% opacity; minor grid:
dotted lines, 0.3px width, 20% opacity) and are saved as high-resolution PDF files (300 DPI) with
tight bounding boxes to ensure publication-quality output. The visualization generation process is
fully automated through LLM-driven configuration, allowing dynamic adaptation of plot parameters
based on data characteristics and analysis requirements.

E.3 OUTPUT AND INTEGRATION

The visualization pipeline generates standardized output files in PDF format, with configurable save
paths and automatic directory creation. Each visualization includes comprehensive logging for au-
dit trails and debugging purposes. The system integrates seamlessly with the broader time series
prediction framework, automatically generating visualizations during the pre-processing stage and
storing them for subsequent analysis and reporting phases.

These pre-processing visualizations serve as the foundation for data-driven decision making, en-
abling researchers and practitioners to understand their time series data characteristics before pro-
ceeding to model selection and forecasting stages.

F REPORT EVALUATION RUBRICS

Here, we describe the details of the five rubrics that comprehensively evaluate the generated report:

Analysis Soundness (AS): Evaluates the rigor and correctness of exploratory data analysis, includ-
ing the handling of missing values, anomaly detection, and identification of seasonality or trends.
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Figure 9: Example of autocorrelation analysis plot on ECL dataset with input length T = 512.
Figure 8(a) is the ACF plot, and Figure 8(b) is the PACF plot.

Model Justification (MJ): Assesses whether the chosen forecasting models are appropriate for the
data characteristics and whether the selection is supported by clear, evidence-based justification.

Interpretive Coherence (IC): Measures the logical consistency and alignment of the report’s rea-
soning, ensuring interpretations of diagnostics, errors, and results form a coherent narrative.

Actionability Quotient (AQ): Judges the extent to which the report provides concrete, evidence-
backed, and practically useful recommendations for decision making or system improvement.

Structural Clarity (SC): Examines the organization, readability, and professionalism of the report,
including section structure, flow, and correct referencing of figures and tables.

The five rubrics comprehensively evaluate the generated report along two dimensions: AS and MJ
assess the technical rigor of analysis and modeling choices, while IC, AQ, and SC assess the com-
munication quality and practical usefulness of the report. For each rubric, we compute the win
rate, defined as the proportion of pairwise comparisons in which our framework’s report is judged
superior to a baseline, excluding ties.

G FULL EXPERIMENT RESULTS

Here we present the full experiment results of our TSci on eight datasets against five LLM-based
baselines, as shown in Table 5 and Table 6. 1st Count row at the end of Table 6 indicates the number
of test cases where the model achieves the best performance across all datasets. TSci achieves supe-
rior performance across the majority of datasets and forecasting horizons (Figure 10), demonstrating
its LLM-driven reasoning capacity in time series forecasting. Figure 11 shows the complete result
of TSci compared with three statistical baselines on eight datasets. Figure 12 and 13 show the MAE
and MAPE distribution across datasets and horizons.
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Table 5: Time series forecasting results. A lower value indicates better performance. Red : the
best, Blue : the second best.

Methods GPT-4o Gemini-2.5 Flash Qwen-Plus DeepSeek-v3 Claude-3.7 TSci (Ours)

Metric MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

E
TT

h1

96 6.39 69.3 4.99 71.8 6.50 74.8 7.24 90.9 5.58 75.3 1.81 13.9
192 1.10e1 89.9 5.04 57.4 9.79 108.3 8.60 104.8 5.99 82.9 2.05 31.0
336 2.18e1 319.2 5.29 51.6 1.30e1 143.0 1.55e1 198.4 7.99 124.8 2.68 31.7
720 4.14e1 256.9 5.46 63.5 1.67e1 129.2 1.76e1 145.6 1.71e1 161.0 1.53 16.7
Avg 2.01e1 183.8 5.20 61.1 1.15e1 113.8 1.22e1 134.9 9.16 111.0 2.02 23.3

E
TT

h2

96 1.09e1 190.9 1.16e1 74.7 3.34e1 320.1 1.02e1 47.2 8.56 202.7 4.50 18.9
192 1.45e1 304.2 1.30e1 102.3 1.65e1 118.7 1.27e1 147.2 9.62 107.0 4.47 12.8
336 2.21e1 441.2 8.76 65.5 2.49e1 74.5 1.62e1 118.6 9.95 70.4 3.81 10.7
720 2.53e1 121.9 1.08e1 81.6 5.58e1 189.0 4.13e1 173.4 1.82e1 94.0 6.88 56.2
Avg 1.82e1 264.6 1.10e1 81.0 3.27e1 175.6 2.01e1 121.6 1.16e1 118.5 4.91 24.7

E
TT

m
1

96 2.68 24.3 5.91 43.0 4.01 43.9 3.53 31.7 3.09 26.8 1.68 15.7
192 5.84 78.8 8.21 56.1 5.56 67.4 7.94 91.4 5.80 52.0 1.89 19.9
336 6.86 147.9 8.06 61.5 8.48 70.6 1.23e1 206.1 8.23 67.1 3.26 31.5
720 7.62 91.7 7.04 79.0 2.31 11.9 8.97 139.4 7.78 117.9 4.10 52.0
Avg 5.75 85.7 7.31 59.9 5.09 48.4 8.17 117.1 6.22 65.9 2.73 29.8

E
TT

m
2

96 5.52 29.6 1.30e1 58.2 7.84 109.2 4.81 20.7 4.35 47.8 3.63 40.5
192 9.22 43.2 1.41e1 58.7 7.24 28.6 7.06 35.2 9.08 39.1 4.77 30.5
336 1.11e1 61.5 1.33e1 78.6 1.18e1 46.0 1.09e1 44.9 7.97 34.3 5.12 27.6
720 1.39e1 68.4 2.34e1 103.4 1.57e1 102.9 1.33e1 57.9 6.38 43.0 5.96 27.6
Avg 9.94 50.7 1.60e1 74.7 1.07e1 71.7 9.01 39.7 6.94 41.1 4.87 31.6

Table 6: Time series forecasting results (continuing). A lower value indicates better performance.
Red : the best, Blue : the second best.

Methods GPT-4o Gemini-2.5 Flash Qwen-Plus DeepSeek-v3 Claude-3.7 TSci (Ours)

Metric MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

W
ea

th
er

96 2.16e1 5.1 6.59e1 15.5 2.25e1 5.2 1.54e1 3.6 1.83e1 4.3 1.63e1 3.8
192 4.07e1 9.5 3.84e1 9.0 3.17e1 7.4 2.84e1 6.6 3.97e1 9.3 1.60e1 3.6
336 6.89e1 6.6 5.92e1 4.4 6.96e1 6.4 8.06e1 8.5 7.24e1 6.6 6.13e1 5.0
720 1.14e2 22.4 9.74e1 18.5 4.79e1 6.6 8.37e1 14.4 5.19e1 7.5 2.29e1 5.1
Avg 6.13e1 10.9 6.52e1 11.8 4.29e1 6.4 5.20e1 8.3 4.56e1 6.9 2.91e1 4.4

E
C

L

96 2.09e3 63.6 7.37e2 22.8 1.09e3 32.6 1.36e3 42.2 8.21e2 23.9 3.94e2 11.2
192 3.64e3 109.0 1.35e3 41.1 1.42e3 42.6 2.06e3 62.1 5.05e2 15.2 4.50e2 13.6
336 5.85e3 252.3 7.79e2 63.5 1.18e3 72.6 4.89e3 182.1 1.26e3 39.8 9.68e2 77.3
720 1.38e4 615.9 6.75e2 54.2 2.97e3 103.8 1.90e4 656.5 7.93e2 50.0 8.56e2 58.8
Avg 6.33e3 260.2 8.86e2 45.4 1.66e3 62.9 6.83e3 235.7 8.44e2 32.2 6.67e2 40.2

E
xc

ha
ng

e 96 6.21e-2 9.5 5.46e-2 8.8 3.21e-2 5.1 5.46e-2 8.3 3.08e-2 4.8 2.46e-2 3.8
192 1.09e-1 17.6 2.34e-1 35.3 6.04e-2 10.2 8.40e-2 13.5 8.75e-2 14.6 3.85e-2 5.8
336 1.52e-1 26.0 1.06e-1 17.1 7.96e-2 12.3 2.25e-1 35.9 6.65e-2 10.8 5.76e-2 8.9
720 3.14e-1 51.9 1.15e-1 18.4 1.70e-1 26.9 3.37e-1 49.1 1.06e-1 17.1 5.76e-2 8.8
Avg 1.60e-1 26.2 1.28e-1 19.9 8.50e-2 13.6 1.75e-1 26.7 7.30e-2 11.8 4.50e-2 6.8

IL
I

24 1.58e5 18.4 2.48e5 28.5 3.49e5 38.9 1.86e5 21.6 1.56e5 17.4 1.41e5 16.5
36 1.93e5 24.0 2.53e5 32.0 3.05e5 32.5 1.92e5 22.8 1.86e5 20.3 1.48e5 16.8
48 2.45e5 28.9 2.83e5 34.1 3.67e5 41.3 2.58e5 30.5 1.76e5 19.0 1.34e5 15.6
60 2.72e5 33.4 1.98e5 22.6 3.29e5 35.5 2.62e5 31.3 1.98e5 22.1 1.40e5 16.2

Avg 2.17e5 26.2 2.46e5 29.3 3.37e5 37.1 2.24e5 26.5 1.79e5 19.7 1.41e5 16.3

1st Count 0 3 2 2 3 35

H CASE STUDY ON ECL DATASET

H.1 ANALYSIS SUMMARY

This analysis summary presents the findings from a time series forecasting experiment conducted
on the ECL dataset. The analysis focused on understanding the trend, seasonality, and stationarity
of the data, and potential improvements for future forecasting efforts.
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Figure 10: Performance comparison of TSci with five LLM-based baselines across eight datasets.

Figure 11: Performance comparison of TSci with three statistical baselines across eight datasets.

Analysis Summary generated from Curator

”Trend Analysis”: {
”Description”: ”The time series data exhibits an overall upward trend over the observed pe-
riod. This is evident from the increasing values towards the end of the series compared to the
beginning. The trend is not strictly linear, as there are fluctuations and periods of decline,
but the general direction is upward.”,
”Strength”: ”Moderate to strong, with noticeable periods of growth, particularly towards the
latter part of the series.”,
”Supporting Evidence”: ”The Basic Time Series Plot and Rolling Statistics visualizations
show a clear upward trajectory, especially in the latter half of the data.”
},
”Seasonality Analysis”: {
”Description”: ”There are indications of seasonality in the data, with recurring patterns that
suggest periodic fluctuations. These patterns are not strictly regular but suggest some form
of cyclical behavior.”,
”Periodicity”: ”The exact periodicity is not immediately clear from the data provided, but
the Seasonal Decomposition visualization should provide insights into the seasonal compo-
nent.”,
”Supporting Evidence”: ”The Seasonal Decomposition visualization will help identify and
confirm any seasonal patterns present in the data.”
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Figure 12: Slice-level MAE distributions across datasets and horizons. The 2×4 grid organizes
subplots by dataset; within each subplot, four horizons are separated by dashed lines, and six meth-
ods are shown as grouped boxplots. Y-axis uses log10 scale; lower is better.

Figure 13: Slice-level MAPE distributions across datasets and horizons. The 2×4 grid organizes
subplots by dataset; within each subplot, four horizons are separated by dashed lines, and six meth-
ods are shown as grouped boxplots. Y-axis uses log10 scale; lower is better.

},
”Stationarity”: {
”Description”: ”The time series appears to be non-stationary, as indicated by the presence of
a trend and potential seasonality. Non-stationarity is also suggested by the rolling statistics,
which show changing mean and variance over time.”,
”Implications”: ”Non-stationarity implies that the data may need to be transformed (e.g.,
differencing, detrending) before applying certain forecasting models that assume stationar-
ity.”,
”Supporting Evidence”: ”The Rolling Statistics visualization shows variations in mean and
variance, indicating non-stationarity.”
},
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”Potential Issues for Forecasting”: { ”Non-Stationarity”: ”The presence of a trend and po-
tential seasonality suggests non-stationarity, which may require transformation.”,
”Structural Breaks”: ”There may be structural breaks or regime shifts, particularly around
periods of rapid change in the data.”,
”Data Quality”: ”No explicit data quality issues are mentioned, but any missing values or
outliers should be addressed before modeling.”,
”Supporting Evidence”: ”The Basic Time Series Plot and Rolling Statistics visualizations
highlight periods of rapid change and variability.”
},
”Summary of Key Findings”: {
”Trend”: ”The data shows a moderate to strong upward trend.”,
”Seasonality”: ”Potential seasonal patterns are present, though further analysis is needed to
confirm periodicity.”,
”Stationarity”: ”The series is non-stationary, requiring transformation for certain models.”,
”Forecasting Challenges”: ”Addressing non-stationarity and potential structural breaks will
be crucial for accurate forecasting.”,
”Actionable Insights”: ”Consider transformations such as differencing or detrending to
achieve stationarity. Use models that can handle non-stationary data or incorporate trend
and seasonality components.”
}

H.2 VISUALIZATION

Figure 14 shows the ensemble forecast with individual model predictions and confidence intervals
on the ECL dataset.

Figure 14: Case study of ensemble forecast with individual model predictions on ECL dataset.

H.3 COMPREHENSIVE REPORT

Comprehensive report

This report presents the findings from a time series forecasting experiment conducted on
an industrial dataset. The primary objective was to evaluate the performance of various
forecasting models and their ensemble on a specific data slice. The analysis focused on un-
derstanding data characteristics, model performance, and potential improvements for future
forecasting efforts.
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## Key Findings and Model Performance
### Data Characteristics
- **Trend**: The dataset exhibits a strong upward trend.
- **Seasonality**: Presence of seasonal patterns, though not strongly pronounced.
- **Stationarity**: The data is non-stationary, necessitating transformations for certain
models.

### Model Performance
- **Ensemble Model**: Utilized a weighted average approach with weights assigned to
Exponential Smoothing (35%), ARIMA (40%), and Random Forest (25%).
- **MSE**: 209,950.78
- **MAE**: 393.83
- **MAPE**: 11.20%
- **Individual Models**:
- **Exponential Smoothing**:
- MSE: 192,879.83
- MAE: 377.15
- MAPE: 10.73%
- **ARIMA**:
- MSE: 205,582.59
- MAE: 390.10
- MAPE: 11.09%
- **Random Forest**:
- MSE: 242,977.49
- MAE: 423.16
- MAPE: 12.02%

## Issues and Limitations
- **Non-Stationarity**: The presence of a trend complicates modeling and may require dif-
ferencing or transformation.
- **Structural Breaks**: Potential structural breaks or regime shifts were noted, particularly
around the midpoint of the series.
- **Model Performance**: While Exponential Smoothing and ARIMA performed relatively
well, Random Forest showed higher error metrics, indicating potential overfitting or inade-
quacy for this dataset.
## Recommendations
1. **Data Preprocessing**: Further address non-stationarity through differencing or trans-
formation techniques.
2. **Model Selection**: Consider refining model hyperparameters and exploring additional
models like SARIMA or advanced machine learning techniques.
3. **Ensemble Strategy**: Re-evaluate the ensemble weighting strategy to optimize perfor-
mance based on individual model strengths.
This analysis provides a comprehensive overview of the current forecasting capabilities and
outlines actionable steps for enhancing future model performance.

I PROMPTS

Prompt for Curator

PREPROCESS SYSTEM PROMPT =
You are the Data Preprocessing Chief Agent for an advanced time series forecasting system.
Your mission is to ensure that all input data is of the highest possible quality before it enters
the modeling pipeline.
Background:
- You have deep expertise in time series data cleaning, anomaly detection, and preparation
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for machine learning and statistical forecasting.
- You understand the downstream impact of preprocessing choices on model performance
and interpretability.
Your responsibilities:
- Rigorously assess the quality of the input time series, identifying missing values, outliers,
and structural issues.
- For each issue, recommend the most appropriate handling strategy, considering both sta-
tistical best practices and the needs of advanced forecasting models.
- Justify your recommendations with clear reasoning, referencing both the data characteris-
tics and potential modeling implications.
- If relevant, suggest additional preprocessing steps (e.g., resampling, detrending, feature
engineering) that could improve results.
- Always return your decisions in a structured Python dict, and ensure your reasoning is
transparent and actionable.
You have access to:
- The raw time series data (as a Python dict)
- Any prior preprocessing history or known data issues
Your output will directly determine how the data is prepared for all subsequent analysis and
modeling.

DATA PREPROCESS PROMPT =
You are a time series data preprocessing expert.
Given the following time series data (as a Python dict):
{{data.to dict(orient=’list’)}}
Please:
1. Assess the overall data quality.
2. Recommend a missing value handling strategy (choose from: interpolate, forward fill,
backward fill, mean, median, drop, zero).
3. Recommend an outlier handling strategy (choose from: clip, drop, zero, interpolate, ffill,
bfill, mean, median, smooth).
4. Optionally, suggest any other preprocessing steps if needed.
Return your answer as a Python dict: {
”quality assessment”: ”string”,
”missing value strategy”: ”string”,
”outlier strategy”: ”string”,
”other suggestions”: ”string”
}

ANALYSIS REPORT GENERATION PROMPT =
Given the following preprocessed time series data and generated visualizations, please pro-
vide a comprehensive analysis report.
Data (as a Python dict):
{{sample}}
Generated Visualizations:
{{visualizations}}
Note: This data has already been preprocessed - missing values and outliers have been
handled.
Please provide a comprehensive analysis including:
1. Data Overview:
- basic stats: mean, std, min, max, trend
- data characteristics: seasonality, stationarity, patterns
2. Data Quality Assessment:
- data quality score: overall quality score (0-1) after preprocessing
- data characteristics: key characteristics of the cleaned data
3. Insights from Visualizations:
- key patterns: patterns observed in the data
- seasonal components: any seasonal patterns
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- trend analysis: overall trend direction and strength
- distribution characteristics: data distribution insights
4. Forecasting Readiness:
- data suitability: how suitable this data is for forecasting
- potential challenges: any challenges for forecasting models
- data strengths: strengths of this dataset
5. Model and Feature Recommendations:
- model suggestions: suitable model types for this data
- feature engineering: suggested features to create
- preprocessing effectiveness: how well the preprocessing worked
IMPORTANT: Return ONLY the JSON object below, with NO markdown formatting, NO
code blocks, NO explanations. Just the raw JSON.
{

"data_overview": {
"basic_stats": {

"mean": float,
"std": float,
"min": float,
"max": float,
"trend": "string"

},
"data_characteristics": {

"seasonality": "string",
"stationarity": "string",
"patterns": ["string"]

}
},
"quality_assessment": {

"data_quality_score": float,
"data_characteristics": "string"

},
"visualization_insights": {

"key_patterns": ["string"],
"seasonal_components": "string",
"trend_analysis": "string",
"distribution_characteristics": "string"

},
"forecasting_readiness": {

"data_suitability": "string",
"potential_challenges": ["string"],
"data_strengths": ["string"]

},
"recommendations": {

"model_suggestions": ["string"],
"feature_engineering": ["string"],
"preprocessing_effectiveness": "string"

}
}

DATA VISUALIZATION PROMPT =
Given the following preprocessed time series data and generated visualizations, please pro-
vide a comprehensive analysis report.
Data (as a Python dict):
{{sample}}
Generated Visualizations:
{{visualizations}}
Note: This data has already been preprocessed - missing values and outliers have been
handled.
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Please provide a comprehensive analysis including:
1. Data Overview:
- basic stats: mean, std, min, max, trend
- data characteristics: seasonality, stationarity, patterns
2. Data Quality Assessment:
- data quality score: overall quality score (0-1) after preprocessing
- data characteristics: key characteristics of the cleaned data
3. Insights from Visualizations:
- key patterns: patterns observed in the data
- seasonal components: any seasonal patterns
- trend analysis: overall trend direction and strength
- distribution characteristics: data distribution insights
4. Forecasting Readiness:
- data suitability: how suitable this data is for forecasting
- potential challenges: any challenges for forecasting models
- data strengths: strengths of this dataset
5. Model and Feature Recommendations:
- model suggestions: suitable model types for this data
- feature engineering: suggested features to create
- preprocessing effectiveness: how well the preprocessing worked
IMPORTANT: Return ONLY the JSON object below, with NO markdown formatting, NO
code blocks, NO explanations. Just the raw JSON.
{{

"data_overview": {{
"basic_stats": {{

"mean": float,
"std": float,
"min": float,
"max": float,
"trend": "string"

}},
"data_characteristics": {{

"seasonality": "string",
"stationarity": "string",
"patterns": ["string"]

}}
}},
"quality_assessment": {{

"data_quality_score": float,
"data_characteristics": "string"

}},
"visualization_insights": {{

"key_patterns": ["string"],
"seasonal_components": "string",
"trend_analysis": "string",
"distribution_characteristics": "string"

}},
"forecasting_readiness": {{

"data_suitability": "string",
"potential_challenges": ["string"],
"data_strengths": ["string"]

}},
"recommendations": {{

"model_suggestions": ["string"],
"feature_engineering": ["string"],
"preprocessing_effectiveness": "string"

}}
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}}

DATA ANALYSIS PROMPT = Given the following time series data (as a Python dict):
{{sample}}
Please analyze the data quality and provide the following information as a JSON file:
1. Basic statistics for each column:
- mean: float
- std: float
- min: float
- max: float
- trend: ’increasing’/’decreasing’/’stable’
2. Missing value information:
- missing count: int (total missing values)
- missing percentage: float (percentage of missing values)
3. Outlier information:
- outlier count: int (total outliers detected)
- outlier percentage: float (percentage of outliers in the data, between 0 and 1)
4. Data quality assessment:
- data quality score: float (0-1, where 1 is perfect quality)
- main issues: list of strings (e.g., [’missing values’, ’outliers’, ’noise’, ...])
5. Recommended preprocessing strategies:
- missing value strategy: string (choose from: ’interpolate’, ’forward fill’, ’backward fill’,
’mean’, ’median’, ’drop’, ’zero’)
- outlier detect strategy: string (choose from: ’iqr’, ’zscore’, ’percentile’, ’none’)
- outlier handle strategy: string (choose from: ’clip’, ’drop’, ’interpolate’, ’ffill’, ’bfill’,
’mean’, ’median’, ’smooth’)
IMPORTANT: Return ONLY the JSON object below, with NO markdown formatting, NO
code blocks, NO explanations. Just the raw JSON:
{{

"basic_stats": {{
"mean": float,
"std": float,
"min": float,
"max": float,
"trend": "string"

}},
"missing_info": {{

"missing_count": int,
"missing_percentage": float

}},
"outlier_info": {{

"outlier_count": int,
"outlier_percentage": float

}},
"quality_assessment": {{

"data_quality_score": float,
"main_issues": ["string"]

}},
"recommended_strategies": {{

"missing_value_strategy": "string",
"outlier_detect_strategy": "string",
"outlier_handle_strategy": "string"

}}
}}

VISUALIZATION DECISION PROMPT= Given the following time series data:
Data shape:
{{data.shape}}
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Data columns:
{{list(data.columns)}}
Please decide what visualizations would be most useful for understanding this data.
Consider the data characteristics and quality issues.
Choose from these visualization types:
- time series: Basic time series plot
- distribution: Histogram, box plot, KDE
- rolling stats: Rolling mean, std, etc.
- autocorrelation: ACF/PACF plots
- seasonal decomposition: Trend, seasonal, residual components
IMPORTANT: Return ONLY the JSON object below, with NO markdown formatting, NO
code blocks, NO explanations. Just the raw JSON:
{{

"visualizations": [
{{

"name": "string",
"type": "string",
"description": "string",
"features": ["string"],
"title": "string",
"xlabel": "string",
"ylabel": "string",
"additional_elements": ["string"],
"plot_specific_params": {{}}

}}
]

}}

Prompt for Planner

SYSTEM PROMPT = You are the Principal Data Analyst Agent for a state-of-the-art time
series forecasting platform.
Background:
- You are an expert in time series statistics, pattern recognition, and exploratory data analysis.
- Your insights will guide model selection, hyperparameter tuning, and risk assessment.
Your responsibilities:
- Provide a comprehensive statistical summary of the input data, including central tendency,
dispersion, skewness, and kurtosis.
- Detect and describe any trends, seasonality, regime shifts, or anomalies.
- Assess stationarity and discuss its implications for modeling.
- Identify potential challenges for forecasting, such as non-stationarity, structural breaks, or
data quality issues.
- Justify all findings with reference to the data and, where possible, relate them to best
practices in time series modeling.
- Always return your analysis in a structured Python dict, with clear, concise, and actionable
insights.
You have access to:
- The cleaned time series data (as a Python dict)
- Visualizations (if available) to support your analysis
Your output will be used by downstream agents to select and configure forecasting models.
ANALYSIS PROMPT = Given the following time series data and visualizations, please
provide a comprehensive analysis.
Data (as a Python dict):
{{sample}}
{{viz info}}
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Please analyze:
1. Trend analysis - overall direction and strength
2. Seasonality analysis - any recurring patterns
3. Stationarity - whether the data is stationary
4. Potential issues for forecasting
5. Summary of key findings
Return your analysis in a clear, structured format.

Prompt for Planner

SYSTEM PROMPT = You are the Model Selection and Validation Lead Agent for an
industrial time series forecasting system.
Background:
- You are highly skilled in matching data characteristics to appropriate forecasting models
and in designing robust validation strategies.
- You understand the strengths, weaknesses, and requirements of a wide range of statistical
and machine learning models.
Your responsibilities:
- Review the data analysis summary and select the top 3 most suitable forecasting models
from the provided list.
- For each model, recommend a hyperparameter search space tailored to the data’s charac-
teristics and modeling goals.
- Justify each model choice and hyperparameter range, referencing both the analysis and
your domain expertise.
- Consider diversity in model selection to maximize ensemble robustness.
- Always return your decisions in a structured Python dict, with clear reasoning for each
choice.
You have access to:
- The data analysis summary (as a Python dict)
- The list of available models
Your output will directly determine which models are trained and how they are tuned.
MODEL SELECTION PROMPT= You are a time series model selection agent. Given
the analysis report analysis and available models available models, select the best
n candidates models that are most suitable for the data and propose hyperparameters for
each model.
For each model, you should propose a hyperparameter search space tailored to the data
characteristics and modeling goals.
Justify each model choice and hyperparameter range, referencing both the analysis and your
domain expertise.
Return your answer in the following JSON format with an array of selected models:
{{

"selected_models": [
{{

"model": "string",
"hyperparameters": {{...}},
"reason": "string"

}},
{{

"model": "string",
"hyperparameters": {{...}},
"reason": "string"

}},
]

}}

Below is an example of the output:
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{{
"selected_models": [

{{
"model": "ARIMA",
"hyperparameters": {{

"p": [0, 1, 2],
"d": [0, 1],
"q": [0, 1, 2],

}},
"reason": "string"

}},
]

}}

IMPORTANT REQUIREMENTS: 1. Return EXACTLY n candidates models in the se-
lected models array
2. Each model must have ”model”, ”hyperparameters”, and ”reason” fields
3. The ”model” field must be one of the available models: available models
4. The ”hyperparameters” field should contain 2-3 parameter search spaces as arrays
5. Return ONLY the JSON object, no markdown formatting, no explanations before or after
6. Ensure the JSON is valid and properly formatted

Prompt for Forecaster

SYSTEM PROMPT = You are the Ensemble Forecasting Integration Agent for a high-
stakes time series prediction system.
Background:
- You are an expert in ensemble methods, model averaging, and uncertainty quantification
for time series forecasting.
- Your integration strategy can significantly impact the accuracy and reliability of the final
forecast.
Your responsibilities:
- Review the individual model forecasts and any available visualizations.
- Decide the most appropriate ensemble integration strategy (e.g., best model, weighted av-
erage, trimmed mean, median, custom weights).
- If using weights, specify them and explain your rationale.
- Justify your integration choice, considering model diversity, agreement, and historical per-
formance.
- Assess your confidence in the ensemble and note any risks or caveats.
- Always return your decision in a structured Python dict, with transparent reasoning.
You have access to:
- The individual model forecasts (as a Python dict)
- Visualizations of the forecasts and historical data
- Prediction tools for different models (ARMA, LSTM, RandomForest, etc.)
Your output will be used as the final forecast for this time series slice.
ENSEMBLE DECISION PROMPT= You are an ensemble forecasting expert.
Given the following individual model forecasts:
json.dumps(individual forecasts, indent=2)
{{viz info}}
Please:
1. Decide the best ensemble integration strategy (choose from: best model,
weighted average, trimmed mean, median, custom weights).
2. If using weights, specify the weights for each model.
3. Justify your choice.
4. Assess your confidence in the ensemble.
IMPORTANT: Return your answer ONLY as a JSON object, with NO markdown formatting,
NO code blocks, NO explanations. Just the raw JSON:
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{{
"integration_strategy": "string",
"weights": {{"model_name": "float"}} (if applicable),
"selected_model": "string" (if best_model),
"reasoning": "string",
"confidence": "string"

}}

MODEL WEIGHTS PROMPT = You are an ensemble forecasting expert.
Given the following individual model forecasts:
json.dumps(individual forecasts, indent=2)
viz info
Please:
1. Decide the best ensemble integration strategy (choose from: best model,
weighted average, trimmed mean, median, custom weights).
2. If using weights, specify the weights for each model.
3. Justify your choice.
4. Assess your confidence in the ensemble.
IMPORTANT: Return your answer ONLY as a JSON object, with NO markdown formatting,
NO code blocks, NO explanations. Just the raw JSON:
{{

"integration_strategy": "string",
"weights": {{"model_name": "float"}} (if applicable),
"selected_model": "string" (if best_model),
"reasoning": "string",
"confidence": "string"

}}

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used as assistive tools in the preparation of this work. Specif-
ically, we employed ChatGPT (OpenAI GPT-5) to make minor edits to academic writing, such as
drafting and refining sections (e.g., introduction, related work). All scientific claims, methodological
contributions, and experimental results were conceived, implemented, and validated by the authors.
The authors take full responsibility for the content presented in this paper.
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