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Abstract

Improving out-of-distribution (OOD) generalization during in-distribution (ID)
adaptation is a primary goal of robust fine-tuning of zero-shot models beyond
naive fine-tuning. However, despite decent OOD generalization performance from
recent robust fine-tuning methods, confidence calibration for reliable model output
has not been fully addressed. This work proposes a robust fine-tuning method
that improves both OOD accuracy and confidence calibration simultaneously in
vision language models. Firstly, we show that both OOD classification and OOD
calibration errors have a shared upper bound consisting of two terms of ID data: 1)
ID calibration error and 2) the smallest singular value of the ID input covariance
matrix. Based on this insight, we design a novel framework that conducts fine-
tuning with a constrained multimodal contrastive loss enforcing a larger smallest
singular value, which is further guided by the self-distillation of a moving-averaged
model to achieve calibrated prediction as well. Starting from empirical evidence
supporting our theoretical statements, we provide extensive experimental results
on ImageNet distribution shift benchmarks that demonstrate the effectiveness of
our theorem and its practical implementation. Our code is available here.

1 Introduction

Foundation models [6] such as CLIP [47] have been extensively utilized on diverse domains via
pretrain-finetune approaches. Their generalized knowledge shaped after large-scale pre-training
enables them to easily adapt to downstream tasks through zero-shot inference or fine-tuning. However,
it has been steadily reported that a naive fine-tuning approach comprises foundation models’ strong
out-of-distribution (OOD) generalization capability during adaptation to in-distribution (ID) data
[61, 30]. To ensure robustness under distribution shifts, a wide range of research has followed [61,
30, 17, 32, 57, 43, 42] so-called robust fine-tuning. Despite the advancements of the robust fine-
tuning methods, we are aware that an important criterion for trustworthy machine learning has
been overlooked – confidence calibration [39, 8] that quantifies how close the confidence of our
predictor is to the actual correctness of predictions. As shown in Figure 1, existing robust fine-tuning
methods hurt the confidence calibration in terms of expected calibration error (ECE) [40] on OOD
data compared to the zero-shot evaluation while they show improvements on OOD accuracy. In this
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Figure 1: OOD accuracy vs. ID accuracy (left) and negative OOD ECE (right). To maintain consistency
in the plots, where desired values are shown on the right side of the x-axis, we report negative OOD ECE. ID
ACC refers to ImageNet-1K top-1 accuracy; OOD ACC and ECE refer to the averaged accuracy and ECE of the
five ImageNet distribution shifts (ImageNetV2, ImageNet-R, ImageNet-A, ImageNet-Sketch, and ObjectNet),
respectively. Detailed numbers are reported in Table 2 and 3. Note that the competing methods – FLYP [17],
LP-FT [30], and Lipsum-FT [42] – improve OOD accuracy over the zero-shot baseline (ZS) and naive fine-tuning
(FT) but suffer from OOD miscalibration, presumably due to concerning generalization solely during fine-tuning.
Our CaRot outperforms existing methods on both OOD accuracy and calibration by large margins.

work, we introduce a calibrated robust fine-tuning method (CaRot) that simultaneously improves
confidence calibration and accuracy of the classifier on OOD data.

Confidence calibration is a key aspect of reliable machine learning, essential for avoiding high-
confidence incorrect predictions in real-world decision-making systems. This is particularly crucial
in high-stakes tasks like autonomous driving and healthcare applications. After a seminal work [18]
revealed the miscalibration problem of high-performing neural networks, a plethora of attempts
followed to improve the calibration of neural network models through post-hoc adjustments [65,
18, 29, 68, 19] or train-time regularizations [67, 52, 56, 38, 37]. However, many of them focus on
improving calibration for ID samples, and methods for enhancing OOD calibration usually require
OOD samples at train time [63, 16]. Moreover, these approaches commonly focus on calibration
alone without ensuring improvement in other quantities, e.g., accuracy. In this work, we explore a
unified framework that jointly considers calibration and accuracy (particularly on OOD data).

To accomplish low classification and calibration errors on OOD samples with only ID samples in our
hands, we conduct theoretical analyses of those OOD errors. To be specific, we derive an upper bound
that is shared for OOD classification error and OOD calibration error composed with two quantities
on ID samples, 1) the reciprocal of the smallest singular value of the normalized covariance matrix of
ID data representation and 2) the ID calibration error. Different from the existing bounds focusing
on either one of classification or calibration error [5, 72, 63], we address both classification and
calibration errors in a single unified bound. More importantly, the chief components of our bound
can be computed solely with ID samples without relying on any OOD samples, which discerns our
approach to existing work [4].

Motivated by our theoretical analysis, we propose a new multimodal contrastive loss that promotes
the smallest singular value of input image representation to become larger by enforcing the
orthogonality of the final projection matrix of the visual encoder. Furthermore, to understand the
working mechanism in depth, we present an interpretation of our new multimodal contrastive loss
as a process of seeking the low-rank approximation of cross-covariance matrix over image-text
representations on a reduced solution space induced by the orthogonality constraint. Meanwhile, to
enhance confidence calibration on ID samples during fine-tuning, we utilize a self-distillation
(SD) with an exponential moving average (EMA) teacher model. This EMA SD encourages a student
model to learn semantic similarity structures of in-batch data representations from teacher predictions
across diverse contrastive pairs, appropriately adjusting confidence per instance.

We first validate our new error bounds with synthetic datasets to show that the bounds hold empiri-
cally. Then, evaluate our method by conducting extensive experiments of fine-tuning CLIP [47] on
ImageNet-1K [10] classification task under natural distribution shift (ImageNet-V2/R/A/Sketch and
ObjectNet) and synthetic distribution shift (ImageNet-C). We demonstrate the effectiveness of our
proposed framework for robust generalization and calibration by observing consistent improvements
in terms of expected calibration error and accuracy on ID/OOD datasets.
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Summary of contributions. 1) We point out that existing fine-tuning methods do not adequately
achieve satisfactory OOD generalization and calibration simultaneously. 2) We provide theoretical
analysis for classification and calibration errors on the OOD data and show that they are both bounded
from above by the ID calibration error and the smallest singular value of the covariance matrix over
the ID input representation. 3) Based on our theoretical analyses, we devise a calibrated robust
fine-tuning method, CaRot, as a practical realization of our theorem that reduces the upper bound of
OOD classification and calibration errors by conducting constrained multimodal contrastive learning
with EMA self-distillation. 4) We present empirical evidence for our theory on a synthetic dataset
and demonstrate the efficacy of CaRot via extensive evaluations on ImageNet-1K distribution shifts
in terms of accuracy and calibration error on ID and OOD domains.

2 Preliminary

Robust fine-tuning aims to achieve consistently high performance on data from both training
distribution (ID) and related but different test distributions (OOD). For validation, we commonly
consider a covariate shift scenario for the classification task, where both ID and OOD domains
share the class categories (YID = YOOD) and have the same conditional distribution P (Y |X),
but have different marginal distributions over input X . That is, PID(Y |X) = POOD(Y |X) but
PID(X) ̸= POOD(X). Here, we evaluate a model that is fine-tuned on a training split of the ID
domain, on a test split of ID, and on OOD domains. The term “OOD" is quite general, and we confine
the scope of OOD to transformed and related distributions with ID [12]. For example, if our ID data
is about an object recognition task with images, OOD data is about a sensor-noised version of ID, or
independently collected data from a different domain targeting the same task.

Confidence calibration is a concept of matching the prediction probabilities yielded for different
inputs to the expected accuracy on these inputs. In a K-way classification setting, let X ∈ Rd
and Y ∈ {1, ...,K} be random variables indicating inputs and labels, respectively. A dataset
with N independent samples from the joint distribution P (X,Y ) = P (Y |X)P (X) is denoted
by {(xn, yn)}Nn=1. Let f be a classifier and f(y|x) = p̂ be a confidence, i.e., the maximum of
probabilities among K dimensions corresponding to its prediction ŷ. We say a model is perfectly-
calibrated when P(ŷ = y|p̂ = p) = p, ∀p ∈ [0, 1]. As a quantitative measure, the model calibration
can be derived as E[|P(ŷ = y|p̂ = p)− p|]. In practice, we use expected calibration error (ECE) [40]
as an empirical approximation of the model calibration, which is a weighted average of bin-wise
miscalibration. The ECE divides the confidence score of N samples into M uniform confidence bins
{Bm}Mm=1 and takes the mean of the gap between accuracy (acc) and confidence (conf) over the bins
weighted by the number of samples in the bins, i.e., ECE =

∑M
m=1

|Bm|
N |acc(Bm)− conf(Bm)|.

3 Theoretical Analysis on OOD Generalization and Calibration

We first identify the factors that affect OOD generalization and calibration errors under circumstances
where only ID data is accessible. We take inspiration from the generalization bound of domain adap-
tation literature [5, 72] while remarkably adapting the analysis to consider both OOD classification
error and OOD calibration error at the same time in a more practical way.

Let D be a domain on input space X and Y = {0, 1} be a label space for a binary classification.
Among the sufficiently expressive hypothesis functions h : X → [0, 1] in a classH, we define h0(·)
as a desired calibrated predictor for y, which minimizes the calibration error Ex∼D[(h(x)− c(x))2]
[39], where c(x) = Ey[y|h(x)] is the expected value of y given a prediction h(x). That is, h0 always
produces the calibrated prediction for y given x so that the output confidence h0(x) matches the
expectation of y over the subset of samples that have the same confidence value with h0(x). Our goal
is to learn a hypothesis function h(·) that outputs reliable prediction probability on samples from
the unseen OOD domain, which is defined by a distribution DOOD, as well as on the ID domain DID,
where the predictor is trained on. In essence, the error εD(h) = Ex∼D[(h(x)− h0(x))2] should be
small for two different domains D ∈ {DID,DOOD}. Here, we focus on the covariate shift scenario
(§2) that only the marginal distribution over X changes while the distribution over Y is preserved.

Let the optimal hypothesis h∗, which minimizes a combination of errors on both ID and OOD,
be h∗ := argminh∈H εDID(h) + εDOOD(h), and ∆ denote the optimal joint error ∆ := εDID(h

∗) +
εDOOD(h

∗). Now, we derive a new bound for the OOD calibration error and OOD classification error.
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Theorem 3.1. Let h : X → [0, 1] be a real-valued function which has structure h(x) =∑d
i=1 hi(x[i]) where hi is an arbitrary one-dimensional function, and h(·) is in a hypothesis classH

that has pseudo dimension Pdim(H) = dh, D̂ID be an N -size empirical distribution on ID domain.
If (x[i], x[j]) is a bi-variate Gaussian random variable for every i, j ∈ [d], then for any δ ∈ (0, 1)
and for all h, the following bounds hold with probability at least 1− δ:

i) εDOOD(h) ≤ εD̂ID
(h) +

d

σmin(Σ̃DID)
+ ∆+O

√ 1

N
log (

N

dh
)
dh

(
1

δ
)

 (1)

ii) EDOOD [(h(x)− y)2] + EDOOD [c(x)
2]− 1 ≤ εD̂ID

(h) +
d

σmin(Σ̃DID)
+ ∆+O

√ 1

N
log (

N

dh
)
dh

(
1

δ
)


(2)

where Σ̃DID :=EDID [x̃x̃
T ] is a covariance matrix with a strictly positive minimum singular value of

d-dimensional normalized input x̃ = (x̃[1], ..., x̃[d]), where x̃[i]:=(x[i]− E[x[i]])Var(x[i])−1/2 and
σmin(M) is the smallest singular value of a matrix M ∈ Rd1×d2 . These theoretical results can be
directly applied to the intermediate or penultimate layer’s representation of a neural network by
setting the input variable x as a representation vector as in [4, 73]. From now on, we will assume the
input as an image representation from the last layer of the visual encoder in the following sections.
Note that 1) the LHS of the first inequality (ineq.(1)) indicates OOD calibration error, 2) two
terms in the LHS of the second inequality (ineq.(2)) denote OOD classification error in terms of L2

loss and prediction sharpness on OOD domain, and 3) both inequalities have the same RHS, which
contains the empirical estimate of ID calibration error, the reciprocal of the smallest singular value
of ID input covariance matrix, and remaining irreducible terms that depend on the problem setup.
Intuitively, Theorem 3 implies that pursuing diverse input features while maintaining the calibration
of the classifier contributes to improving OOD calibration and generalization simultaneously. We
defer the proof and discussion on the tightness of the bound and its assumptions in Appendix C.

Based on our analysis, we expect the potential of reducing the upper bound of OOD calibration error
and the sum of OOD classification error and prediction sharpness by minimizing the first two terms of
RHS in both bounds: the empirical ID calibration error and the reciprocal of minimum singular value
of the normalized ID covariance matrix. In §4, we devise a realization of this theoretical concept.

4 Method
Our goal is to achieve good OOD generalization and calibration during the ID adaptation of pre-
trained models. Motivated by Theorem 3, we propose a new fine-tuning method that increases the
smallest singular value of the ID input covariance matrix while improving ID calibration, thereby
lowering the upper bound of OOD calibration and generalization errors. By following [61, 30, 17],
we set a vision-language model (VLM), CLIP [47] as our target, which serves as a remarkably strong
backbone for zero-shot inference and fine-tuning with ease. We limit the scope of validation to image
classification tasks. Note that our theorem is not confined to specific domains or model architectures
and thus can be applied beyond CLIP’s image classification. See Figure 2 for an overview.

4.1 Robust fine-tuning with constrained multimodal contrastive learning

To adapt a pre-trained VLM on image classification tasks, the cross-entropy loss is the most common
choice as an objective function. However, there are emerging shreds of evidence supporting the use of
contrastive loss (CL) for robust adaptation [70, 50, 17], especially when the model is pre-trained via
CL. Witnessing its empirical success on OOD generalization [17], we leverage a CL-based learning
strategy for VLM fine-tuning. CLIP consists of an image encoder fθv (·) = fθ̂v (·)Wv and a text
encoder gθl(·) = gθ̂l(·)Wl, where encoders are composed with backbone models (fθ̂v (·), gθ̂l(·)) and
projection matrices (Wv ∈ Rdv×r,Wl ∈ Rdl×r). The encoders produce L2-normalized represen-
tations to compute the similarity between image and text inputs. Given N pairs of (image, text)
{(Ii, Ti)}Ni=1, a common form of multimodal contrastive loss (MCL) can be written as

LMCL(θ) :=
1

2N

N∑
i=1

− log
exp(fθv (Ii) · gθl(Ti))∑N
j=1 exp(fθv (Ii) · gθl(Tj))

+
1

2N

N∑
i=1

− log
exp(fθv (Ii) · gθl(Ti))∑N
j=1 exp(fθv (Ij) · gθl(Ti))

+R(θv, θl),

(3)
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Figure 2: Overview of CaRot. We fine-tune a VLM using a multimodal contrastive loss with an orthogonality
constraint on visual projection layer (eq.(4)) and self-distillation LSD (eq.(5)) that takes predictions of EMA
teacher ψ as soft target labels to train the student model θ. The darker and the lighter elements denote values
closer to 1 and 0, respectively. Both teacher and student models share identical VLM architecture consisting of
image fθv := [fθ̂v ;Wv] and text gθl := [gθ̂l ;Wl] encoders, where W is the last projection layer. Given (image,
text) pair data, the model outputs the pair-wise similarity score for in-batch image-text representations.

where θ = {θv, θl} are the parameters of image and text encoders and R(θv, θl) reflects a general
regularization strategy in CL [7, 21]. We update both image and text encoders during fine-tuning
as done in the pre-train phase and use OpenAI templates [47] to create (image, text) pairs from a
downstream classification dataset that consists of (image, class) pairs.

Meanwhile, the basic form of LMCL does not inform anything about the singular value distribution of
learned representation. In §3, we showed that the reciprocal of the smallest singular value constitutes
the shared upper bound, i.e., the larger the smallest singular value is, the lower the upper bound
becomes. To encourage this, we put a soft constraint term to LMCL that enforces the final projection
matrix Wv of the visual encoder to be orthogonal and hence the output image representation matrix
to have a large effective rank, as in below:

LMCL-con(θ) := LMCL(θ) + λOCLOC(Wv), LOC(Wv) = ||WT
v Wv − I||2F , (4)

where I is an identity matrix that has the same shape with WT
v Wv and λOC is a strength of the

orthogonality constraint1. While recklessly increasing the singular values might hinder ID adaptation,
our orthogonal constraint mitigates the degradation of performance by pursuing not only the smallest
singular values to be large but also the largest singular values to be small which is important for
generalization on ID data [69]. Interestingly, this contrastive loss with regularization terms can
be viewed as a constrained singular value decomposition (SVD) with a cross-covariance matrix of
image-text representations where the orthogonality constraint is applied.

To be specific, by following Nakada et al. [41], under a linear representation assumption, a gradient
descent step of LMCL-con boils down to the maximization of the SVD objective, which aims to find a
low-rank approximation of the normalized cross-covariance matrix S(β)2 as follow:

argmin
Wv,Wl

LMCL-con(W ) :=
1

2N

N∑
i=1

− log
exp(Wv Îi ·WlT̂i)∑N
j=1 exp(Wv Îi ·WlT̂j)

+
1

2N

N∑
i=1

− log
exp(Wv Îi ·WlT̂i)∑N
j=1 exp(Wv Îj ·WlT̂i)

+R(Wv,Wl) + λOC||WT
v Wv − I||2F

≈ argmax
Wv,Wl

SVD(S(β)) := tr(WT
v S(β)Wl)− (ρ/2)||WvW

T
l ||2F subject to ||WT

v Wv − I||2F = 0,

where we adopt R(Wv,Wl) = (ρ/2)||WvW
T
l ||2F for ρ > 0 as a regularization term to promote

the encoders to capture diverse features as in Ji et al. [27]. Here, we assume that the input of
LMCL-con is the penultimate representation of VLM’s encoders, i.e., (Îi, T̂i) = (fθ̂v (Ii), gθ̂l(Ti)), and

1While it is also possible to inject constraint on the text projection matrix Wl, we only do it for Wv because
our concern is about the singular value of image representations for downstream tasks. We observed degradations
of accuracy (ID:−0.01, OOD:−0.15) and ECE (ID:−0.002, OOD:−0.02) by adding the constraint on Wl.

2S(β) := 1
N

∑N
i=1 βiÎiT̂

T
i − 1

N

∑N
i ̸=j βij ÎiT̂

T
j , where βi and βij depend the choice of non-linear function

over dot product between image and text representations. See Nakada et al. [41] for a detailed derivation
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W = {Wv,Wl} is a set of projection matrices (i.e., last layers of each encoder). This connection
between LMCL and SVD allows us to understand the working mechanism of our proposed objective.
That is, minimizing LMCL-con can be interpreted as finding a good rank-r (dimensionality of the image-
text projection space) approximation of the cross-modal covariance matrix by seeking the direction
of large co-variation among image-text representations, while the solution space is constrained by
enforcing an orthogonality condition on the collection of vision-side singular vectors Wv to achieve
the larger effective rank of both the projection matrix Wv and the image representation matrix (See
Appendix §B for further explanation on the effective rank and the smallest singular value). In §5, we
validate that LMCL-con significantly increases the smallest singular values and results in better OOD
generalization and calibration on downstream tasks.

4.2 Calibration during robust fine-tuning

In the previous section, we devise a new multimodal contrastive loss that promotes large σmin(Σ̃DID).
We now address the next component standing for ID calibration, which is another crucial component
according to our theoretical analysis. While there are numerous approaches to enhance calibra-
tion during neural network training [38, 56, 52, 1], we notice the promising results of knowledge
distillation-based calibration approaches [64, 71]. These approaches encourage the model to learn
from input-dependent smoothed labels that effectively mitigate the overconfidence issue, which is
commonly associated with miscalibration. Therefore, we employ a self-distillation (SD) method for
ID calibration in that distilling the similarity score map would help avoid overconfidence.

Specifically, we first initialize both teacher and student networks with a pre-trained CLIP model
(including both image and text encoders); update the student model using gradient descent for every
iteration while slowly updating the teacher model that has ψ = {ψv, ψl} as parameters using EMA
with the momentum of α at every t > 1 iteration, i.e., ψ ← αψ + (1 − α)θ. Rather than hosting
another VLM or fixed pre-trained CLIP as a teacher model, we adopt a self-evolving EMA network
as a teacher, observing its successful usage on the weight-space ensemble between homogeneous
models [61, 48], robust self-supervised learning methods [2, 45], as well as regularization [71].
With the EMA teacher {fψv

(·), gψl
(·)} and the learning student {fθv (·), gθl(·)}, we construct a

self-distillation loss term for N data pairs as:

LSD(θ) :=
1

N

N∑
i=1

[KL(q̃Ii ||qIi ) +KL(q̃Ti ||qTi )], (5)

where KL denotes Kullback–Leibler divergence, qIi = softmax({fθv (Ii) · gθl(Tj)}Nj=1) and qTi =

softmax({fθv (Ij) · gθl(Ti)}Nj=1) are student outputs, and q̃Ij and q̃Tj are teacher outputs which are
similarly defined by replacing the student parameter θ with that of teacher’s ψ. Presumably, label
smoothing (LS) [55] behaves similarly to what we intended, but we argue that LS would be less
effective than EMA SD in terms of mitigating overconfidence issues. See Appendix §B.

We complete the learning objective as a summation of LMCL-con and LSD with a coefficient λSD, i.e.,
L = LMCL + λOCLOC + λSDLSD. The novel combination of these two components contributes to
ensuring a larger smallest singular value of image representation and ID calibration simultaneously,
which induces calibrated robust fine-tuning (CaRot) on distribution shifts. Note that this objective
function is just one of the possible realizations of our upper bound (Theorem 3) on OOD generalization
and calibration errors. Further exploration can spawn a more practical algorithm in the future.

5 Experiments

In § 5.1, we first show empirical evidence of the error bounds that we derived in §3. We then provide
experimental setup and main benchmarking results (§5.2) and present further empirical studies (§5.3).

5.1 Numerical analysis on error bounds

Our theoretical analysis in §3 revealed the possibility of managing OOD classification and calibration
errors simultaneously by leveraging a shared quantity over the ID domain (sum of calibration error
term and the singular value term). Before conducting real-world evaluations, we verify the theoretical
analysis with a toy experiment that simulates distribution shifts. To be specific, we generate a
binary classification dataset with 1000-dimensional Gaussian random variables as features where
the mean of features are partly shifted across different test environments (ID, OOD). We train a
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three-layer network with regularization terms: Born-Again-Network (BAN)-style self-distillation [13]
for calibration (LSD) and the orthogonal constraint (shown in eq.(4)) for the singular value (LOC).
Detailed descriptions of the experimental setup are provided in Appendix §A.1.

Figure 3: Analysis of error bounds on synthetic
data. Plots on the left side show RHS (x-axis) and
LHS (y-axis; MSE for ineq.(2) and ECE for ineq.(1))
of the inequalities in §3. We denote MSE for the mean
squared error, LOC for the singular value regulariza-
tion, and LSD for the calibration regularization.

Table 1: The best case values of two terms of RHS (ID
σmin and ID ECE) and LHS – OOD errors (MSE and
ECE) in the bounds of Theorem 3. Reported values
are an average of three repeated runs.

Method ID OOD
σmin (↑) ECE (↓) MSE (↓) ECE (↓)

Baseline 2.0887 0.1666 0.2581 0.2477
LOC 4.9630 0.1528 0.1932 0.1781
LSD 3.1354 0.1308 0.2170 0.1720
LOC, LSD 6.5961 0.1391 0.1877 0.1596

Figure 3 visualizes the results of Pearson correlation analysis between the average of 1/σmin(Σ̃DID)
and ECE from ID samples and OOD MSE/ECE over 111 trained models. Here, we observe strong
correlations between the average of 1/σmin(Σ̃DID) and ID ECE (x-axis), and OOD classification and
calibration errors (y-axis). Additional results on the best models per each regularization term are
showcased on the Table 1, which also indicates that reducing the upper bound results in better OOD
generalization and calibration. These analyses demonstrate that Theorem 3 empirically holds.

5.2 Evaluation on distribution shift benchmarks

Training and evaluation. We adopt CLIP ViT-B/16 as our VLM backbone and evaluate each fine-
tuning method, including CaRot, in terms of calibration (with ECE) and accuracy under distribution
shifts. For downstream tasks, we consider the ImageNet-1K (IN) classification and regard it as our
ID domain. For all methods, we optimize the model parameters using the AdamW with a batch size
of 512 over 10 epochs. Fine-tuned models are evaluated under varying distribution shifts.

Benchmark datasets. We consider IN-V2 [49], IN-R [23], IN-A [24], IN-S [60], and ObjectNet [3]
as natural shifts of the in-distribution dataset (IN). We refer to the average performance over these five
datasets as Avg. Shifts or OOD throughout the following sections unless it is specified as a different
dataset, e.g., IN-C [22] which we adopt as a synthetic shift scenario occurred by sensory noises.

Table 2: ImageNet accuracy. We report the accuracy on ImageNet and its distribution shift variants by fine-
tuning CLIP ViT-B/16 with five methods. The best and the second-best in each column are underlined.

Method IN↑ IN-V2↑ IN-R↑ IN-A↑ IN-S↑ ObjectNet↑ Avg. shifts↑

ZS 68.33 61.93 77.71 49.95 48.26 54.17 58.39

FT 81.53 71.66 70.14 44.01 49.11 52.56 57.50
LP-FT 82.47 72.71 72.84 49.31 50.28 54.45 59.92
FLYP 82.69 72.73 71.35 48.52 49.84 54.86 59.40
Lipsum-FT 83.30 73.60 75.90 49.90 51.40 54.38 61.04
CaRot (Ours) 83.13 74.11 77.71 51.60 52.71 56.60 62.55

Table 3: ImageNet ECE. Along with Table 2, we report the ECE on ImageNet and its distribution shifts
to compare with other fine-tuning methods, which demonstrates our out-of-distribution (OOD) calibration
performance. The best and the second-best in each column are underlined (See Figure B for details).

Method IN↓ IN-V2↓ IN-R↓ IN-A↓ IN-S↓ ObjectNet↓ Avg. shifts↓

ZS 0.0570 0.0548 0.0541 0.0967 0.0850 0.0780 0.0736

FT 0.0884 0.1468 0.1164 0.3000 0.2544 0.2753 0.2186
LP-FT 0.0505 0.0894 0.0613 0.2051 0.1659 0.2124 0.1468
FLYP 0.0635 0.1171 0.0967 0.2435 0.2200 0.2383 0.1836
Lipsum-FT 0.0384 0.0516 0.0426 0.1290 0.1023 0.1315 0.0914
CaRot (Ours) 0.0470 0.0367 0.0575 0.1240 0.0699 0.1075 0.0791

7



Baseline methods. We benchmark CaRot alongside zero-shot inference (ZS) and fine-tuning methods:
standard fine-tuning (FT), LP-FT [30], FLYP [17], and Lipsum-FT [42]. Refer §A for further details.
In Appendix Table B, C, and D, we compare results with post-hoc robustification method (weight
ensemble; WiSE-FT [61]) and post-hoc calibration (temperature scaling; TS [18]) method.

Results on natural shifts. Table 2 and 3 highlight our argument that CaRot significantly enhances
both generalization and calibration on OOD data. Under distribution shifts from IN to -V2, -R, -A,
-S, and ObjectNet, CaRot favorably compares with the existing best fine-tuning methods by margin of
1.51 and 0.0123 for OOD top-1 accuracy and ECE, respectively, averaged over five shifted datasets.
See reliability diagrams in Appendix Figure B for deeper insight on calibration. We further report
the results with different backbone models, RN50 and ViT-L/14, in Table 7 (See Table H and I for
details). CaRot consistently outperforms the baseline methods for these backbones, too. Furthermore,
in Table 6, we provide additional comparisons with CAR-FT [34], Model Stock [26] and ARF [20]3.

Figure 4: IN-C corruption-wise accuracy (top) and ECE (bottom). We evaluate accuracy and ECE over
15 types of image corruption with five corruption severity and report the average performance per corruption.
CaRot consistently outperforms baseline methods across diverse corruptions.

Figure 5: Closer look at the effectiveness of CaRot
on different corruptions. We provide IN-C accuracy
on brightness (left) and elastic transform (right) cor-
ruptions. CaRot excels on the coarser corruption such
as brightness whereas its effectiveness is weakened
on the finer corruption such as elastic transform.

Results on synthetic shifts. In real-world applica-
tions, distribution shifts are commonly occurred by
sensory noises. To evaluate different fine-tuning
methods under such synthetic shifts, we adopt a
corrupted version of ImageNet (IN-C) with 15
types of image corruptions over five severities. In
Figure 4, we provide corruption-wise accuracy and
ECE of each method averaged by five severities.
Overall, CaRot consistently outperforms the base-
line methods and the actual amount of improve-
ments varying depends on the type of corruptions.
Specifically, on the relatively coarser granular cor-
ruptions such as Snow, Frost, Fog, Brightness, and
Contrast greatly change the semantics of the image
(similar to natural shift), CaRot shows remarkably good performance compared to others. Meanwhile,
on the finer granular corruptions such as Elastic transform and JPEG compression, the improvements
achieved by CaRot become smaller. We present zoom-in results on these two cases in Figure 5.

5.3 Further empirical studies

Ablation study. In Table 4, we provide results of the ablation study to show the impacts of each
component of CaRot. In line with our hypothesis, results confirm that all three components boost
OOD accuracy and calibration performance. The comparison of adopting and not adopting LMCL (we
followed the naive fine-tuning approach for the latter) ascertains that employing contrastive loss as
a fine-tuning objective is superior to cross-entropy loss for ID/OOD accuracy, consistent with the
previous observations [17], and even extends to improvements in calibration as well. The ablations of

3We report the average accuracy over four shifted datasets in Table 6. Results with an asterisk (*) are taken
from the original papers. ECE values are not included due to the missing evaluations from the original papers.

8



Table 4: Ablation study on CaRot components. We report accuracy and ECE on ImageNet (ID) and its
distribution shifts (OOD). OOD values are averaged over five shifts. Values in brackets indicate the performance
difference compared to the first row of each sub-table, and the dark green highlights the positive improvement.

LMCL LOC LSD ID Acc.↑ ID ECE↓ OOD Acc.↑ OOD ECE↓
- - - 81.53 0.0884 57.50 0.2186
- ✓ - 81.45 (-0.08) 0.0874 (-0.0010) 59.10 (+1.60) 0.2051 (-0.0135)
- - ✓ 82.18 (+0.65) 0.0601 (-0.0283) 60.73 (+3.23) 0.1698 (-0.0488)
- ✓ ✓ 82.20 (+0.67) 0.0634 (-0.0250) 60.11 (+2.61) 0.1762 (-0.0424)

✓ - - 82.69 0.0635 59.40 0.1836
✓ ✓ - 82.51 (-0.18) 0.0651 (+0.0016) 59.51 (+0.11) 0.1803 (-0.0033)
✓ - ✓ 83.03 (+0.34) 0.0523 (-0.0112) 62.28 (+2.88) 0.0772 (-0.1064)
✓ ✓ ✓ 83.13 (+0.44) 0.0470 (-0.0165) 62.55 (+3.15) 0.0791 (-0.1045)

Table 5: Analysis on coefficient terms of CaRot objective. Along with Table 4, we report fine-grained analysis
results on each term. We set λOC as 0.2 and λSD as 1.5 when ablating each other and for all experiments
throughout the paper. We select the final values of λOC and λSD based on ID ECE and σmin(Σ̃DID), respectively.

ID OOD ID OOD
λOC Acc.↑ ECE↓ Acc.↑ ECE↓ λSD Acc.↑ ECE↓ Acc.↑ ECE↓

0.0 83.03 0.0523 62.28 0.0772 0.0 82.51 0.0651 59.51 0.1803
0.1 83.18 0.0511 62.42 0.0779 0.5 83.07 0.0482 61.38 0.1377
0.2 83.13 0.0470 62.55 0.0791 1.0 83.23 0.0388 62.21 0.0997
0.5 83.04 0.0478 62.44 0.0798 1.5 83.13 0.0470 62.55 0.0791
1.0 83.09 0.0499 62.49 0.0781 2.0 82.72 0.0634 62.54 0.0781

the orthogonality constraint and adopting self-distillation validate our rationale behind adding the
terms to our learning objective, where we expect them to lower the upper bound of OOD classification
and calibration errors. Together, constraining the singular values of image representation on MCL
and distilling EMA teacher’s predictions show the best results which aligned with results from the
demonstration of error bounds in Fig 3. We speculate that learning diverse features by the singular
value regularization while being enforced to contribute to reflecting the in-batch similarity structure
by EMA SD induces well-restricted solution space [25] otherwise has risk converged to bad solutions
(learning diverse features but noise-sensitive). Besides, Table 5 shows the impact of each component
by varying the strength coefficients. We observe that the increased intensity of constraint improves ID
and OOD performance to some degree, but there is a slight decline when the intensity is too strong.
Meanwhile, the strength of self-distillation positively correlated with OOD accuracy and ECE, but
there are negative effects on ID accuracy and ECE, which reflects the inevitable trade-off between ID
adaptation and OOD generalization (Table G and F in Appendix provide further details).

Table 6: ImageNet Acc. (except ObjectNet) with additional baselines.

Method IN↑ IN-V2↑ IN-R↑ IN-A↑ IN-S↑ Avg. shifts↑

ZS 68.33 61.93 77.71 49.95 48.26 59.46

FT 81.53 71.66 70.14 44.01 49.11 58.73
LP-FT 82.17 72.06 70.47 46.29 48.68 59.38
CAR-FT* 83.30 74.00 75.40 49.50 53.00 62.98
FLYP 82.69 72.73 71.35 48.52 49.84 60.61
Lipsum-FT 83.30 73.60 75.90 49.90 51.40 62.70
Model Stock* 84.10 74.80 71.80 51.20 51.80 62.40
ARF* 82.70 72.80 75.60 50.30 51.80 62.63
CaRot (Ours) 83.13 74.11 77.71 51.60 52.71 64.03
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Figure 6: Impact of LMCL-con

Analysis on singular values. Figure 6 illustrates the last 20 singular values of the covariance matrix
ĪT Ī where Ī is a standardized image representations over N samples. Our proposed constrained
contrastive loss LMCL-con increases the small singular values compared to the vanilla contrastive loss
LMCL. This result verifies that adding the orthogonality constraint successfully reduces 1/σmin(Σ̃DID),
the component of the shared upper bound we derived in §3, following our intention.
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Table 7: ImageNet accuracy and ECE on different backbones. We provide summarized results on CLIP
RN50 and ViT-L/14. The best and the second-best in each column are underlined. (See Table H and I for details.)

ID OOD ID OOD
Method Acc.↑ ECE↓ Acc.↑ ECE↓ Acc.↑ ECE↓ Acc.↑ ECE↓

R
N

50
ZS 59.83 0.0624 42.52 0.0955

V
iT

-L
/1

4

75.55 0.0590 70.93 0.0711

FT 76.21 0.0983 41.97 0.2804 85.26 0.0993 65.98 0.2036
LP-FT 76.25 0.1042 41.62 0.3274 84.74 0.1056 64.11 0.2521
FLYP 76.16 0.0516 42.70 0.2127 86.19 0.0729 71.44 0.1470
CaRot (Ours) 76.12 0.0471 42.71 0.1714 86.95 0.0349 74.13 0.0737

6 Related Work
Robust fine-tuning for visual foundation models. Beyond the ID generalization, there are a lot of
works aiming at improving the generalization of fine-tuned models on the OOD domain. Some of
them leverage the strong robustness of pre-trained model through weight-average [61, 26, 53, 44]
or regularization [53, 57, 58, 42] whereas others attribute to the robustness during fine-tuning from
different part of model backbone [30, 32]. Besides, Goyal et al. [17] claims that aligning the
learning objective during pre-training and fine-tuning is crucial for retaining the remarkable OOD
generalization capability of the pre-trained model. Although the above methods have provided
insights into the extrapolation of foundation models regarding accuracy, confidence calibration has
been unexplored, which is crucial for reliable ML applications. We investigate the OOD calibration
of fine-tuned CLIP as well as accuracy and propose a unified fine-tuning strategy with theoretical
support to achieve superior ID and OOD calibration alongside OOD generalization for the first time.

Confidence calibration. After some early research on calibrated prediction [39, 8], lots of follow-up
studies have been conducted. As a seminal work, Guo et al. [18] revealed the miscalibration problem
of neural networks, then, Minderer et al. [35] and LeVine et al. [33] provided a comprehensive analysis
on the calibration of modern vision models with consideration on distribution shift. To improve the
calibration of predictive models, Temperature Scaling (TS) [18] and Label Smoothing (LS) [55] are
two representative methods in practice. TS-based approaches learn a temperature parameter itself
[18, 16] or model [63, 28] to estimate the temperature to adjust the output probability of models,
whereas LS-based methods focus on producing soft labels to mitigating overconfidence issues by a
fixed [55, 38], randomized [56], or model-based [71, 66] smoothing strategies. However, existing
approaches do not consider distribution shifts [71], assume accessibility to target domain [16, 63],
assume specific type of distribution shift [59], cannot adjust confidences individually [18, 55]. In
this work, we adopt EMA self-distillation as an effective input-dependent calibration method and
show that the superior calibration results on in-domain samples can be transferred to other domains
(without data from those domains) by pursuing the larger smallest singular value together.

7 Conclusion and Discussion

While there have been numerous research endeavors to improve reliability during the model adaptation
in the wilds, almost all of them meet the desired criteria only in half: OOD generalization or confidence
calibration. This work attempts to address both OOD generalization and OOD calibration in a single
framework. We first derive a shared upper bound for OOD classification and calibration errors which
is constructed with the ID calibration error and the smallest singular value of ID input representation.
We then devise a novel fine-tuning method CaRot, which promotes a larger smallest singular value
and calibrated prediction through constrained multimodal contrastive loss and self-distillation. Our
theoretical statements and proposed method are empirically validated through extensive experiments.

Limitation and future work. Due to resource constraints, our research reached the scale of ViT-L.
Exploring validation on the larger models such as ViT-G or ViT-H where the assumptions behind
our theory become more realistic would be necessary. Our scope of validation was also limited to
CLIP-like VLMs, but Theorem 3 is not specific to VLMs, and investigating the applicability to other
types of models such as language models would be an exciting future work direction.

Impact statement. Our method enhances the foundation models’ reliability in multiple dimensions –
accuracy and confidence calibration, and many downstream applications for society can enjoy benefits
from the improved reliability. However, inherent biases learned from ID data can not be removed
with our method, and thus may have risk raising potential harms in real-world applications.
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Appendix

A Experimental Detail

This section supplements §5 by providing detailed descriptions for experiments to enhance repro-
ducibility.

A.1 Details for numerical analysis on error bounds

In §5.1, we conducted toy experiments to perform empirical analyses that demonstrate our theoretical
findings. We provide the details of the toy experiments using synthetic data.

Figure A: Two-dimensional illustration of the experimental setup for numerical analyses. Note that the actual
number of dimensions used for the experiments is set to 1000.

We generate 1000-dimensional Gaussian random variables, where the variables have binary noisy
labels (15% of random flip) for the ID train, ID test, and OOD test datasets. For the ID train set, the
first 400 dimensions and the second 400 dimensions are correlated with labels, and the remaining
200 dimensions are zero-centered random noises. We build the OOD test set from the ID test set by
shifting the mean of the first 400 dimensions and downscaling the second 400 dimensions in half. The
remaining 200 dimensions are intact. For example, the feature x2 in Figure A is perfectly correlated
with labels across train and test in both ID and OOD environments, while the correlation between
feature x1 and labels vanish in OOD environment. We train the three-layer multi-layer perceptron
networks with four different learning objectives adopting regularization terms for calibration (LSD)
and for the smallest singular value (LOC) with varying regularization magnitudes (111 models in
total): (i) without regularization (Baseline) (ii) with LSD, (iii) with LOC, and (iv) with LSD and
LOC. For LOC, we use an orthogonal constraint over the last weight matrix. For LSD, we adopt
Born-Again-Network (BAN)-style self-distillation [13]. After training, we measured σmin and ECE
on the ID test set and measured the mean squared error (MSE) and ECE on OOD test set.

A.2 Benchmark datasets

This section supplements the summarized explanations of datasets provided in §5.2.

Training and test splits of ImageNet-1K [10] consist of 1000 classes, and its variants have the entire
1000 or a subset of the classes. Following Radford et al. [47] and Goyal et al. [17], we use the
OpenAI templates to create text descriptions for each class (80 templates per class) for evaluation,
and the averaged text representation is used as the final class representation for evaluation. Several
related datasets including ImageNet-V2 [49], ImageNet-Rendition [23], ImageNet-A [24], ImageNet-
Sketch [60], and ObjectNet [3] are employed to evaluate robustness of models. These datasets consist
of similar semantic classes but are collected from diffrent input distributions or styles.

A.3 Baseline methods

This section supplements the summarized explanations of baseline methods discussed in §5.2.

Zero-shot (ZS [47]): Zero-shot classifier is obtained by encoding and averaging text representations
of each class using the pre-trained CLIP text encoder.
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Standard fine-tuning (FT [61]): Linear classification head is initialized with text representation
vectors for each class encoded by pre-trained CLIP text encoder. Image encoder and linear classifier
parameters are fine-tuned for 10 epochs with a learning rate of 3e-5.

LP-FT [30]: Randomly initialized linear classification head is first trained upon frozen image encoder
for 5 epochs and then both image encoder and linear head parameters are updated for 5 epochs. For
each phase, we use a learning rate of 1e-2 and 3e-5, respectively.

Fine-tuning with contrastive learning (FLYP [17]): Both image and text encoders are updated
without additional linear classification heads. To create text representations of training samples, we
use the OpenAI template similar to the evaluation data. Unlike for evaluation, we do not take an
average of 80 different templates. Instead, we use 80 versions of text prompts for each class to build
training pairs. The training pairs are randomly selected throughout the training steps. We fine-tune
the model for 10 epochs (in total, 25K steps) with a learning rate of 1e-5.

Lipsum-FT [42]: Cross-entropy loss with a regularization term that minimizes the energy gap
between image and text is used as fine-tuning objective. We followed the details described in the
original paper.

CaRot (Ours): We set the orthogonality constraint coefficient λOC as 0.2 and self-distillation
coefficient λSD as 1.5, update frequency for EMA teacher as 500, and EMA final target momentum as
0.9. We linearly increased the EMA momentum α by 0.05 for the first 20% iterations. We followed
all the other details from FLYP.

B Additional Evaluation Results

In addition to the comparisons of our CaRot with zero-shot, naive fine-tuning, and robust fine-
tuning methods in §5, we provide results when applying post-hoc techniques for robustness (weight
ensembling) and calibration (temperature scaling). Moreover, we compare our self-distillation-based
soft label with uniform constant label smoothing.

B.1 Comparing approaches

Weight average of fine-tuned and zero-shot (WiSE-FT [61]): Zero-shot and fine-tuned model
weights are averaged with a strength of ensembling coefficient. This ensembling technique can be
applied to any fine-tuning method. We tune the ensembling coefficient for each method based on the
ImageNet ECE value (we picked the value having the lowest ID ECE for each method).

Temperature scaling (TS [18]): Before applying the softmax function to compute output probability
distribution, TS divides the logit by temperature τ ∈ (0,∞). τ → 0 makes the probability similar
to point masses (sharpening), τ →∞ makes uniform distribution (smoothing). Scaling the output
distribution does not affect accuracy since it does not change the model prediction (i.e., the probability
rank remains the same). Temperature value was tuned for each method on the ID validation set based
on the ECE value.

Label smoothing (LS [55]): LS is a regularization strategy that pursues the generalization of
classification by utilizing soft labels, which are derived by adding uniform distribution to the hard
label distribution. The soft label can be viewed as a new target probability distribution where the
value of 1 to the target pair is reduced and the value of 0 for the non-target pair is increased by
the smoothing parameter ϵ ∈ (0, 1). Since utilizing soft labels allows the model to pull negative
pairs with limited strength, LS is beneficial for calibration beyond generalization by addressing the
over-confidence issue [38].

B.2 Additional result and discussion

Results with WiSE are reported in Table B and C. We observe that weight ensembling, which
aims to align zero-shot models and fine-tuned models in the model weight space, boosts the overall
performance. Still, CaRot shows superior results to the baselines.

Results with TS can be found in Table D. Aligning with previous observations, applying TS
significantly improves ID ECE. However, since TS adjusts the logits assuming that all data instances
would have a similar extent of overconfidence (or underconfidence) issue, its positive effect is limited
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under distribution shifts. Hence, TS does not guarantee to attain low calibration error on OOD
datasets. It is noteworthy that applying TS even harms OOD ECE of CaRot (compare results with
Table 3), which is already calibrated using data-dependent confidence adjustment during fine-tuning.

Results comparing with LS are reported in Table E. In accordance with its capability of improving
calibration, LS successfully reduces calibration errors. We observe that our adopted approach, EMA
SD, remarkably outperforms LS, especially on OOD ECE as well as in ID ECE. While LS addresses
the over-confidence problem during train time by dispersing the concentrated confidence on the target
label to non-target labels with a constant amount, self-distillation shows a similar behavior but in a
dynamic approach, considering the diversity of data instances [71]. We interpret that reflecting the
difficulty of input batch and distilling such information is crucial to achieving robust calibration.

We further provide an intuitive interpretation of self-distillation as an input-dependent approach to
label smoothing as elaborated in Zhang and Sabuncu [71]. EMA SD provides soft labels considering
the variation of data instances. For example, classifying a dog image from images of airplane or
car could be less challenging than classifying it from images of cat or wolf. Ideally, a calibrated
model should output higher confidence for the former case than for the latter. Instead of providing
supervision of constantly adjusted confidence (as in LS), teacher predictions provide confidence
reflecting the input data difficulty. Thereby, the student model can be supervised with high confidence
diversity, which leads to a better-calibrated model. Please refer to Zhang and Sabuncu [71] for
detailed discussions.

Other types of regularization for larger smallest singular value. We adopted an orthogonality
constraint over visual projection matrix Wv ∈ Rdv×r via ||WT

v Wv − I||F term which pursues
the larger effective rank of the visual projection matrix. While we adopt this kind of indirect soft
constraint to achieve balanced performance over both ID and OOD generalization, one may wonder
about 1) the implication of increased effective rank of Wv on the smallest singular value of the
covariance matrix and 2) the possibility of leveraging more direct constraints to increase the smallest
singular value of the input covariance matrix. This paragraph answers those questions.

Given n samples of d-dimensional visual features and r as a pre-defined projection dimension, let
Z̃v ∈ Rn×r and Ẑv ∈ Rn×r denote visual representations obtained by an arbitrary projection matrix
Wv ∈ Rdv×r and an orthogonal projection matrix Ov ∈ Rdv×r multiplied with pre-projected visual
feature Zv ∈ Rn×dv , respectively. We can show that the rank of the covariance matrix from Ẑv is
always greater or equal to that of Z̃v as below,

rank(Z̃Tv · Z̃v) = rank(Z̃v) (6)
= rank(Zv ·Wv) (7)
≤ rank(Zv ·Ov) (8)

= rank(Ẑv) (9)

= rank(ẐTv · Ẑv) (10)

During minimizing ||WT
v Wv−I||F , the visual projection matrixWv becomes closer to an orthogonal

matrix Ov , and the effective rank of the visual representations’ covariance matrix increases. A larger
effective rank implies a non-diminishing (relatively larger) smallest singular value of a matrix, which
justifies our implementation of the method.

Meanwhile, we can adopt other constraint terms alternative to orthogonality constraint over visual
projection matrix. Using the negative value of the smallest singular value of the visual representation’s
covariance matrix as an additional loss term may be the most natural candidate. The result is
provided in Table B.2. While both SVD and orthogonality constraint methods show remarkably
better performance in terms of OOD classification and calibration, SVD requires much heavier
computation compared with the orthogonality constraint term. For simplicity, we advocate the use of
orthogonality term thus. Exploring other types of efficient constraint terms will be a promising future
work direction.

B.3 Detailed results from main paper

Coefficient terms ablation. In Table G and F, we present the detailed ablation results of hyper-
parameters associated with the methodologies addressed in our paper. These results supplement
Table 5.
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Table A: Comparison between SVD-based regularization and the orthogonality constraint term. Both terms are
effective in terms of OOD generalization and calibration, but SVD requires a much heavier computation.

ID OOD ID-OOD Gap
Time Complexity Acc. (↑) ECE (↓) Acc. (↑) ECE (↓) Acc. (↓) ECE (↓)

FLYP - 82.69 0.0635 59.40 0.1836 23.29 0.1201
CaRot (SVD) O(D2N +D3) 83.05 0.0536 62.40 0.0770 20.65 0.0234
CaRot (Ours) O(D2N +D2) 83.13 0.0470 62.55 0.0791 20.58 0.0321

Table B: Accuracy on ImageNet and distribution shifts using WiSE-FT [61]. We select the optimal ensem-
bling coefficient (i.e., α) for each method.

Method IN↑ IN-V2↑ IN-R↑ IN-A↑ IN-S↑ ObjectNet↑ Avg. shifts↑

ZS 68.33 61.93 77.71 49.95 48.26 54.17 58.39

FT 81.96 72.69 77.19 51.93 53.17 56.83 62.36
LP-FT 82.63 73.14 75.24 51.92 51.99 55.86 61.63
FLYP 82.53 73.65 77.57 54.65 53.23 58.02 63.42
CaRot 82.36 73.72 79.58 54.07 53.96 57.70 63.81

Different VLM backbones. We provide the full results of Table 7 in Table H and I.

Visualization of ECE values. Figure B illustrates the reliability diagram of ImageNet ECE results
reported in Table 3.

Figure B: Reliability diagram of ImageNet ECE. This figure supplements ECE results in Table 3. The value
inside each plot indicates ECE.
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Table C: ImageNet ECE results with WiSE-FT [61]. Along with Table B, we report the ECE results.

Method IN↓ IN-V2↓ IN-R↓ IN-A↓ IN-S↓ ObjectNet↓ Avg. shifts↓

ZS 0.0570 0.0548 0.0541 0.0967 0.0850 0.0780 0.0736

FT 0.0714 0.0873 0.0744 0.1509 0.1391 0.1528 0.1209
LP-FT 0.0510 0.0895 0.0561 0.1917 0.1587 0.2014 0.1395
FLYP 0.0773 0.1087 0.0806 0.1963 0.1798 0.1995 0.1530
CaRot 0.0427 0.0416 0.0490 0.1207 0.0731 0.1113 0.0791

Table D: ImageNet ECE results with temperature scaling (TS). Supplement to Table 2 and 3, we provide
results applying TS. Note that TS is a post-hoc method and does not affect accuracy. The temperature is selected
using IN ECE for each method.

Method IN↓ IN-V2↓ IN-R↓ IN-A↓ IN-S↓ ObjectNet↓ Avg. shifts↓

ZS 0.0392 0.0633 0.0532 0.1792 0.1370 0.1760 0.1217

FT 0.0463 0.0786 0.0484 0.1798 0.1408 0.1820 0.1259
LP-FT 0.0382 0.0509 0.0477 0.1450 0.1028 0.1433 0.0979
FLYP 0.0392 0.0633 0.0532 0.1792 0.1370 0.1760 0.1217
Lipsum-FT 0.0380 0.0599 0.0419 0.1445 0.1165 0.1362 0.0998
CaRot 0.0401 0.0527 0.0437 0.1520 0.0802 0.1373 0.0931

Table E: Comparison on LS and EMA SD. We compare the impact of LS and EMA SD with LMCL-con as
calibration regularization.

Acc.↑
Method IN IN-V2 IN-R IN-A IN-S ObjectNet Avg. shifts

- 82.51 73.18 71.80 48.16 49.78 54.67 59.51
LS 82.53 73.33 71.90 48.33 49.46 54.99 59.60
EMA SD 83.13 74.11 77.71 51.60 52.71 56.60 62.55

ECE↓
- 0.0651 0.1104 0.0910 0.2459 0.2132 0.2411 0.1803
LS 0.0475 0.0726 0.0526 0.1534 0.1533 0.1993 0.1262
EMA SD 0.0470 0.0367 0.0575 0.1240 0.0699 0.1075 0.0791

Table F: Orthogonality constraint hyperparameter. We report the impact of the orthogonality constraint term
of the CaRot objective by ablating its strength coefficient λOC. We set our final value as 0.2, tuning based on ID
ECE.

Acc.↑
λOC IN IN-V2 IN-R IN-A IN-S ObjectNet Avg. shifts

0.1 83.18 74.10 77.53 51.35 52.66 56.47 62.42
0.2 83.13 74.11 77.71 51.60 52.71 56.60 62.55
0.5 83.04 74.40 77.64 51.04 52.63 56.49 62.44
1.0 83.09 74.35 77.59 51.23 52.65 56.62 62.49

λOC ECE↓
0.1 0.0511 0.0382 0.0620 0.1190 0.0712 0.0990 0.0779
0.2 0.0470 0.0367 0.0575 0.1240 0.0699 0.1075 0.0791
0.5 0.0478 0.0408 0.0579 0.1253 0.0701 0.1048 0.0798
1.0 0.0499 0.0380 0.0609 0.1201 0.0693 0.1022 0.0781
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Table G: Self-distillation term hyperparameter. We report the impact of the EMA SD term of CaRot objective
by ablating its strength coefficient λSD. We set our final value as 1.5, tuning based on σmin.

Acc.↑
λSD IN IN-V2 IN-R IN-A IN-S ObjectNet Avg. shifts

0.5 83.07 74.22 74.37 50.76 51.49 56.08 61.38
1.0 83.23 74.51 76.38 51.05 52.47 56.63 62.21
1.5 83.03 74.13 77.59 50.72 52.49 56.49 62.28
2.0 82.72 74.14 78.25 50.71 53.13 56.49 62.54

λSD ECE↓
0.5 0.0482 0.0791 0.0599 0.2002 0.1533 0.1960 0.1377
1.0 0.0388 0.0544 0.0405 0.1640 0.0914 0.1481 0.0997
1.5 0.0523 0.0401 0.0642 0.1173 0.0732 0.0910 0.0772
2.0 0.0634 0.0467 0.0785 0.1030 0.0796 0.0829 0.0781

Table H: ImageNet results on CLIP ResNet50

Acc.↑
Method IN IN-V2 IN-R IN-A IN-S ObjectNet Avg. shifts

ZS 59.83 52.90 60.72 23.25 35.45 40.27 42.52

FT 76.21 64.87 50.66 18.11 33.90 42.32 41.97
LP-FT 76.25 64.48 49.55 18.60 33.33 42.13 41.62
FLYP 76.16 65.10 51.55 20.08 34.24 42.53 42.70
CaRot (Ours) 76.12 65.36 52.16 19.32 34.05 42.67 42.71

ECE↓
ZS 0.0624 0.0559 0.0530 0.2048 0.0740 0.0899 0.0955

FT 0.0983 0.1623 0.1860 0.4692 0.2824 0.3023 0.2804
LP-FT 0.1042 0.1759 0.2709 0.5184 0.3520 0.3197 0.3274
FLYP 0.0516 0.0872 0.1439 0.3872 0.2021 0.2432 0.2127
CaRot (Ours) 0.0471 0.0601 0.0948 0.3435 0.3435 0.2127 0.1714

Table I: ImageNet results on CLIP ViT-L/14

Acc.↑
Method IN IN-V2 IN-R IN-A IN-S ObjectNet Avg. shifts

ZS 75.55 69.85 87.85 70.76 59.61 66.59 70.93

FT 84.74 75.32 75.36 55.65 54.44 59.76 64.11
LP-FT 85.26 76.76 80.21 55.95 56.84 60.12 65.98
FLYP 86.19 78.21 83.81 68.85 60.20 66.15 71.44
CaRot (Ours) 86.95 79.28 87.96 72.68 62.66 68.05 74.13

ECE↓
ZS 0.0590 0.0686 0.0339 0.0640 0.1037 0.0852 0.0711

FT 0.1056 0.1741 0.1613 0.3151 0.3234 0.2865 0.2521
LP-FT 0.0993 0.1531 0.0872 0.2593 0.2613 0.2572 0.2036
FLYP 0.0729 0.1219 0.0621 0.1443 0.2164 0.1903 0.1470
CaRot (Ours) 0.0349 0.0634 0.0353 0.0732 0.0914 0.1051 0.0737
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C Proof and further discussion

In this section, we provide proof for Theorem 3 and some discussions.
Theorem C.1 (Restatement of Theorem 3.). Let h : X → [0, 1] be a real-valued function which
has structure h(x) =

∑d
i=1 hi(x[i]) where hi is an arbitrary one-dimensional function, and h(·) is

in a hypothesis class H that has pseudo dimension Pdim(H) = dh, D̂ID be an N -size empirical
distribution on ID domain. If (x[i], x[j]) is a bi-variate Gaussian random variable for every i, j ∈ [d],
then for any δ ∈ (0, 1) and for all h, the following bounds hold with probability at least 1− δ:

i) εDOOD(h) ≤ εD̂ID
(h) +

d

σmin(Σ̃DID)
+ ∆+O

√ 1

N
log (

N

dh
)
dh

(
1

δ
)

 (11)

ii) EDOOD [(h(x)− y)2] + EDOOD [c(x)
2]− 1 ≤ εD̂ID

(h) +
d

σmin(Σ̃DID)
+ ∆+O

√ 1

N
log (

N

dh
)
dh

(
1

δ
)


(12)

where Σ̃DID :=EDID [x̃x̃
T ] is a covariance matrix with a strictly positive minimum singular value of

d-dimensional normalized input x̃ = (x̃[1], ..., x̃[d]), where x̃[i]:=(x[i]− E[x[i]])Var(x[i])−1/2 and
σmin(M) is the smallest singular value of a matrix M ∈ Rd1×d2 .

Proof. The proof for the above theorem is divided into three steps: 1) the derivation of OOD
calibration error bound, 2) the derivation of OOD generalization bound, and 3) the replacement of
domain discrepancy term over ID and OOD into an ID-depend singular value term.

We first define a domain discrepancy measureH-sqaure disagreement, sdH, between two distributions
as below:

Definition C.2 (H-sqaure disagreement). Given two probability distributions DOOD andDID over
input space X ,H as a hypothesis class containing the hypothesis h(·) : X → [0, 1], the discrepancy
between DOOD andDID is defined as

sdH(DOOD,DID) := sup
h,h′∈H

|EDOOD [(h(x)− h′(x))2]− EDID [(h(x)− h′(x))2]|. (13)

The H-square disagreement can be regarded as a variant of H-divergence [5] which adopts mean
square error term rather than 0− 1 classification loss or mean absolute error term as in [72].

Proposition C.3 (OOD calibration error bound). Let h : X → [0, 1] be a real-valued function in a
hypothesis class H with a pseudo dimension Pdim(H) = dh. If D̂ID is an empirical distribution
constructed by N -size i.i.d. samples drawn from DID, then for any δ ∈ (0, 1), and for all h, a bound
below hold with probability at least 1− δ.

εDOOD(h) ≤ εD̂ID
(h) + sdH(DOOD,DID) + ∆ +O

(√
1

N

(
log

1

δ
+ dh log

N

dh

))
. (14)

Now, likewise Lemma 3 of [72], we start to review a triangle inequality for all h, h′, h′′ ∈ H, for any
D on X , and for error function εD(·, ·), the inequality εD(h, h′) ≤ εD(h, h

′′) + εD(h
′′, h′) holds.

Here, we use εD(h, h′) to denote Ex∼D[(h(x)− h′(x))2]. Now, given h∗ := argminh∈H εDID(h) +
εDOOD(h) and ∆ := εDID(h

∗) + εDOOD(h
∗), we have

εDOOD(h) ≤ εDOOD(h
∗) + εDOOD(h, h

∗)

= εDOOD(h
∗) + εDOOD(h, h

∗)− εDID(h, h
∗) + εDID(h, h

∗)

≤ εDOOD(h
∗) + |εDOOD(h, h

∗)− εDID(h, h
∗)|+ εDID(h, h

∗)

≤ εDOOD(h
∗) + εDID(h, h

∗) + sdH(DOOD,DID)

≤ εDOOD(h
∗) + εDID(h) + εDID(h

∗) + sdH(DOOD,DID)

= εDID(h) + sdH(DOOD,DID) + ∆. (15)
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where εD(h) is defined as εD(h) := Ex∼D[(h(x)− h0(x))2] and h0(·) := argminh∈H Ex[(h(x)−
c(x))2] denotes a desired calibrated predictor of label y when c(x) := ED[y|h(x)]. Here, the first
and fourth inequalities in Eq (15) are held by triangular inequality.

The above bound is defined over the true population distribution DID and DOOD. For the ID domain,
we can confine our analysis to empirical distribution D̂ID withN i.i.d. samples generated fromDID, by
leveraging a generalization bound on a single domain regression setting [36, 72]. If Pdim(H) = dh,
for all h ∈ H, below bound holds with probability at least 1− δ (See Lemma 5 of Zhao et al. [72]).

εDOOD(h) ≤ εD̂ID
(h) + sdH(DOOD,DID) + ∆ +O

(√
1

N

(
log

1

δ
+ dh log

N

dh

))
. (16)

The above bound is similar to a regression bound proposed by Zhao et al. [72], but we build the
theory based on the squared error rather than the previously adopted absolute error. This slight change
allows us two attractive extensions that we will introduce to achieve calibrated robust fine-tuning.

While Proposition C.3 provides guidance to pursue OOD calibration, it does not say anything about
OOD classification error, which is our primary goal before calibration. Here, we pay attention to the
decomposition of the Brier score [39, 46]:

E[(h(x)− y)2]︸ ︷︷ ︸
classification error

= E[(h(x)− c(x))2]︸ ︷︷ ︸
calibration error

+1− E[c(x)2]︸ ︷︷ ︸
sharpness

, (17)

where E[(h(x) − y)2] is an expected mean-squared classification error and E[c(x)2] denotes the
sharpness [51] term rewarding the predictor h(·) to produce outputs towards zero or one. By assuming
that h(·) is expressive enough to estimate the ground truth expectation function for the label, i.e., c(·),
plugging Eq. (17) into the LHS of Proposition C.3 derives the same (except a constant) upper bound
for the sum of classification error and prediction sharpness on OOD samples as in Proposition C.4.

Proposition C.4 (OOD generalization error bound). Let h(·),H, and D̂ID have the same definition
as in Proposition C.3, then for any δ ∈ (0, 1), and for all h, a bound hold with prob. at least 1-δ,

EDOOD [(h(x)− y)2] + EDOOD [c(x)
2]− 1 ≤ εD̂ID

(h) + sdH(DOOD,DID) + ∆+O

(√
1

N

(
log

1

δ
+ dh log

N

dh

))
.

(18)

From domain discrepancy to minimum singular value. The second term sdH(DOOD,DID) of
RHS of Proposition C.3 and Proposition C.4 is defined on both ID and OOD samples, so it is hard to
control the quantity directly. While existing approaches attempt to learn domain-invariant representa-
tions for reducing the similar quantity (e.g., H-divergence) by using unlabeled OOD data [14, 72, 73],
the OOD data are commonly inaccessible on many real-world applications. Therefore, we need a
quantity that is solely defined with ID data. Recently, Dong and Ma [11] proved that the domain
discrepancy ratio can be bounded from above by a reciprocal of the smallest singular value of a
covariance matrix of ID data as below:

sup
h,h′∈H

EDOOD(h(x)− h′(x))2

EDID(h(x)− h′(x))2
≤ d

σmin(Σ̃DID)
, (19)

where Σ̃DID := EDID [x̃x̃
T ] is a covariance matrix of the d-dimensional nomarlized input x̃ =

(x̃[1], ..., x̃[d]) where x̃[i] := (x[i] − E[x[i]])Var(x[i])−1/2 and σmin(M) is the minimum singular
value of a matrix M ∈ Rd1×d2 .

Lemma C.5. Assuming that OOD calibration error is always greater than the ID calibration error
and noting that the range of h(·) is [0, 1], the second term sdH(DOOD,DID) of RHS in Proposition
C.3 and C.4 is bound from above by the smallest singular value of the normalized input covariance
matrix. That is,

sdH(DOOD,DID) ≤
d

σmin(Σ̃DID)
. (20)
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This can be easily shown by the definition of sdH(DOOD,DID),

sdH(DOOD,DID) = sup
h,h′∈H

|EDOOD [(h(x)− h′(x))2]− EDID [(h(x)− h′(x))2]| (21)

≤ sup
h,h′∈H

EDOOD(h(x)− h′(x))2

EDID(h(x)− h′(x))2
(22)

≤ d

σmin(Σ̃DID)
. (23)

Where the first inequality is held by the assumption of the Lemma C.5 and the second inequality is
held by Theorem 3 of [11].

Finally, we can derive a more tractable bound for OOD classification and calibration error by plugging
the Lemma C.5 into the Proposition C.3 and Proposition C.4.

Discussion on the tightness of proposed bound Our theoretical analysis was inspired by two
previous works that provide OOD generalization error bound [5] and the domain discrepancy bound
via the smallest singular value [11]. Intuitively, the inequality of our bounds (ineq.(1)) approaches to
equality (becomes tight) under the following conditions:

1. When the outputs of the learned classifier are the same as the outputs of the ideal joint
classifier that is trained to minimize both ID and OOD errors [5].

2. Whether the outputs of our classifier or ideal joint classifier are perfectly calibrated [5].
3. The number of training samples N approaches infinite [5].
4. If our classifier is a linear model when the weight vector is the same as the eigenvector

corresponding to the smallest eigenvalue of the input covariance matrix [11].
5. When the OOD and ID calibration errors satisfy the relationship: εDOOD(h, h

∗) =
ε2DID

(h,h∗)

(εDID (h,h
∗)−1) .

Although our bound seems quite loose given the high dimensionality of modern machine learning
setup, empirical validation in the paper strongly supports the validity of our theory-grounded method.

Discussion on the gap between reality and assumption Some ground assumptions derive our
bound. First, we assume that ID and OOD have overlapping marginal distributions, whereas the joint
distributions do not overlap much. Second, we assume that our hypothesis function has the structure
of h(x) =

∑d
i=1 hi(x[i]). Finally, we assume the pair-wise bi-variate normality of (x[i], x[j]) for

every i, j ∈ [d]. Given that the input x here is the last layer representation of the visual encoder,
ID and OOD have overlapping marginals, but we can not guarantee that the joint distributions of
input do not overlap much. For example, there would be a high overlap between ImageNet (ID) and
ImageNet-V2 (OOD) in terms of the input joint distributions, but there would not be much overlap in
the case of ImageNet-Sketch as an OOD. While it depends on the type of OOD, our evaluation shows
robust results across datasets. The second assumption over the structure of our hypothesis function
is naturally met if our h(·) is a linear classifier, which is realistic under the modern representation
learning paradigm with a heavy feature extractor and a light task-specific head. Lastly, about our last
assumption, the representation of neural networks is not usually guaranteed to be pair-wise Gaussian.
However, there is rich evidence revealing that the outputs of infinitely wide neural networks (whether
they are MLP [31], convolutional neural network [15], or Transformer [62]) are Gaussian processes
(GPs) and GPs ensure that every finite collection of their elements are jointly Gaussian. While our
numerical analyses are limited to ViT-L scale models, we believe that the current large-scale modeling
regime spurs us to explore larger widths [9] where our second assumption becomes more valid [31].
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