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ABSTRACT

Transformer-based dialogue generation (DG) models are ubiquitous in modern
conversational artificial intelligence (AI) platforms. These models, however, are
susceptible to adversarial attacks, i.e., prompts that appear textually indiscernible
from normal inputs but are maliciously crafted to make the models generate re-
sponses incoherent and irrelevant to the conversational context. Evaluating the ad-
versarial robustness of DG models is thus crucial to their real-world deployment.
Adversarial methods typically exploit gradient information and output logits (or
probabilities) to effectively modify key input tokens, thereby achieving excellent
attack performance. Nevertheless, such white-box approaches are impractical in
real-world scenarios since the models’ internal parameters are typically inaccessi-
ble. While black-box methods, which exploit only input prompts and DG models’
output responses to craft adversarial attacks, offer a wider applicability, they often
suffer from poor performance.
In a human-machine conversation, good generated responses are expected to be
semantically coherent and textually succinct. We thus formulate adversarial at-
tack on DG models as a bi-objective optimization problem, where input prompts
are modified in order to 1) minimize the response coherence, and 2) maximize the
generation length. In this paper, we empirically demonstrate that optimizing either
objective alone results in subpar performance. We then propose a dialogue gen-
eration attack framework (DGAttack) that employs multi-objective optimization
to consider both objectives simultaneously when perturbing user prompts to craft
adversarial inputs. Leveraging the exploration capability of multi-objective evo-
lutionary algorithm due to its intrinsic diversity preservation, DGAttack success-
fully creates effective adversarial prompts in a true black-box manner, i.e., access-
ing solely DG models’ inputs and outputs. Experiments across four benchmark
datasets and three language models (i.e., BART, DialoGPT, T5) demonstrate the
excellent performance of DGAttack compared to existing white-box, gray-box,
and black-box approaches. Especially, benchmarks with large language models
(i.e., Llama 3.1 and Gemma 2) suggest that DGAttack is the state-of-the-art black-
box adversarial attack on dialogue generation.

1 INTRODUCTION

Dialogue generation (DG) has made advancing strides with pre-trained transformers (Zhang et al.,
2020c; Roller et al., 2021), enabling the creation of sophisticated chatbots capable of natural, coher-
ent conversations. Nevertheless, DG models remain vulnerable to adversarial attacks—malicious
inputs that, while appearing benign, are designed to disrupt the model’s output by generating inco-
herent or irrelevant responses (Goodfellow et al., 2015). Given the increasing deployment of DG
models in real-world applications, evaluating their adversarial robustness is critical to ensuring their
reliability and trustworthiness.

White-box adversarial attacks, where attackers exploit gradient information and output logits to craft
adversarial inputs, have shown excellent performance in degrading the response quality (Li et al.,
2023a; Cheng et al., 2018). These attacks effectively identify critical tokens and modify them to
compromise the model’s performance. However, white-box methods rely on access to DG models’
internal parameters—information that is often unavailable in real-world settings due to proprietary
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restrictions or security constraints. In contrast, black-box attacks, which do not require access to
model parameters or gradients, offer broader applicability. These methods craft adversarial sam-
ples based solely on input prompts and output responses. Black-box attacks tend to underperform
compared to their white-box counterparts, as they do not make use of internal knowledge.

A key challenge in attacking DG models lies in the conversational nature. Unlike other tasks where
inputs are processed independently, DG models generate responses based on both the current input
and the accumulated chat history (Liu et al., 2020). This reliance on prior context makes small input
perturbations less effective, particularly in black-box settings. Traditional black-box adversarial
methods, which typically focus on minimizing accuracy alone (Garg & Ramakrishnan, 2020; Ren
et al., 2019a; Li et al., 2020; Zhang et al., 2021), struggle to fully exploit the vulnerabilities of DG
models in these scenarios. Responses from conversational AI agents are expected to be relevant,
coherent, and succinct. We observed that adversarial prompts that induce DG models to generate
longer responses tend to have a greater attack success rate, as these extended outputs are often
irrelevant to the intended conversational context. However, exploiting this trade-off is non-trivial
since modern large language models (LLMs) are adept at generating coherent long-form responses.
It is thus necessary to simultaneously optimize both generation length and response coherence.

To address these challenges, we propose DGAttack, a novel black-box adversarial attack frame-
work that formulates attacking DG models as a bi-objective optimization problem. Employing the
non-dominated sorting genetic algorithm II (NSGA-II) (Deb et al., 2002), DGAttack simultaneously
optimizes two objectives: maximizing generation length and minimizing response coherence. This
approach allows us to explore the adversarial space efficiently while relying solely on the model’s
inputs and outputs—making it particularly suitable for black-box settings, where internal parameters
and output probabilities are inaccessible. Through comprehensive experiments on four benchmark
datasets and three language models (BART, DialoGPT, and T5), we demonstrate that DGAttack
outperforms existing black-box, white-box, and gray-box adversarial methods. Moreover, DGAt-
tack sets a new standard for black-box adversarial attacks on dialogue generation, particularly when
applied to large language models like Llama 3.1 and Gemma 2, demonstrating state-of-the-art per-
formance in generating effective adversarial prompts.

2 RELATED WORKS

2.1 DIALOGUE GENERATION

Dialogue generation (DG) involves the task of processing natural language inputs and producing
human-like responses, typically in the context of ongoing conversations, such as interactions with
chatbots. Typically, a DG model must interpret the conversation history up to the current turn and
generate appropriate responses in a structured manner. Over the past few years, DG has seen signifi-
cant progress, particularly with pre-trained transformer-based models, such as decoder-only models
like DialoGPT (Zhang et al., 2020b) and Llama (Touvron et al., 2023), as well as encoder-decoder
models like T5 (Raffel et al., 2020) and BART (Lewis et al., 2020). These models generate responses
that resemble natural human dialogue, with some even utilizing additional information, such as user
profiles or conversational context, to create more personalized and context-aware interactions.

2.2 TEXTUAL ADVERSARIAL ATTACKS

Textual adversarial attacks can be used for testing the robustness of natural language process-
ing models. These attacks are categorized into character-level, word-level, and sentence-level
approaches (Papernot et al., 2016; Ebrahimi et al., 2018; Li et al., 2018; Chen et al., 2022).
Early character-level attacks manipulated individual characters—by adding, deleting, or substituting
them—which allowed for straightforward adversarial sample generation (Belinkov & Bisk, 2018).
However, these approaches often resulted in grammatically incorrect outputs, making them suscep-
tible to grammar-based defense mechanisms (Pruthi et al., 2019). Consequently, character-level
attacks have become less prominent in recent works (Le et al., 2022). Sentence-level attacks, which
perturb entire sentences, offer better grammatical correctness by employing techniques such as para-
phrasing and encoding-decoding (Iyyer et al., 2018; Zhao et al., 2017). Despite their syntactic ac-
curacy, these methods often introduce substantial semantic shifts, reducing the overall success rate
of the attack. Word-level attacks have emerged as a popular approach due to their ability to balance
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grammatical accuracy, semantic coherence, and attack success. These methods typically involve
word substitution, addition, or deletion while preserving the overall meaning and context of the sen-
tence (Jin et al., 2019; Ren et al., 2019b). Such strategies offer a middle ground between maintaining
meaning and generating effective adversarial samples.

Recent advancements in learning-based methods, particularly using BERT-based Masked Language
Models (MLMs), have improved the semantic relevance of adversarial samples by leveraging context
to generate word substitutions (Garg & Ramakrishnan, 2020; Li et al., 2020). However, these models
can still introduce ambiguity in tasks like rumor detection and sentiment analysis.

While most adversarial attacks focus on classification, there is a growing interest in sequence-to-
sequence (seq2seq) models. Works like NMTSloth (Chen et al., 2022) target length manipulation in
neural machine translation (NMT) systems, aiming to generate longer and less coherent translations.
Seq2Sick (Cheng et al., 2018) and other methods attempt to degrade the generation confidence in
seq2seq tasks by reducing the likelihood of producing correct outputs (Michel et al., 2019).

Most notably, multi-objective white-box attacks have been applied to dialogue generation models,
where approaches such as DGSlow (Li et al., 2023b) optimize for both accuracy minimization and
generation length maximization. While white-box attacks utilize gradient information or model pa-
rameters to effectively create adversarial prompts, such assumptions on the accessibility of internal
knowledge do not hold in practice. Several gradient-free attacks on NLP models make use of the
models’ output logits or probabilities for importance ranking in order to identify key input tokens for
perturbation (Garg & Ramakrishnan, 2020; Li et al., 2020; Ren et al., 2019a). However, neither logit
nor probability information is available during interactions with real-world conversational agents.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

3.1.1 DIALOGUE GENERATION

Suppose a chatbot aims to model conversations between two individuals. We follow a similar setup
(Liu et al., 2020), where each individual has a persona (e.g., cA for person A), described with L
profile sentences cA1

, . . . , cAL
. Person A chats with another person B through an N -turn dialogue

(xA1 , xB1 , . . . , xAN
, xBN

), where N is the total number of turns and xAn is the utterance that A
says in the n-th turn. A DG model f takes the persona cA, the entire dialogue history until the n-th
turn hAn = (xB1 , . . . , xAn−1), and B’s current utterance xBn as inputs, generating outputs xAn

by maximizing the probability p(xAn |cA, hAn , xBn). The same process applies for B to keep the
conversation going.

3.1.2 DIALOGUE GENERATION ADVERSARIAL ATTACK

In each dialogue turn n, we craft an adversarial utterance xBn for person B, with the goal of mis-
leading the chatbot designed to emulate person A. It is crucial to maintain the integrity of the chat
history hAn = (xB1 , . . . , xAn−1), ensuring that it remains unchanged to reflect realistic conditions
in practical applications.

An optimal DG adversarial sample in the n-th turn is an utterance x∗
Bn

:
x∗
Bn

= argmin
x̂Bn

M(xrefn , x̂An
)

subject to: x̂An
= f(cA, hAn

, x̂Bn
) and ρ(xBn

, x̂Bn
) > ϵ

x̂Bn
= xBn

+∆xBn

(1)

where ρ(.) is a similarity function and ϵ is the similarity threshold between the original input xBn

and the crafted adversarial utterance x̂Bn . Here, ∆xBn represents the perturbation applied to the
original utterance. M(·) is typically measured using neural machine translation (NMT) metrics,
such as BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), and ROUGE (Lin &
Och, 2004), to evaluate the quality of the output response x̂An relative to a reference response xrefn .

In dialogue generation, longer generated responses are often observed to drift away from the original
context and introduce irrelevant or nonsensical content, making them particularly effective for ad-
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versarial attacks. However, achieving longer responses presents a challenge, as language models are
trained to maintain coherence and relevance, even when generating lengthy sequences. To address
this, we define two primary objectives for our black-box adversarial attack: Accuracy Score (AS)
and Generation Length (GL).

Accuracy Score represents the degradation in the model’s accuracy. It is calculated as the combined
sum of accuracy metrics—BLEU, ROUGE, and METEOR—by comparing the adversarially gener-
ated response x̂An

to the original, unperturbed response xAn
. This objective measures the reduction

in similarity between the original and adversarially generated responses:

AS(x̂Bn) = BLEU(x̂An , xAn) + ROUGE(x̂An , xAn) + METEOR(x̂An , xAn) (2)

Generation Length is introduced as the second objective. Since generating longer outputs can lead
to semantically less accurate responses, GL is defined as the total number of tokens in the generated
output sentence x̂An

, representing the length of the adversarial response:

GL(x̂Bn
) = |x̂An

| (3)

These two objectives are optimized simultaneously to craft adversarial samples that force DG models
to generate responses that are not only inaccurate but also longer and more irrelevant.

In white-box adversarial attack (Li et al., 2023b), the accuracy objective was defined using cumula-
tive probabilities with respect to a reference response xrefn , known as Targeted Confidence (TC):

TC(x̂Bn) =

|xrefn |∑
t=1

p(xrefn,t|cA, hAn , x̂Bn , xrefn,<t) (4)

Minimizing TC reduces the likelihood of the model generating the reference response xrefn . How-
ever, in real-world scenarios, accessing internal model probabilities and reference responses is typi-
cally infeasible. The only available feedback is the generated output from the target DG model. To
overcome this limitation, we redefine the accuracy objective for our black-box setting by leveraging
the model’s original generated response from the unperturbed input sentence as a pseudo-reference.
Instead of comparing the adversarial response x̂An

to an external reference xrefn , we compare it to
the original response xAn

generated by the model in response to the unperturbed input xBn
. This

approach allows us to practically evaluate accuracy in black-box settings by using the model’s own
outputs as a baseline for assessing adversarial success. The goal is to minimize the similarity be-
tween the adversarial response x̂An and the original response xAn , thereby degrading the model’s
performance while ensuring the adversarial input remains contextually appropriate.

3.2 ADVERSARIAL ATTACK VIA MULTI-OBJECTIVE OPTIMIZATION

3.2.1 PARETO DOMINANCE IN ADVERSARIAL ATTACK ON DIALOGUE GENERATION

Regarding the two objectives, Accuracy Score (AS) and Generation Length (GL), a candidate adver-
sarial sentence xa is said to Pareto dominate another adversarial sentence xb (denoted as xa ≻ xb)
if xa is no worse than xb in both objectives and strictly better in at least one objective:

xa ≻ xb ⇔ (AS(xa) ≤ AS(xb)∧ GL(xa) ≥ GL(xb))∧ (AS(xa) < AS(xb)∨ GL(xa) > GL(xb))
(5)

The utopian adversarial sentence that force DG models to generate responses with the maximal
length and the minimal accuracy is hard to obtain. This is because maximizing GL does not al-
ways succeed in minimizing accuracy, especially regarding modern LLMs, and while minimizing
accuracy could unintentionally shorten responses. Instead, multi-objective attack aims to obtain the
Pareto set of adversarial sentences that are all optimal in the sense that they are not Pareto dominated
by any sentences in the adversarial space. The Pareto set forms a Pareto front in the objective space
(GL,AS), as illustrated in Fig. 1, where each Pareto-optimal sentence represent an optimal trade-off
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between response length and accuracy. In practice, we do not need to obtain the entire Pareto set but
just an approximation set of Pareto-optimal sentences that are well spread on the Pareto front.

Pareto 
Front

Utopian Solution

Generation Length

A
ccuracy Score

Multi-Objective Genetic Algorithm

Dominated
 Solutions

Irrelevant

Lengthy

Figure 1: Illustration of the Pareto front in the objective space regarding the two objectives: max-
imizing generation length (GL) and minimizing accuracy score (AS). Candidate sentences on the
Pareto front are not Pareto dominated by any feasible sentences. Instead of searching for the entire
Pareto set, we aim to obtain an approximation set of non-dominated sentences that together approx-
imate well the Pareto front (depicted as black triangle).

Pareto dominance-based optimization allows us to straightforwardly optimize the two objectives at
the same time but separately, rather than aggregating them into a single objective as in (Li et al.,
2023b). Hyperparameter tuning for the aggregation weights of AS and GL is non-trivial because
the proper weights depend on the ranges of the objectives and the accuracy metrics, as well as the
specific conversation under attack. Evolutionary algorithms, due to their population-based operation,
are well-suited to directly searching for an approximation set of diverse adversarial sentences.

3.2.2 CRAFTING ADVERSARIAL ATTACKS WITH MULTI-OBJECTIVE GENETIC ALGORITHM

In our DGAttack framework, we adopt the non-dominated sorting genetic algorithm II (NSGA-
II) (Deb et al., 2002) to obtain a good approximation set of diverse non-dominated adversarial sen-
tences. Figure 2 illustrates the workflow of DGAttack.

In the first generation t = 1, DGAttack generates the initial population P 1 consisting of N adver-
sarial sentences, which are created from random perturbations of the original input sentence xBn . In
each generation t, promising candidate sentences from P t (in terms of Pareto dominance regarding
the two objectives AS and GL) are copied into a selection set St. Two variation operators (crossover
and mutation) are applied on St to create a set Ot of new candidates. Crossover recombines each
pair of selected sentences x, x′ ∈ St (i.e., parents) by exchanging random segments of their words
to craft two new sentences o, o′ ∈ Ot (i.e., offspring). Mutation randomly perturbs some words in
offspring sentences o ∈ Ot, thereby introducing novel tokens to the search process. After variation,
the current population and the offspring population are merged into a pool (P t+Ot) from which the
non-dominated sorting procedure assigns a rank to each candidate based on their Pareto dominance.
Another selection round is conducted to select candidates into the next generation P t+1 based on
their ranks. If candidates from the same rank compete, the ones with higher crowding distances is
preferred (i.e., the ones that are far from others). The above procedure of selection - variation is
iterated until the allowed number of generations is reached. In this final population, the candidates
that are not dominated by others are regarded as the approximation set of non-dominated adversarial
sentences obtained by DGAttack. Further details can be found in Appendix B.

Perturbation Strategy. This strategy is applied in both initialization and mutation steps to intro-
duce adversarial perturbations. To generate new sentences, we perturb salient words within existing
sentences. Salient words are identified using POS tags, focusing on nouns, adjectives, and verbs,
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Binary
Tournament 

Selection

Parent Population

Adversarial
Sentence Crossover,

Mutation

Offspring

Adversarial
Sentence

Pool Population + Offspring

Adversarial
Sentence

Non-dominated Sorting

Adversarial
Sentence

Crowding Distance SortingAdversarial
Sentence

New Population

   
Original: Keeping active will make you feel younger and  healthy too. 

Staying active will help you get younger and healthy too. 
Staying active will let you feel younger and better too. 
Keeping active will make you look fit and healthy too. 

Adversarial Sentence Examples

Initialize Population

Population

Adversarial
Sentence

Individual Replacement

Evolve

Figure 2: The main framework of DGAttack and advesarial sentence examples.

i.e., parts of speech that affect the sentences’ meanings the most. To maintain sentence coherence,
we exclude immutable stopwords (e.g., auxiliary verbs and common pronouns) from perturbation.

Our perturbation strategy generates adversarial samples that are more fluent than traditional rule-
based substitutions. We use a pre-trained BERT model (Devlin et al., 2019) to predict contex-
tually appropriate replacements for salient words. The process starts by replacing salient words
with a [MASK] token. For example, a sentence with the word wi masked would be transformed
into swi = [w0, . . . , wi−1, [MASK], wi+1, . . .]. We then craft adversarial sentences by filling the
[MASK] token with BERT’s predictions. BERT-MLM is a powerful pre-trained language model,
and its predicted tokens generally fit well into the grammar and context of the text.

However, BERT does not guarantee semantic coherence, as an alternative word can fit both gram-
matically and contextually while still having a different meaning. To address this issue, we filter out
low semantic similarity candidates using the Universal Sentence Encoder (USE) (Cer et al., 2018)
sentence similarity function, retaining only candidates with high similarity to the original sentence.
We also check those BERT predictions by filtering out antonyms using the WordNet (Miller, 1995),
enhancing similarity between adversarial samples and original sentences. We also use Language-
Tool1, an open-source grammar checker to filter out potential grammatical errors.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTINGS

4.1.1 DATASETS

Our experimental setup closely follows the methodology described in the white-box approach
DGSlow Li et al. (2023b). We evaluate our method on four benchmark datasets: Blended Skill
Talk (BST) (Smith et al., 2020), Persona Chat (PC) (Zhang et al., 2018), ConvAI2 (CV2) (Dinan
et al., 2019), and Empathetic Dialogues (ED) (Rashkin et al., 2019). These datasets are preprocessed
for dialogue generation (DG) tasks following settings outlined in Section 3.1.1. The statistics of the
datasets (training sets) are shown in Appendix A.1.

1https://languagetool.org/
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4.1.2 TARGET MODELS

We target three DG models: DialoGPT (Zhang et al., 2020b), BART (Lewis et al., 2020), and
T5 (Raffel et al., 2020). DialoGPT is a pretrained transformer based on GPT-2 (Radford et al.,
2018), specifically trained on Reddit comments for dialogue response generation. BART and T5
are seq2seq encoder-decoder models pretrained on diverse and open-domain datasets. Details of the
performance of Target Models are shown in Appendix A.2.

Following established practices in the field, we utilize Byte-level BPE tokenization (Radford et al.,
2019) pre-trained on open-domain datasets, as implemented in HuggingFace tokenizers. To meet the
DG requirements, we incorporate two additional special tokens, namely, [PS] and [SEP]. The [PS]
token is inserted before each persona to help the model recognize the personality of each speaker.
The [SEP] token is used to separate utterances within a dialogue, allowing the model to understand
the structural information within the chat history.

4.1.3 METRICS

We evaluate our method based on generation length, accuracy metrics, and Attack Success Rate
(ASR) of the generated responses to adversarial samples as in (Li et al., 2023b). We employ three
standard NLP accuracy metrics BLEU (Papineni et al., 2002), ROUGE (Lin & Och, 2004), and ME-
TEOR (Banerjee & Lavie, 2005). These metrics quantify the correspondence between the generated
responses and the reference outputs. The ASR metric is defined as in (Li et al., 2023b):

ASR =
1

N

N∑
i=1

1[cos(xi, x̂i) > ϵ ∧ E(yi, ŷi) > τ ],

subject to: E(y, ŷ) = M(y, yref)−M(ŷ, yref).

(6)

where cos(.) denotes the cosine similarity between the embeddings of the original input x and the
crafted input x̂. M(·, ·) represents the average score of the three accuracy metrics. An attack is
considered successful if the adversarial input induces a more irrelevant output (> τ ) while preserv-
ing sufficient semantics of the original input (> ϵ). Details of the hyperparameters can be found in
Appendix A.3

4.1.4 BASELINES

We evaluate our approach against two white-box and two black-box adversarial attack strategies,
adapted to the dialogue generation task.

For the white-box attacks, we focus on: 1) HotFlip (Ebrahimi et al., 2018), which generates adver-
sarial examples through both word and character-level substitutions driven by embedding gradients.
2) TextBugger (Li et al., 2018), which employs a greedy strategy for word substitution and character
manipulation to execute white-box adversarial attacks.

We compare our methods with two recent black-box textual word-level adversarial attacks: 1) BAE
(BERT-based Adversarial Examples) (Garg & Ramakrishnan, 2020), which estimates the impor-
tance of each token by computing the change in output probability before and after deleting that to-
ken, and then uses BERT to perturb the most vulnerable words. 2) PWWS (Probability Weighted
Word Saliency) (Ren et al., 2019a), which generates adversarial examples by replacing key words
with their synonyms, selected according to a probability-weighted saliency score, aiming to mislead
the model while preserving the original meaning of the sentence. Although both of these methods
are labeled as black-box approaches, we argue that they belong to the gray-box category because
they rely on access to the model’s output probabilities to identify vulnerable words. In real-world
scenarios, such output probabilities are often inaccessible, limiting their practical applicability. This
distinction is crucial, as truly black-box methods, like DGAttack, operate solely on the generated
responses without requiring internal model details. To adapt these methods to the DG setting, we
calculate the importance score based on the Targeted Confidence which is formulated as the cumu-
lative probabilities of a sequence with respect to its reference sentence xrefn .

We also compare our approach with DGSlow (Li et al., 2023b), which is the state-of-the-art multi-
objective white-box adversarial attack for dialogue generation. We adapt DGSlow’s objectives to an
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DGAttack gray-box baseline, in which we experiment DGAttack with TC as the accuracy objective
and GL as the length objective. This adaptation underscores the effectiveness of our approach in
degrading the target model’s performance without requiring access to the model’s parameters nor
its output probabilities. Additionally, for black-box baselines, we implement a single-objective
Genetic Algorithm (GA) targeting either accuracy score or generation length (see Appendix C).

4.2 EXPERIMENTAL RESULTS

Table 1: Evaluation of white-box, gray-box , and black-box attack methods on three target models
across four datasets. GL denotes the average generation output length. Cos. stands for the cosine
similarity between original and adversarial samples. ROU. (%) and MET. (%) denote ROUGE-L
and METEOR respectively. Bold numbers mean the best metric values across methods.

Dataset Method DialoGPT Bart T5
GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑ GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑ GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑

BST

FD 16.70 13.74 18.31 24.00 39.29 0.79 16.60 12.74 18.62 19.41 25.14 0.88 14.74 13.30 21.42 21.03 17.14 0.90
HotFlip 16.13 14.12 19.24 22.74 30.36 0.81 16.86 12.82 18.70 19.73 22.86 0.89 14.90 13.01 20.74 20.42 19.43 0.90
DGSlow 25.54 9.14 17.03 22.61 71.43 0.90 23.50 8.39 16.37 19.40 48.00 0.92 28.69 9.11 15.82 19.21 57.14 0.93
PWWS 15.30 13.47 20.10 25.77 27.61 0.75 19.86 11.23 20.27 23.57 21.61 0.78 14.12 13.80 21.67 20.77 43.86 0.77

BAE 16.44 14.70 22.50 25.33 30.35 0.77 19.59 12.00 21.00 23.47 49.43 0.93 15.45 13.20 21.10 20.83 59.26 0.78
GA (AS) 16.92 13.37 20.07 23.07 45.03 0.83 17.38 12.50 21.37 22.97 64.43 0.86 12.91 15.43 23.20 21.77 34.94 0.88
GA (GL) 19.53 14.30 19.27 22.73 50.47 0.84 28.27 8.43 18.93 24.80 58.45 0.85 19.21 10.90 20.30 21.53 44.76 0.82
DGAttack 21.76 13.10 19.47 22.37 48.13 0.82 27.64 8.63 18.07 23.70 70.03 0.82 16.71 12.47 20.63 20.40 51.00 0.82
DGAttack 22.00 12.97 19.10 22.37 52.45 0.81 28.26 8.03 17.50 22.97 70.83 0.81 19.71 10.30 18.97 20.20 69.05 0.83

CV2

FD 15.74 12.54 14.33 8.13 38.10 .0.78 12.30 10.81 10.52 11.14 20.13 0.88 13.97 9.91 10.62 9.53 16.78 0.90
HotFlip 16.38 13.33 15.21 9.42 33.33 0.81 13.46 10.50 10.41 11.71 32.89 0.86 14.03 9.63 10.12 9.50 26.17 0.86
DGSlow 28.54 11.70 13.71 8.00 64.29 0.81 23.84 6.51 8.34 10.52 56.61 0.87 22.32 7.74 8.43 7.71 53.02 0.88

BAE 16.74 13.38 16.16 10.17 42.24 0.84 12.79 12.20 10.80 11.53 21.33 0.92 12.73 11.03 10.37 10.73 32.38 0.79
PWWS 18.61 13.27 14.47 14.07 24.74 0.73 13.78 10.40 10.67 12.73 22.99 0.77 11.25 12.10 11.57 10.33 36.81 0.79

GA (AS) 14.07 13.57 15.30 10.37 35.70 0.82 10.82 13.30 11.37 11.47 31.67 0.88 12.98 13.27 10.53 10.40 38.27 0.84
GA (GL) 21.95 12.33 17.03 10.58 32.65 0.83 18.64 8.40 9.67 11.70 61.27 0.84 15.55 10.53 11.10 10.73 48.62 0.82
DGAttack 23.03 12.80 15.95 9.99 34.57 0.82 19.75 8.23 9.37 11.40 50.03 0.82 13.32 10.83 11.07 10.43 30.98 0.81
DGAttack 23.94 12.53 16.43 9.73 43.74 0.80 19.78 7.93 9.13 10.93 52.99 0.81 15.57 9.93 10.27 9.80 41.22 0.82

PC

FD 17.27 17.13 30.22 29.21 36.67 0.79 17.20 15.71 26.90 30.32 46.55 0.79 14.54 16.34 27.69 28.03 33.62 0.82
HotFlip 17.22 17.74 28.81 27.92 56.67 0.79 17.51 15.01 26.53 30.34 57.76 0.77 15.97 15.31 27.20 28.37 43.10 0.81
DGSlow 25.72 15.68 27.77 28.50 70.00 0.86 31.94 9.32 20.50 29.76 96.55 0.89 32.17 8.86 15.38 25.60 90.33 0.86

BAE 16.50 18.93 29.27 32.07 52.50 0.79 16.22 16.17 27.20 30.80 39.58 0.92 14.95 16.13 27.47 29.37 44.15 0.82
PWWS 16.48 17.67 30.63 31.70 39.94 0.71 17.34 15.90 26.27 33.37 50.43 0.80 13.46 15.77 28.53 28.20 32.23 0.79

GA (AS) 12.38 20.33 30.47 30.20 47.66 0.84 14.11 17.87 28.33 29.67 55.39 0.85 11.95 17.87 29.83 28.43 48.92 0.82
GA (GL) 18.45 17.91 28.73 29.37 48.31 0.81 25.58 10.80 23.33 31.47 73.52 0.81 18.23 12.80 26.87 28.57 62.66 0.81
DGAttack 19.59 17.90 28.00 29.23 42.85 0.81 25.11 10.57 23.43 30.36 64.82 0.81 14.93 14.97 26.30 28.33 43.46 0.81
DGAttack 19.62 17.43 28.33 28.93 48.16 0.79 25.77 10.13 22.87 30.67 66.86 0.82 18.31 12.37 26.13 28.87 50.87 0.80

ED

FD 15.00 9.03 12.62 11.06 41.82 0.75 19.66 6.54 10.44 11.03 44.26 0.76 16.66 7.41 11.30 11.04 32.79 0.79
HotFlip 17.69 8.71 12.92 9.82 40.74 0.78 21.38 6.71 10.74 13.42 67.21 0.70 17.30 7.03 10.81 10.53 37.70 0.80
DGSlow 24.72 8.93 12.12 9.66 69.81 0.90 34.28 4.22 8.11 9.70 98.36 0.82 38.82 4.02 6.10 9.91 94.16 0.92

BAE 16.15 9.27 15.50 13.50 56.40 0.83 26.95 8.47 10.63 13.33 69.51 0.82 14.45 7.70 11.67 12.43 41.62 0.83
PWWS 17.58 9.63 14.15 14.87 42.24 0.72 19.39 9.10 11.73 14.17 51.98 0.78 12.99 8.17 11.57 12.70 24.53 0.77

GA (AS) 11.21 9.47 14.23 13.03 37.40 0.86 15.33 8.30 12.50 12.83 51.80 0.90 12.69 9.30 15.40 13.23 56.83 0.84
GA (GL) 18.30 9.50 12.47 14.73 48.55 0.85 27.45 7.80 11.23 14.10 74.30 0.84 18.62 7.20 11.30 11.40 63.33 0.84
DGAttack 19.11 9.42 12.10 12.17 42.24 0.82 26.77 5.43 9.93 12.83 68.63 0.82 18.32 7.47 10.93 10.53 46.93 0.81
DGAttack 19.80 9.43 11.67 11.80 48.91 0.81 27.68 5.27 9.13 11.57 69.22 0.81 18.53 7.07 10.37 10.47 63.11 0.82

Our main results, shown in Table 1, outline the attack success rate, accuracy metrics, and cosine sim-
ilarity. DGAttack consistently induces DG models to generate longer and less accurate responses
compared to white-box, gray-box and black-box baselines. Notably, the multi-objective approach
employed by DGAttack outperforms the single-objective GA in terms of overall attack effective-
ness. Indeed, simultaneously targeting both response coherence and generation length leads to more
powerful and disruptive adversarial attacks.

We compare the black-box DGAttack with a gray-box variant, which minimizes accuracy by lever-
aging the model’s output probabilities. The results show that, even without access to internal infor-
mation, the black-box DGAttack is capable of crafting adversarial sentences inducing DG models
to generate longer and less accurate responses than the gray-box one. This can be attributed to
the fact that using accuracy metrics like BLEU, ROUGE, and METEOR in DGAttack evaluates
the overall coherence and fluency of the entire response, whereas the gray-box approach relies on
token-level probabilities, which often capture only local confidence at the word level. It emphasizes
the practicality and robustness of our method, demonstrating its effectiveness in real-world dialogue
generation scenarios where access to model-specific knowledge may be restricted or unavailable.

In some cases, DGAttack performs moderately better than the white-box multi-objective method
DGSlow on certain metrics. However, while DGSlow generally outperforms all other baselines and
our proposed black-box methods, it cannot be used in real-world scenarios because it requires access
to internal information about the target models, such as gradients or probabilities. In contrast, our
black-box DGAttack does not rely on such internal parameters or even output logits, making it a
feasible approach in practice where model information is unknown.

Experiment results demonstrate that DGAttack is a powerful and flexible tool for generating adver-
sarial examples in the black-box setting. It effectively balances the dual objectives of degrading
accuracy and extending generation length, producing adversarial samples that are both diverse and
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impactful. DGAttack also preserves a reasonable degree of semantic coherence, as evidenced by
acceptable cosine similarity scores. This combination of attack effectiveness and the maintenance
of some coherence underscores the robustness of the multi-objective optimization strategy. Details
on our design choices are provided in the ablation study in Appendix I.

4.3 QUALITATIVE RESULTS

We present a case study that demonstrates adversarial samples generated by our method. Table 2
showcases several input sentences crafted by DGAttack, which forces BART to produce lengthy
and incoherent responses. By perturbing selected words in the input, our approach degrades the rel-
evance and coherence of the generated dialogue while maintaining fluency. Notably, even with min-
imal token replacements—substituting words with similar meanings and part-of-speech tags—our
methods induce the model to generate much longer, more irrelevant sequences x̂An compared to the
original responses xAn . These limited perturbations preserve the readability and semantic integrity
of the adversarial samples, while still causing a significant quality drop in the generated responses.

Table 2: DGAttack generates adversarial sentences that force BART to produce lengthy and inco-
herent responses. Italics text represents added tokens, while strikethrough indicates removed tokens.

Persona cA: I am a grandparent at 44.
Chat history h:
[PERSON B] Congratulations! That’s great. Do you have any hobbies?
[PERSON A] Thank you! I try to not feel old haha. Yes I love playing soccers with my friends
quite often.
[xB

2 → x̂B
2 ] Keeping Staying active will make you feel younger strong and healthy too. Will you

teach your grandchild kids soccer?
[xA

2 ] I think it will be something that he will really enjoy, since he’s on a team at school
[x̂A

2 ] I don’t have a great idea, but it seems like it would be a good way to keep him active. I have a
great idea, how would you feel about teaching him soccer?
[xB

3 → x̂B
3 ] Wonderful Awesome. I am sure certain they will appreciate that! I like to photograph

nature in my free time.
[xA

3 ] Nature is a beautiful thing to behold. What nature is your favorite?
[x̂A

3 ] I love taking pictures of everything! I have a collection of old silver/gold coins, and a few
tropical fish. What is your favorite animal?
[xB

4 → x̂B
4 ] That’s okay! Yes, I mostly photograph nature shoot landscapes, but I try to photograph

capture other things as well, like people and landmarks places.
[xA

4 ] That’s interesting. What type of things do you like to photograph?
[x̂A

4 ] That’s interesting. I think people and nature are the same thing. I think it’s amazing how nature
can see each other in so many different ways.

4.4 ADVERSARIAL ATTACK AGAINST LLMS

Most adversarial attacks on LLMs, particularly in real-world deployments via API access, cannot
rely on white-box techniques, which require access to gradients and model internals. Instead, exist-
ing white-box approaches often resort to transferability attacks, where an adversarial attack is first
performed on an open-source LLM, and then transferred to other LLMs. In contrast, our black-box
DGAttack can directly targets LLMs without requiring access to their gradients or output logits,
making it well-suited for attacking LLMs deployed through APIs. This is a critical advantage, as
most real-world LLMs, apart from open-source models, do not expose internal information, making
gradient-based attacks impractical.

Table 3 demonstrates that DGAttack consistently outperforms DGSlow in transferability attacks
from smaller models (e.g., BART) to LLMs like Llama 3.1 and Gemma 2. A key advantage of
DGAttack is its black-box nature, which does not depend on model gradients or parameters. This
independence reduces the risk of generating adversarial examples that are overfitted or highly spe-
cific to the model from which gradients are computed, a common limitation of white-box methods
like DGSlow. The results underscore DGAttack’s effectiveness and transferability in black-box set-
tings.
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Table 3: Comparison of transfer attack results between DGSlow and DGAttack on LLMs. This
table shows the performance of adversarial attacks transferred from a smaller model (BART) to
LLMs using both DGSlow (white-box) and DGAttack (black-box). Bold numbers mean the best
metric values across methods.

Dataset Method Llama 3.1 Gemma 2
GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑ GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑

BST DGSlow 28.34 5.33 15.00 18.53 55.97 0.92 11.63 8.20 17.47 17.73 48.61 0.92
DGAttack 28.38 5.20 14.70 18.23 61.03 0.81 12.72 8.13 17.03 17.37 55.70 0.81

CV2 DGSlow 26.03 3.80 7.33 9.93 31.58 0.87 10.39 6.33 8.27 9.43 25.09 0.87
DGAttack 26.44 3.73 7.13 9.83 41.14 0.81 11.43 6.05 8.05 9.15 32.66 0.81

PC DGSlow 27.38 6.40 18.53 25.13 51.14 0.89 11.27 8.73 21.80 23.50 44.57 0.89
DGAttack 27.74 6.23 18.17 24.87 56.32 0.82 11.42 8.50 21.47 23.00 52.80 0.82

ED DGSlow 26.16 3.97 7.97 9.50 49.31 0.82 12.13 6.30 9.77 9.83 43.68 0.82
DGAttack 26.46 3.97 7.80 9.33 54.57 0.81 12.61 6.13 9.60 9.67 49.15 0.81

In addition to transferability from smaller models, we also compared DGAttack’s direct black-box
attacks on LLMs with DGSlow’s transferability attacks between LLMs (i.e., Llama ↔ Gemma).
This comparison, as shown in Table 4, demonstrates that DGAttack, while not outperforming
DGSlow’s direct white-box attack on LLMs, still performs marginally better than DGSlow’s
transfer-based attacks between LLMs. The results indicate that DGAttack offers impressive direct
attack performance without the need for transfer attack, emphasizing its applicability in real-world
scenarios where model-specific knowledge are unavailable.

However, our method has some limitations, particularly in terms of computational and budget con-
straints, as well as the effectiveness of evolutionary operators. We discuss these challenges, along
with future work aimed at addressing them, in Appendix J.

Table 4: Comparison of transfer attacks between LLMs and direct attacks using DGAttack. Rows
or columns where the source model and target model are the same (e.g., Llama to Llama) represent
direct white-box attacks by DGSlow, and these results are presented in italics. Bold numbers mean
the best metric values across methods.

Dataset Method Llama 3.1 Gemma 2
GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑ GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑

BST
Llama 34.58 4.40 13.87 17.97 79.53 0.87 15.98 7.53 16.83 16.97 65.18 0.85

Gemma 32.23 4.77 14.37 18.20 68.35 0.85 17.87 7.17 16.50 16.67 72.92 0.87
DGAttack 31.90 4.67 14.13 18.17 69.32 0.86 15.96 7.57 16.83 16.97 63.67 0.86

CV2
Llama 32.00 3.23 6.33 9.00 64.82 0.87 13.25 5.68 7.85 8.53 51.70 0.85

Gemma 29.06 3.50 6.77 9.67 54.67 0.85 15.12 5.37 7.47 8.17 63.15 0.86
DGAttack 28.77 3.37 6.60 9.70 57.32 0.86 13.48 5.53 7.80 8.50 55.97 0.88

PC
LLama 33.16 5.33 16.93 24.20 73.85 0.85 15.45 7.93 20.73 22.53 64.16 0.85
Gemma 30.33 5.77 17.53 24.30 64.54 0.85 17.06 7.60 20.07 22.13 78.36 0.86

DGAttack 29.24 5.67 17.50 24.30 66.05 0.84 15.20 7.93 20.60 22.37 71.11 0.84

ED
Llama 33.22 3.47 7.57 8.93 80.79 0.85 15.93 5.77 9.40 9.43 59.28 0.86

Gemma 30.70 3.87 7.90 9.33 67.25 0.84 17.81 5.30 9.03 9.07 77.16 0.87
DGAttack 30.24 3.73 7.80 9.17 71.74 0.85 15.66 5.60 9.27 9.37 62.25 0.86

5 CONCLUSION

In this paper, we proposed DGAttack, a black-box multi-objective attack framework for generating
adversarial samples aimed at degrading the performance of dialogue generation models. By leverag-
ing multi-objective evolutionary algorithm (NSGA-II), we simultaneously optimize for two objec-
tives—response length and accuracy. Our method generates adversarial sentences through semantic-
preserving perturbations, which ensures that the samples are coherent enough to deceive the dialogue
model while substantially reducing the quality of its output. We demonstrate that DGAttack mostly
outperforms all black-box, gray-box, white-box baselines and transfer-based white-box attack like
DGSlow in black-box settings, particularly against large language models. The ability to directly
attack models without relying on access to internal information highlights the practicality and ro-
bustness of our approach, proving its applicability in real-world API-based LLM deployments. Our
results underscore the power of DGAttack as a state-of-the-art black-box adversarial attack for dia-
logue generation models, including large-scale models like LLaMA and Gemma.
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Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky. Adversarial learn-
ing for neural dialogue generation. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.),
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
2157–2169, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.
doi: 10.18653/v1/D17-1230. URL https://aclanthology.org/D17-1230.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. BERT-ATTACK: Ad-
versarial attack against BERT using BERT. In Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 6193–6202, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.500. URL https://aclanthology.org/
2020.emnlp-main.500.

12

https://aclanthology.org/2020.emnlp-main.498
https://arxiv.org/abs/1412.6572
https://aclanthology.org/N18-1170
http://arxiv.org/abs/1907.11932
https://aclanthology.org/2022.findings-acl.232
https://aclanthology.org/2022.findings-acl.232
https://openreview.net/forum?id=HJcmcPJwG
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2023.findings-emnlp.1053
https://aclanthology.org/2023.findings-emnlp.1053
http://arxiv.org/abs/1812.05271
http://arxiv.org/abs/1812.05271
https://aclanthology.org/D17-1230
https://aclanthology.org/2020.emnlp-main.500
https://aclanthology.org/2020.emnlp-main.500


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yufei Li, Zexin Li, Yingfan Gao, and Cong Liu. White-box multi-objective adversarial attack on di-
alogue generation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1778–1792, Toronto, Canada, July 2023b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.100. URL https://aclanthology.org/2023.
acl-long.100.

Chin-Yew Lin and Franz Josef Och. Automatic evaluation of machine translation quality using
longest common subsequence and skip-bigram statistics. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics (ACL-04), pp. 605–612, Barcelona,
Spain, July 2004. doi: 10.3115/1218955.1219032. URL https://aclanthology.org/
P04-1077.

Qian Liu, Yihong Chen, Bei Chen, Jian-Guang Lou, Zixuan Chen, Bin Zhou, and Dongmei
Zhang. You impress me: Dialogue generation via mutual persona perception. In Dan Juraf-
sky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 1417–1427, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.131. URL https:
//aclanthology.org/2020.acl-main.131.

Paul Michel, Xian Li, Graham Neubig, and Juan Pino. On evaluation of adversarial perturba-
tions for sequence-to-sequence models. In Jill Burstein, Christy Doran, and Thamar Solorio
(eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 3103–3114, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.
doi: 10.18653/v1/N19-1314. URL https://aclanthology.org/N19-1314.

George A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38(11):39–41, nov
1995. ISSN 0001-0782. doi: 10.1145/219717.219748. URL https://doi.org/10.1145/
219717.219748.

V. Nithya, S. Senthilkumar, and R. Regan. Streamlining detection of input validation attack
types through hybrid analysis and machine learning. Sādhanā, 49(2):138, 2024. ISSN
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A DETAILS OF TARGET MODELS AND DATASETS

A.1 DATASETS

The statistics for all four datasets are presented in Table 5.

Table 5: Statistics of the four datasets.
Dataset #Dialogues #Utterances

BST 4,819 27,018
PC 17,878 62,442

CV2 3,495 22,397
ED 36,660 76,673

A.2 TARGET MODELS

Following previous works, we use the HuggingFace pre-trained models—dialogpt-small, bart-base,
and t5-small on our main results. For the experiments targeting Large Language Models (LLMs), we
employ gemma-2-9b-it and Meta-Llama-3.1-8B-Instruct. Details of the performance of all victim
models are listed in Table 6

Table 6: Performance of five victim models in four benchmark datasets. GL denotes the average
generation output length. ROU.(%) and MET.(%) are abbreviations for ROUGE-L and METEOR.

Dataset DialoGPT BART T5
GL↑ BLEU↓ ROU.↓ MET.↓ GL↑ BLEU↓ ROU.↓ MET.↓ GL↑ BLEU↓ ROU.↓ MET.↓

BST 16.05 14.54 19.42 23.83 14.94 13.91 20.73 20.52 14.14 14.12 22.12 21.70
CV2 12.38 12.83 16.31 14.10 10.64 12.24 11.81 12.03 13.25 10.23 10.61 9.24
PC 15.22 18.44 30.23 31.03 13.65 18.12 28.30 28.81 13.12 18.20 28.83 28.91
ED 14.47 9.24 13.10 11.42 14.69 8.04 11.13 10.92 15.20 7.73 11.31 10.34

Llama Gemma
GL↑ BLEU↓ ROU.↓ MET.↓ GL↑ BLEU↓ ROU.↓ MET.↓

BST 28.10 5.40 15.27 19.13 10.78 8.33 18.03 18.20
CV2 24.98 3.83 7.57 10.20 9.44 6.13 8.47 9.80
PC 27.27 6.33 18.57 20.22 10.41 8.73 21.80 23.10
ED 23.93 4.17 8.03 9.13 10.71 6.23 9.50 9.20

A.3 HYPERPARAMETERS

In our experiments, the minimum similarity threshold ϵ is set to 0.7 for defining a valid adversar-
ial sentence. For BERT-MLM, we use the HuggingFace pretrained bert-large-uncased for masking
perturbations given the number of candidates is set to 20. In our Genetic Algorithm implementa-
tions, they are installed as only one word within a sentence is perturbed for every generation and the
number of generations is set to 5. In other words, there are no more than 5 word-level modifications
for every sentence. Following previous work in (Li et al., 2023b), for each dataset, we randomly se-
lect 100 dialogue conversations in which each conversation contains 5-8 turns to conduct adversarial
attack experiments and evaluate attacking performance.

B DGATTACK WITH NON-DOMINATED SORTING GENETIC ALGORITHM II

Initialization. DGAttack constructs the initial population P of N candidate adversarial sentences,
which are created by randomly perturbing the original input sentence. We evaluate the fitness of
each candidate via the two objectives (i.e., AS and GL).

Binary Tournament Selection. We create a selection set S containing copies of promising candi-
date sentences in the current population P . Each time, two individuals (i.e., candidate sentences)
are randomly sampled from P , forming a tournament, and the one with superior fitness (i.e., the one
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that Pareto dominates the other) is the winner. If the two individuals are non-dominated with each
other, we break the tie randomly. The winner is then cloned into S. This process is repeated until
the selection set has N selected sentences. Note that we perform sample with replacement so that
the current population P remains intact during selection and we allow duplicates in S.

Crossover. The goal of the crossover operator is to generate new adversarial sentences that inherit
beneficial traits from existing sentences. To achieve this, the operator combines segments from each
pair of parent sentences in the selection set S to create two new offspring sentences. Let the two
parent sentences be p1 = (w

(1)
1 , w

(1)
2 , . . . , w

(1)
n ) and p2 = (w

(2)
1 , w

(2)
2 , . . . , w

(2)
n ), where w

(1)
k and

w
(2)
k represent the words in the first and second parent sentences, respectively. A random crossover

point k ∈ {1, 2, . . . , n} is selected. The offspring sentences o1 and o2 are generated by swapping
segments from the two parent sentences:

o1 = (w
(1)
1 , . . . , w

(1)
k , w

(2)
k+1, . . . , w

(2)
n ) and o2 = (w

(2)
1 , . . . , w

(2)
k , w

(1)
k+1, . . . , w

(1)
n )

Mutation. The mutation operator introduces random perturbations to selected words within a sen-
tence p = (w1, w2, . . . , wn). The perturbations should be contextually appropriate, ensuring that
the resulting sentences remain coherent and grammatically correct. The mutated sentence p′ with its
replacement w′

k is represented as: p′ = (w1, . . . , wk−1, w
′
k, wk+1, . . . , wn)

Non-dominated Sorting. After variation (i.e., crossover and mutation), we have an offspring set O
of N newly-created sentences. We combine both parent and offspring sentences into a pool (P +O)
of 2N candidates. This pool is then partitioned into non-overlapping subsets Fi. Each subset Fi,
also called a non-dominated sets, contain sentences that are not Pareto dominated by any others in
the pool if all subsets of smaller indices F1, F2, . . . , Fi−1 are removed from the pool. The subset
F1 thus contains the best sentences obtained so far as they are not dominated by any other pool
members. The subset F1 also forms a non-dominated front in the objective space (GL,AS).

Replacement. We need to select N sentences from the pool of 2N candidates to form the population
for the next generation. Sentences from the non-dominated sets of smaller indices are given priority
to be selected first F1, F2, . . . , Fk until |F1 ∪ F2 ∪ . . . ∪ Fk| ≥ N . We need to select (N − |F1 ∪
F2,∪ . . . ∪ Fk−1|) remaining sentences from Fk based on their crowding distances. This metric
measures how far a candidate is from its nearest neighbors of the same non-dominated set in the
objective space (GL,AS). Sentences with a higher crowding distance are preferred, as they lie in less
populated regions, promoting diversity.

The above procedure of selection → variation → non-dominated sorting → replacement is repeated
until a termination criterion is satisfied (e.g., reaching the maximum number of generations or run-
ning out of the computing budget). Upon termination, the non-dominated set F1 in the population
is the approximation set obtained our method. Sentences in the final F1 also forms an approximate
non-dominated front in the objective space (GL,AS) that approximates the true Pareto front.

C SINGLE-OBJECTIVE GENETIC ALGORITHM

In the single-objective approach, we focus on optimizing one of the following fitness functions to
guide the generation of adversarial samples. The fitness function can be designed to either maximize
Generation Length or minimize Accuracy Score .

Fitness Functions The fitness functions for the single-objective approach are defined as:

1. Generation Length:
FGL(x̂Bn

) = GL(x̂Bn
) = |x̂An

|

2. Accuracy Score:

AS(x̂Bn) = BLEU(x̂An , xAn) + ROUGE(x̂An , xAn) + METEOR(x̂An , xAn)

The optimization process involves the following steps, as illustrated in Figure 3:

1. Initialization: Generate an initial population of candidate adversarial samples by perturb-
ing salient words from the original input sentence.
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Figure 3: Adversarial attack with Genetic Algorithm

2. Variation: Apply mutation and crossover to the current population to create new offspring.
3. Combination: Merge the current population with its offspring to form a pool.
4. Tournament Selection: Evaluate the fitness of each candidate and select the top-

performing individuals within the pool for the next generation.
5. Iteration: Repeat the variation and tournament selection steps for a predetermined number

of generations.
6. Final Selection: After the final generation, sort the candidates in the population based on

their fitness scores to choose the most promising candidate for performing the adversarial
attack:

• For Accuracy Score (AS), sort in ascending order to minimize AS.
• For Generation Length (GL), sort in descending order to maximize GL.

D COMPUTATIONAL COST COMPARSION

In this section, we provide a detailed comparison of the computational costs associated with the
proposed black-box DGAttack method and the baseline white-box DGSlow approach. This analysis
focuses specifically on large language models (LLMs) such as Llama 3.1 and Gemma 2, as compu-
tational cost considerations are particularly significant for these models due to their high resource
demands.

D.1 OVERVIEW OF COMPUTATIONAL COSTS

We evaluate the runtime and query requirements of both DGSlow and DGAttack under controlled
conditions to ensure consistency. All experiments are conducted on a single NVIDIA A100 80GB
GPU. Table 7 summarizes the runtime for an entire dataset, the runtime per sample, and the number
of queries required per adversarial input.

Table 7: Comparison of computational costs and runtime between DGSlow and DGAttack methods
when applied to LLMs such as Llama 3.1 and Gemma 2. The table highlights the presence or
absence of gradient access, total runtime for an entire dataset, average runtime per sample, and the
number of queries required per adversarial sample. DGAttack incurs higher computational costs due
to its black-box nature, which requires iterative evaluation of multiple candidate solutions.

Attack Method Gradient Access Runtime (Dataset) Runtime (Sample) Queries/Sample
DGSlow Yes 8-9 hours 25-29 seconds -

DGAttack No 21-22 hours 58-66 seconds 100 queries
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D.2 RUNTIME ANALYSIS

The runtime comparison reveals that DGAttack incurs approximately 2–2.5x the computational cost
of DGSlow when evaluating the same dataset on the same hardware. This increase is primarily
due to DGAttack’s population-based optimization, which explores a broader adversarial space by
iteratively evaluating multiple candidate solutions. However, this trade-off is intrinsic to black-box
methods, which must compensate for the lack of access to gradient information by relying on more
extensive search strategies.

Through further experimentation, we observe that reducing the population size to 13–15 candidates
significantly reduce runtime to approximately 16–18 hours while maintaining high attack effective-
ness. This demonstrates that DGAttack can be cost-effective with carefully chosen configurations.

D.3 QUERY REQUIREMENTS

DGAttack, being a black-box method, requires significantly more queries than DGSlow. For a
configuration of 20 candidates and 5 generations, DGAttack necessitates approximately 100 queries
per sample. We also conduct experiments with reduced configurations (13–15 candidates), which
lower the query requirements to 65–75 per sample while also reducing runtime to 16–18 hours. This
finding underscores that DGAttack can achieve cost-efficiency and practicality with well-optimized
settings, without significantly compromising attack performance.

E STANDARD DEVIATIONS FOR REPORTED METRICS

Table 8 reports the standard deviations (std) of metrics (GL, BLEU, ROUGE, METEOR, ASR, Cos)
presented in Table 1 across multiple random seeds for DialoGPT, BART, and T5 models across
different datasets. Lower std values indicate greater stability, while higher std values may reflect
sensitivity to random initialization or dataset-specific variability.

Table 8: Standard Deviations for Results in Table 1
Dataset Method DialoGPT Bart T5

GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑ GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑ GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑

BST

BAE 1.36 0.10 0.22 0.21 1.83 0.01 1.28 0.10 0.13 0.15 1.88 0.01 0.96 0.09 0.20 0.21 2.75 0.01
PWWS 1.16 0.21 0.20 0.25 1.24 0.01 1.23 0.15 0.25 0.15 2.85 0.01 0.92 0.11 0.31 0.15 2.60 0.02
GA(AS) 2.21 0.15 0.25 0.15 2.72 0.01 1.54 0.10 0.25 0.10 1.79 0.01 1.22 0.12 0.11 0.15 2.59 0.01
GA(GL) 1.41 0.10 0.21 0.21 1.84 0.02 1.24 0.15 0.15 0.20 1.90 0.01 1.14 0.10 0.20 0.15 3.79 0.01

DGAttack 2.53 0.20 0.14 0.12 2.60 0.01 1.26 0.15 0.23 0.25 2.41 0.02 1.72 0.12 0.30 0.36 3.67 0.03
DGAttack 2.29 0.15 0.17 0.15 1.97 0.01 1.34 0.21 0.24 0.24 2.35 0.02 1.28 0.10 0.31 0.26 3.19 0.01

CV2

BAE 1.26 0.16 0.23 0.15 1.12 0.03 1.15 0.13 0.10 0.16 2.86 0.01 1.17 0.06 0.15 0.15 1.63 0.01
PWWS 1.19 0.15 0.25 0.12 1.72 0.01 0.97 0.16 0.21 0.21 1.92 0.01 0.77 0.10 0.08 0.12 2.32 0.01
GA(AS) 1.17 0.22 0.27 0.15 1.01 0.01 1.13 0.10 0.21 0.15 2.89 0.01 0.93 0.15 0.09 0.20 2.79 0.01
GA(GL) 1.24 0.10 0.16 0.13 1.95 0.01 1.17 0.15 0.15 0.20 1.84 0.03 0.95 0.15 0.10 0.15 3.64 0.01

DGAttack 1.47 0.34 0.41 0.27 3.20 0.01 1.61 0.25 0.26 0.23 2.54 0.01 1.27 0.32 0.14 0.31 2.68 0.02
DGAttack 1.17 0.18 0.35 0.25 2.31 0.02 1.51 0.15 0.19 0.28 2.75 0.01 0.84 0.12 0.18 0.10 3.06 0.01

PC

BAE 0.88 0.15 0.25 0.45 1.14 0.01 1.16 0.16 0.10 0.26 1.57 0.02 0.64 0.15 0.15 0.21 1.83 0.03
PWWS 0.82 0.15 0.15 0.17 1.39 0.01 2.15 0.20 0.22 0.31 1.71 0.01 0.84 0.15 0.15 0.20 2.58 0.01
GA(AS) 0.91 0.15 0.15 0.20 2.78 0.03 1.56 0.15 0.15 0.24 1.73 0.01 1.17 0.21 0.21 0.15 2.65 0.02
GA(GL) 1.18 0.10 0.15 0.15 1.40 0.02 1.20 0.10 0.15 0.25 1.97 0.01 0.75 0.10 0.15 0.15 3.29 0.01

DGAttack 1.61 0.40 0.26 0.47 3.24 0.02 2.82 0.18 0.19 0.29 1.23 0.03 0.65 0.15 0.22 0.16 2.86 0.04
DGAttack 1.36 0.29 0.15 0.23 1.81 0.01 2.94 0.15 0.25 0.29 1.19 0.02 0.90 0.21 0.26 0.15 2.77 0.01

ED

BAE 0.84 0.21 0.10 0.10 1.10 0.02 1.23 0.12 0.15 0.16 2.64 0.01 1.09 0.10 0.15 0.21 1.95 0.01
PWWS 1.21 0.12 0.16 0.12 1.80 0.01 1.82 0.17 0.15 0.21 3.20 0.03 1.12 0.06 0.15 0.10 1.87 0.04
GA(AS) 1.10 0.11 0.15 0.15 2.06 0.02 2.12 0.12 0.10 0.15 2.05 0.01 1.07 0.10 0.10 0.15 2.89 0.03
GA(GL) 1.14 0.10 0.15 0.15 2.70 0.01 2.28 0.15 0.15 0.22 2.70 0.01 1.14 0.10 0.10 0.13 4.67 0.02

DGAttack 1.96 0.19 0.30 0.23 2.15 0.01 2.55 0.21 0.38 0.31 3.32 0.02 1.17 0.12 0.21 0.21 3.71 0.02
DGAttack 1.30 0.12 0.31 0.30 1.56 0.03 2.10 0.13 0.35 0.35 2.64 0.01 1.15 0.12 0.29 0.15 3.55 0.01

Table 9 provides the standard deviations (std) for transferability results on Llama 3.1 8b and Gemma
2 9b. The deviations help assess the robustness of DGAttack against both white-box and transfer
attacks, demonstrating its reliability compared to other methods like DGSlow and BART Transfer.

F CLOSE-SOURCE MODEL EXPERIMENTS

The results in Table 10 illustrate the performance of transferability attacks on the close-source model
GPT-4o-mini. The table compares DGAttack’s transferability results with those of DGSlow. No-
tably, the results demonstrate that transfer from DGAttack’s black-box samples consistently yields
better performance compared to DGSlow’s transfer-based attacks.

This finding aligns with observations from our experiments with open-source models. Specifically,
DGAttack’s ability to generate effective adversarial samples directly, without relying on model-
specific knowledge, proves advantageous in scenarios where direct access to the internal workings
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Table 9: Standard deviations for results in Tables 3 and 4. Darker-shaded BART rows represent
results for DGAttack transferred from BART, while darker-shaded DGAttack rows represent results
for DGAttack operating as a direct black-box attack method.

Dataset Method Llama 3.1 8b Instruct Gemma 2 9b it
GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑ GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑

BST

BART 2.37 0.13 0.28 0.14 1.94 0.01 1.35 0.11 0.20 0.17 5.85 0.02
BART 1.90 0.12 0.24 0.09 5.09 0.01 1.79 0.12 0.19 0.19 5.82 0.02
LLama 2.63 0.22 0.29 0.26 4.70 0.02 2.50 0.26 0.26 0.19 5.65 0.01
Gemma 1.87 0.17 0.19 0.16 1.49 0.01 2.88 0.25 0.24 0.24 6.79 0.03

DGAttack 1.48 0.17 0.24 0.13 3.49 0.03 2.28 0.19 0.25 0.23 4.13 0.01

CV2

BART 2.34 0.08 0.26 0.21 2.03 0.03 1.28 0.05 0.38 0.34 2.44 0.01
BART 1.54 0.09 0.33 0.29 3.20 0.01 0.91 0.05 0.35 0.35 3.33 0.01
LLama 3.61 0.19 0.34 0.27 4.36 0.01 2.24 0.14 0.36 0.29 5.79 0.01
Gemma 2.89 0.14 0.35 0.25 3.47 0.02 2.26 0.17 0.26 0.30 7.26 0.02

DGAttack 2.82 0.17 0.23 0.27 3.51 0.00 1.78 0.12 0.37 0.29 6.12 0.00

PC

BART 1.47 0.14 0.29 0.41 2.55 0.04 1.87 0.09 0.22 0.31 2.54 0.01
BART 2.63 0.14 0.31 0.49 2.93 0.01 1.72 0.06 0.24 0.33 2.11 0.01
LLama 1.32 0.21 0.35 0.37 2.82 0.01 1.69 0.12 0.35 0.26 5.52 0.01
Gemma 2.09 0.17 0.29 0.46 3.74 0.03 2.45 0.08 0.32 0.25 2.94 0.02

DGAttack 1.29 0.21 0.22 0.43 2.36 0.01 1.43 0.05 0.31 0.22 4.07 0.02

ED

BART 1.31 0.08 0.28 0.25 1.24 0.01 1.69 0.08 0.25 0.09 2.00 0.03
BART 1.28 0.09 0.24 0.26 2.02 0.01 1.57 0.09 0.24 0.12 4.79 0.01
LLama 3.65 0.14 0.27 0.18 2.09 0.03 2.70 0.17 0.24 0.15 5.95 0.01
Gemma 3.30 0.17 0.43 0.15 3.42 0.02 1.91 0.16 0.31 0.11 2.59 0.02

DGAttack 2.60 0.15 0.36 0.15 3.34 0.02 2.51 0.16 0.34 0.13 5.77 0.01

of the model is not available. This further underscores DGAttack’s robustness and practicality in
real-world settings.

Table 10: Comparison of transferability between DGSlow and DGAttack on GPT-4o-mini.This table
compares transferability attack results of DGSlow and DGAttack on GPT-4o-mini, a close-source
model. Dark-shaded rows represent transferability results from DGAttack’s black-box samples.
Bold numbers mean the best metric values across methods.

Dataset Method GPT-4o-mini
GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑

BST

BART 16.32 10.30 19.30 21.60 26.12 0.82
BART 16.46 10.10 18.50 21.10 30.14 0.82
Llama 16.52 10.00 18.10 20.70 28.06 0.85
Llama 16.98 10.00 18.00 20.20 34.16 0.83

Clean Input 16.37 10.40 18.90 21.50 - -

CV2

BART 15.39 7.40 9.80 12.50 25.36 0.80
BART 15.44 7.30 9.40 12.50 28.48 0.81
Llama 15.92 7.30 9.20 12.20 35.06 0.85
Llama 15.59 7.10 9.20 12.10 37.12 0.83

Clean Input 15.49 7.50 10.00 12.80 - -

PC

BART 16.03 11.70 23.30 29.60 35.43 0.82
BART 16.40 11.10 23.20 29.00 36.05 0.83
Llama 16.62 11.20 23.10 28.90 41.06 0.81
Llama 16.61 11.20 22.90 28.50 44.68 0.80

Clean Input 16.41 11.50 23.70 29.80 - -

ED

BART 16.46 6.90 10.90 12.80 23.69 0.85
BART 16.41 7.10 10.60 12.50 24.60 0.81
Llama 16.61 6.80 10.50 12.30 28.06 0.85
Llama 16.69 6.50 10.30 12.20 29.22 0.83

Clean Input 16.52 7.00 11.20 13.10 - -

G ETHICS STATEMENT

This work introduces DGAttack, a multi-objective black-box adversarial attack framework designed
to evaluate the robustness of dialogue generation (DG) models across four benchmark datasets. The
primary aim of this research is to expose vulnerabilities in state-of-the-art DG models, thereby mo-
tivating the development of stronger adversarial defenses and more secure systems for real-world
applications. By highlighting these vulnerabilities, we hope to raise awareness about potential risks
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and inspire the research community to prioritize robustness and security in conversational AI sys-
tems.

The ethical implications of this work center around its potential to guide future research toward
designing more resilient DG models. Understanding vulnerabilities is a prerequisite for developing
effective defenses. DGAttack demonstrates that even black-box methods can significantly compro-
mise DG systems, underscoring the importance of addressing security risks in applications such as
virtual assistants, online chatbots, and customer support systems. In alignment with ethical princi-
ples established in related works, such as DGSlow, we believe that studying adversarial attacks is a
crucial step in improving system resilience and ensuring safer AI deployment.

We acknowledge the dual-use potential of adversarial research, as methodologies designed to reveal
system vulnerabilities could also be misused for malicious purposes. However, it is important to
emphasize that DGAttack is an untargeted attack. Its primary goal is to disrupt the coherence and
consistency of DG models by generating lengthy and irrelevant responses. Unlike targeted attacks,
DGAttack does not aim to produce harmful or malicious content, such as offensive or dangerous
outputs. This distinction significantly reduces the potential for direct societal harm arising from the
misuse of our methodology.

Overall, while research on adversarial attacks carries inherent risks, exposing vulnerabilities in deep
learning systems accelerates the development of adversarial defenses. This work contributes to the
creation of safer and more reliable AI systems, ensuring their secure deployment in diverse real-
world scenarios.

H ADVERSARIAL DEFENSE AND MITIGATION STRATEGIES

While this work primarily focuses on exposing vulnerabilities in dialogue generation (DG) models
through the DGAttack framework, we acknowledge the critical importance of adversarial defenses to
mitigate the impact of such attacks. Below, we discuss potential defense mechanisms and strategies
that can protect DG systems against adversarial manipulations, thereby aligning with the ethical
standards of adversarial machine learning.

H.1 PROPOSED DEFENSE MECHANISMS

To address the challenges posed by DGAttack and similar adversarial methods, we propose several
strategies for mitigating their impact and ensuring the responsible deployment of dialogue generation
(DG) systems.

First, adversarial training involves augmenting training datasets with adversarial examples to en-
hance model robustness by teaching it to handle perturbed inputs Li et al. (2017). Second, input val-
idation and denoising techniques can help detect and mitigate adversarial perturbations before they
affect the model, ensuring cleaner inputs Lee & Lee (2018). Third, robust optimization methods,
such as regularization techniques and specialized loss functions, can reduce the model’s suscepti-
bility to manipulations Zhang et al. (2020a). Lastly, detection pipelines that monitor input-output
patterns to flag anomalous behavior indicative of adversarial attacks can serve as an effective defense
in deployed systems Nithya et al. (2024).

These strategies, while not implemented or evaluated in this work, are essential for safeguarding DG
systems against adversarial threats and ensuring their secure and ethical deployment in real-world
scenarios.

H.2 ALIGNMENT WITH RESEARCH OBJECTIVES

Our primary objective is to reveal vulnerabilities in state-of-the-art DG models, thereby encouraging
the development of more secure systems. While we do not implement defense methods in this work,
the proposed strategies are intended to stimulate discussions and research on robust defenses. By
demonstrating the effectiveness of DGAttack, we aim to motivate further exploration of both attack
and defense paradigms, ultimately contributing to the security and reliability of DG systems.
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In summary, while this work focuses on exposing vulnerabilities, we emphasize the importance of
adversarial defenses in real-world deployments. By encouraging further research in this direction,
we aim to ensure the safe and ethical use of DG models in practice.

I ABLATION STUDY

We systematically evaluate the impact of various components on the attack efficiency of DGAttack.
Specifically, we analyze the effects of the number of generations, the choice of accuracy objective
(BLEU, ROUGE, METEOR, or a combined metric), and the influence of the crossover operator.

The Number of Generations & The Crossover Operator The ablation study, as shown in Table
11, examines the influence of the number of generations and the impact of the crossover operator
on the final results. Increasing the number of generations leads to a noticeable improvement in
attack performance. This outcome is expected, as a greater number of generations allow the algo-
rithm to explore a broader solution space and continuously refine the adversarial samples. With each
additional generation, we observe longer outputs (higher GL) and a corresponding degradation in
accuracy metrics (BLEU, ROUGE, METEOR). This suggests that more generations enable the ad-
versarial samples to become progressively more disruptive. However, these benefits come at a cost:
as the number of generations increases, the cosine similarity between the original and adversarial
samples decreases, reflecting the increasing degree of perturbation. While this may contribute to
the attack’s success, it also indicates that the adversarial samples diverge further from the original
content, leading to a trade-off between efficacy and similarity preservation.

Table 11: Ablation study for number of generations and the impact of the crossover operator. 5
Gen Crossover is the standard method applied in DGAttack, implying that there is no more than 5
changes within a sentence. Bold numbers mean the best metric values across methods.

Dataset Method DialoGPT Bart T5
GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑ GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑ GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑

BST

5 Gen 21.55 13.37 18.78 22.67 50.98 0.82 29.10 8.50 17.51 22.50 74.18 0.80 20.20 10.29 19.14 21.02 60.30 0.81
10 Gen 24.20 11.60 17.91 21.88 46.57 0.78 29.52 7.75 16.89 22.10 62.50 0.74 23.48 9.97 18.62 19.54 44.12 0.75

5 Gen Crossover 22.00 12.97 19.10 22.37 52.47 0.81 28.26 8.03 17.50 22.97 70.83 0.81 19.71 10.30 18.97 20.20 69.05 0.83
10 Gen Crossover 23.53 11.82 17.61 21.83 39.03 0.78 30.19 7.83 16.74 21.61 63.43 0.77 24.09 9.61 18.69 19.67 40.20 0.73

CV2

5 Gen 23.09 13.61 15.21 10.18 43.11 0.84 20.14 8.30 8.58 11.23 58.24 0.83 15.27 10.17 10.40 10.70 32.30 0.80
10 Gen 24.27 12.13 14.51 8.84 28.43 0.77 21.70 7.66 8.05 9.25 46.52 0.84 18.10 8.67 9.13 9.12 27.56 0.77

5 Gen Crossover 23.94 13.27 16.43 10.73 43.74 0.80 19.78 7.93 9.13 10.93 52.99 0.81 15.57 9.93 10.27 9.80 41.22 0.82
10 Gen Crossover 24.64 12.42 13.71 9.04 29.43 0.83 21.49 7.71 7.83 9.00 43.39 0.78 17.47 8.54 9.82 9.07 30.36 0.73

PC

5 Gen 20.45 17.27 28.88 29.48 53.13 0.80 25.13 10.80 23.07 30.97 66.35 0.81 18.66 12.50 26.30 28.80 45.11 0.75
10 Gen 22.13 16.69 27.48 28.27 26.22 0.72 29.05 10.60 22.77 30.90 56.41 0.76 19.33 12.27 25.80 28.60 38.41 0.71

5 Gen Crossover 19.62 17.43 28.33 28.93 48.16 0.79 25.77 10.13 22.87 30.67 66.86 0.82 18.31 12.37 26.00 28.87 50.87 0.80
10 Gen Crossover 22.49 16.28 27.60 27.93 30.40 0.73 26.69 10.10 22.00 30.67 55.20 0.75 19.71 12.20 25.50 28.20 37.15 0.67

ED

5 Gen 19.24 9.30 11.79 12.50 56.40 0.84 27.36 5.63 9.27 11.50 69.55 0.83 18.79 7.13 11.07 11.10 59.17 0.79
10 Gen 20.17 8.71 11.39 10.51 38.52 0.77 29.46 5.17 8.87 10.60 62.11 0.76 20.31 6.50 9.81 9.93 38.22 0.73

5 Gen Crossover 19.80 9.43 11.67 11.80 48.91 0.81 27.68 5.27 9.13 11.57 69.22 0.81 18.53 7.07 10.37 10.47 63.11 0.82
10 Gen Crossover 19.89 8.74 11.30 10.47 34.06 0.75 29.61 5.13 8.85 11.03 52.47 0.75 19.84 6.42 9.73 9.97 40.13 0.71

As for the crossover operator, we observe relatively little difference between the performance with
and without crossover, indicating that the single-point crossover used here may be too simple or
straightforward to offer significant benefits in this context. This suggests that while crossover helps
introduce variation in traditional genetic algorithms, it may not be as critical for generating effective
adversarial samples in our scenario. More sophisticated crossover methods or higher complexity
operators could potentially yield different results, but in this case, the simplicity of the single-point
crossover did not contribute substantial advantages.

The Choice of Accuracy Objective The ablation study presented in Table 12 explores the effect
of using different performance metrics (BLEU, ROUGE, and METEOR) as the accuracy objective
for minimization. In our main experiments, we aggregated all three metrics to form a combined
accuracy objective, which was used to guide the adversarial attack. Interestingly, the results indicate
that when comparing the combined objective to individual metrics, the performance differences
were marginal. This implies that while each metric focuses on distinct aspects of accuracy—BLEU
emphasizing n-gram precision, ROUGE measuring recall, and METEOR accounting for semantic
similarities through synonyms and paraphrasing—their roles in contributing to the degradation of
the generated text are largely aligned.

One notable observation is that minimizing any single accuracy metric often triggers a reduction in
the others as well. For example, when focusing solely on minimizing BLEU, we see that ROUGE
and METEOR scores also tend to degrade. This suggests that there is a degree of overlap in the
dimensions these metrics assess. BLEU’s focus on exact matches between the generated and ref-
erence text often overlaps with ROUGE’s focus on recall (how much of the reference is captured
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by the generation), and METEOR’s consideration of paraphrasing and synonyms further ties into
this. Consequently, degradation in one metric is likely to cause a cascading effect, pulling the others
down in tandem.

This cascading degradation across metrics highlights an important insight: adversarial samples
crafted to minimize a single accuracy metric are likely to be effective in degrading the overall qual-
ity of the generated text. This occurs because each metric, though distinct, evaluates overlapping
characteristics of fluency, coherence, and relevance. Thus, regardless of whether BLEU, ROUGE,
or METEOR is targeted directly, the adversarial attack tends to degrade performance across all three
metrics to some extent.

That being said, the combined accuracy objective remains the most holistic approach. By aggregat-
ing BLEU, ROUGE, and METEOR into a single metric, the adversarial attack is forced to address
all facets of text quality simultaneously—precision, recall, and semantic similarity. This makes the
attack stronger and ensures a comprehensive degradation of the generated responses. While opti-
mizing for a single metric may still result in an effective attack, the combined approach ensures a
more robust and consistent reduction in overall text quality across all dimensions, leading to a more
impactful attack outcome.

Table 12: Ablation study for the choice of accuracy objectives. COMBINED is the accuracy score
(AS) applied in DGAttack. Bold numbers mean the best metric values across methods.

Dataset Method DialoGPT Bart T5
GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑ GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑ GL↑ BLEU↓ ROU.↓ MET.↓ ASR↑ Cos.↑

BST

BLEU 21.01 12.97 19.57 22.60 48.68 0.82 28.24 8.23 17.60 22.77 71.48 0.82 20.54 10.95 19.53 20.97 56.86 0.79
ROUGE 22.86 12.50 19.93 21.50 45.06 0.81 28.11 8.37 17.90 22.95 67.43 0.81 19.49 11.15 20.53 20.93 64.96 0.81

COMBINED 22.00 12.97 19.10 22.37 52.47 0.81 28.26 8.03 17.50 22.97 70.83 0.81 19.71 10.30 18.97 20.20 69.05 0.80
METEOR 22.89 13.60 20.80 22.70 49.02 0.82 28.53 8.15 17.67 22.87 68.53 0.81 20.49 10.43 20.50 20.83 51.41 0.79

CV2

BLEU 22.34 13.24 16.01 9.97 41.94 0.84 19.78 8.00 9.10 11.10 59.80 0.82 15.94 11.03 10.20 10.47 46.71 0.80
ROUGE 23.23 13.00 16.23 9.80 52.47 0.80 20.79 7.77 8.83 10.80 53.29 0.79 15.76 10.67 10.53 9.70 40.43 0.81

COMBINED 23.94 13.27 16.43 10.73 43.74 0.80 19.78 7.93 9.13 10.93 52.99 0.81 15.57 9.93 10.27 9.80 41.22 0.82
METEOR 23.43 12.53 16.48 9.71 50.22 0.81 20.72 7.80 8.63 10.33 52.90 0.82 16.42 10.67 10.47 9.80 47.35 0.79

PC

BLEU 18.05 19.27 28.73 30.70 51.00 0.80 24.92 10.57 22.87 30.33 64.78 0.81 19.16 13.27 28.17 28.63 42.94 0.82
ROUGE 19.93 18.30 29.70 28.90 48.34 0.82 25.30 10.37 22.50 30.37 59.11 0.83 18.18 14.77 28.25 28.40 46.66 0.82

COMBINED 19.62 17.43 28.33 28.93 48.16 0.79 25.77 10.13 22.87 30.67 66.86 0.82 18.31 12.37 26.13 28.87 50.87 0.80
METEOR 19.87 18.13 28.80 29.40 44.50 0.81 25.30 10.07 22.13 30.33 56.52 0.81 19.29 14.63 27.50 28.40 50.15 0.81

ED

BLEU 19.16 8.70 11.53 12.13 51.52 0.84 27.87 5.17 9.70 12.33 67.82 0.80 18.58 7.50 10.83 11.03 50.32 0.81
ROUGE 19.64 8.82 11.57 11.57 46.98 0.81 28.95 5.27 9.97 13.27 60.72 0.82 18.16 7.47 11.30 10.27 50.43 0.83

COMBINED 19.80 9.43 11.67 11.80 48.91 0.81 27.68 5.27 9.13 11.57 69.22 0.81 18.53 7.07 10.37 10.47 63.11 0.82
METEOR 19.78 8.60 11.77 11.17 48.74 0.82 27.52 5.20 8.80 10.43 67.96 0.82 17.66 7.30 11.53 11.50 50.71 0.81

J LIMITATIONS

Our method still remains several limitations as listed:

Mutation. We use POS tags to identify salient words within a sentence for masking and word
substitution with BERT. An effective heuristic integrated into our mutation operator could better
select important words for substitution, leading to higher-quality candidates.

Crossover. To avoid errors such as breaking word linkages and grammatical mistakes during
crossover, our operator is relatively simple and straightforward, only swapping each segment from
two sentences. A more complex and efficient operator could enhance the diversity among candidates
and improve the attack success rate.

Attacking LLMs. Large Language Models (Brown et al., 2020) (LLMs) are highly robust due to
extensive training on diverse datasets. They can effectively handle minor word-level substitutions,
making small perturbations is insufficient for effective attacks. More sophisticated strategies are
required to challenge LLMs and degrade their performance.

Trade-offs and Computational Considerations. While our black-box method shows promising
results in attacking LLMs, it comes with increased computational costs. As evolutionary algo-
rithms require evaluating numerous candidate solutions, leading to longer attack times and high-
computational cost. In contrast, gradient-based methods like DGSlow are generally faster due to the
direct use of gradient information. This highlights a broader limitation of our empirical evaluation,
which, due to computational and budget constraints, was confined to specific datasets, formats, and
models. While our method has demonstrated notable results on smaller models, these constraints
may limit the generalizability of our findings, particularly for LLMs. Expanding future experiments
to include larger-scale datasets, more diverse formats, and additional task categories could provide
further insights into the broader applicability of our approach. In scenarios where demonstrating
vulnerabilities in LLMs is critical, the additional computational effort may be justified.
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