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Abstract

Contrastive learning (CL) has been widely used001
for self-supervised representation learning in002
text-image multimodal representation learning.003
However, there are two setbacks in the SOTA004
contrastive learning framework. One lies in005
the design of contrastive learning, where the006
model aims to pull together positive pairs and007
push away negative pairs. For one image, CL008
only considers one unique text as its positive009
sample, and treat all remaining text data as neg-010
ative samples. Such design inevitably brings in011
learning bias towards overfitting into specific012
data pairs. Another setback comes from the013
web-crawled datasets that are commonly used014
in CL such as Conceptual Caption, YFCC and015
LAION. These datasets brings benefit due to016
its large size, yet contain significant noisy or017
vague labels. In this paper, we examine how018
augmenting the ground-truth labels with ran-019
domness can bring significant improvements020
in text-image multimodal contrastive learning.021
Through the simple addition of noise to ground-022
truth labels, we observe substantial improve-023
ments in model performance and robustness,024
requiring no additional computational overhead.025
We introduce three distinct stochastic label aug-026
mentation strategies and evaluate their effec-027
tiveness across various benchmarks, including028
zero-shot transfer, distribution shift, and lin-029
ear probing tasks. Furthermore, we conduct030
comprehensive experiments involving different031
model architectures and noise rates, demon-032
strating the generalizability and substantial ben-033
efits of stochastic label augmentation across034
diverse tasks and models.035

1 Introduction036

Vision-language representation learning aims to037

learn generic representations from images and texts038

that could benefit multimodal downstream applica-039

tions. One prominent technique that has garnered040

significant attention in this domain is contrastive041

learning (CL), which has emerged as a powerful042

paradigm for self-supervised representation learn- 043

ing in multimodal tasks. CL aims to learn robust 044

representations by contrasting positive pairs, where 045

similar instances are brought together, against neg- 046

ative pairs, where dissimilar instances are pushed 047

apart. Recent works in text-image multimodal 048

learning (Radford et al., 2021; Mokady et al., 2021; 049

Shen et al., 2021; Jia et al., 2021; Li et al., 2021; 050

Duan et al., 2022; Yang et al., 2022; Shukor et al., 051

2022; Kwon et al., 2022; Jiang et al., 2023) han- 052

dle the image and text modality separately with 053

modality-specific encoders and utilizes contrastive 054

learning to align the modalities, achieving state-of- 055

the-art performance on multiple downstream ap- 056

plications such as Zero-shot Classification, Image- 057

Text Retrieval (Duan et al., 2022; Li et al., 2021) 058

and Visual Question Answering (Jia et al., 2021; 059

Goyal et al., 2017). 060

However, despite its effectiveness, SOTA CL 061

frameworks face notable challenges that hinder 062

their performance and generalizability. One of the 063

primary setbacks in CL lies in its design, which of- 064

ten leads to biases towards specific data pairs. For 065

instance, in text-image multimodal tasks, CL typi- 066

cally treats all but one text sample as negative pairs 067

for a given image, potentially resulting in overfit- 068

ting to particular associations. Additionally, the 069

reliance on web-crawled datasets like Conceptual 070

Caption, YFCC, and LAION introduces noise and 071

ambiguity into the training data, undermining the 072

quality of learned representations. 073

In light of these challenges, this paper explores 074

novel approaches to address the limitations of cur- 075

rent CL frameworks and enhance text-image multi- 076

modal representation learning. Specifically, we in- 077

vestigate the potential of augmenting ground-truth 078

labels with randomness to mitigate biases and im- 079

prove the robustness of learned representations. By 080

introducing stochastic label augmentation strate- 081

gies, we aim to enhance the performance and gen- 082

eralizability of CL models without imposing addi- 083
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Figure 1: Label augmentation approaches illustration.

tional computational overhead. To summarize, our084

contributions are as follows:085

• We address the inherent biases problem of con-086

trastive learning framework by using stochas-087

tic strategies to mitigate overfitting to web-088

sourced dataset.089

• We propose three simple yet effective random-090

ized approaches to augment the groundtruth091

labels and enhance robustness in contrastive092

learning for text-image multimodal represen-093

tation learning.094

• We demonstrate the effectiveness and general-095

izability of our proposed approaches through096

comprehensive empirical evaluations across097

various benchmarks and model architectures.098

2 Methods099

In a conventional contrastive learning setup, data100

samples are divided into ’positive’ and ’negative’101

categories based on ground-truth labels. During102

training, the model is encouraged to pull positive103

pairs closer in the embedded space while pushing104

the negative pairs farther apart. One key assump-105

tion here is that all negative samples are equally106

different from the positive sample.

Algorithm 1 Label Reselection
Require: noise rate 0 < γ < 1
B ← batch size
y = [0, 1, 2, , · · · , B − 1]← Ground-truth
Random select a subset ỹ of size γB from y
for yi ∈ ỹ do

yi = Random sample ∼ {0, 1, · · · , B − 1}
end for

Algorithm 2 Label Permutation
Require: noise rate 0 < γ < 1
B ← batch size
y = [0, 1, 2, , · · · , B − 1]← Ground-truth
Random select a subset ỹ of size γB from y
ỹ = Random permute(ỹ)

Algorithm 3 Secondary Random Label

Require: noise rate 0 < γ < 1
B ← batch size
y = [0, 1, 2, , · · · , B − 1]← Ground-truth
Initialize ỹ ∈ {0, 1, · · · , B − 1}B
for yi ∈ ỹ do

yi = Random sample ∼ {0, 1, · · · , B − 1}
end for
y = (1− γ)y + γỹ

107
This may not be true, especially in noisy web 108

datasets. This "one-size-fits-all" treatment of nega- 109

tive samples limits the model’s power to generalize. 110

In order to improve the generalizability of con- 111

trastive learning framework we propose to augment 112

the ground-truth labels with random noises. The 113

idea is that the webdatasets can be very noisy and 114

the way contrastive learning treats all negative data 115

samples equally can limit its power to generalize. 116

Our hypothesis is that by adding more noise to 117

the label space, we prevent the contrastive learning 118

trained model from overfitting on noisy datasets. 119

By introducing random noise into the ground-truth 120

labels, we hypothesize that the contrastive learning 121

model will become more robust to outliers and 122

label noise. The perturbed labels force the model 123

to not overly rely on the exact boundary conditions 124
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Method
Noise
Rate γ

ResNet-50 ViT-B/16 ViT-B/32
Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑

CLIP - 17.01 34.38 16.0 32.39 12.07 26.14

Re-selection
0.1 18.84 35.82 15.72 31.99 12.15 26.02
0.3 18.52 37.66 14.88 31.07 11.46 25.57

Permutation
0.1 20.44 39.23 18.01 34.98 14.1 29.17
0.3 20.39 39.90 16.09 33.02 12.55 27.03

Secondary
0.1 21.17 38.78 17.73 34.20 13.86 28.68
0.3 21.14 39.65 17.31 34.48 12.07 26.14

Table 1: Zero-Shot Classifiction Accuray on ImageNet-1K (%).

Method
γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9

Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑

Re-selection 18.84 35.82 18.52 37.66 15.49 32.23 0.1 0.5 0.1 0.5
Permutation 20.44 39.23 20.39 39.90 18.89 38.40 14.28 32.29 0.1 0.5
Secondary 21.17 38.78 21.14 39.65 20.24 39.17 18.31 36.92 0.1 0.5

Table 2: Zero-Shot Classifiction Accuray (%) on ImageNet-1K. The effect of different noise rate scale is studied.
All reported numbers are based on ResNet-50. Complete results on different encoders are included in Appendix.

defined by the original labels, hence mitigating the125

risk of overfitting.126

2.1 Label Augmentation by Random127

Reselection128

We first use a fully randomized approach to aug-129

ment the ground-truth labels by simply changing130

the ground-truth label with random resampling. As131

illustrated in Algorithm. 1, after choosing a noise132

rate between 0 and 1, for every batch, we randomly133

select samples that will have augmented labels134

based on the noise rate. Then for all the selected135

samples, randomly re-select its ground-truth within136

the same batch. This randomized re-selection could137

lead to a situation where multiple data points can138

have the same positive sample.139

2.2 Label Augmentation by Random140

Permutation141

The second approach slightly differ from the first142

one in the sense that we guarantee that every data-143

points in the batch has its own positive sample, thus144

the one-to-one mapping nature of origin dataset is145

preserved. As illustrated in Algorithm. 2, after146

choosing a noise rate between 0 and 1, for every147

batch, we randomly select samples that will have148

augmented labels based on the noise ratio. Then149

for all the selected samples, we randomly switch150

their ground-truth.151

2.3 Label Augmentation by Random152

Secondary Labels153

The last approach differ from previous two by154

adding randomized secondary label to all the train-155

ing data. In this way we are imposing random-156

ness to all the training data. As shown in Algo-157

rithm. 3, for every batch, we randomly construct 158

false ground-truth labels with random permutation. 159

Compute the contrastive loss using the permutated 160

labels and add it onto the original contrastive loss 161

with the noise rate hyperparameter. Now that the 162

contrastive loss composes of one true loss and one 163

loss from random labels. 164

3 Experiments 165

We conduct experiments on image-text contrastive 166

learning on CLIP model, where two separate en- 167

coders are trained to align features from the im- 168

age and text modalities. Setup: Our CLIP model 169

adopts ResNet-50 (He et al., 2016) and ViT (Doso- 170

vitskiy et al., 2021) as the image encoder and 171

BERT (Devlin et al., 2018) as the text encoder. 172

We adopt the official code from OpenCLIP to in- 173

corporate our approachs. Our reproduced CLIP 174

results are consistent with the recent works (Mu 175

et al., 2021; Gao et al., 2021). Note that all 176

methods are under the same codebase and same 177

hyper-parameter setting, thus the comparisons are 178

fair. Pre-training: We follow the protocol of 179

previous works to pre-train the model with the 180

CC3M (Sharma et al., 2018) dataset, which con- 181

tains 3M unique images and 4M image-text pairs. 182

All models are pretrained with 8 Tesla V100 ma- 183

chines for 32 epochs. 184

3.1 Zero-Shot and Linear Probing Evaluation 185

We perform zero-shot transfer on standard im- 186

age classification tasks, with ImageNet1K (Rus- 187

sakovsky et al., 2015) datasets and its distribution 188

shift benchmarks (Recht et al., 2019; Wang et al., 189

2019; Hendrycks et al., 2021b,a), and linear prob- 190
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Method
ImageNetV2 ImageNetSketch ImageNet-A ImageNet-R

Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑

CLIP 15.24 31.0 9.84 22.49 2.97 11.3 22.14 42.61
Re-selection 16.33 33.09 10.31 23.01 2.63 9.65 21.16 38.87
Permutation 17.92 36.51 12.28 26.58 4.17 14.96 25.82 47.30
Secondary 18.50 36.32 12.77 27.10 3.65 14.01 26.0 47.8

Table 3: Zero-Shot Natural Distribution Shift Classification Accuracy (%) using γ = 0.1 on ResNet-50.
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Table 4: Linear Probing Top1 Classification Accuracy (%) on Vision Benchmarks using γ = 0.1 on ResNet-50.

ing on 14 vision benchmarks. We use the standard191

evaluation strategy of prompt engineering. For192

each dataset, we construct the text prompts using193

the name of the class, e.g. "a photo of the [class194

name]". For each class, we obtain the normalized195

class text embedding. During the evaluation, the196

class with the highest similarity score to the image197

embedding is predicted to be the label.198

We show in Tab. 1 the perforamnce on ImageNet-199

1K, we can see that our label augmentations im-200

proves the performance by an average of 2-3%. We201

show in Tab. 2 that with changing noise rate, the202

model gradually changing from better performance203

to degraded performance then failed to train if the204

noise rate is extreme. In Tab. 3, the performance on205

distribution shift benchmark validates the robust-206

ness improvement with our methods.207

We perform standard linear probing testing to208

evaluate the generalizability of learned models. We209

evaluate on 14 vision benchmarks with fixed en-210

coders and fit a linear classifier for classification.211

We show in Tab.4 that secondary random label aug-212

mentation method has substantially improved the213

baseline performance.214

4 Related Works and Limitations215

Contrastive Learning: CLIP (Radford et al.,216

2021) introduced a unified model that learns to217

align visual and textual representations through218

contrastive learning, achieving impressive perfor-219

mance across various tasks. Other works (Li et al.,220

2020) extends contrastive learning principles to si-221

multaneously pre-train image and text encoders, 222

leading to state-of-the-art performance. 223

Vision-Language Pretraining: Most recent works 224

on vision-language representation learning use sep- 225

arate encoders for images and texts (CLIPRadford 226

et al. (2021); Mokady et al. (2021); Shen et al. 227

(2021), ALIGNJia et al. (2021)), and rely on con- 228

trastive loss Oord et al. (2018); He et al. (2020); 229

Chen et al. (2020) to align multiple modalities. 230

These methods have been shown to achieve state-of- 231

the-art (SOTA) performance on image-text tasks. 232

However, despite its efficacy, CL frameworks 233

encounter significant challenges that impede their 234

performance and ability to generalize. Hence we 235

propose three randomized label augmentation meth- 236

ods to mitigate such issues. Yet our approach is 237

limited to the paired image-text web datasets. 238

5 Conclusion 239

While contrastive learning (CL) is widely utilized 240

for text-image multimodal tasks, existing frame- 241

works face challenges stemming from biased de- 242

sign and noisy datasets. This paper proposes aug- 243

menting ground-truth labels with randomness to 244

mitigate these issues. Significant improvements in 245

model performance and robustness are achieved 246

without additional computational overhead. We in- 247

troduce three stochastic label augmentation strate- 248

gies and demonstrate their effectiveness across var- 249

ious benchmarks, showcasing the generalizability 250

and substantial benefits of this technique in enhanc- 251

ing multimodal representation learning. 252
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