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Abstract

Contrastive learning (CL) has been widely used
for self-supervised representation learning in
text-image multimodal representation learning.
However, there are two setbacks in the SOTA
contrastive learning framework. One lies in
the design of contrastive learning, where the
model aims to pull together positive pairs and
push away negative pairs. For one image, CL
only considers one unique text as its positive
sample, and treat all remaining text data as neg-
ative samples. Such design inevitably brings in
learning bias towards overfitting into specific
data pairs. Another setback comes from the
web-crawled datasets that are commonly used
in CL such as Conceptual Caption, YFCC and
LAION. These datasets brings benefit due to
its large size, yet contain significant noisy or
vague labels. In this paper, we examine how
augmenting the ground-truth labels with ran-
domness can bring significant improvements
in text-image multimodal contrastive learning.
Through the simple addition of noise to ground-
truth labels, we observe substantial improve-
ments in model performance and robustness,
requiring no additional computational overhead.
We introduce three distinct stochastic label aug-
mentation strategies and evaluate their effec-
tiveness across various benchmarks, including
zero-shot transfer, distribution shift, and lin-
ear probing tasks. Furthermore, we conduct
comprehensive experiments involving different
model architectures and noise rates, demon-
strating the generalizability and substantial ben-
efits of stochastic label augmentation across
diverse tasks and models.

1 Introduction

Vision-language representation learning aims to
learn generic representations from images and texts
that could benefit multimodal downstream applica-
tions. One prominent technique that has garnered
significant attention in this domain is contrastive
learning (CL), which has emerged as a powerful

paradigm for self-supervised representation learn-
ing in multimodal tasks. CL aims to learn robust
representations by contrasting positive pairs, where
similar instances are brought together, against neg-
ative pairs, where dissimilar instances are pushed
apart. Recent works in text-image multimodal
learning (Radford et al., 2021; Mokady et al., 2021;
Shen et al., 2021; Jia et al., 2021; Li et al., 2021;
Duan et al., 2022; Yang et al., 2022; Shukor et al.,
2022; Kwon et al., 2022; Jiang et al., 2023) han-
dle the image and text modality separately with
modality-specific encoders and utilizes contrastive
learning to align the modalities, achieving state-of-
the-art performance on multiple downstream ap-
plications such as Zero-shot Classification, Image-
Text Retrieval (Duan et al., 2022; Li et al., 2021)
and Visual Question Answering (Jia et al., 2021;
Goyal et al., 2017).

However, despite its effectiveness, SOTA CL
frameworks face notable challenges that hinder
their performance and generalizability. One of the
primary setbacks in CL lies in its design, which of-
ten leads to biases towards specific data pairs. For
instance, in text-image multimodal tasks, CL typi-
cally treats all but one text sample as negative pairs
for a given image, potentially resulting in overfit-
ting to particular associations. Additionally, the
reliance on web-crawled datasets like Conceptual
Caption, YFCC, and LAION introduces noise and
ambiguity into the training data, undermining the
quality of learned representations.

In light of these challenges, this paper explores
novel approaches to address the limitations of cur-
rent CL frameworks and enhance text-image multi-
modal representation learning. Specifically, we in-
vestigate the potential of augmenting ground-truth
labels with randomness to mitigate biases and im-
prove the robustness of learned representations. By
introducing stochastic label augmentation strate-
gies, we aim to enhance the performance and gen-
eralizability of CL models without imposing addi-
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Figure 1: Label augmentation approaches illustration.

tional computational overhead. To summarize, our
contributions are as follows:

* We address the inherent biases problem of con-
trastive learning framework by using stochas-
tic strategies to mitigate overfitting to web-
sourced dataset.

* We propose three simple yet effective random-
ized approaches to augment the groundtruth
labels and enhance robustness in contrastive
learning for text-image multimodal represen-
tation learning.

* We demonstrate the effectiveness and general-
izability of our proposed approaches through
comprehensive empirical evaluations across
various benchmarks and model architectures.

2 Methods

In a conventional contrastive learning setup, data
samples are divided into ’positive’ and ’negative’
categories based on ground-truth labels. During
training, the model is encouraged to pull positive
pairs closer in the embedded space while pushing
the negative pairs farther apart. One key assump-
tion here is that all negative samples are equally
different from the positive sample.

Algorithm 1 Label Reselection

Require: noiserate 0 < v < 1
B + batch size
y=1[0,1,2,,---, B — 1] < Ground-truth
Random select a subset y of size vB from y
for y; € y do
y; = Random sample ~ {0,1,--- , B — 1}
end for

Algorithm 2 Label Permutation

Require: noiserate 0 < v < 1
B + batch size
y=10,1,2,,---, B — 1] + Ground-truth
Random select a subset y of size vB from y
¥ = Random permute(¥)

Algorithm 3 Secondary Random Label

Require: noiserate 0 < v < 1
B <+ batch size
y=10,1,2,,---, B — 1] < Ground-truth
Initialize y € {0,1,--- ,B —1}8
for y; € y do
y; = Random sample ~ {0,1,--- , B — 1}
end for
y=Q0=-7y+y

This may not be true, especially in noisy web
datasets. This "one-size-fits-all" treatment of nega-
tive samples limits the model’s power to generalize.

In order to improve the generalizability of con-
trastive learning framework we propose to augment
the ground-truth labels with random noises. The
idea is that the webdatasets can be very noisy and
the way contrastive learning treats all negative data
samples equally can limit its power to generalize.

Our hypothesis is that by adding more noise to
the label space, we prevent the contrastive learning
trained model from overfitting on noisy datasets.
By introducing random noise into the ground-truth
labels, we hypothesize that the contrastive learning
model will become more robust to outliers and
label noise. The perturbed labels force the model
to not overly rely on the exact boundary conditions



Method Noise ResNet-50 ViT-B/16 ViT-B/32
Ratey | Topl + Top51 | Topl + Top5 1 | Topl t Top5 1
CLIP 1701 3438 | 160 3239 | 1207 26.14
Re-selection -] 1884 3582 | 1572 31.99 | 12.15 26.02
0.3 1852  37.66 | 1488 31.07 | 1146 2557
Permutation ! 2044 3923 | 18.01 3498 | 141 29.17
0.3 2039  39.90 | 16.09 33.02 | 1255 27.03
Secondary 0.1 2117 3878 | 1773 3420 | 13.86 28.68
0.3 21.14  39.65 | 1731 3448 | 1207 26.14

Table 1: Zero-Shot Classifiction Accuray on ImageNet-1K (%).

Method v=0.1 v=0.3 v=0.5 v=0.7 v=0.9
Topl T Top5 1T ‘ Topl T Top5 1T ‘ Topl 1 Top5 7T ‘ Topl 1 Top5 T ‘ Topl T TopS T
Re-selection  18.84 3582 | 1852 37.66 | 1549 3223 0.1 0.5 0.1 0.5
Permutation 2044 3923 | 2039 3990 | 1889 3840 | 14.28  32.29 0.1 0.5
Secondary 21.17 3878 | 21.14 39.65 | 20.24 39.17 | 1831 36.92 0.1 0.5

Table 2: Zero-Shot Classifiction Accuray (%) on ImageNet-1K. The effect of different noise rate scale is studied.
All reported numbers are based on ResNet-50. Complete results on different encoders are included in Appendix.

defined by the original labels, hence mitigating the
risk of overfitting.

2.1 Label Augmentation by Random
Reselection

We first use a fully randomized approach to aug-
ment the ground-truth labels by simply changing
the ground-truth label with random resampling. As
illustrated in Algorithm. 1, after choosing a noise
rate between 0 and 1, for every batch, we randomly
select samples that will have augmented labels
based on the noise rate. Then for all the selected
samples, randomly re-select its ground-truth within
the same batch. This randomized re-selection could
lead to a situation where multiple data points can
have the same positive sample.

2.2 Label Augmentation by Random
Permutation

The second approach slightly differ from the first
one in the sense that we guarantee that every data-
points in the batch has its own positive sample, thus
the one-to-one mapping nature of origin dataset is
preserved. As illustrated in Algorithm. 2, after
choosing a noise rate between 0 and 1, for every
batch, we randomly select samples that will have
augmented labels based on the noise ratio. Then
for all the selected samples, we randomly switch
their ground-truth.

2.3 Label Augmentation by Random
Secondary Labels

The last approach differ from previous two by
adding randomized secondary label to all the train-
ing data. In this way we are imposing random-
ness to all the training data. As shown in Algo-

rithm. 3, for every batch, we randomly construct
false ground-truth labels with random permutation.
Compute the contrastive loss using the permutated
labels and add it onto the original contrastive loss
with the noise rate hyperparameter. Now that the
contrastive loss composes of one true loss and one
loss from random labels.

3 Experiments

We conduct experiments on image-text contrastive
learning on CLIP model, where two separate en-
coders are trained to align features from the im-
age and text modalities. Setup: Our CLIP model

adopts ResNet-50 (He et al., 2016) and ViT (Doso-
vitskiy et al., 2021) as the image encoder and
BERT (Devlin et al., 2018) as the text encoder.
We adopt the official code from OpenCLIP to in-
corporate our approachs. Our reproduced CLIP
results are consistent with the recent works (Mu
et al., 2021; Gao et al., 2021). Note that all
methods are under the same codebase and same
hyper-parameter setting, thus the comparisons are
fair. Pre-training: We follow the protocol of

previous works to pre-train the model with the
CC3M (Sharma et al., 2018) dataset, which con-
tains 3M unique images and 4M image-text pairs.
All models are pretrained with 8 Tesla V100 ma-
chines for 32 epochs.

3.1 Zero-Shot and Linear Probing Evaluation

We perform zero-shot transfer on standard im-
age classification tasks, with ImageNet1K (Rus-
sakovsky et al., 2015) datasets and its distribution
shift benchmarks (Recht et al., 2019; Wang et al.,
2019; Hendrycks et al., 2021b,a), and linear prob-



Method ImageNetV2 ImageNetSketch ImageNet-A ImageNet-R
Topl 1 Top5 7T ‘ Topl 1 Top5 T ‘ Topl 1 Top5 1 ‘ Topl 1 Top5 T
CLIP 15.24 31.0 9.84 22.49 2.97 11.3 22.14  42.61
Re-selection 1633  33.09 | 1031  23.01 2.63 9.65 21.16  38.87
Permutation 1792 36.51 | 12.28  26.58 4.17 14.96 | 25.82  47.30
Secondary 1850 36.32 | 1277 27.10 3.65 14.01 26.0 47.8

Table 3:

Zero-Shot Natural Distribution Shift Classification Accuracy (%) using v = 0.1 on ResNet-50.

- = < = & @ I = ® ]
s E 3 E E E § ( g g B §& g ¥2.|¢%
T 5 £ 2 & & g 32 =« 3B £ 5 £t 3 |35
o 175) w0 = < o = 2 "E 5] z 4
= = ) < & = o S z S <
= &) = &) ¥ = ) S0
o © = S 5 = g
& & E
CLIP 80.67 48.62 8855 7791 56.54 5697 2454 61.68 5574 5823 7291 19.57 80.09 51.58 | 59.54
Re-selection 78.47 43.77 89.86 76.70 54.46 61.65 24.06 61.68 5420 57.37 68.90 19.09 77.52 50.72 | 58.46
Permutation 80.36 47.12 89.64 77.65 56.43 59.04 24.18 60.53 54.04 5852 73.6 18.78 80.19 52.28 | 59.45
Secondary 81.15 54.31 89.09 7837 57.72 59.52 25.53 63.78 5524 60.56 7641 20.99 81.62 53.61 | 61.28

Table 4: Linear Probing Top1 Classification Accuracy (%) on Vision Benchmarks using v = 0.1 on ResNet-50.

ing on 14 vision benchmarks. We use the standard
evaluation strategy of prompt engineering. For
each dataset, we construct the text prompts using
the name of the class, e.g. "a photo of the [class
name]". For each class, we obtain the normalized
class text embedding. During the evaluation, the
class with the highest similarity score to the image
embedding is predicted to be the label.

We show in Tab. 1 the perforamnce on ImageNet-
1K, we can see that our label augmentations im-
proves the performance by an average of 2-3%. We
show in Tab. 2 that with changing noise rate, the
model gradually changing from better performance
to degraded performance then failed to train if the
noise rate is extreme. In Tab. 3, the performance on
distribution shift benchmark validates the robust-
ness improvement with our methods.

We perform standard linear probing testing to
evaluate the generalizability of learned models. We
evaluate on 14 vision benchmarks with fixed en-
coders and fit a linear classifier for classification.
We show in Tab.4 that secondary random label aug-
mentation method has substantially improved the
baseline performance.

4 Related Works and Limitations

Contrastive Learning: CLIP (Radford et al.,
2021) introduced a unified model that learns to
align visual and textual representations through
contrastive learning, achieving impressive perfor-
mance across various tasks. Other works (Li et al.,
2020) extends contrastive learning principles to si-

multaneously pre-train image and text encoders,
leading to state-of-the-art performance.

Vision-Language Pretraining: Most recent works
on vision-language representation learning use sep-
arate encoders for images and texts (CLIPRadford
et al. (2021); Mokady et al. (2021); Shen et al.
(2021), ALIGNIJia et al. (2021)), and rely on con-
trastive loss Oord et al. (2018); He et al. (2020);
Chen et al. (2020) to align multiple modalities.
These methods have been shown to achieve state-of-
the-art (SOTA) performance on image-text tasks.
However, despite its efficacy, CL frameworks
encounter significant challenges that impede their
performance and ability to generalize. Hence we
propose three randomized label augmentation meth-
ods to mitigate such issues. Yet our approach is
limited to the paired image-text web datasets.

5 Conclusion

While contrastive learning (CL) is widely utilized
for text-image multimodal tasks, existing frame-
works face challenges stemming from biased de-
sign and noisy datasets. This paper proposes aug-
menting ground-truth labels with randomness to
mitigate these issues. Significant improvements in
model performance and robustness are achieved
without additional computational overhead. We in-
troduce three stochastic label augmentation strate-
gies and demonstrate their effectiveness across var-
ious benchmarks, showcasing the generalizability
and substantial benefits of this technique in enhanc-
ing multimodal representation learning.



References

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for con-
trastive learning of visual representations. In Proc.
ICML.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. ICLR.

Jiali Duan, Liqun Chen, Son Tran, Jinyu Yang, Yi Xu,
Belinda Zeng, and Trishul Chilimbi. 2022. Multi-
modal alignment using representation codebook. In
Proc. CVPR.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma,
Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. 2021. Clip-adapter: Better vision-
language models with feature adapters. arXiv
preprint arXiv:2110.04544.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the V in VQA
matter: Elevating the role of image understanding in
Visual Question Answering. In Proc. CVPR.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In Proc.
CVPR.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
2016. Deep residual learning for image recognition.
Proc. CVPR.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav
Kadavath, Frank Wang, Evan Dorundo, Rahul De-
sai, Tyler Lixuan Zhu, Samyak Parajuli, Mike Guo,
Dawn Xiaodong Song, Jacob Steinhardt, and Justin
Gilmer. 2021a. The many faces of robustness: A
critical analysis of out-of-distribution generalization.
In Proc. ICCV.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Xiaodong Song. 2021b. Natural
adversarial examples. In Proc. CVPR.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen
Li, and Tom Duerig. 2021. Scaling up visual and
vision-language representation learning with noisy
text supervision. In Proc. ICML.

Qian Jiang, Changyou Chen, Han Zhao, Liqun Chen,
Qing Ping, Son Dinh Tran, Yi Xu, Belinda Zeng,
and Trishul Chilimbi. 2023. Understanding and con-
structing latent modality structures in multi-modal

representation learning. In Proc. CVPR, pages 7661—
7671.

Gukyeong Kwon, Zhaowei Cai, Avinash Ravichan-
dran, Erhan Bas, Rahul Bhotika, and Stefan 0
Soatto. 2022. Masked vision and language mod-
eling for multi-modal representation learning. ArXiv,
abs/2208.02131.

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak
Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Hoi. 2021. Align before fuse: Vision and language
representation learning with momentum distillation.
In Proc. NeurIPS.

Liunian Harold Li, Mark Yatskar, Da Yin Yin, Po-Sen
Hsieh, Dragomir Chang, Jaemin Choi, Yanai Elazar,
Yongxin Sung, and Minjoon Seo. 2020. Unified mul-
timodal pre-training for image and text. In NeurIPS.

Ron Mokady, Amir Hertz, and Amit H Bermano. 2021.
Clipcap: Clip prefix for image captioning. arXiv
preprint arXiv:2111.09734.

Norman Mu, Alexander Kirillov, David Wagner, and
Saining Xie. 2021. Slip: Self-supervision meets
language-image pre-training.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
etal. 2021. Learning transferable visual models from
natural language supervision. In Proc. ICML.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt,
and Vaishaal Shankar. 2019. Do imagenet classifiers
generalize to imagenet? In Proc. ICML.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2015. Imagenet
large scale visual recognition challenge. IJCV, 115.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic im-
age captioning. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics.

Sheng Shen, Liunian Harold Li, Hao Tan, Mohit
Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei
Yao, and Kurt Keutzer. 2021. How much can clip
benefit vision-and-language tasks? arXiv preprint
arXiv:2107.06383.

Mustafa Shukor, Guillaume Couairon, and Matthieu
Cord. 2022. Efficient vision-language pretraining
with visual concepts and hierarchical alignment.
ArXiv, abs/2208.13628.


https://doi.org/10.48550/ARXIV.2112.12750
https://doi.org/10.48550/ARXIV.2112.12750
https://doi.org/10.48550/ARXIV.2112.12750
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P
Xing. 2019. Learning robust global representa-
tions by penalizing local predictive power. In Proc.
NeurlIPS.

Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath
Chanda, Liqun Chen, Belinda Zeng, Trishul Chilimbi,
and Junzhou Huang. 2022. Vision-language pre-
training with triple contrastive learning. In Proc.
CVPR.



	Introduction
	Methods
	Label Augmentation by Random Reselection
	Label Augmentation by Random Permutation
	Label Augmentation by Random Secondary Labels

	Experiments
	Zero-Shot and Linear Probing Evaluation

	Related Works and Limitations
	Conclusion

