
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SELF-IMPROVING LOGIC FROM EXPERIMENTAL OBSERVATIONS

October 1, 2024

ABSTRACT

Learning relevant, transferable representations of actions to drive model-based reinforcement learn-
ing processes stands as a major challenge in robotics on the path to general-purpose autonomous
agents, equivalent in their reasoning power to Large Language Models. To this end, we introduce a
novel framework which allows autonomous agents to learn how to represent their actions as high-
dimensional rotations over the system’s observations. We then show how such representations may be
considered optimal under the assumption that actions are distance-preserving, and present how these
representations of low-level actions can be composed to represent sequences of actions and allow
for multi-scale hierarchical learning and long-horizon planning. We finally discussed schemes to
compare such representations in order to allow for a better informed transfer of skills across tasks and
better understand the agent’s behaviour, before conducting experiments using a modified TD-MPC2
agent to better quantify in concreto the limitations of our framework.

1 Introduction

Following recent advances in the field on Natural Language Processing, which allowed several Large Language
Models (LLMs) such as GPT-3 (Brown et al., 2020 (2)) or LLAMA2 (Touvron et al., 2023 (28)) to achieve near-
human performance over a variety of language-based tasks, considerable effort was put into exploiting the implicit
representations and world models contained within such models to build or enrich reinforcement learning datasets
(Tiafas et al., 2024 (30), Zheng et al., 2024(35)) , to plan and direct low-level agents to help them tackle long-horizon or
complex tasks (Zhang et al., 2023 (36), Sun et al., 2024 (25), Zhou et al., 2024 (37)), or to extract from low-dimensional
observations adequate system state descriptors (Chen et al., 2023 (3)), for instance. However, such approaches face
a dual challenge: while larger models are more precise and better able to adapt with minimal fine-tuning to a wide
variety of downstream tasks; on the other hand, they are also expensive to run and use as part of reinforcement learning
schemes, where hundreds of thousands or even millions of updates are often required to reach convergence on some
tasks and where an agent is often required to plan or react in real-time.

In this paper, we propose an alternative to the general, humanly-understandable representations provided by LLMs
in the context of predictive control and planning tasks. Instead of replicating the Transformer (Vaswani et al., 2017
(31)) architecture by learning sequences of words and their correspondence in a latent action skill space, we leverage
experimental observations to first derive a set of useful primitive actions, and learn their representation as a group action
over the agent’s observation space. We then combine and refine these primitives into relevant longer sequences of
actions in downstream learning to further improve and enrich the agent’s skills and reasoning abilities with sequences
of increasing complexity while preserving the predictive power of our action model.

In practice, we recast the problem of learning action representations and dynamics as an instance of the well-known
Wahba problem (Wahba, G, 1965 (32)). This problem, originally set by the astrophysicist Grace Wahba, seeks to
find an element of SO(n) to optimally shift one set of coordinates to another, where each shift is defined using a
noisy matching of basis vectors from each set. We in turn match the observed environment state before executing a
given action to the observed state after performing this action. This allows us to derive the corresponding rotation as a
representation of the action executed by the agent, to be used in downstream learning. Crucially, these representations
only depend on dΩ, the state observation space’s dimension, as long as the same training environment is reused across
tasks. They also require as little as O(dΩ) observations to become uniquely optimal representations.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

A PREPRINT - OCTOBER 1, 2024

In our experiments, we implement our SILEO framework within a slightly modified TD-MPC2 model architecture to
account for a finite set of actions instead of the high-dimensional hypercubes used in the original implementation. After
a short pre-training designed to identify relevant actions through a clustering of the embeddings provided by the agent’s
policy, we calculate their relevant representations as rotations and reuse them as a set of primitive skills. These action
primitives equate to a fixed embedding in the agent’s initial action or command space. In downstream learning, we then
use these representations as the dynamics model of a Model Predictive Control planning algorithm, and refine these
representations with new observations while maximising the entropy of our action set. This is achieved by replacing
overused skills with the most useful sequences of skills starting with them. To summarise our main contributions:

Action Representations We present a novel scheme to represent actions in model predictive control as learned
rotations over either an observation space or a learned state latent space, alongside the conditions required for these
representations to be near-optimal

Multi-scale Hierarchical Learning We propose a method to refine during downstream learning a given set of action
representations into longer sequences, to be used as higher-level skills in planning

Transfer Learning We show that learned action representations may be reused across tasks and agents while
mitigating training performance loss, while remaining useful to evaluate the relative complexity and similarity of one
task compared to another

Long Horizon planning We put forward several ways to extend in the future the low-level action-based SILEO
framework implemented in our experiments to subtasks. We then show how long-horizon planning may then be recast
as a (multiscale) factoring problem.

2 Preliminaries

Problem formulation This work is built under the theoretical framework of Partially Observable Markov Decision
Processes, whose resolution aims at optimising under a certain reward function the sequence of actions taken by an
agent from a given state, under the assumption that the decision-making agent only has access to noisy observations of
these states. Formally, a POMDP is a 7-uple (S,A,R, T,Ω, O, γ), where

- S is a set of states
- A is a set of actions
- R : S ×A→ R is the reward

- T : S ×A→ S is a random variable
representing state transitions
- Ω is a set of observations

- O : S → S is a random variable
representing state observations
- γ ∈ [0, 1) is the discount factor

As with all Markov Decision Processes, at each time step t the agent is expected to take an action a ∈ A to move
from a lower-reward state st ∈ S to a hopefully higher-reward state st+1. However, without knowledge of the ground
truth state at this time step the agent only has access to a random observation ωt ∈ Ω, given by the value of O(st).
Moreover, the transition from an observed state and the action chosen to the ground truth state at the next time step is
also random, represented by the transition random variable T: Ω×A→ S.

Assumptions In this work, we assume that both conditional random variables T and O follow a Gaussian probability
distribution. This assumption allows us to merge both Gaussian noises as one, that is, to consider a unified random
variable τ : S ×A→ S defined as τ = T◦ (O ⊗ (IdA)), which as the composition of two Gaussian random variables
also follows a Gaussian probability distribution. This variable directly maps a ground truth state and action to another
ground truth state without having to consider individually the output of O and then T.

We further assume that the set of observations O ⊂ Ω can be embedded in a finite-dimensional real vector space, with
dimension d. While this assumption is standard in a control setting, we further assume that this embedding is entirely
located in the d-dimensional unit sphere Sd−1. While this may seem egregious, since any compact subset of Rd−1 is
homeomorphic to a subset of Sd−1 (see Appendix 1.1 for a detailed proof), this condition can be met by any compact
Hausdorff embedding as long as it is projected to a higher dimension for our computation.

Finally, we assume that notwithstanding a Gaussian noise given by τ , the effect of each action may be represented
globally as an endomorphism of Sd−1, id est a matrix from the orthogonal group O(d) and even SO(d). Under our
previous assumptions, this is equivalent to assuming that the actions over the embedded observation space are both
quick to execute and mostly distance-preserving (see Appendix 2 for a rigorous proof), which while reasonable in a
control setting may not be applicable in a context where significant external forces (e.g gravity) or numerous collisions,
in particular inelastic, are to be expected.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

A PREPRINT - OCTOBER 1, 2024

Wahba’s problem In this work, action representations rely on a solution to Wahba’s problem provided by Ruiter and
Forbes in 2014 (22). This least-squares problem seeks to find an optimal rotation matrix between two matching sets
of (weighted) noisy coordinate vectors. Here, we recast the problem using system observations before an action was
performed as a coordinate set, and system observations after this action as the second, to deduce a representation of the
action as the best rotation matrix to match these observations. Under our assumptions, notably since τ is Gaussian, we
may then find optimal solutions to each instance of Wahba’s problem using SVD-derived methods.

In more precise terms, given an action a ∈ A, and N > 1 d-dimensional observations (ωk, ω
′
k)1≤k≤n such that for

all k, there has been a time step when τ(ωk, a) = ω′
k, we seek to find Ra ∈ SO(d) that minimises the following

reconstruction cost:

J(Ra) =
1
2

∑N
k=1 ∥ω′

k −Rωk∥2

3 Approach

In this section, we introduce in detail our SILEO framework, and its applications to Reinforcement Learning tasks and
foremost control; we present both the theoretical advantages and potential drawbacks of the presented framework for
dynamics and model-based planning (section 3.1), multi-level hierarchical learning from the composition of primitive
and composite actions (section 3.2), transfer learning and cross-task comparison using geodesic distance (section 3.3)
and long horizon planning in controlled environments (section 3.4). Implementation details and results are further
presented in section 4.

3.1 Representing actions by their dynamics

In prior work, notably derived from SAC (Haarnoja et al., 2018 (6)) or DRQ (Kostrikov et al., 2020 (13)) agents such as
PEARL (Rakelly et al., 2019 (20)) or TD-MPC (Hansen et al., 2022 (7)), actions are identified by their embeddings in a
latent action space of arbitrary dimension, usually within a hypercube centered in 0. While a bijective interpretation
function is used to translate these embeddings into concrete actions realised by an agent’s actuators, there is no global
equivalent at the reasoning level to be used by the agent. The latent action space is only used at a local level by neural
networks tasked with predicting the next latent state or an expected reward when given as input an observation and an
action for instance.

Unlike with words or pictures in the case of Transformer-derived agents however, there is intuitively a topological group
structure that can be derived from this set of low-level actions in a control setting. Indeed, though this group and its
structure may be hard to assess directly, most actions taken by an agent in control benchmarks such as RLBench (James
et al., 2019 (12)), ALFREd (Shridhar et al., 2020 (24)), Meta-World (Yu et al., 2019 (34)) or the DeepMind Control
Suite (Tassa et al., 2018 (27)) are invertible, often by simply reversing the command sequence at the actuator’s level.
Moreover, most actions can be continuously composed with one another without breaking the rules of the training
environment, and the bijection between latent action space and actuator command is designed to be continuous and
even an homeomorphism. However, this group structure is computationally intractable to determine, since even if we
consider only a set of low-level actions as generators, simply chaining two actions one after the other requires us to
consider the result in a space larger than the initial actuator command space to account for the fact that the resulting
action is no longer a low-level actuator command, which leads recursively to an indefinitely large action space.

It is therefore natural to try and devise a way to consider these actions taken from an inaccessible group as group actions,
more precisely to consider instead of the group itself a representation of this topological group on the observation
space. Let us recall that given a group G, a representation (ρ, V) of this group is comprised of a vector space V and a
morphism ρ : G→ Aut(V) GL(V). Assuming that actions a ∈ A over the observation space Ω from our PO-MDP
have this topological group structure, a faithful (that is, injective) representation would allow us to identify these actions
with elements of Aut(Ω). Under our assumptions stated in the preliminaries, Aut(Ω) would be O(d), and our actions
may even be represented by SO(d) as shown in Appendix 1, where d = dim(Ω).

In order for an agent to learn this faithful representation from its experience interacting with its environment, we can
leverage our framework by recasting the problem as an instance of Wahba’s problem and treating each action as a shift
with Gaussian noise from one system of coordinates in the observation space Ω to another. Since under our assumptions
a given action from the latent action space acts on the observation space using an element of SO(d), an agent can
observe its effects on the system through a replay buffer or with online experiments and deduce, for instance using
Singular Value Decomposition-derived methods(22), a solution to this instance of Wahba’s problem with as little as
O(d) observations if they are sampled independently at random. Indeed, with high probability O(d) observations
form a basis of the latent d-dimensional observation space Ω, forming the d-dimensional basis required by the method
presented in by de Ruiter et al., 2013 (22) to find the unique optimal rotation on Sd that represents our given action.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

A PREPRINT - OCTOBER 1, 2024

Figure 1: Repeated pruning to refine an action set

There remains the problem however of identifying relevant actions to which this method could be applied. While some
RL agents such as SPiRL (Pertsch et al., 2020 (18)) or ReSkill (Rana et al., 2022 (21)) are trained to optimise the use
of a fixed set of skills, these are expensive to develop since they usually require large datasets modeled after expert
demonstrations. Other self-supervised agents use a continuous hypercube or hyperball as a latent action space instead
of a discrete set of embeddings. In our implementation, this space needed to be discretised and clustered to provide a
generating set of actions. Since in many self-supervised exploration implementations (such as TDMPC2 (Hansen et al.,
2024 (8)) or Plan2Explore (Sekar et al., 2020 (23)) actions are at least initially uniformly distributed in the absence
of any prior, a pre-training phase is therefore required for task-relevant low-energy clusters to emerge. Indeed, with
uniformly distributed actions, the only meaningful choice for a set of primitive actions would be the center of the ball or
the hypercube, oftentimes the null action, while local minima would be partitions in equivalent volumes of the entire
space. In our experiments, we used a K-Medoids algorithm after a pre-training phase to choose the most statistically
relevant actions for the agent to use for the rest of its training.

3.2 Self-improving logic

One of the main benefits of our SILEO framework lies in the ability to consider the global dynamics of actions instead
of considering these dynamics on a per-state basis. This allows us to efficiently generalise but also refine and build
new skills using global operations instead of considering trajectories built from pointwise dynamics. In our framework,
composing one action with another is therefore as simple as multiplying the two rotation matrices that represent them.
This enables second-order logic operations for an agent, which not only learns to manipulate actions but also discovers
how they are related as either "parents" or "continuations" during its training. Finally, we draw inspiration from
Natural Language Processing and notably tokenisation processes used by Large Language Models, to define entropy
maximisation (following Wen et al., 2024 (33)) as a relevant criterion for refining the skillset learned by the agent.

Following Sutton et al., 1999 (26), a policy π : Ω→ A may be trained to predict the best action to take following a
given observed state ω ∈ Ω. However, this policy is biased by design, since its intent is to continuously assign to latent
states an action to take, which may lead to imbalance or approximations if some actions are much more frequently found
than others in a given dataset regardless of their relevance to a given task. Instead, we propose to balance our actions
and maximise the entropy of our action set by splitting frequently found actions into composite ones of greater duration,
and to complement the policy with reward estimation in order to differentiate skills born from the same primitive action.
The algorithm and its detailed explanation are found on the next page.

Note: In our experiments, CLUSTER was performed using K-medoids, and EXTRACT extracted the transi-
tions observed after the agent performed the action Centroid. BUILDACTION is the constructor of an Ac-
tion class, which notably stores a rotation calculated from the transitions stored in CentroidBuffer. This class
also has a GetOccurrences method to fetch the number of (recent) occurrences stored with each instance, and a
ComposeAction(a, b) method, which yields the representation of b ◦ a from Actions a and b.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

A PREPRINT - OCTOBER 1, 2024

Algorithm 1 Pruning algorithm
Require: a buffer B of successive observations, a (sometimes empty) set of processed actions L, a policy π : Ω→ A,

a criterion to add actions to L, a threshold to start searching for composite actions.
Initialise Actions as an empty list.
for ω ∈ B do

Append π(ω) to Actions ▷ Actions stored alongside the states in the buffer can also be used
end for
Assignments, Centroids← CLUSTER(Actions)
for Centroid in Centroids do

if Centroid verifies criterion then ▷ We used frequency and distance to the closest action as criteria
CentroidBuffer ← EXTRACT(Centroid, Assignments, Buffer)
Append BUILDACTION(Centroid, CentroidBuffer) to L

end if
end for
Initialise Occurrences as an empty list.
for a ∈ L do

Append GETOCCURRENCES(a) to Occurrences
end for
while ∃a ∈ L s.t. Occurrences(a) > threshold do ▷ e.g > mean + 2 standard deviations of Occurrences

for b in L do
c← COMPOSEACTION(a, b)
if c verifies criterion then

Append c to L
Append GETOCCURRENCES(c) to Occurrences
Occurrences(a)← Occurrences(a)−Occurrences(c)

end if
end for

end while

We call this algorithm a skills pruning algorithm, since it essentially cuts skills that overshadow others to allow for
smaller, more balanced branches to regrow in their stead. Its goal is to produce skills of varying complexity but roughly
equivalent in terms of frequency. It uses as roots the skills already learned by the agent, and considers for frequent skills
which other skills, composite or not, would be the most likely continuations to this skill. It then creates new skills from
the composition of our root skill and the most rewarding continuations, for them to be considered alongside others in
downstream learning. A policy becomes mostly irrelevant in the setting of an expanding skills graph, although it does
help restraining the search scope in the resulting graph; what matters however is consistent reward estimation across
different depths of prediction resulting from the chaining of long or short skills in planning.

The resulting set of learned skills or actions may be represented as a graph, using as roots one of the primitive actions.
While initially the graph is a disjoint set of small trees, after further pruning connected components merge and form a
single connected graph. This graph may be analysed using different primitive skills as roots to explore the "transitions",
that is the inheritance links from a parent skill/node to a more complex descendant, using methods such as CEM
planning (Huang et al., 2021 (11)) or PETS (Chua et al., 2018 (4)), to ensure the most relevant skill is chosen by the
agent at a given state and time step. This method allows for an agent to learn how to balance its different logic and
planning scales, since under a given planning horizon of n actions, it can learn to use actions of varying length or
complexity, where the choice of more complex skills translates greater mastery of and confidence in an action sequence.

This algorithm remains sensitive on the time of pruning however; indeed, agents which are more proficient than others
at a given task usually have better defined clusters of actions and thus less action primitives and more composite skills.
The repeated pruning of a graph during training however allows an agent to adapt to its most recent experience by
integrating new and often more complex composite skills to its repertoire, reducing the total number of hyperparameters
in the algorithm to 3: pruning frequency, accepted deviation from mean or median and the size of the buffer to be
considered while pruning. These ensure the long-term viability of the hierarchical learning undertaken by the agent to
ensure relevant composite skills are learned even among changing environmental conditions.

3.3 Transfer learning and task distance

In the context of transfer learning, one of the main hurdles encountered in PO-MDPs is that policies are often non-
transferable across tasks. Indeed, since they map latent states to the estimated best action to take if the agent founds

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

A PREPRINT - OCTOBER 1, 2024

Figure 2: Matching different state embeddings

itself in one of these states to complete a task, they are highly dependent on both the encoding algorithm used to
transform observations into latent states and the task itself. Crucially, even though "task-agnostic" dynamics models
may be jointly trained or pre-trained to supplement an agent’s decision-making process, they often remain dependent on
learned embedded states even though an optimal embedding for a task may be detrimental to another.

In our framework, action dynamics may be learned directly from experimental observations, independently of any
latent state embedding scheme that may be used for reward estimation or policies. Beyond the computational advantage
that comes with using matrices of smaller dimension, using our framework with state observations allows the agent
to learn a truly task-agnostic dynamics model, that may be reused across tasks without requiring any adaptation, as
long as the actuator and its observation space remain unchanged. Moreover, the topological group structure chosen,
which considers actions as a subgroup of SO(d), allows us to consider a wide array of metrics to analyse the learning
process of an agent. A variety of distance functions may for instance be used to compare two given actions and better
understand the set of skills learned by the agent. These distances notably include the canonical geodesic distance, as
defined below:

If A,B ∈ SO(d),ATB too, hence ∃(λi)1≤i≤d ∈]− π;π] s.t. ATB ∼ diag((e−iλi)1≤i≤d)

We define d(A,B) =
√∑d

i=1 λ
2
i

This geodesic distance is by definition invariant under orthonormal base changes, which allows it to remain relevant
even when comparing actions learned using different latent spaces instead of the agent’s observation space. Indeed,
while embedding functions are usually not isometric, which makes these actions not directly comparable, it is still
possible to approximate one basis of latent states by another. More precisely, given two tasks and p1, p2 : Ω− > Rd the
embedding functions used by the agents for these tasks, we seek I ∈ O(Rd) (if applicable, p−1

1 (p2)) that makes the
diagram in Figure 2 commutative.

Given Ra1 , Ra2 the rotation matrices associated with two distinct actions a1 and a2 used by the agent to solve tasks 1
and 2 respectively, it is therefore possible (even if using latent spaces instead of observation spaces) to directly compute
(or approximate, see appendix 1.5.2 for the full process) a task-agnostic distance function between these matrices as a
proxy for the distance between these actions. This distance in turn allows us to determine a lowest-energy matching
between the sets of relevant actions learned by the agent to solve both tasks and to define the energy of such a matching
as the distance between two tasks. Moreover, while such a distance could already be computed from the embeddings of
the discrete set of primitive actions chosen for both tasks, the process we described extends to composite actions or
skills, and also takes as a basis of comparison the empirical dynamics of the commands used by an agent instead of
their semi-arbitrary latent representations.

3.4 Guided exploration and long-horizon planning

Using rotations as representations for an agent’s actions also allows it, on slightly modified observation spaces, to
plan a trajectory without needing external rewards or policies. Indeed, given a starting region O ∈ Ω and a target
region C ∈ Ω, and a matching of d = dim(Ω) points (oi, ci)0<i<d−1 (both independent and with unit norm) from
both regions, we may consider as for low-level actions a rotation matrix S ∈ SO(d) which seeks to verify for all i,
S(p(oi)) = p(ci), where p is an homeomorphism between Rd and Rd+1. We can therefore deduce a rotation matrix to
represent a given task, and even any sub-tasks which we would deem relevant from the state transitions desired.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

A PREPRINT - OCTOBER 1, 2024

Figure 3: Using known geometry or empirical trajectories to warp the observation space

Within our framework, assuming that some actions have been learned, the process of finding a solution to a task or
a sub-task becomes equivalent to finding that of an approximate factoring problem, where a planner would attempt
to reconstruct the task’s rotation matrix using the subtasks or low-level actions at its disposal, represented by their
rotations. Such a problem is NP-hard in the general case, as if even if we consider simultaneously reducible rotations
as actions, solving this problem becomes equivalent to solving a multidimensional knapsack problem as presented in
Püchinger et al., 2010 (19) by using the eigenvalues’ rotation angles as weights. A simpler version of this problem
limiting itself to reconstructing a task from a set of sub-tasks may be solved however in a small enough time to be viable.
Such an approach would be an alternative to LLM guidance as defined in Pallagani et al., 2024 (16) and used recently
in Plan-Seq-Learn (Dalal et al., 2024 (5)) for instance, where in order to complete a task a Large Language Model sets
the order of sub-tasks to complete while a low-level agent independently learns how to execute each sub-task.

In order to bias the factoring algorithm and help it find a solution more quickly, two complementary approaches might
be needed. Firstly, in order to evaluate whether or not a given factoring is viable, a distance metric over the elements
of SO(d) that we consider would transform the factoring algorithm into a (reversed) hill-climber. While SO(d) is
finite-dimensional and as such all of its distance metrics are equivalent (that is, they define the same metric space
topology), the geodesic distance described in section 3.3 would be a particularly meaningful candidate distance metric,
as minimising it is exactly minimising the difference between current and target singular values.

Second, in order to handle the cases where some states might be unreachable from others (due to the presence of
walls for instance in a maze or due to the limitations of an actuator), a dilatation of the observation space that would
significantly increase the distance between such states would allow a distance-based hill climber to avoid forbidden or
impossible actions, while preserving the structure and task-agnostic nature of the observation space. An illustration of
this process using a maze and a set of valid trajectories is shown above in Figure 3.

While in the case of the maze such a dilatation could be pre-computed, a solution analogous to a gravity field could also
be used in cases where the underlying observation space is not easily understood or segmented. In essence, during a
pre-training phase, each observation from the buffer would add weight to its position, adding in practice a coordinate in
a supplemental dimension. The problem would then be recast with this additional dimension and after smoothing the
differences to make this modified observation space a smooth manifold, forming a new observation space to be treated
as any other would be otherwise using our framework during training.

Concrete implementation of these methods are however highly dependent on the resolution of a specific task, and as
such have not been explored in our experiments; it is therefore left to future work to determine the viability of using our
SILEO framework for factoring-based long-horizon planning.

4 Experiments

In this section, we present various experiments we conducted to evaluate the viability of the SILEO framework in a
control setting while solving various tasks from the DMControl dataset. The purpose of these experiments was to assess
the limitations of our hypotheses and to quantify the relative impact of each of our approximations of the initial agent’s

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

A PREPRINT - OCTOBER 1, 2024

Figure 4: Walker-walk, dog-run baseline performance

behaviour. We used TD-MPC2 (Hansen et al., 2024 (8)) as the baseline agent to be modified to follow our framework,
with the goal of assessing the viability of our hypotheses in a diverse set of tasks and better characterise the situations
where using our SILEO framework could faithfully replicate the downstream performance of the agent.

4.1 walker-walk

Likely one of the "easiest" tasks of the dataset with a 25-dimensional state observation space and a 6-dimensional
action space, the original TD-MPC2 agent converges in this task in less than 20 000 iterations, reaching a reward of
900-950 depending on the random seed, to be compared to an average reward of around 45 using random actions.
However, this task primarily aims at teaching a simple two-legged "walker" how to fight against gravity to be able to
walk without falling down. It is therefore a great example of tasks that cannot be solved using solely our framework,
since the assumption that actions are (mostly) distance-preserving does not hold when fighting against a dominant
external force with such a simple agent. Indeed, in our experiments the agent seemingly learns how to fail the task,
converging at a reward of around 10 which is significantly below the performance of random actions.

To validate the hypothesis that gravity was at fault, we used two different projections for the observations used in the
pruning algorithm and the trainer to ensure the states used to deduce representations would have nothing to do with
those used in dynamics prediction to update these representations. This allowed our agent to maintain performance
slightly above the level of random actions for a short time after pre-training, before reverting to its previous behaviour
after enough updates were made to erase the transitions used in the pruning algorithm from the agent’s memory.

4.2 dog-run, dog-walk

Significantly more complex than the previous task, with a 223-dimensional state observation space and a 38-dimensional
action space, the dog-run task represents a moderate challenge to the unmodified TD-MPC2 agent, which in 200 000
updates reaches an average reward just under 200, to compare to an average reward of 6 for random actions. Our
framework initially improves the performance of the agent from the end of pre-training onwards, with an average
performance at 50 000 steps moving from 6.0 to 14 and equivalent performance at 100 000 steps. However, due
to the small (ranging from 16 to 512) set of actions chosen for pruning, and thus extremely coarse topology of our
actions, downstream learning is noticeably slower. The limitations of our model also show here, since even though the
observation space is much larger gravity is once again the main competing force working against our agent.

In order to evaluate the relative contributions of each of these factors, we leveraged vectorised environments and mean
pooling to train the agent on 4 different environments, half of which planned their actions using our framework, the
rest with the original agent’s policy. All policy actions proposed by the latter 2 environments were recast as SILEO
actions for model updates. The idea behind this approach is to compensate for the handicap of a finite set of actions by
planning on both the original continuous setting and our modified discrete framework to add some observation noise,
before updating the agent by matching policy actions their nearest actions in our small set of skills.

In these experiments, we also evaluated the contribution of composite actions, which are initially more vulnerable to
unaccounted external forces. In both cases, the number of initial primitive actions was set to 16, with a limit on the total
number of actions set to 512. We found that although slower and with far higher variance as the number of actions was
reduced, this mixed approach both with and without composite actions initially kept up with the original agent at first
and kept improving with more training steps, although at a slower rate ranging from a third to a tenth of the original.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

A PREPRINT - OCTOBER 1, 2024

Figure 5: dog-walk, dog-run "boosted" agent’s performance. Reward shown as a function of updates

Figure 6: humanoid-walk, humanoid-run "boosted" agent’s performance. Reward shown as a function of updates

4.3 humanoid-run, humanoid-walk

Humanoid-run is one of the most difficult tasks in the dataset for TD-MPC2, whereas humanoid-walk was comparatively
simple to solve. These tasks have an observation space of dimension 67 and an action space of dimension 21. Although
similar to walker-walk as they feature bipedal agents, these tasks require a much finer control of humanoid anatomy. In
practice, the significantly higher number of joints and poses makes this task as much, of an exercise in maintaining
rigidity and balance than in learning to use two legs, which makes our framework better adapted to the task. The initial
agent converges on the run task at a reward of 600 after 8 million iterations, and on walk reaches 900 in 2 million; with
less dominant gravity, our agent was found to approximate this performance level much more faithfully than in dog
tasks in both cases, despite a number of actions limited to 512.

4.4 Knowledge transfer, distances

Finally, we explored a concrete implementation of an action transfer and distance measure between tasks based on
the geodesic distances between the primitives selected to perform these tasks. In order to provide a unified measure,
we applied a variant of the Gale-Shapley algorithm between two sets of actions, seeking to assign each action of the
current task an action of the reference task according to their relative distance. Once the coupling had been achieved,
we calculated its energy before substituting the actions of the current task with their equivalent in the previous task to
evaluate the impact on training. We then measured each agent’s performance after coupling (at 100 and 200 000 steps
respectively for dog and humanoid tasks), and measured the task distance between dog-run and dog-walk as well as
between humanoid-run and humanoid-walk.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

A PREPRINT - OCTOBER 1, 2024

Table 1: run vs. walk

Agent Action distance dimension Reward decrease

dog 27.9± 2.1 223 -6.3 (-14.6%)
humanoid 16.4± 0.9 67 -2.5 (-11.3%)

5 Limitations

As discussed earlier in this paper and illustrated by our experiments, the use of orthogonal special group elements
to represent robotic commands has its limitations. Some of these are imputable to the limitations of the theoretical
framework itself and to certain assumptions that simply do not hold in a concrete setting for solving certain tasks,
while others probably have more to do with implementation choices that favoured speed of execution and ease of
interpretation over accurate modelling that would conform in every aspect to the requirements of our theory.

Firstly, the choice of the class of functions, or rather the group of linear operators chosen as the representation space is
relatively restrictive; indeed, as presented in Appendix 1, it is based on the dual assumption that actions are quick to
execute and preserve distances between states, in other words that the environment and the agent are essentially rigid and
devoid of obstacles. In addition, the computations required, which are based on the assignment of transitions associated
to these actions, did not easily lend themselves to the use of a continuous space in the image of the topological group
SO(n), which forced us to use only a finite sample of actions drawn from this group and probably seriously limited the
learning speed in our experiments.

Future work could seek to overcome these problems by defining in advance relevant elements of the group as primitive
actions, before generating from these well-chosen elements a subgroup of SO(n) or any other group chosen to represent
the dynamics of these actions. This approach would be more rigid as it would restrict itself in advance to certain
primitives. Indeed, while infinitesimal generators could be used, these would be drawn from the Lie group of the
function class used for representation and therefore deal with a class of operators that is much more diverse and difficult
to understand. However, it would provide a partial solution to the discretisation problem, and would be more compatible
with an end-to-end deep learning approach instead of relying on algebraic operations that are disconnected from the
other parameters of the agent’s systems.

Another solution to this problem would be to allow the agent to learn the representation itself, i.e. a continuous
morphism defined over a continuous space of actions and with values in SO(d) or any other relevant group of functions
acting on the space of observations. Although this approach would be more complex to implement, we did not pursue it
in this paper primarily because it would have been more difficult to construct composite actions insofar as the control
space generally has no group structure. That being said, using a much higher-dimensional space which would extend
the original action/command space together with an encoder/decoder that would map this larger space to the rotations
associated with action sequences of varying length could allow a viable continuous representation to be learned.

Another difficult hypothesis to verify in our experiments was the reversibility of actions. Indeed, while this is a
prerequisite for preserving distances, it is partially inadequate in the implementation chosen, which only retains
transitions ‘forwards’ in time and does not attempt to establish a bidirectional model (as proposed for instance by Lai et
al., 2020, (15), Hu et al., 2023 (10) or Höftmann et al, 2023 (9)), even though learned rotations lend themselves just as
much if not better to bidirectional planning (as proposed by G. Baldassarre in 2003 (1)) compared to unidirectional
models.

6 Conclusion

In this paper, we presented the theoretical justification and ran experiments to build and refine a framework enabling RL
agents to develop Self-Improving Logic from Experimental Observations, thus proposing a novel method to build and
refine representations of actions as group actions. We therefore allow autonomous agents engaged in a reinforcement
learning procedure to derive, from the dynamics of the actions they perform, a dynamic representation that may be
intuitively understood by human beings while remaining useful to the optimisation of the agent’s decision-making
process. While the initial results are encouraging as they were obtained on tasks deliberately chosen to be difficult
to solve in order to test the limits of our framework, the proposed implementation still suffered from limitations that
impacted its overall performance. There also remains several open questions both in terms of evaluation and concrete
implementation of certain ideas or natural extensions of this paper, which would need to be answered by future works
in order to confirm that this new perspective is viable and could improve in the long run both the performance and our
understanding of RL agents and their reasoning capabilities.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

A PREPRINT - OCTOBER 1, 2024

References
[1] Baldassarre, G. (2003). Forward and Bidirectional Planning Based on Reinforcement Learning and Neural Networks

in a Simulated Robot. In Butz, M.V., Sigaud, O., Gérard, P. (eds) Anticipatory Behavior in Adaptive Learning
Systems. Lecture Notes in Computer Science, vol 2684. Springer, Berlin, Heidelberg.

[2] Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Ma-teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever and Dario Amodei. “Language Models are Few-Shot Learners.” ArXiv preprint
abs/2005.14165 (2020): n. pag.

[3] Chen, Siwei, Anxing Xiao and David Hsu. “LLM-State: Open World State Representation for Long-horizon Task
Planning with Large Language Model.” Arxiv abs/2311.17406 (2023).

[4] Chua, Kurtland, Roberto Calandra, Rowan Thomas McAllister and Sergey Levine. “Deep Reinforcement Learning
in a Handful of Trials using Probabilistic Dynamics Models.” In Neural Information Processing Systems (2018).

[5] Dalal, Murtaza, Tarun Chiruvolu, Devendra Singh Chaplot and Ruslan Salakhutdinov. “Plan-Seq-Learn: Language
Model Guided RL for Solving Long Horizon Robotics Tasks.” ArXiv preprint abs/2405.01534 (2024)

[6] Haarnoja, Tuomas, Aurick Zhou, P. Abbeel and Sergey Levine. “Soft Actor-Critic: Off-Policy Maximum Entropy
Deep Reinforcement Learning with a Stochastic Actor.” ArXiv preprint abs/1801.01290 (2018): n. pag.

[7] Hansen, Nicklas, Xiaolong Wang and Hao Su. “Temporal Difference Learning for Model Predictive Control.” In
International Conference on Machine Learning (2022).

[8] Hansen, Nicklas, Hao Su and Xiaolong Wang. “TD-MPC2: Scalable, Robust World Models for Continuous
Control.” ArXiv preprint abs/2310.16828 (2023)

[9] Höftmann, Marc, Jan Robine and Stefan Harmeling. “Backward Learning for Goal-Conditioned Policies.” ArXiv
abs/2312.05044 (2023)

[10] Hu, Xiaobo, Youfang Lin, Yue Liu, Jinwen Wang, Shuo Wang, Hehe Fan and Kai Lv. “A Reliable Representation
with Bidirectional Transition Model for Visual Reinforcement Learning Generalization.” ArXiv abs/2312.01915
(2023)

[11] Huang, Kevin, Sahin Lale, Ugo Rosolia, Yuanyuan Shi and Anima Anandkumar. “CEM-GD: Cross-Entropy
Method with Gradient Descent Planner for Model-Based Reinforcement Learning.” ArXiv preprint abs/2112.07746
(2021)

[12] James, Stephen, Z. Ma, David Rovick Arrojo and Andrew J. Davison. “RLBench: The Robot Learning Benchmark
and Learning Environment.” In IEEE Robotics and Automation Letters 5 (2019): 3019-3026.

[13] Kostrikov, Ilya, Denis Yarats and Rob Fergus. “Image Augmentation Is All You Need: Regularizing Deep
Reinforcement Learning from Pixels.” ArXiv preprint abs/2004.13649 (2020)

[14] George Kour and Raid Saabne. Real-time segmentation of on-line handwritten arabic script. In Frontiers in
Handwriting Recognition (ICFHR), 2014 14th International Conference on, pages 417–422. IEEE, 2014.

[15] Lai, Hang, Jian Shen, Weinan Zhang and Yong Yu. “Bidirectional Model-based Policy Optimization.” ArXiv
abs/2007.01995 (2020)

[16] Pallagani, Vishal, Kaushik Roy, Bharath Muppasani, F. Fabiano, Andrea Loreggia, Keerthiram Murugesan, Biplav
Srivastava, Francesca Rossi, L. Horesh and Amit Sheth. “On the Prospects of Incorporating Large Language Models
(LLMs) in Automated Planning and Scheduling (APS).” In International Conference on Automated Planning and
Scheduling (2024).

[17] Papadopoulo, Théodore, Lourakis, Manolis. Estimating the Jacobian of the Singular Value Decomposition: Theory
and Applications. In Lect Notes Comput Sci. 1842 (2000).

[18] Pertsch, Karl, Youngwoon Lee and Joseph J. Lim. “Accelerating Reinforcement Learning with Learned Skill
Priors.” In Conference on Robot Learning (2020).

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

A PREPRINT - OCTOBER 1, 2024

[19] Jakob Puchinger, Günther R. Raidl, Ulrich Pferschy. The Multidimensional Knapsack Problem: Structure and
Algorithms. In INFORMS Journal on Computing, 2010, 22 (2), pp.250- 265. 10.1287/ijoc.1090.0344. hal-01224914

[20] Rakelly, Kate, Aurick Zhou, Deirdre Quillen, Chelsea Finn and Sergey Levine. “Efficient Off-Policy Meta-
Reinforcement Learning via Probabilistic Context Variables.” In International Conference on Machine Learning
(2019).

[21] Rana, Krishan, Ming Xu, Brendan Tidd, Michael Milford and Niko Sunderhauf. “Residual Skill Policies: Learning
an Adaptable Skill-based Action Space for Reinforcement Learning for Robotics.” In Conference on Robot Learning
(2022).

[22] Ruiter, Anton de and James Richard Forbes. “On the Solution of Wahba’s Problem on SO(n).” (2014).

[23] Sekar, Ramanan, Oleh Rybkin, Kostas Daniilidis, P. Abbeel, Danijar Hafner and Deepak Pathak. “Planning to
Explore via Self-Supervised World Models.” In International Conference on Machine Learning (2020).

[24] Shridhar, Mohit, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettle-
moyer and Dieter Fox. “ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks.” In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019): 10737-10746.

[25] Sun, Chuanneng, Songjun Huang and Dario Pompili. “LLM-based Multi-Agent Reinforcement Learning: Current
and Future Directions.” ArXiv abs/2405.11106 (2024).

[26] Sutton, Richard S., David A. McAllester, Satinder Singh and Y. Mansour. “Policy Gradient Methods for
Reinforcement Learning with Function Approximation.” In Neural Information Processing Systems (1999).

[27] Tassa, Yuval, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap and Martin A. Riedmiller. “DeepMind Control
Suite.” ArXiv preprint abs/1801.00690 (2018)

[28] Touvron, Hugo, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cristian Cantón
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony S. Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne
Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh Tang, Ross Taylor, Adina Williams,
Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan
Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov and Thomas Scialom. “Llama 2: Open Foundation
and Fine-Tuned Chat Models.” ArXiv preprint abs/2307.09288 (2023)

[29] L.N. Trefethen et D. Bau, In Numerical Linear Algebra, Other Titles in Applied Mathematics, Society for Industrial
and Applied Mathematics (SIAM), 3600 Market Street, Floor 6, Philadelphia, PA 19104, (1997)

[30] Tziafas, Georgios and Hamidreza Kasaei. “Lifelong Robot Library Learning: Bootstrapping Composable and
Generalizable Skills for Embodied Control with Language Models.” In 2024 IEEE International Conference on
Robotics and Automation (ICRA) (2024): 515-522.

[31] Vaswani, Ashish, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser
and Illia Polosukhin. “Attention is All you Need.” In Neural Information Processing Systems (2017).

[32] Wahba,G., “A Least-Squares Estimate of Satellite Attitude,” SIAM Review,Vol.7,No.3,1965,p.409.

[33] Wen, Muning, Junwei Liao, Cheng Deng, Jun Wang, Weinan Zhang and Ying Wen. “Entropy-Regularized
Token-Level Policy Optimization for Language Agent Reinforcement.” Arxiv preprint: abs/2402.06700 (2024).

[34] Yu, Tianhe, Deirdre Quillen, Zhanpeng He, Ryan C. Julian, Karol Hausman, Chelsea Finn and Sergey Levine.
“Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning.” ArXiv preprint
abs/1910.10897 (2019):

[35] Zeng, Yuwei, Yao Mu and Lin Shao. “Learning Reward for Robot Skills Using Large Language Models via
Self-Alignment.” ArXiv preprint abs/2405.07162 (2024)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A PREPRINT - OCTOBER 1, 2024

[36] Zhang, Jesse, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Minsuk Chang, Shao-Hua Sun and Joseph J. Lim.
“Bootstrap Your Own Skills: Learning to Solve New Tasks with Large Language Model Guidance.” ArXiv preprint
abs/2310.10021 (2023)

[37] Zhou, Zhehua, Jiayang Song, Kunpeng Yao, Zhan Shu and Lei Ma. “ISR-LLM: Iterative Self-Refined Large
Language Model for Long-Horizon Sequential Task Planning.” In 2024 IEEE International Conference on Robotics
and Automation (ICRA) (2024): 2081-2088.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A PREPRINT - OCTOBER 1, 2024

A Appendix

A.1 Homeomorphism between a compact K ⊂ Rd and K ′ ⊂ Sd

While the following is an elementary geometric result derived from the homeorphism between a d+1-dimensional
Riemannian sphere without a pole and a d-dimensional plane, we use this appendix to present different homeomorphisms
that may be used for experiments, and their advantages and drawbacks in a control setting. Here the compact subset K
on the plane is implicitly either the observation space or a learned latent space, both of which are assumed compact
either as a consequence of the scope of each training environment or as the output of a multi-layer perceptron with
linear activation for instance.

Theorem 1 For any compact K ⊂ Rd, there exists K ′ ⊂ Sd such that K and K ′ are homeomorphic.
Moreover, there exists a C∞ diffeomorphism between K and K ′.

A.1.1 Proof

We use a stereographic projection and its inverse, defined as follows:

π : x = (x1, ..., xd)→ 2
||x||2+1 .(x1, ..., xd,

||x||2−1
2)

π−1 : y = (y1, ..., yd+1)→ 1
1−yd+1

.(y1, ..., yd)

Since both π and π−1 are continuous and invert one another, we have that K and K ′ defined as π(K) are homeomorphic.

While π is trivially C∞, being essentially a multiplication by a rational fractional without real poles, π−1 does possess
a real pole.

However, since K as a compact subspace of Rd which is Hausdorff, K is bounded; in particular, K ̸= Rd.

As Rd is homeomorphic to Sd\(0, ..., 0, 1) using π, there exists z ∈ Sd\(0, ..., 0, 1) such that z /∈ K ′ = π(K).

Let us define P as one of the rotation matrices in SO(d+ 1) such that P ((0, ..., 0, 1)) = z.

Since P is rigid we have that Pπ and π−1P−1 define a C∞-diffeomorphism between K and PK ′.

A.1.2 Remarks

While stereographic projections are conformal, that is, preserve angles, they do not preserve distances; while the
section of Sd+1 cut by the plane xd+1 = 1/2 in our example remains unchanged, the section of the plane formed
by the open disc within this circle is the image of the part of the sphere that lies "below" the plane. To be precise,
π−1(Sd+1

⋂
xd+1 < 1/2) = B(1√

2
), yielding significant distance distortions. It is even a theorem; due to a sphere

having positive Gaussian curvature compared to a plane’s null Gaussian curvature, no homeomorphism between the
two can be simultaneously isometric and conformal. While their preserving of angles make stereographic projections
more useful for our framework, since SO(d) is parametrised by sets of d rotation angles, in a RL setting with sensitive
gradients isometric projections might yield better results.

One such projection would be the "wrapping" of K, which is in essence the inverse of an isometric projection of the
sphere’s surface. On Sd, such an isometric wrapping may be achieved using a normal geodesic coordinate system
(with the associated geodesic distance) around a reference point. Taking as reference point x0 = (0, ..., 0, 1), and d
normal geodesics intersecting at x0 for instance, B(0, π) in Rd is equivalent to Sd\(−x0) by equating normal geodesic
coordinates centered on x0 and Cartesian coordinates centered on 0. If K ⊂ Rd is a set of possible observation and
supx∈K ||x||∞ < M , a simple scaling operation would likewise allow to project isometrically this d-dimensional
observation set K on the d-dimensional sphere. However, beyond being more expensive to compute due to the back-
and-forth conversion between Cartesian and geodesic coordinates, rotations using such isometric projections would be
less meaningful due to the distortion of angles. As an example, on the 2-dimensional sphere this process already yields
equilateral triangles whose sum of angles is equal to 270°.

A.2 Distance-preserving agent actions over a normed linear observation space are arbitrarily close to elements
of SO(d)

While this result is at first glance counter-intuitive, since our actions are not assumed to be linear, their being both
distance-preserving and acting over a normed subspace of a linear vector space is enough to prove our statement.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A PREPRINT - OCTOBER 1, 2024

While in real-world experiments the assumption that actions preserve distances is likely to never be verified, the right
balance between external forces, high-dimensional observation spaces and small time steps allows for this to represent a
surprisingly relevant approximation.

Theorem 2 Given ϵ > 0, n ∈ N, d the Euclidean distance over (Rn, (.|.)), Ω ⊂ Sn− 1 a set of observations, A a
topological group acting on Ω such that for all a ∈ A and ω1, ω2 ∈ Ω, d(a · ω1, a · ω2) = d(ω1, ω2), there exists
r : A→ SO(n) such that maxω∈Ω,a∈A d(r(a)(ω), a · ω) < ϵ

In the following proof, we consider a ∈ A an action. We will prove in order the two following statements:

1. ra : ω → a · w is linear

2. Either ra is in SO(n), or it can be ϵ-approximated by Ra ∈ SO(n).

A.2.1 Proof of linearity

Let us assume for convenience Ω = Sd−1; if the observation space is a subset of Sn − 1 the result will still be verified
by restriction.
Let B = (e1, ..., en) be an orthonormal basis of Ω, (ra(ϵ1), ..., ra(ϵn)) a basis of ra(Ω) . Since ra preserves distances,
we have simultaneously if i, j ∈ [|1;n|] and for all 1 ≤ k ≤ n:

d(ra(ei + ej), ra(ϵk)) = d(ei + ej , ϵk) = d(ei, ϵk) + d(ej , ϵk),

d(ra(ei), ra(ϵk)) + d(ra(ej), ra(ϵk)) = d(ei, ϵk) + d(ej , ϵk).

Hence, d(ra(ei + ej), ra(ϵk))
2 = d(ra(ei), ra(ϵk))

2 + d(ra(ej), ra(ϵk))
2 = d(ra(ei) + ra(ej), ra(ϵk))

2 Since these
are n = dim(Ω) independent linear equations, we have shown:

(1) : ra(ei + ej) = ra(ei) + ra(ej) for all 1 ≤ i, j ≤ n.

Let us recall that Ω ⊂ Sd−1. Considering the absence of information on ra beyond the sphere, we may extend it in a
rigid continuous way to Rd∗ by defining

(2) : ra(x) = ||x||.ra(x
||x||) for all x ∈ Rd∗.

Indeed, as ra is assumed to be isometric, we already knew that

(3) : ra(0) = 0.

Using (1) and (3), we can already show (4) : ra(ei) + ra(−ei) = 0.
If we further combine (1), (2), (3) with (4), for all λ, µ ∈ R, 1 ≤ i, j ≤ n, we can write ra(λ.ei + µ.ej) =
ra(λ.ei) + ra(µ.ej) and finally ra(λ.ei + µ.ej) = λ.ra(ei) + µ.ra(ej), thus showing the linearity of ra.

■

A.2.2 Approximation in SO(n)

We have shown that for any "action" a ∈ A, its group action on the observation space Ω could be extended into a linear
isometric map of Rn. As is, we already have ra ∈ O(n), therefore either ra ∈ SO(n) or ra ∈ Sym(Rn).

In the latter case, as the determinant is a continuous function one cannot expect to find an element of SO(n) in an
arbitrary close neighbourhood of ra. This continuous nature also implies, by the intermediate value theorem and since
A is a topological group, that the set of all a ∈ A such that det(ra) = −1 is disconnected from its complementary. The
same theorem also implies that actions in the same connected component as the null action act through elements of
SO(n) on the observation space.

However, let us recall that we are considering agent actions, that is, actions executable at a time step by a given RL agent.
This implies notably that the topological group A is either connected or very close to being connected. Indeed, we
may intuitively consider that any command given to an actuator may even be pathwise connected to the null command.
The actions considered in our framework however also encompass to a certain extent environmental perturbations,
represented by our composite random variable τ in our problem formulation. As such, discrepancies may emerge and it
cannot be ruled out that due to threshold effects for instance A might contain several connected components.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A PREPRINT - OCTOBER 1, 2024

A solution to this problem is to consider smaller time steps in our Partially Observable Markov Decision Process,
since intuitively disconnected components primarily emerge from the unforeseen perturbations and not from the
actuator command. With infinetisimally small time steps, any environmental transformations may be approximated by a
reversible succession of equilibrium states; as such, any actions come closer to pure commands, which themselves
come relatively closer to the null command, since it is the only action that has no execution time.

We can translate this intuition formally as follows:

Let V0 be an open neighborhood of the null action in the command space such that A ∩ V0 is connected; such a
neighborhood exists by continuity of the determinant, and is non-trivial using the previous reversibility argument.

For any t > 0, let us denote At the set of actions that can be completed in less than t (seconds for instance).

Then, (At)t∈R+ is a filtration of A, with A0 = {a0} the null action.

However, a0 ∈ V0 and A ∩ V0 ⊂ A.

Therefore, there exists t1, t2 > 0 such that At1 ⊂ A ∩ V0 ⊂ At2 ⊂ A.
■

We have shown that with small enough time steps, all actions that can be completed by the agent act on the observation
space through elements of SO(n); while such small time increments might be hard to achieve in concreto, this
concludes our proof that all agent actions can be approximated by (a composition of) elements of SO(n).

A.3 Action dynamics as an instance of Wahba’s problem

As shown previously, with a small enough time increment all actions which can be completed by an agent act on the
observation space via elements of SO(n), and this property in fact extends to all actions that are part of the same
connected component as the null action. In this section, we show that the corresponding elements of SO(n) can be
found by solving an instance of Whaba’s problem, and that the resulting rotation matrices are optimal to represent a
given action’s dynamics.

A.3.1 Problem formulation

To find what rotation matrix corresponds to a given action, we aim to solve the following problem (using en =
(0, ..., 0, 1) ∈ Rn):

Problem 1 (Wahba’s Problem): Given n ≥ 2, an action a ∈ A, p : Rn−1 → Sn−1\{en+1} an homeomorphism
and a matching of N ≥ 2 state transitions ((p(si,k), p(sf,k)))1≤k≤N ∈ Sn−1 observed by effect of a, we aim to
find a rotation matrix C ∈ SO(n) such that the following reconstruction cost is minimised:

J(Ra) =
1
N

∑N
k=1 ∥p(sf,k)− Cp(sik)∥2

It is clear that under our assumptions, and using ra as the notation for the rotation matrix which represents the action
of a ∈ A on the observation space, that ra is a global minimiser of J. One sufficient condition for it to be the unique
solution is shown in On the Solution of Wahba’s Problem on SO(n) (de Ruiter and Forbes, 2013 (22)):

If BT =
∑N

k=1 si,ks
T
f,k, the SVD-derived solution to Problem 1 is unique if rank(B) = n− 1.

A.3.2 Proof that ra is found

Within our framework, observations in the (n− 1)-dimensional observation space are sampled independently at random
from a randomly initialised buffer; as such, if N = Ωtime→∞(n), it is expected that the rank of ((si,k)1≤k≤N∈Rn−1

would be n− 1, that is that the set of initial states would contain a free family.
Furthermore, since a diffeomorphism p was used to project Rn−1 on Sn−1\en, the rank of the family is conserved by
the projection.
We can conclude that rank(B) = n− 1 for N = Ωtime→∞(n).
As such, after enough training steps the solution to Problem 1 given by the SVD method described in (de Ruiter and
Forbes, 2013 (22)) is unique.
Therefore, as a global minimiser ra is the unique solution that is found using this method.

■

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A PREPRINT - OCTOBER 1, 2024

A.3.3 Optimality of the resulting dynamics model

The entire purpose of our framework is to enable a RL agent to learn and refine action representations through their
experimental dynamics. In order to restrain action dynamics to elements of SO(n) however, we made the essential
hypothesis that actions would be distance-preserving. While already difficult to satisfy on the original observation
space, by projecting this space on the n-1-dimensional sphere we introduced another distortion, at least of either angles
or distances.

If a distance-preserving projection is used, modelling the dynamics on the sphere becomes equivalent to modelling
them on the original space; in that case, since under our hypothesis the group action associated with an action a ∈ A is
identifiable with an element of SO(n), and since as shown before the uniqueness of the solution depends only on the
rank of the set of observations used, this representation is optimal. Indeed, the purpose of any dynamics model is to
learn the group action associated with each of the possible actions in the set A, and under our assumptions solving a
particular instance of Wahba’s problem accomplishes this task.

The most relevant and convenient projections however are stereographic projections. Indeed, since they preserve angles,
a rotation matrix learned on the n-1-dimensional sphere may be restricted to the original observation space and be
interpreted with minimal calculations. Furthermore, while they distort the distances between observation vectors, these
distortions are locally negligible since these projections are C∞. We may therefore reuse the small time increments
argument used in Appendix 2 to restrict the actions considered to those that can be completed by the agent in a small
enough time frame. Intuitively, these actions have smaller eigenvalues, which confines the image of any given point by
this action to a small neighbourhood around it and prevents significant distance distortions. Thus, even in the case of
stereographic projections, it remains possible under this condition to approximate the distance-preserving requirement
and to achieve a near-optimal dynamics model under our framework.

A.4 Complexity considerations

A first criterion to take into account before considering the theoretical performance of our approach is the complexity
of the operations to be carried out. As it stands, each action in our method requires two components: a vector giving
its position in the command space and a rotation translating the dynamics observed by the agent, giving a minimum
memory complexity in O(a∗d2) floating point numbers if the control space is of dimension a and the observation space
is of dimension d. In our implementation, we also used a pool of 2.d state transitions used to periodically recalculate
the rotation, which was not necessary as this update could be done without keeping the transitions in memory, and did
not change the total memory complexity. With a finite number of actions a priori independent of a or d, this theoretical
complexity remains unchanged, although in our experiments an agent was able to build up to 11,000 actions after
pruning, including 800 primitives for a space of dimension 223, suggesting a real memory cost of O(d3) or even O(d4)
floats.

From a computational point of view, evaluating the dynamic model comes down to a simple matrix product, resulting
in a cost of O(d2) multiplications. This is the main computational advantage of our method, since it allows us to
estimate the dynamics of an agent with its environment with a quadratic cost with respect to the complexity of the
environment in question and not in O(||(a+ d) ∗ d||3) for example by using a perceptron with two hidden layers as
in TD-MPC2. The cost of updating a rotation matrix after observing a state transition is also relatively low. Indeed,
the cost of the singular value decomposition of a matrix compiling transitions as used in our implementation, which
corresponds to the creation of an action, is in O(d3) operations, although very fast in practice when optimised by the
Pytorch library. For an optimal theoretical complexity, assuming that each rotation has singular values of multiplicity at
most 1, for example due to rounding errors or experimental noise in the observations, the singular value decomposition
operation is differentiable (cf.Papadopoulo and Lourakis, 2000 (17)), reducing the cost of an update to O(d2) operations
described in the article to be added to the calculation of the same complexity of ytz which is the matrix to which to
apply this method if y → z is the observed transition. Updating the action used after an iteration therefore costs O(d2)
in theory; we have chosen an implementation with a cost of O(d3) in practice, however, due to the many non-optimised
operations in Python that are required by the method proposed by Papadopoulo and Lourakis.

As for the functions used at greater or lesser intervals during training, their complexity is more significant. The pruning
algorithm used stores a defined number of transitions during pre-training before any rotation is calculated, as a basis for
the K-Medoids algorithm used to build a first set of transitions.

Insofar as a larger number of stored transitions increases the representativeness of our action set, an order of magnitude
of O(d2) transitions was used, for a total memory footprint of O(d3) floating point numbers. The other arrays used, for
example the one constructed from this one to store the vectors in the control space representing the observed actions,
have a lower or similar memory cost. Assuming a maximum number of repetitions T , the K-Medoids algorithm used (a

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

A PREPRINT - OCTOBER 1, 2024

variant of Lloyd’s heuristic) thus has a complexity in O(d5.T), insofar as the method is applied to the O(d2) commands
given at each transition. The number of primitive actions retained, although small in general, can go up to O(d) in
practice. By retaining the dominant terms, the part of the pruning algorithm dedicated to the construction of new
primitives therefore has a memory footprint of O(d3) floating point numbers and costs O(d5T) elementary operations
in our implementation. The second part of the pruning algorithm, corresponding to the creation of composite actions,
incurs a much lower cost. In fact, the number of occurrences of a given action can be stored and updated with it,
allowing us to identify those that are over-represented in a time and memory space that is linear with the number of
actions, of the order of d or so. Taking this order of magnitude and noting cR,cπ the time complexity for the calculation
of reward and strategy respectively (O(d3) operations in the original TD-MPC2 paper), identifying the most relevant
sequences of each action has a cost of O(d4) operations or even O(d5) in the case of a very long list of actions. In the
most general case, this cost is of O(max(cR, cπ).d

2).

In the infrequent case when the number of composite actions created would be linear with the number of actions (which
would cause the action list to grow exponentially if this situation was permanent...), we can refine this worst-case
complexity estimate into O(max(cR, cπ, d

3).d2) by integrating the cost of the singular value decomposition used to
create a new action. In terms of memory, the prevailing cost is that of storing the new actions, costing on the order
of O(d2) floating point numbers or O(d3) in the case of a linear number of actions created during an iteration of the
algorithm.

Finally, the variant of the Gale-Shapley algorithm used to calculate the distance between two tasks and transfer actions
from one to the other has a time complexity in O(d4) operations assuming a very large number of actions of the order
of O(d2) for each task, a cost dominated by the calculation of the distances required to establish the "preferences".
Indeed, calculating the geodesic distance between two rotations of of dimensions dxd requires the calculation of the
eigenvalues of each RT

a Ra′ for a, a′ used respectively to solve the first and second task considered.

Since orthogonal matrices are in particular normal, the QR algorithm used by standard libraries such as numpy or
pytorch can converge in O(d3) operations (cf. Trefethen, and Bau, 1997 (29)), resulting in a total cost of O(d5)
operations or even O(d7) if each task involves a very large number of actions, of the order of d2. In the case when
the matrices have been established from latent states and not from observations, the cost of calculating the rotation
representing the transition from one encoding of observations to another is added; considering O(d) test observations
and noting ce the time complexity of the encoder used, calculating the transitions therefore costs O(ce.d) operations, to
which are added O(d3) operations to calculate the corresponding rotation. While these operations are costly in terms
of time, with the order of O(max(ce.d, d

7)) operations in the worst case, in terms of memory they only cost O(d2)
floating-point numbers since for each task only a small number of d x d matrices are stored.

18

	Introduction
	Preliminaries
	Approach
	Representing actions by their dynamics
	Self-improving logic
	Transfer learning and task distance
	Guided exploration and long-horizon planning

	Experiments
	walker-walk
	dog-run, dog-walk
	humanoid-run, humanoid-walk
	Knowledge transfer, distances

	Limitations
	Conclusion
	Appendix
	Homeomorphism between a compact K Rd and K' Sd
	Proof
	Remarks

	Distance-preserving agent actions over a normed linear observation space are arbitrarily close to elements of SO(d)
	Proof of linearity
	Approximation in SO(n)

	Action dynamics as an instance of Wahba's problem
	Problem formulation
	Proof that ra is found
	Optimality of the resulting dynamics model

	Complexity considerations

