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Abstract

While research on the domain adaptation task001
in neural machine translation has become popu-002
lar recently, there exists no agreement on what003
constituents a domain, and most previous stud-004
ies only focus on coarse-grained domain adap-005
tation and their methods cannot be generalized006
if the domain size is large. In this work, we007
argue the necessity to study a fine-grained do-008
main adaptation problem. We build a new mul-009
tilingual dataset from web sources that focus010
on fine-grained domains and inter-domain at-011
tributes and relationships. We also propose a012
simple but effective adaptation method to incor-013
porate domain knowledge leveraging models in014
information networks.015

1 Introduction016

The success of most machine learning algorithms017

heavily relies on the assumption that feature spaces018

and underlying distributions of training data and019

testing data are similar. In reality, such assumption020

is often violated. This motivates the study of do-021

main adaptation in many areas including computer022

vision (Wang and Deng, 2018) (Csurka, 2017),023

natural language processing (Ramponi and Plank,024

2020) and recommendation systems (Pan, 2016).025

In the neural machine translation (NMT) task,026

domain adaptation is also in high demand since pre-027

vious researches have shown that a general transla-028

tion system trained on open-domain corpus often029

performs poorly in specific domains (Koehn and030

Knowles, 2017). Since in-domain parallel corpora031

are often insufficient, leveraging both in-domain032

and out-of-domain resources becomes important.033

Previous researches exhibit several sub-tasks: a034

semi-supervised task that uses a small-sized par-035

allel corpus of the target domain (Jia and Zhang,036

2020), and a supervised meta-learning task that re-037

quires small-sized in-domain support data-set to038

fast adapt to the target domain (Li et al., 2020;039

Sharaf et al., 2020). We argue that there are two040

problems regarding current domain adaptation stud- 041

ies. 042

What is a domain? There exists no common 043

agreement on what constitutes a domain in NMT. 044

Many researches attribute domain difference to dif- 045

ferent vocabulary (Blitzer et al., 2006) or system of 046

a document (McClosky, 2010). In practice, people 047

use different predetermined dataset to represent dif- 048

ferent domains (Plank, 2016; Ramponi and Plank, 049

2020). Such practices often neglect the heterogene- 050

ity inside the corpus, which Plank (2016) put for- 051

ward a theoretical notion called the variety space. 052

A corpus can be seen as a set of sub-domains drawn 053

from the underlying variety space. It is necessary 054

to consider the smaller granularity of domains. 055

How to utilize the prior knowledge of inter- 056

domain relationships and attributes? Domain 057

adaptation in NMT usually tries to utilize linguis- 058

tic similarities shared between source and target 059

domains (Britz et al., 2017; Gu et al., 2019). How- 060

ever, there are other attributes outside the corpus 061

to utilize. Although parallel or monolingual train- 062

ing corpus in NMT for a newly-published docu- 063

ment is hard to get, we can easily find attributes 064

that are shared with other domains (e.g., authors, 065

categories, tags) and their relation with previous 066

domains (e.g.recommendations). They can be re- 067

garded as prior knowledge for domain adaptation 068

methods. In computer vision, Gebru et al. (2017) 069

utilizes domain-level attributes and adopts a multi- 070

task method for fine-grained domain adaptation. 071

However, in NMT, we did not find similar re- 072

searches. 073

The goal of our work is to solve the above three 074

problems. The contribution comes in two folds: 075

We build a multi-lingual dataset and provide inter- 076

domain attributes as well as relationships. We be- 077

lieve this dataset is the first public dataset that fo- 078

cuses on fine-grained domains and is a good re- 079

source to explore the open-set domain adaptation 080

and domain-level knowledge integration. 081
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Field Name Description
id unique index of a game

lang language of this sample
name name of the game

developer developers of the game
publisher publishers of the game
category* game category

type game type
tag* most voted tags by users
text game introduction

recommended ids of similar games

Table 1: Field description of STEAM. Fields marked
with * are multilingual. The text field across two lan-
guages for the same game is aligned in sentence-level

We also propose a new approach that utilizes082

prior knowledge of inter-domain relationships by083

training an information network (Zhu et al., 2020b),084

whose output is treated as additional feature em-085

beddings. To the best of our knowledge, this is086

the first work that tries to incorporate prior inter-087

domain relationships in an open-set domain adap-088

tation task. Please find more information about the089

related work and baseline implementation in the090

appendix.091

2 STEAM: A Multilingual Parallel092

Dataset for Domain Adaptation093

Few datasets are designed specifically for domain094

adaptation and most datasets do not consider het-095

erogeneity between samples. This corpus is a re-096

action to the growing importance of NMT in spe-097

cific domains. While FDMT (Zhu et al., 2020a)098

make fine-grained domain corpus, it does not pro-099

vide training data and only has English-Chinese100

pair. Most researches in multi-domain adaptation101

only consider a small subset of listed domains and102

cannot be generalized to the open-set domain adap-103

tation settings. Domains are very distant from each104

other. No dataset describes inter-domain relation-105

ships and attributes.106

This dataset is created based on Steam1, a video107

game platform that contains thousands of game108

introductions in many languages. We produced109

parallel sentences based on HTML positions and110

LASER-based alignment (Artetxe and Schwenk,111

2019). We also find relations between games based112

on information of game producers and user recom-113

mendations.114

1https://store.steampowered.com/

2.1 Data Collection & Analysis 115

We use the python framework Scrapy 2 to crawl 116

text information from game introductions. The 117

steps are in the appendix. 8 languages are chosen 118

which are Chinese(ch), German(ge), English(en), 119

Spanish(es), Russian(ru), Japanese(ja), Korean(ko) 120

and French(fr). The field description is shown in 1. 121

The data processing part is divided into two steps, 122

monolingual and bilingual sentence matching. The 123

details can be found in the appendix. The goal is 124

to make the mapping of the same statement in dif- 125

ferent languages end up in the same neighborhood. 126

There are 10k games with 90k aligned parallel 127

sentences after the cleaning. Table 3 in the ap- 128

pendix illustrates the detailed information. Codes 129

and examples of bilingual parallel sentences can be 130

found on our Google repository.3 131

3 Problem Formulation and Proposed 132

methods 133

3.1 Task Definition 134

Di is the ith domain, which is a tuple of four ele- 135

ments (Si, Ti, Ri, Ai). Si and Ti refer to paralleled 136

source and target data in ith domain. Ri refers to a 137

set of other domains related to the ith domain.Ai 138

refers to domain-level attributes shared to all sam- 139

ples in this domain. The goal is to build a model 140

that can generate best T̂i based on (Si, Ri, Ai). Our 141

domain graph is defined as G = (D,E), where E 142

is the set of relationships between domains. We 143

want to generate a feature embedding for each do- 144

main by modelling all domains in an undirected 145

graph to avoid the scalability issue occurred. 146

3.1.1 Inter-Domain Relation Extraction 147

In this dataset, each domain is regarded as a node. 148

The purpose of the inter-domain is to extract the 149

relationship among nodes. There are several meth- 150

ods to learn nodes representations for inter-domain 151

knowledge. Kipf and Welling (2017) generalizes 152

neural models to work with structured graphs for 153

semi-supervised learning. Tang et al. (2015) pro- 154

poses LINE to generate node embeddings in a net- 155

work by preserving the first second order prox- 156

imities among nodes. We the use graph repre- 157

sentation learning method named deep GRAph 158

Contrastive rEpresentation learning (GRACE)(Zhu 159

et al., 2020b). Two graph views are generated at 160

2https://scrapy.org/
3https://drive.google.com/drive/folders

/1wlj5sNETFL5hatC5sZfrHyAYf3ACK2nd?usp=sharing
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Figure 1: Illustration of the modified GRACE model

each iteration so that each node in the original161

graph has two embeddings. A discriminator is used162

to distinguish the two embeddings. We choose the163

method because it is stated that the framework is164

suitable for large-scale graphs and which fits our165

dataset.Also, the connections in our dataset are gen-166

erated by the recommendation rules of steam and167

they are not clearly stated. It is rational to assume168

there are complicated relationships among the con-169

nected nodes. We extend the original framework170

by using a four-layer GCN network instead of two171

in the generation of node embeddings. Moreover,172

we increase the number of nodes in the MLP layers173

to 512 which fits the input of our NMT model. The174

final embedding of each node is obtained by adding175

the two hidden layers together and dividing them176

by two. The modified GRACE framework is shown177

in 1. The code can be found in Google Drive link4.178

3.1.2 Handling Isolated Nodes179

In the domain adaptation settings, there can be180

some domains not related to other domains. We call181

these domains isolated nodes. The proportion of182

isolated domains in our STEAM dataset is shown in183

the appendix. We cannot simply feed those isolated184

nodes into GRACE that takes as input a list of185

edges. We augment every node with a self-loop to186

have every node encoded and take an average of all187

the isolated node embedding vectors to get a final188

representation for all the isolated nodes.189

3.1.3 Domain-Aware Encoder190

We use the Transformer (Vaswani et al., 2017) as191

our backbone NMT model. We are motivated by192

Dou et al. (2019) to assign a domain-aware feature193

embedding on the model encoder side as an addi-194

tional input representation to disentangle encoder195

4https://drive.google.com/drive/folders/1LCYP3WH489G–
KfgnrgsKy8-HluXR26M?usp=sharing

representation and learn domain knowledge. Al- 196

though (Dou et al., 2019) trains different domains 197

embeddings for each encoder layer, we found it not 198

scalable in our setting. We combine three differ- 199

ent ways to implement the domain-aware encoder, 200

which is shown in figure2. Given the feature rep- 201

resentation of in domain i as di, the jth token of 202

the sentence as xj , the first method is to add the 203

domain features only after the input embeddings. 204

The formula is: 205

h
(0)
j = 0.5 ∗ (Wcxj + pj +Wddi) (1) 206

where h
(0)
j is the input embeddings of xj , Wc is 207

the contextual embeddings of tokens, and pj is the 208

the positional embeddings. Wd is a trainable linear 209

projection that transforms the graph-based domain 210

representations into domain embeddings for the 211

NMT model. Note that domain is labeled at the 212

sentence level, so tokens within a sentence share 213

the same domain embeddings. 214

The second method is to add the projected do- 215

main features right after the Multi-Head Attention 216

module of each layer. The formula is: 217

H̃(l) = 0.5 ∗ (Multihead(Q,K, V ) +W
(l)
d di)

(2) 218

where H̃(l) is the intermediate hidden represen- 219

tation before feed-forward network and residual 220

connection in each layer and Multihead(Q,K, V ) 221

is the projected output of the concatenated attention 222

heads defined in Transformer’s original paper. 223

The third method is to add domain embeddings 224

at the end of each transformer encoder layer, which 225

is similar to the method used in (Dou et al., 2019). 226

The formula is 227

H(l) = 0.5 ∗ (layeri(H(l−1)) +W
(l)
d di) (3) 228

The main difference between our proposed meth- 229

ods and methods introduced in Dou et al. (2019) 230

and Michel and Neubig (2018) (noted as previous 231

methods) is that they use one-hot encoded domain 232

labels as the input of domain embedding/adapter 233

layers, while we use graph-based domain feature 234

representation as the input. We claim two advan- 235

tages of using graph-based domain feature repre- 236

sentation. 237

Reduced number of parameters The method 238

introduced in Dou et al. (2019) requires at least 239

r|D| more parameters and the method in Michel 240

and Neubig (2018) requires at least r(|D| + |V |) 241
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Figure 2: Architecture of the Domain-Aware Encoder.
#X denotes the Xth method mentioned in 3.1.3

more parameters, where r is the hidden dimension242

of the transformer encoder, |D| and |V | are the size243

of domains and vocabularies which are linearly cor-244

related with the size of domains. Our method only245

requires rk more parameters where k is the dimen-246

sion of domain representation and is more practical247

when the size of domains is very large. In our248

dataset, the domain size for the en-zh pair is 9392,249

and we only use 5% more parameters compared250

with previous methods.251

Inference on unseen domains Previous meth-252

ods require the model to use either monolingual253

or bilingual corpus of all domains. Our methods254

can be used in an open-set domain situation where255

the corpus of the testing domains is not available256

in the training step based on domain similarities257

extracted from the graph-based domain feature rep-258

resentation.259

4 Experiments260

4.1 Datasets and Mixed fine-tuning261

We choose ch-en, fr-en, es-en and ru-en as tested262

language pairs because they are four distinctively263

different language families. Domains in the test264

set are excluded in the training set to guarantee265

an open-set domain adaptation setting. We use266

mixed fine-tuning (Chu et al., 2017) as our train-267

ing strategy. We collect UN Corpus5 as the out-268

of-domain data. We first pretrain a vanilla trans-269

former model based on this out-of-domain data for270

5 epochs. Then we sample 2 million sentences pairs271

5https://conferences.unite.un.org/UNCorpus/

Method zh-en es-en fr-en ru-en
Baseline 17.22 28.31 23.18 14.28
Noise
Embedding

15.80 27.41 12.86 7.58

DA Encoder 17.85 29.52 26.08 15.52

Table 2: BLEU in the test set for the baseline and
proposed models. Bold text highligts the best results

from UN Corpus and over-sample another 2 million 272

sentence pairs from the STEAM corpus for mixed 273

fine-tuning. For our baseline model, pre-trained 274

NMT models are directly loaded and fine-tuned 275

in the mixed data, while for our proposed mod- 276

els, parameters related to the domain features are 277

randomly initialized in the pretrain step. We also 278

generate noise embeddings for comparison. The 279

mean and variance of the noise embeddings are the 280

same graph embeddings which leads to a similar 281

distribution. The implementation details are in the 282

appendix and our code can be found in our Google 283

link6. 284

4.2 Main Results 285

Table 2 shows that our proposed models generally 286

improve the overall translation performance in the 287

test set. Regarding that our proposed method only 288

requires very few extra parameters, this improve- 289

ment is satisfying. Also, with noise embeddings, 290

the results are worse than the baseline. 291

In Table 4 in the appendix, we can see although 292

the BLEU improvement is relatively small, our pro- 293

posed methods did improve the quality of translated 294

sentence by correctly translating some key words. 295

5 Conclusion 296

This paper presents a new research topic on fine- 297

grained multi-domain adaptation in NMT. We con- 298

tribute a new dataset that focuses on the fine- 299

grained domains and inter-domain relationships 300

and proposes a novel method to utilize inter-domain 301

relationships. 302
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A Example Appendix421

A.1 Data Crawling and Cleaning422

Setting request cookies such as birth time, age423

checking, header, initial searching URL, and lan-424

guage code.425

Parsing information in the game search page426

of each language including the URL, game name,427

game ID, and information language.428

Getting detailed information from the game page429

including review text, game tags, game categories,430

developer, publisher, and recommendations. The431

recommendation is to recommend similar games432

based on the current game.433

Monolingual sentence cleaning focuses on filter-434

ing abnormal sentences, words, and sentences that435

are not in the labeled languages, using a language436

identification tool called langid7. We use two steps437

to build the bilingual parallel sentences and438

First we find the passage that can be segmented439

into small paragraphs based on different positions440

in the website. Then we use Stanza8 to segment441

sentences in the paragraph pair. For each paragraph442

pair, if the numbers of segments for two paragraphs443

are the same, each pair of segments is treated as444

a pair of parallel sentences. Otherwise, we imple-445

ment LASER9 to compute the sentence embedding446

and use cosine similarity to pick out similar sen-447

tence pairs. LASER is a toolkit to represent sen-448

tences by vectors which are generated with respect449

to both the input language and the NLP task.450

A.2 Implementation details451

We use fairseq (Ott et al., 2019) as our code base,452

and use 1e− 4 as the learning rate with the inverse453

learning rate decay. All models share the same454

vocabulary list, which is generated using sentence-455

piece10 on the 4m mixed data mentioned above.456

7https://github.com/saffsd/langid.py
8https://stanfordnlp.github.io/stanza/
9https://github.com/facebookresearch/LASER

10https://github.com/google/sentencepiece
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Sent. Num Game Num Avg. Length Cat/Tag Num Recommended
zh-en 82819 9392 29(CH)/15(EN) 29/418 12
ru-en 91719 10069 13(RU)/14(EN) 29/419 13
fr-en 93357 10550 17(FR)/15(EN) 30/425 12
es-en 92265 9264 16(ES)/15(EN) 29/419 12
ja-en 58445 10678 40(JA)/15(EN) 28/420 14
ko-en 69539 7982 35(KO)/14(EN) 28/423 12
de-en 93203 9504 17(DE)/15(EN) 29/420 13

Table 3: Statistics of our bilingual parallel dataset.11

Reference

You are afraid. You are forced to hide.
Those who served you till recently have suddenly turned against you.
Your only option is to hide, surviving with no hope,
not understanding what’s going on around you.
You are an outcast, an outlaw because you are human.

Baseline

You feel terrified and forced to crawl on.
Now, they have branded your friends and family.
Your only option is to survive with despair.
You have no idea what you’re hiding
because you are human, you’re the outcasts and outlaws.

Our Model(DA Encoder)

You’re scared and forced to hide.
The robots that served you were suddenly betrayed.
Your only option is hiding and survive with despair.
You don’t know where they are or why they do this.
Because you are a human being, so you are the bearer and the outcasts.

Table 4: Comparison between the system output and the baseline.

Language Total Games Total Isolated Games
en 73306 26530
zh 15858 6459
ru 16654 6925
fr 18757 9583
es 17525 8342

Table 5: Statistics of isolated games for each language.
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