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Abstract

While research on the domain adaptation task
in neural machine translation has become popu-
lar recently, there exists no agreement on what
constituents a domain, and most previous stud-
ies only focus on coarse-grained domain adap-
tation and their methods cannot be generalized
if the domain size is large. In this work, we
argue the necessity to study a fine-grained do-
main adaptation problem. We build a new mul-
tilingual dataset from web sources that focus
on fine-grained domains and inter-domain at-
tributes and relationships. We also propose a
simple but effective adaptation method to incor-
porate domain knowledge leveraging models in
information networks.

1 Introduction

The success of most machine learning algorithms
heavily relies on the assumption that feature spaces
and underlying distributions of training data and
testing data are similar. In reality, such assumption
is often violated. This motivates the study of do-
main adaptation in many areas including computer
vision (Wang and Deng, 2018) (Csurka, 2017),
natural language processing (Ramponi and Plank,
2020) and recommendation systems (Pan, 2016).
In the neural machine translation (NMT) task,
domain adaptation is also in high demand since pre-
vious researches have shown that a general transla-
tion system trained on open-domain corpus often
performs poorly in specific domains (Koehn and
Knowles, 2017). Since in-domain parallel corpora
are often insufficient, leveraging both in-domain
and out-of-domain resources becomes important.
Previous researches exhibit several sub-tasks: a
semi-supervised task that uses a small-sized par-
allel corpus of the target domain (Jia and Zhang,
2020), and a supervised meta-learning task that re-
quires small-sized in-domain support data-set to
fast adapt to the target domain (Li et al., 2020;
Sharaf et al., 2020). We argue that there are two

problems regarding current domain adaptation stud-
ies.

What is a domain? There exists no common
agreement on what constitutes a domain in NMT.
Many researches attribute domain difference to dif-
ferent vocabulary (Blitzer et al., 2006) or system of
a document (McClosky, 2010). In practice, people
use different predetermined dataset to represent dif-
ferent domains (Plank, 2016; Ramponi and Plank,
2020). Such practices often neglect the heterogene-
ity inside the corpus, which Plank (2016) put for-
ward a theoretical notion called the variety space.
A corpus can be seen as a set of sub-domains drawn
from the underlying variety space. It is necessary
to consider the smaller granularity of domains.

How to utilize the prior knowledge of inter-
domain relationships and attributes? Domain
adaptation in NMT usually tries to utilize linguis-
tic similarities shared between source and target
domains (Britz et al., 2017; Gu et al., 2019). How-
ever, there are other attributes outside the corpus
to utilize. Although parallel or monolingual train-
ing corpus in NMT for a newly-published docu-
ment is hard to get, we can easily find attributes
that are shared with other domains (e.g., authors,
categories, tags) and their relation with previous
domains (e.g.recommendations). They can be re-
garded as prior knowledge for domain adaptation
methods. In computer vision, Gebru et al. (2017)
utilizes domain-level attributes and adopts a multi-
task method for fine-grained domain adaptation.
However, in NMT, we did not find similar re-
searches.

The goal of our work is to solve the above three
problems. The contribution comes in two folds:
We build a multi-lingual dataset and provide inter-
domain attributes as well as relationships. We be-
lieve this dataset is the first public dataset that fo-
cuses on fine-grained domains and is a good re-
source to explore the open-set domain adaptation
and domain-level knowledge integration.



Field Name Description
id unique index of a game
lang language of this sample
name name of the game
developer developers of the game
publisher publishers of the game
category* game category
type game type
tag* most voted tags by users
text game introduction
recommended ids of similar games

Table 1: Field description of STEAM. Fields marked
with * are multilingual. The text field across two lan-
guages for the same game is aligned in sentence-level

We also propose a new approach that utilizes
prior knowledge of inter-domain relationships by
training an information network (Zhu et al., 2020b),
whose output is treated as additional feature em-
beddings. To the best of our knowledge, this is
the first work that tries to incorporate prior inter-
domain relationships in an open-set domain adap-
tation task. Please find more information about the
related work and baseline implementation in the
appendix.

2 STEAM: A Multilingual Parallel
Dataset for Domain Adaptation

Few datasets are designed specifically for domain
adaptation and most datasets do not consider het-
erogeneity between samples. This corpus is a re-
action to the growing importance of NMT in spe-
cific domains. While FDMT (Zhu et al., 2020a)
make fine-grained domain corpus, it does not pro-
vide training data and only has English-Chinese
pair. Most researches in multi-domain adaptation
only consider a small subset of listed domains and
cannot be generalized to the open-set domain adap-
tation settings. Domains are very distant from each
other. No dataset describes inter-domain relation-
ships and attributes.

This dataset is created based on Steam!, a video
game platform that contains thousands of game
introductions in many languages. We produced
parallel sentences based on HTML positions and
LASER-based alignment (Artetxe and Schwenk,
2019). We also find relations between games based
on information of game producers and user recom-
mendations.

"https://store.steampowered.com/

2.1 Data Collection & Analysis

We use the python framework Scrapy Z to crawl
text information from game introductions. The
steps are in the appendix. 8 languages are chosen
which are Chinese(ch), German(ge), English(en),
Spanish(es), Russian(ru), Japanese(ja), Korean(ko)
and French(fr). The field description is shown in 1.
The data processing part is divided into two steps,
monolingual and bilingual sentence matching. The
details can be found in the appendix. The goal is
to make the mapping of the same statement in dif-
ferent languages end up in the same neighborhood.

There are 10k games with 90k aligned parallel
sentences after the cleaning. Table 3 in the ap-
pendix illustrates the detailed information. Codes
and examples of bilingual parallel sentences can be
found on our Google repository.>

3 Problem Formulation and Proposed
methods

3.1 Task Definition

D; is the i*" domain, which is a tuple of four ele-
ments (S;, T;, R;, A;). S; and T; refer to paralleled
source and target data in it domain. R; refers to a
set of other domains related to the i*” domain. A4,
refers to domain-level attributes shared to all sam-
ples in this domain. The goal is to build a model
that can generate best T; based on (Si, Ri, A;). Our
domain graph is defined as G = (D, F), where E
is the set of relationships between domains. We
want to generate a feature embedding for each do-
main by modelling all domains in an undirected
graph to avoid the scalability issue occurred.

3.1.1 Inter-Domain Relation Extraction

In this dataset, each domain is regarded as a node.
The purpose of the inter-domain is to extract the
relationship among nodes. There are several meth-
ods to learn nodes representations for inter-domain
knowledge. Kipf and Welling (2017) generalizes
neural models to work with structured graphs for
semi-supervised learning. Tang et al. (2015) pro-
poses LINE to generate node embeddings in a net-
work by preserving the first second order prox-
imities among nodes. We the use graph repre-
sentation learning method named deep GRAph
Contrastive rEpresentation learning (GRACE)(Zhu
et al., 2020b). Two graph views are generated at

Zhttps://scrapy.org/
*https://drive.google.com/drive/folders
/1wlj5sNETFLShatC5sZfrHy AY f3ACK2nd?usp=sharing
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Figure 1: Illustration of the modified GRACE model

each iteration so that each node in the original
graph has two embeddings. A discriminator is used
to distinguish the two embeddings. We choose the
method because it is stated that the framework is
suitable for large-scale graphs and which fits our
dataset.Also, the connections in our dataset are gen-
erated by the recommendation rules of steam and
they are not clearly stated. It is rational to assume
there are complicated relationships among the con-
nected nodes. We extend the original framework
by using a four-layer GCN network instead of two
in the generation of node embeddings. Moreover,
we increase the number of nodes in the MLP layers
to 512 which fits the input of our NMT model. The
final embedding of each node is obtained by adding
the two hidden layers together and dividing them
by two. The modified GRACE framework is shown
in 1. The code can be found in Google Drive link*.

3.1.2 Handling Isolated Nodes

In the domain adaptation settings, there can be
some domains not related to other domains. We call
these domains isolated nodes. The proportion of
isolated domains in our STEAM dataset is shown in
the appendix. We cannot simply feed those isolated
nodes into GRACE that takes as input a list of
edges. We augment every node with a self-loop to
have every node encoded and take an average of all
the isolated node embedding vectors to get a final
representation for all the isolated nodes.

3.1.3 Domain-Aware Encoder

We use the Transformer (Vaswani et al., 2017) as
our backbone NMT model. We are motivated by
Dou et al. (2019) to assign a domain-aware feature
embedding on the model encoder side as an addi-
tional input representation to disentangle encoder

*https://drive.google.com/drive/folders/1LCYP3WH489G—
KfgnrgsKy8-HIuXR26M ?usp=sharing

representation and learn domain knowledge. Al-
though (Dou et al., 2019) trains different domains
embeddings for each encoder layer, we found it not
scalable in our setting. We combine three differ-
ent ways to implement the domain-aware encoder,
which is shown in figure2. Given the feature rep-
resentation of in domain i as d;, the j** token of
the sentence as x; , the first method is to add the
domain features only after the input embeddings.
The formula is:

hg-o) =0.5% (Wexj +pj + Wad;) (1)

where h§0) is the input embeddings of x;, W, is
the contextual embeddings of tokens, and p; is the
the positional embeddings. Wy is a trainable linear
projection that transforms the graph-based domain
representations into domain embeddings for the
NMT model. Note that domain is labeled at the
sentence level, so tokens within a sentence share
the same domain embeddings.

The second method is to add the projected do-
main features right after the Multi-Head Attention
module of each layer. The formula is:

H® = 0.5  (Multihead(Q, K, V) + W\"d;)
2
where H(® is the intermediate hidden represen-
tation before feed-forward network and residual
connection in each layer and Multihead(Q, K, V)
is the projected output of the concatenated attention
heads defined in Transformer’s original paper.
The third method is to add domain embeddings
at the end of each transformer encoder layer, which
is similar to the method used in (Dou et al., 2019).
The formula is

HY = 0.5« (layer,(H!V) + Wél)di) (3)

The main difference between our proposed meth-
ods and methods introduced in Dou et al. (2019)
and Michel and Neubig (2018) (noted as previous
methods) is that they use one-hot encoded domain
labels as the input of domain embedding/adapter
layers, while we use graph-based domain feature
representation as the input. We claim two advan-
tages of using graph-based domain feature repre-
sentation.

Reduced number of parameters The method
introduced in Dou et al. (2019) requires at least
r|D| more parameters and the method in Michel
and Neubig (2018) requires at least (| D| + |V])
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Figure 2: Architecture of the Domain-Aware Encoder.
#X denotes the X*" method mentioned in 3.1.3

more parameters, where 7 is the hidden dimension
of the transformer encoder, | D| and |V/| are the size
of domains and vocabularies which are linearly cor-
related with the size of domains. Our method only
requires rk more parameters where k is the dimen-
sion of domain representation and is more practical
when the size of domains is very large. In our
dataset, the domain size for the en-zh pair is 9392,
and we only use 5% more parameters compared
with previous methods.

Inference on unseen domains Previous meth-
ods require the model to use either monolingual
or bilingual corpus of all domains. Our methods
can be used in an open-set domain situation where
the corpus of the testing domains is not available
in the training step based on domain similarities
extracted from the graph-based domain feature rep-
resentation.

4 [Experiments

4.1 Datasets and Mixed fine-tuning

We choose ch-en, fr-en, es-en and ru-en as tested
language pairs because they are four distinctively
different language families. Domains in the test
set are excluded in the training set to guarantee
an open-set domain adaptation setting. We use
mixed fine-tuning (Chu et al., 2017) as our train-
ing strategy. We collect UN Corpus’ as the out-
of-domain data. We first pretrain a vanilla trans-
former model based on this out-of-domain data for
5 epochs. Then we sample 2 million sentences pairs

Shttps://conferences.unite.un.org/UNCorpus/

Method zh-en | es-en | fr-en | ru-en
Baseline 17.22 | 28.31 | 23.18 | 14.28
Noise

Embedding 15.80 | 27.41 | 12.86 | 7.58
DA Encoder | 17.85 | 29.52 | 26.08 | 15.52

Table 2: BLEU in the test set for the baseline and
proposed models. Bold text highligts the best results

from UN Corpus and over-sample another 2 million
sentence pairs from the STEAM corpus for mixed
fine-tuning. For our baseline model, pre-trained
NMT models are directly loaded and fine-tuned
in the mixed data, while for our proposed mod-
els, parameters related to the domain features are
randomly initialized in the pretrain step. We also
generate noise embeddings for comparison. The
mean and variance of the noise embeddings are the
same graph embeddings which leads to a similar
distribution. The implementation details are in the
appendix and our code can be found in our Google
link®.

4.2 Main Results

Table 2 shows that our proposed models generally
improve the overall translation performance in the
test set. Regarding that our proposed method only
requires very few extra parameters, this improve-
ment is satisfying. Also, with noise embeddings,
the results are worse than the baseline.

In Table 4 in the appendix, we can see although
the BLEU improvement is relatively small, our pro-
posed methods did improve the quality of translated
sentence by correctly translating some key words.

5 Conclusion

This paper presents a new research topic on fine-
grained multi-domain adaptation in NMT. We con-
tribute a new dataset that focuses on the fine-
grained domains and inter-domain relationships
and proposes a novel method to utilize inter-domain
relationships.
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A Example Appendix
A.1 Data Crawling and Cleaning

Setting request cookies such as birth time, age
checking, header, initial searching URL, and lan-
guage code.

Parsing information in the game search page
of each language including the URL, game name,
game ID, and information language.

Getting detailed information from the game page
including review text, game tags, game categories,
developer, publisher, and recommendations. The
recommendation is to recommend similar games
based on the current game.

Monolingual sentence cleaning focuses on filter-
ing abnormal sentences, words, and sentences that
are not in the labeled languages, using a language
identification tool called langid’. We use two steps
to build the bilingual parallel sentences and

First we find the passage that can be segmented
into small paragraphs based on different positions
in the website. Then we use Stanza® to segment
sentences in the paragraph pair. For each paragraph
pair, if the numbers of segments for two paragraphs
are the same, each pair of segments is treated as
a pair of parallel sentences. Otherwise, we imple-
ment LASER? to compute the sentence embedding
and use cosine similarity to pick out similar sen-
tence pairs. LASER is a toolkit to represent sen-
tences by vectors which are generated with respect
to both the input language and the NLP task.

A.2 Implementation details

We use fairseq (Ott et al., 2019) as our code base,
and use le — 4 as the learning rate with the inverse
learning rate decay. All models share the same
vocabulary list, which is generated using sentence-
piece'? on the 4m mixed data mentioned above.

"https://github.com/saffsd/langid.py
8https://stanfordnlp.github.io/stanza/
*https://github.com/facebookresearch/LASER
https://github.com/google/sentencepiece



Sent. Num | Game Num | Avg. Length Cat/Tag Num | Recommended
zh-en | 82819 9392 29(CH)/15(EN) | 29/418 12
ru-en | 91719 10069 13(RU)/14(EN) | 29/419 13
fr-en | 93357 10550 17(FR)/15(EN) | 30/425 12
es-en | 92265 9264 16(ES)/15(EN) | 29/419 12
ja-en | 58445 10678 40JA)/15(EN) | 28/420 14
ko-en | 69539 7982 35(KO)/14(EN) | 28/423 12
de-en | 93203 9504 17(DE)/15(EN) | 29/420 13
Table 3: Statistics of our bilingual parallel dataset.!!
You are afraid. You are forced to hide.
Those who served you till recently have suddenly turned against you.
Reference Your only option is to hide, surviving with no hope,
not understanding what’s going on around you.
You are an outcast, an outlaw because you are human.
You feel terrified and forced to crawl on.
Now, they have branded your friends and family.
Baseline Your only option is to survive with despair.
You have no idea what you’re hiding
because you are human, you’re the outcasts and outlaws.
You’re scared and forced to hide.
The robots that served you were suddenly betrayed.
Our Model(DA Encoder) | Your only option is hiding and survive with despair.
You don’t know where they are or why they do this.
Because you are a human being, so you are the bearer and the outcasts.
Table 4: Comparison between the system output and the baseline.

Language | Total Games | Total Isolated Games
en 73306 26530

zh 15858 6459

ru 16654 6925

fr 18757 9583

es 17525 8342

Table 5: Statistics of isolated games for each language.




