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Abstract

In recent years, machine learning has demonstrated impressive capability in han-
dling molecular science tasks. To support various molecular properties at scale,
machine learning models are trained in the multi-task learning paradigm. Neverthe-
less, data of different molecular properties are often not aligned: some quantities,
e.g. equilibrium structure, demand more cost to compute than others, e.g. energy,
so their data are often generated by cheaper computational methods at the cost of
lower accuracy, which cannot be directly overcome through multi-task learning.
Moreover, it is not straightforward to leverage abundant data of other tasks to
benefit a particular task. To handle such data heterogeneity challenges, we exploit
the specialty of molecular tasks that there are physical laws connecting them, and
design consistency training approaches that allow different tasks to exchange infor-
mation directly so as to improve one another. Particularly, we demonstrate that the
more accurate energy data can improve the accuracy of structure prediction. We
also find that consistency training can directly leverage force and off-equilibrium
structure data to improve structure prediction, demonstrating a broad capability for
integrating heterogeneous data.

1 Introduction

The field of machine learning has witnessed a blossom of progress in solving molecular science
tasks in recent years, including molecular property prediction [1, 2, 3], machine-learning force field
(energy/force prediction) [4, 5, 6, 7, 8], electronic structure [9, 10, 11, 12, 13], molecular structure
generation [14, 15, 16, 17] and design [18, 19, 20]. In molecular research, these tasks are often
required jointly: for example, energy prediction is required for molecular stability and dynamics,
and equilibrium structure (conformation) prediction offers the most probable and characteristic
structure for understanding molecule interaction and functions. Multi-task learning is hence adopted,
where a model is trained to predict multiple properties using the same number of decoders (output
heads) built on a shared encoder (backbone model) (Fig. 1) [21]. This paradigm is also used for
pre-training a model by leveraging as much data as possible that are scattered over various tasks and
domains [22, 23, 24].

Nevertheless, science tasks have some unique challenges beyond conventional machine learning
tasks, which cannot be adequately addressed by multi-task learning alone. It is more costly to curate a
dataset for molecular science tasks since it calls for running physics-theoretic computation algorithms,
which come with a stringent accuracy-efficiency trade-off. Molecular-science datasets are hence
generated each with a specific algorithmic portfolio that is economic for the particular purpose.
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This incurs two challenges regarding data heterogeneity. (1) Different properties in a dataset may
come from algorithms in different levels of theory, meaning different levels of accuracy. This limits
the prediction accuracy on some tasks. For example, labeling the energy of a molecular structure
is yet affordable for common molecules using algorithms in the density functional theory (DFT)
level, but producing the equilibrium structure of a molecule requires repeated energy evaluations
hence is tens to hundreds of times more costly. As a result, DFT-level equilibrium structure data
are available only in a limited scale [25, 26, 27], while larger-scale datasets [28, 29] have to resort
to lower levels of theory to generate equilibrium structures at scale, which come with a lower level
of accuracy. Using such data, multi-task learning alone cannot predict structures in an accuracy
higher than the data-generation method. (2) Different datasets focus on different tasks, so combining
these datasets to enhance the performance on a particular task is not straightforward. For example,
there are datasets [30, 31, 32] that are concerned with force prediction and off-equilibrium structures,
which do not provide direct supervision to equilibrium structure prediction. Although including these
additional tasks in multi-task learning could help learn a better encoder (or, representation), this is
only based on an empirical observation from a general machine learning perspective and does not
directly exploit relevant physical information in the additional tasks.

Figure 1: Illustration of the idea of physi-
cal consistency. To support multiple tasks
(“Task X” represents a general task), the
model (blue solid lines) builds multiple de-
coders on a shared encoder, which are trained
by multi-task learning with data of respective
tasks (green dotted double arrows). Physical
consistency losses enforce physical laws be-
tween tasks (orange dashed double arrows),
hence bridge data heterogeneity and directly
improve one task from others.

In this work, we highlight that science tasks also
provide fortunate specialties that come to the rescue.
In contrast to conventional machine learning tasks
which are primarily defined by data, science tasks
originate in fundamental physical laws, and data are
rather the demonstration of such laws. These laws im-
pose explicit constraints between tasks, hence define
the “physical consistency” between model predic-
tions on these tasks. By enforcing such consistency,
model predictions for different tasks are connected
and can explicitly share the information in the data of
one task to the prediction for other tasks, hence bridg-
ing data heterogeneity. From another perspective,
while sharing a common encoder connects various
decoders at the input end, physical consistency closes
the loop by connecting the decoders at the output
end (Fig. 1). With the additional information from
the physical consistency, capabilities beyond conven-
tional multi-task learning are enabled: (1) data from
a higher-level of theory of one task can improve the
accuracy of a physically related task, and (2) the
abundant data of a physically related task can directly
improve the performance of the concerned task.

Concretely, we demonstrate the practical value of the physical consistency between energy prediction
and equilibrium structure prediction, two central tasks in molecular science. The consistency can
be constructed from two perspectives: the equilibrium structure of a molecule is the structure that
attains the minimal energy of the molecule (Sec. 3.2), and the equilibrium structure is a sample of
the thermodynamic equilibrium distribution at a low temperature (Sec. 3.3). When adopting the
denoising diffusion formulation [33, 34, 35] for structure prediction, we show that the two physical
laws can be translated into consistency loss functions which connect the energy-prediction model
with the structure-prediction model at large and small diffusion steps, respectively. We apply the
consistency losses in the multi-task learning on the PubChemQC B3LYP/6-31G*//PM6 dataset [29],
which is perhaps the largest public dataset with DFT-level (B3LYP/6-31G*) energy labels thus highly
relevant to model pre-training. But its equilibrium structures are generated in the semi-empirical
level (PM6), which is in a lower level of accuracy. We use the consistency losses to transmit the
information of the higher-level theory in the energy model to the structure model by only optimizing
parameters of the structure decoder, which achieves the followings. (1) Consistency losses improve
structure prediction accuracy beyond multi-task learning alone, when evaluated using DFT-level
structures from the PCQM4Mv2 [27] and QM9 [25] datasets. The advantage persists even after
both have undergone finetuning. (2) Datasets providing DFT-level force labels on off-equilibrium
structures are better leveraged to improve structure prediction accuracy beyond only including force
prediction in multi-task learning. Since force is the gradient of the energy, the additional data allow
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the energy model to learn a better energy landscape, which in turn leads to more accurate structure
prediction through the consistency losses. This is a more direct pathway for data on an additional
task to benefit structure prediction beyond learning a better representation in multi-task learning. We
remark that the improvement is not from any more accurate structure data, but from bridging data
heterogeneity using the “free lunch” redeemed from physical laws.

1.1 Related Work

Structure prediction. In recent years, deep generative models have been used as a powerful tool
to generate molecular structures. Due to the subtlety that a structure being rotated as a whole is
essentially the same structure, early methods opt to generate intermediate geometric variables, such as
inter-atomic distances [36, 37] or torsional angles [38, 39]. Directly generating Cartesian coordinates
of atoms has also been explored where the rotational equivalence is handled by alignment [40] or
leveraging gradient of distances [41, 42]. More recently, diffusion models have been used to generate
torsional angles [43], or atom coordinates [16, 44] using equivariant models. Given the generality
and superior performance, we adopt an equivariant diffusion model for structure prediction. While
these works may generate multiple meta-stable structures, we aim at the single equilibrium structure
for each molecule, and investigate the benefit from an energy model.

Leveraging physical laws between tasks. A noticeable example is leveraging the connection
between energy and thermodynamic equilibrium distribution to compensate for potentially biased
data to better learn the distribution. The equilibrium distribution in a canonical ensemble is the
Boltzmann distribution, which is directly determined by the energy function. From the machine
learning perspective, the energy function provides an unnormalized density function of the target
distribution. Using a flow-based model [45], Boltzmann generators [14] inject the energy supervision
via the evidence lower bound objective. Bootstrapped α-divergence objective is thereafter introduced
to mitigate mode collapse [46]. Zheng et al. [17] use a diffusion model where the energy supervises
the score model at the start diffusion step and is propagated to intermediate steps by enforcing a
PDE. Similar techniques are also explored for conventional machine learning tasks [47, 48]. More
recently, Bose et al. [49] directly connect the energy to intermediate-step scores. In the opposite
direction, Arts et al. [50] leverage Boltzmann-distribution samples to learn a coarse-grained energy
model. In parallel with these works, the current work is devoted to the investigation of leveraging
the connection between energy and structure prediction, and is not using an oracle energy function
considering the cost of DFT calculation.

2 Technical Background

Before delving into details of the consistency between energy and structure prediction, we first intro-
duce the problem formulation, and diffusion-based generative formulation for structure prediction.

Chemically, a molecule is specified by the types (i.e., chemical elements) of atoms and bonds,
jointly forming a molecular graph G. A molecule in physical reality can take different structures
(conformations) R ∈ RA×3, i.e., the collection of 3-dimensional coordinates of its A atoms. Many
properties of molecule G depend on its specific structure R, e.g., the (inter-atomic potential) energy,
so energy prediction is in the form E

(θ)
G (R) with model parameters θ.

Among possible structures, the equilibrium structure is the one that attains the minimal energy, and is
the most representative structure for the molecule. As mentioned, the diffusion formulation has been
a preferred choice for equilibrium structure prediction, which samples from a distribution pG(R)
concentrated at the equilibrium structure. For this, a primitive structure is sampled from a simple
distribution, e.g., the standard Gaussian, which undergoes a diffusion process that transforms the
simple distribution to the desired distribution. This is done by reversing the process in the opposite
direction, which is easier to construct. For example, the process can be taken as the Langevin
diffusion that converges to standard Gaussian [35]: dRt = βt∇ logN (Rt;0, I) dt+

√
βt dWt =

−βt

2 Rt dt+
√
βt dWt, where βt is a time dilation factor [51], and Wt denotes the Wiener process.

The process starts from the desired distribution pG,0 = pG at t = 0 and ends after a sufficiently
long period T when the distribution converges, pT = N (0, I). The reverse process is known to
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follow [52]:

dRt̄ =
βT−t̄

2
Rt̄ dt̄+ βT−t̄∇ log pG,T−t̄(Rt̄) dt̄+

√
βT−t̄ dWt̄, (1)

where t̄ := T − t, which transforms N (0, I) at t̄ = 0 to the desired distribution at t̄ = T , hence
the generation process is constructed. To simulate the process, the only unknown is the (Fisher’s)
score function∇ log pG,t(R) at each diffusion instant, for which a machine-learning model s(θ)

G,t (R)

is introduced. To learn to fit ∇ log pG,t(R), a practical approach is by optimizing the denoising
score matching loss [53]: EpG,0(R0)Ep(Rt|R0)∥s

(θ)
G,t (Rt)−∇Rt

log p(Rt|R0)∥2, which is convenient
since from the Langevin diffusion, we can derive p(Rt|R0) = N (Rt;

√
ᾱtRt, (1 − ᾱt)I), where

ᾱt := exp(−
∫ t

0
βs ds), which is a known distribution. Leveraging the reparameterization trick, the

loss is reformed as [35]:

EUnif(t;0,T )(1− ᾱt)EpG,0(R0)EN (ϵt;0,I)

∥∥∥∥s(θ)
G,t (
√
ᾱtR0 +

√
1− ᾱtϵt) +

ϵt√
1− ᾱt

∥∥∥∥2
2

, (2)

where the expectation w.r.t EpG,0(R0) can be estimated by averaging over data. Once the score model
is trained, it can generate structures by replacing ∇ log pG,t(R) and simulating Eq. (1). If only
pG,0(R0) is desired (instead of pG(R0:T )), then an equivalent simulation approach can be adopted
known as probability-flow ODE [35]:

dRt̄ =
βT−t̄

2

(
Rt̄ +∇ log pG,T−t̄(Rt̄)

)
dt̄, (3)

which is equivalent to the deterministic process in denoising diffusion implicit model (DDIM) [54].

An alternative to the score-prediction formulation is the denoising formulation [55, 56]. By defining
a “denoising model” S

(θ)
G,t (Rt) which formulates the score model following:

s
(θ)
G,t (Rt) =

√
ᾱtS

(θ)
G,t (Rt)−Rt

1− ᾱt
, (4)

the training loss function Eq. (2) in terms of S(θ)
G,t (Rt) becomes:

Et
ᾱt

1− ᾱt
EpG,0(R0)Eϵt

∥∥∥S(θ)
G,t (
√
ᾱtR0 +

√
1− ᾱtϵt)−R0

∥∥∥2
2
, (5)

which follows the intuition to denoise a perturbed structure by predicting the original structure. This
formulation better aligns with the notion of “structure prediction”, hence can be benefited from
successful model architectures [18, 19], and matches structure pre-training strategies [57, 24, 22, 58].

3 Method

We begin with the basic formulation of multi-task learning. We then present the two consistency
training approaches between energy and structure prediction, based on two physical laws between the
two tasks. The approach to directly leveraging physically-related datasets is described at last.

3.1 Multi-Task Learning for Energy and Structure Prediction

Both energy and structure prediction tasks require a comprehensive understanding of the input
molecular graph G and structure R, so a shared encoder E(ϕ)

G,t (R) with parameters ϕ is employed.
The time step t is required by the diffusion formulation, which is taken as 0 for energy prediction
indicating the input structure is unperturbed and real. For energy and structure prediction, the
corresponding decoders D(θE)

E and D(θS)
S are introduced. For structure prediction, the denoising

formulation is adopted (end of Sec. 2). Under this formulation, the two tasks are handled by:

E
(ϕ,θE)
G (R) = D(θE)

E

(
E(ϕ)
G,t=0(R)

)
, S

(ϕ,θS)
G,t (R) = D(θS)

S

(
E(ϕ)
G,t (R),R

)
. (6)

On one datapoint (G,R, E), the multi-task loss is (c.f. Eq. (5)): Lmulti-task(ϕ,θE,θS|G,R, E)

= λE

∣∣∣E(ϕ,θE)
G (R)− E

∣∣∣+ Et
ᾱt

1− ᾱt
Eϵt

∥∥∥S(θ)
G,t (
√
ᾱtR+

√
1− ᾱtϵt)−R

∥∥∥2
2
. (7)
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A subtlety with the models is geometric invariance and equivariance. Indeed, if a structure R is
translated and rotated as a whole, the resulting atom coordinates represent essentially the same
structure. The energy and the probability density should keep invariant after the transformation. For
energy prediction, this can be guaranteed by using an invariant encoder E(ϕ)

G,t (R) (no requirement

on D(θE)
E ). For the probability density, it is known [59] that rotational invariance can be achieved by

the invariance of pG,T , which is satisfied by N (0, I), and the equivariance of the denoising model
S
(ϕ,θS)
G,t (R). For this reason, the input structure R re-enters the structure decoder D(θS)

S , which is
implemented with an equivariant architecture. Translational invariance of density can be achieved by
centering the structures; see ref. [60] for reasoning.

Nevertheless, multi-task learning is restricted by the level of accuracy of training data. As mentioned,
structure data are often generated in a lower level of accuracy than energy data due to the more
demanding nature. To alleviate this limitation, we exploit physical laws between molecular energy
and structure, and propose consistency training losses accordingly to bridge the energy and structure
models, thereby enhancing the accuracy of structure prediction from the more accurate energy model.

3.2 Optimality Consistency

One direct relationship between energy and equilibrium structure is that the equilibrium structure
Req minimizes the energy, i.e., Req = argminR EG(R). To enforce this optimality condition, we
propose an optimality consistency loss Loptim-cons, in the form of “increase after perturbation” loss.
It is based on the idea that the energy of the equilibrium structure should be lower than that of its
perturbed version. Denoting R

(ϕ,θS)
pred as the model-predicted equilibrium structure, the loss on a

molecule G can be written as:

Loptim-cons(θS | ϕ,θE,G) = Eη max
{
0, E

(ϕ,θE)
G (R

(ϕ,θS)
pred )− E

(ϕ,θE)
G (R

(ϕ,θS)
pred + η)

}
, (8)

where η ∼ N (0,Diag(σ2)) is a small perturbation, and each element of σ2 is independently sampled
from Unif(0, σ2

max]. Since the purpose is to improve structure prediction accuracy by leveraging
the energy model which has seen more accurate labels, so the consistency loss only optimizes the
parameters exclusively for the structure prediction utility, i.e., structure decoder parameters θS.
Other parameters ϕ and θE do not optimize this loss. In this way, the consistency loss would not
contaminate the energy prediction model with the less accurate structure prediction model.

The standard way to produce R
(ϕ,θS)
pred requires simulating the diffusion process (Eq. (1)) or the

equivalent ODE (DDIM) (Eq. (3)), which calls the denoising model recursively. So optimizing
Loptim-cons would involve backpropagation through the simulation process, which can be impractically
costly and numerically unstable. Fortunately, we can exploit the intuition in the denoising formulation
and find a much cheaper way to generate structure. The intuition of the denoising model SG,t(Rt) is
to recover the original structure R0 from the perturbed structure Rt. Although this is informationally
impossible at the instance level, the denoising model still has a definite learning target at the
distributional level, which is E[R0|Rt] [56]. Particularly, when t = T , the correlation between R0

and RT diminishes, so SG,T (RT ) learns to output E[R0], the expectation of the target distribution,
which is the equilibrium structure since the distribution concentrates at that structure. Under this
perspective, the model-predicted structure can be generated by R

(ϕ,θS)
pred = S

(ϕ,θS)
G,T (RT ), where

RT ∼ N (0, I). This only requires one evaluation of the denoising model.

Nevertheless, the rotational invariance of the structure distribution introduces more subtleties.

Proposition 1. Let S(θ) : RA×3 → RA×3 be a rotationally equivariant function; that is, for
any rotation matrix Q ∈ SO(3) and structure R ∈ RA×3, we have S(θ)(RQ) = S(θ)(R)Q.
Then, for any target structure R⋆ ∈ RA×3, the minimizer of the denoising loss function L(θ) =
EN (ϵ;0,I)∥S(θ)(ϵ)−R⋆∥22 is the zero map; that is, S(θ)(R) = 0, for any R.

See Appendix A for proof. This conclusion reveals that the learning target of the denoising model at
T is trivially all-zero, which cannot serve to generate the equilibrium structure. To circumvent this, a
simple choice is to denoise from a time step τ that is close but smaller than T :

R
(ϕ,θS)
pred = S

(ϕ,θS)
G,τ (ϵ), ϵ ∼ N (0, I). (for large τ ) (9)
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The target of the denoising model at τ is S(ϕ,θS)
G,τ (ϵ) = E[R0|Rτ = ϵ], which is equivariant w.r.t Rτ .

So the input Rτ provides an orientation information hence breaking the rotational symmetry of the
corresponding distribution p(R0|Rτ ). The resulting expectation then would not average a structure
over orientations evenly, hence not zero. More explicitly, since p(R0|Rτ ) ∝ p(R0)p(Rτ |R0) ∝
p(R0) exp

{
−∥R0−Rτ/

√
ᾱτ∥2

2

2(1/ᾱτ−1)

}
, we have p(R0|Rτ ) ∝ p(R0)N (R0;Rτ/

√
ᾱτ , (1/ᾱτ − 1)I),

where the Gaussian factor assigns larger probability along the direction of Rτ , hence breaks the
rotational symmetry from p(R0). Under this choice, the optimality consistency loss in Eq. (8) is
specified as: Loptim-cons(θS | ϕ,θE,G)

= EηEϵ max
{
0, E

(ϕ,θE)
G

(
S
(ϕ,θS)
G,τ (ϵ)

)
− E

(ϕ,θE)
G

(
S
(ϕ,θS)
G,τ (ϵ) + η

)}
. (for large τ ) (10)

3.3 Score Consistency

The optimality consistency loss only supervises the denoising model at large time steps. For small
time steps, an alternative perspective on the physical law between equilibrium structure and energy
can help. Physically, a molecule G in a real system can take different structures with different
probabilities. When the system is in thermodynamic equilibrium, the probability distribution of the
structures can be determined from the energy function of the molecule. Particularly, in a system with
fixed volume and temperature T , the structure distribution is the well-known Boltzmann distribution,
pB;G,T (R) ∝ exp (−EG(R)/(kBT )), where kB is the Boltzmann constant. When temperature
approaches zero, the distribution becomes concentrated on the equilibrium structure. This aligns with
the learning target of the diffusion model for equilibrium structure prediction. Through the expression
of the Boltzmann distribution, the structure model can thus be connected to the energy model.

To enforce this connection, ideally, the density function p
(ϕ,θS)
G (R) modeled by the denoising model

should match that defined by the energy model. Since the latter only provides an unnormalized
density, we enforce their scores to match: Eq(R)

∥∥∇ log p
(ϕ,θS)
G (R) + ∇E(ϕ,θE)

G (R)/(kBT )
∥∥2
2
,

where q(R) is a reference distribution. Nevertheless, it is computationally costly to eval-
uate the density function from the diffusion model: log p

(ϕ,θS)
G (R) = log pT (R

(ϕ,θS)
T ) +∫ T

0
βt

2

√
ᾱt

1−ᾱt

(
3A
√
ᾱt −∇ · S(ϕ,θS)

G,t (R
(ϕ,θS)
t )

)
dt, where R(ϕ,θS)

t∈[0,T ] is the solution to the ODE dRt

dt =

βt

2

√
ᾱt

1−ᾱt

(√
ᾱtRt − S

(ϕ,θS)
G,t (Rt)

)
with initial condition R0 = R [35]. Significant computational

cost would be incurred from invoking and backpropagating through an ODE solver to evaluate and
optimize the density.

We hence turn to another way to leverage this connection. Note from Eq. (4), the denoising model can
be used to recover the score model, which targets the score function of the marginal distribution at the
corresponding diffusion time instant. Particularly, the score model at t = 0 should approximate the
score of the desired distribution, which is pB;G,T for small T . The energy model can hence provide
supervision to the score model by enforcing this connection: Lscore-cons(θS | ϕ,θE,G)

= Epτ (Rτ )

∥∥∥∥
√
ᾱτS

(ϕ,θS)
G,τ (Rτ )−Rτ

1− ᾱτ
+
∇Rτ

E
(ϕ,θE)
G (Rτ )

kBT

∥∥∥∥2
2

. (for small τ ) (11)

In this score consistency loss, we have avoided taking the time step τ exactly zero for numerical
stability consideration. Indeed, when τ → 0, the denoising model S(ϕ,θS)

G,τ approaches the identity
map, and ᾱτ approaches 1, making the first term in Eq. (11) an indeterminate form of type 0/0, which
may render numerical stability issues. For the reference distribution to generate data to evaluate
the loss, one can choose either the data distribution pG,0 for which the energy model gives more
confident results, or the perturbed distribution pG,τ (can be sampled by adding noise to a data sample
R0 following p(Rt|R0)) for relevance to how the denoising model S(ϕ,θS)

G,τ is invoked. Through
some trials, we found the latter gives slightly better results.

Finally, as is the case for the optimality consistency loss, the score consistency loss also only optimizes
the parameters θS of the structure decoder, to ensure the energy model would not be misled by the
less accurate structure data. To implement this unconventional optimization requirement, we list
detailed algorithms for the two consistency losses in Appendix B.1 in terms of the actual model
components E(ϕ)

G,t , D(θE)
E , and D(θS)

S .
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3.4 Leveraging Physically-Related Data

Besides the difference in the level of theory to generate data, the heterogeneity of molecular-science
datasets also lies in the difference of concerned quantities. Compared to the enormous chemical
space, available datasets for equilibrium structure are still not abundant, while there is a vast amount
of data generated for physically related but different tasks, for example, labels of atomic forces, and
data on off-equilibrium structures. We highlight that the consistency losses can leverage such datasets
in an explicit way to further improve equilibrium structure prediction. Note that the consistency
losses Eqs. (10, 11) works by offering the information at a higher level of theory in the energy
model, in the form of energy landscape on the structure space; i.e., ranking different structures
in optimality consistency, and providing energy gradient in score consistency. For better learning
the landscape, the force labels, which are negative gradients of the energy, provides first-order
information of the landscape, and energy and force labels on multiple off-equilibrium structures
enable better exploration on the structure space. This approach provides a more direct and concrete
information path to equilibrium structure prediction than helping learn a better representation in
multi-task learning. For learning a better energy landscape, the force labels are used to directly
supervise the gradient of the energy model. The loss term for a datapoint (G,R,F) is:

Lforce(ϕ,θE | R,F) =
∥∥∇RE

(ϕ,θE)
G (R) + F

∥∥2
2
,

where F is the force label. Note that there may be multiple (R,F) data pairs for one molecule G,
which provide even richer information on the energy landscape.

4 Experiments

In this section, we demonstrate the advantages of incorporating the proposed consistency losses into
multi-task learning. Implementation details are provided in Appendix B.

4.1 Setup

Datasets. We consider multi-task learning of energy and structure prediction on the PubChemQC
B3LYP/6-31G*//PM6 dataset [29] (abbreviated as PM6), which is seemingly the largest (∼86M
molecules) public available dataset with DFT-level property labels, hence a preferred setting for
pre-training a molecular model. The energy labels are in the DFT (B3LYP/6-31G*) level, while the
equilibrium structures are produced at the semi-empirical PM6 [61] level, which is less accurate than
DFT. Consistency training is hence considered to improve structure prediction accuracy using the
more accurate energy data. To evaluate the effect of improved structure prediction accuracy beyond
the PM6 level, the accuracy is evaluated against structures generated at the DFT level, which are
available in the PCQM4Mv2 dataset [27] (abbreviated as PCQ) and the QM9 dataset [25].

Evaluation. Each of the evaluation datasets of PCQ and QM9 is spilt into three disjoint sets for
training, validation, and test. The training and validation sets are for optional fine-tuning (see Sec. 4.4).
Following existing convention [41, 44, 40], each test set is prepared by uniformly randomly selecting
200 distinct molecules from PCQ or QM9 that do not appear in the training dataset (PM6), which
already makes the test molecules sufficiently dissimilar from training molecules (Appendix C.6).

On each test molecule, we sample 200 structures using the model, calculate their rooted mean square
deviations (RMSDs) against the equilibrium structure in the test set, and evaluate the mean and
the minimum over these RMSDs. Due to the geometric invariance of the structure distribution, the
RMSD is evaluated after translational and rotational alignment of two structures using the Kabsch
algorithm [62]. We consider both the denoising (Eq. (9)) and the DDIM (Eq. (3)) approaches for
structure sampling. We also provide coverage evaluation results in Appendix C.2.

In each setting, we independently repeat the evaluation process for five times using different random
seeds, and report the mean of the repeats in the following tables. The standard deviations and t-test
p-values are collectively provided in Appendix C.5. In settings using consistency training, both the
optimality (Eq. (10)) and score consistency losses (Eq. (11)) are added to the multi-task training loss
(Eq. (7)). Validation results for training in terms of both energy prediction and structure generation
are provided in Appendix C.4.
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Figure 2: Comparison of energy (eV) on the model-generated structure Rpred using the denoising
method and the equilibrium structure Req in the PCQ dataset. Each point represents the model-
predicted energy values on the two structures for one test molecule. Models are trained on (left)
the PM6 dataset, (middle) the PM6 dataset and SPICE force dataset, and (right) the PM6 dataset
with a subset of force labels. The closer a point lies to the diagonal line, the closer the energy of the
predicted structure is to the minimum energy, indicating a closer prediction of equilibrium structure.

4.2 Structure Prediction Results

We first evaluate the effect of consistency training over multi-task training following the above
settings. The results are shown in Table 1. We see that consistency training enhances the accuracy
of structure prediction beyond multi-task learning consistently, without using any more accurate
structure data. The improvement is significant when compared to the standard deviations provided
in Appendix Table C.8, which are as low as around 0.003 Å (Appendix Table C.10 verifies t-test
significance). We note that this improvement is not at the cost of a lower energy prediction accuracy,
as indicated by the energy prediction results in Appendix Table C.6(left).

To further examine that the improvement is from the effect of consistency training, we evaluate the
energy of the predicted structure and the true DFT-level equilibrium structure in the PCQ dataset for
each test molecule using the model, which is shown in the scatter plot of Fig. 2(left). We observe that
when using consistency training, the overall energy is reduced, indicating that the predicted structures
indeed have lower energy hence closer to the true DFT-level equilibrium structure. To quantify this
improvement, in Appendix C.3 we define an “energy gap” metric, and the results shown in Table C.5
consolidate the observation.

4.3 Results using Physically-Related Data

We next investigate the effect of consistency training for leveraging physically related data, as
explained in Sec. 3.4. For this, we consider the force data in the SPICE dataset (PubChem subset) [32].
The force data are also available on multiple off-equilibrium structures for each molecule. We note
the subtlety that the setting of DFT in SPICE, ωB97M-D3(BJ)/def2-TZVPPD, is different from that
for generating energy labels in the PM6 dataset. (Up to our knowledge, there does not seem to exist a
public force dataset that matches the DFT setting as the PM6 dataset.) On one hand, calculation on
near-equilibrium structures of small molecules is not very sensitive to DFT settings, especially for
force calculation (even less affected than energy), while the force labels on multiple structures could
be more valuable to learning the energy landscape despite the mismatch. So we still consider it as a

Table 1: Test RMSD (Å; lower is better) of structure prediction by multi-task learning and consistency
learning on PM6 dataset.

Test Set PCQ QM9

Generated by Denoising DDIM Denoising DDIM

Struct. Stat. Mean Min Mean Min Mean Min Mean Min

Multi-Task 1.189 0.655 1.041 0.361 0.928 0.545 0.669 0.197
Consistency 1.158 0.645 1.007 0.346 0.848 0.490 0.650 0.194
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Table 2: Test RMSD (Å; lower is better) of structure prediction by multi-task learning and consistency
learning on the PM6 dataset with additional SPICE force dataset or PM6 subset force data.

Additional
Training Data

Test Set PCQ QM9

Generated by Denoising DDIM Denoising DDIM

Struct. Stat. Mean Min Mean Min Mean Min Mean Min

SPICE
force

Multi-Task 1.161 0.631 1.047 0.373 0.876 0.486 0.670 0.207
Consistency 1.147 0.590 1.013 0.345 0.842 0.485 0.644 0.194

PM6 subset
force

Multi-Task 1.199 0.672 1.027 0.365 0.914 0.545 0.648 0.193
Consistency 1.113 0.629 1.019 0.351 0.836 0.488 0.646 0.192

relevant investigation setting. Note energy labels in SPICE are not used, and additional structures are
not used for training the structure decoder. On the other hand, to reduce the gap, we also generated
in-house force labels on a subset of PM6 structures using the same DFT setting (B3LYP/6-31G*) as
for the PM6 dataset energy labels. The systematic error is controlled, although for each molecule
there is only one labeled structure.

The results after incorporating SPICE force data and PM6 subset force data in training are shown in
Table 2. We first observe that consistency training still outperforms multi-task training in structure
prediction in all cases (see Appendix Tables C.8 and C.10 for standard derivations and t-test p-
values). We note that this improvement is not at the cost of a lower energy prediction accuracy, as
indicated by Appendix Table C.6(middle) indicates energy prediction is also not compromised in
consistency training in this case. When compared to Table 1, we see that the inclusion of force
data does not uniformly enhance multi-task learning performance, since the mechanism to learn a
better representation is still implicit and indirect and may require extensive tuning. In contrast, using
consistency losses improves structure prediction more consistently when physically related data are
available in training. These observations indicate that consistency loss training can potentially assist
the model in more effectively utilizing data from different sources or modalities.

Energy analysis is presented in Fig. 2(middle) utilizing SPICE force data, and in Fig. 2(right) with
force labels on a subset of PM6 molecules. The data indicate that training with consistency loss results
in lower predicted energies than multi-task training. Furthermore, we observe that the structures
predicted by models trained with force datasets (Fig. 2, middle and right) have lower predicted
energies compared to those trained exclusively on the PM6 dataset (Fig. 2, left), illustrating the
advantage of incorporating force labels.

4.4 Fine-Tuning Results

In addition to the zero-shot prediction evaluations, we further fine-tune the pre-trained models
investigated in Sec. 4.2 using DFT-level structures in PCQ or QM9 training datasets. The results
presented in Table 3 indicate that the inclusion of consistency loss in pre-training still enhances
the accuracy of structure prediction even after fine-tuning. See Appendix Tables C.9 and C.10 for
statistical significance. This could be attributed to that using consistency losses in pre-training can
already inform the model of more accurate structure information, leading to a state that is more
relevant to the underlying physics, which is a favored starting point for further improvements through

Table 3: Test RMSD (Å; lower is better) after finetuning for structure prediction pre-trained by
multi-task learning and consistency learning on the PM6 dataset.

Test Set PCQ QM9

Generated by Denoising DDIM Denoising DDIM

Struct. Stat. Mean Min Mean Min Mean Min Mean Min

Multi-Task 1.158 0.614 0.921 0.220 0.889 0.467 0.501 0.090
Consistency 1.152 0.610 0.918 0.218 0.835 0.420 0.493 0.076
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fine-tuning. Results of fine-tuning models that are pre-trained with SPICE force and PM6 subset
force are shown in Appendix C.1, which further demonstrates the advantages of the consistency loss.

5 Conclusion and Discussion

This work leverages physical laws between molecular tasks to bridge data heterogeneity in multi-task
learning. Consistency losses are designed to enforce physical laws between inter-atomic potential
energy prediction and equilibrium structure prediction. They have shown to improve structure
prediction beyond the typical accuracy level of structure data by leveraging abundant energy data
in a higher level of accuracy, and can directly leverage force and off-equilibrium structure data to
further improve the accuracy. The advantage still holds after finetuning. We would like to highlight
that the improvement comes “for free” as no additional data (e.g., more accurate structure data) are
required, demonstrating the value of physical laws in learning molecular tasks. The idea bears broader
generality as data heterogeneity is ubiquitous in the science domain, and data for a specific task are
often limited in either abundancy or accuracy.

The current work is limited to the consistency between energy and structure prediction, while
more consistency laws can be considered in molecular science. Apart from mentioned works in
connecting energy and thermodynamic distribution, more possibilities include electronic structure
and molecular properties, and fine-grained and coarse-grained structures and macroscopic statistics.
The significance of improvement in this work is still limited by the abundance of the data involved.
Further improvement can be expected with more abundant/diverse but possibly less accurate structure
data from, e.g., RDKit [63] or experimental measurements, or energy/force datasets in matching level
of theory that more extensively explore the structural space.
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Appendix

A Proof of Proposition 1

We first prove the following two preliminary Lemmas.

Lemma A.1. Let ϵ =
[
ϵ⊤
1 , . . . ,ϵ

⊤
A

]⊤
, and ϵi are independent, identically distributed random

vectors with ϵi ∼ N (0, I3). Q is a random variable uniformly distributed over SO(3). Then the
random matrix γ = ϵQ has the same distribution as ϵ.

Proof. Consider the probability density function of γ:

pγ(γ) =

∫
pγ,Q(γ,Q)dQ =

∫
pQ(Q)pγ|Q(γ | Q)dQ.

Since γ = ϵQ, we have:

pγ|Q(γ | Q) =

A∏
i=1

1

(2π)3/2
exp

{
−∥Q

⊤γi∥22
2

}
=

1

(2π)3/2

A∏
i=1

exp

{
−∥γi∥22

2

}
= pϵ(γ).

Thus, it follows that:

pγ(γ) =

∫
pQ(Q)pγ|Q(γ | Q)dQ =

∫
pQ(Q)pϵ(γ)dq = pϵ(γ),

which demonstrates that γ is identically distributed as ϵ.

Lemma A.2. Assume Q is a random variable uniformly distributed over SO(3). Then EQQ = 0.

Proof. For any fixed Q0 ∈ SO(3), the distribution of QQ0 is identical to that of Q due to the
uniformity of the distribution over the group SO(3). Consequently, we have:

EQQ = EQQQ0 = [EQQ]Q0

Suppose EQQ = [q1,q2,q3], where q1,q2,q3 are the columns of EQQ. Then, it follows that:
[q1,q2,q3] = [q1,q2,q3]Q0.

Selecting Q0 = Diag{−1,−1, 1} yields q1 = −q1 and q2 = −q2, , which implies that q1 = q2 =
0. Similarly, choosing Q0 = Diag{1,−1,−1} results in q3 = −q3, hence q3 = 0. Therefore, we
conclude that EQQ = 0.

We now proceed to prove Proposition 1. Let Q be a random variable uniformly distributed over
SO(3). Then according to Lemma A.1, the random matrix γ = ϵQ is identically distributed as ϵ.
Then we have:

L(θ) = Eϵ∥S(θ)(ϵ)−R⋆∥22 = Eγ∥S(θ)(γ)−R⋆∥22 = Eϵ,Q∥S(θ)(ϵQ)−R⋆∥22
= Eϵ,Q∥S(θ)(ϵ)Q−R⋆∥22 = Eϵ

[
EQ∥S(θ)(ϵ)−R⋆Q⊤∥22

]
.

For any ϵ ∈ RA×3, the objective function EQ

∥∥S(θ)(ϵ)−R⋆Q⊤
∥∥2
2

achieves its minimum when
S(θ)(ϵ) = EQ[R⋆Q⊤] = R⋆[EQQ⊤]. Since EQQ⊤ = EQQ and using Lemma A.2, we have
EQQ⊤ = 0, which implies S(θ)(ϵ) = 0. Therefore, S(θ) is a zero map.

B Implementation Details

B.1 Implementation Details for Consistency Losses

The proposed consistency loss Loptim-cons in Eq. (10) and Lscore-cons in Eq. (11) are designed to update
the parameters θS within the structure prediction model S(ϕ,θS)

G,τ . To achieve this, we employ the
stop gradient operation SG(·) to prevent unnecessary gradient computation for the parameters ϕ
in the encoder model E(ϕ)

G,t and θE in the energy decoder D((θE)
E . The detailed implementations of

optimality consistency and score consistency are presented in Alg. B.1 Alg. B.2, respectively.
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Algorithm B.1 Implementation of Optimality Consistency Loss

Require: Encoder: E(ϕ)
G,t (R), structure decoder D(θE)

E , energy decoder D(θS)
S , Diffusion time step τ .

Ensure: ∇θSLoptim-cons
1: Sample ϵ and η.
2: Extract the molecular feature h← E(ϕ)

G,t=τ (ϵ) using the encoder.
3: Apply the stop gradient operation to the molecular feature and obtain h̄ ← SG(h) through

Pytorch’s .detach() method.
4: Compute the denoised structure R̂0 ← D(θS)

S (h̄,ϵ) using the structure decoder.
5: Set requires_grad = False for the parameters in the energy model E

(ϕ,θE)
G (R) =

D(θE)
E

(
E(ϕ)
G,t=0(R)

)
6: Evaluate the loss Loptim-cons = max

{
0, E

(ϕ,θE)
G (R̂0)− E

(ϕ,θE)
G (R̂0 + η)

}
.

7: Determine the gradient∇θSLoptim-cons through automatic differentiation.

Algorithm B.2 Implementation of Score Consistency Loss

Require: Encoder: E(ϕ)
G,t (R), structure decoder D(θE)

E , energy decoder D(θS)
S , Diffusion time step τ .

Ensure: ∇θSLscore-cons
1: Sample Rτ .
2: Extract the molecular feature h0 ← E(ϕ)

G,t=0(Rτ ) using the encoder.

3: Compute the free energy E← D(θE)
E

(
h0

)
with the energy decoder.

4: Compute the energy gradient F← ∇RτE using PyTorch’s torch.autograd.
5: Apply the stop gradient operation (.detach() method in Pytorch) to the energy gradient:

F̄← SG (F).
6: Extract the molecular feature hτ ← E(ϕ)

G,t=τ (Rτ ) using the encoder.
7: Obtain h̄τ ← SG(hτ ) using .detach().
8: Compute the denoised structure R̂0 ← D(θS)

S

(
SG(h̄τ ),Rτ

)
with structure decoder.

9: Evaluate the loss Lscore-cons =

∥∥∥∥√
ᾱτ R̂0−Rτ

1−ᾱτ
+ F̄

kBT

∥∥∥∥2
2

.

10: Determine the gradient∇θSLscore-cons through automatic differentiation.

B.2 Model Architecture

The model is composed of an encoder, and two decoders for structure and energy prediction.

The encoder E(ϕ)
G,t (R) is a simple modification to the Graphormer model [2, 64], which additionally

adopts diffusion time t embedding into both node features and pairwise-distance attention bias. The
encoder consists of 24 layers of Graphormer, with the dimension of both hidden and feed-forward
layers set to 768. It utilizes a multi-head attention mechanism with 32 heads and employs 128
Gaussian Basis kernels for enhancing the positional encoding.

For the time embedding, we implement a SinusoidalPositionEmbeddings module and a
TimeStepEncoder module. The former generates time-dependent sinusoidal embeddings, and
the latter refines these embeddings using a feed-forward network with a GELU activation function.
The resulting time embeddings are then integrated into the node features to inform the model of
temporal information.

Additionally, we incorporate time embeddings into the attention mechanism by computing a structure-
based attention bias. This is achieved by calculating the outer product of the time embeddings and
using the result as an additive bias in the self-attention layers. This integration allows the model to
adapt its attention based on the temporal relationships between nodes in the graph.

On top of the encoder, the energy decoder D(θE)
E (h) is a simple MLP layer concatenated to the

invariant node features h.
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Table C.1: Index of main result tables in the paper.

Training settings Test
RMSD

Standard
deviation

Paired
t-test Coverage Validation

(structure)
Validation
(energy) EGap

PM6 Table 1 Table C.8 Table C.10 Table C.3 Table C.7 Table C.6 Table C.5
PM6 w/ force Table 2 Table C.8 Table C.10 Table C.3 Table C.7 Table C.6 Table C.5
PM6 + finetuning Table 3 Table C.9 Table C.10 Table C.4 N/A N/A N/A
PM6 w/ force + finetuning Table C.2 Table C.9 - Table C.4 N/A N/A N/A

The structure decoder D(θS)
S (h,R) adopts the GeoMFormer architecture [65], which takes the

invariant node features h from the output of the encoder, and the atom coordinates R. The output is
denoised atom coordinates which are equivariant w.r.t the input coordinates R. These modules are
combined to form the energy and structure prediction models following Eq. (6).

B.3 Training Details

Our pre-training procedure is executed in two discrete stages. Initially, the model is subjected to
training exclusively utilizing the multi-task loss function, Lmulti-task, for a total of 300,000 iterations.
Subsequently, in the second stage, we integrate the proposed consistency loss and the force loss,
Lforce, into the training regimen, which then proceeds for an additional 200,000 iterations. All the
models are trained with the Adam optimizer [66] with batch size 256. The learning rate is set to
2× 10−4 with a linear warm-up phase in the initial 10,000 steps, which followed by a linear decay
schedule thereafter.

The weights of the energy loss and the diffusion denoising loss, i.e., the first and the second terms in
Eq. (7), are set to 1.0 and 0.01, respectively. The weights of the optimality consistency loss Eq. (10)
and the score consistency loss Eq. (11) are set to 0.1 and 1.0, respectively.

We employ a sigmoid schedule across 1,000 diffusion time steps for βt, with β0 = 1 × 10−4 and
βT = 2× 10−2. For the optimality consistency loss, the diffusion time step τ is sampled uniformly
from [400, 700]. For the score consistency loss, the diffusion time step τ is sampled uniformly from
[5, 300], and kBT is set to 0.1 eV.

The multi-task model is trained on an 8× Nvidia V100 GPU server for approximately one week. The
model with the consistency loss is trained on one 16× Nvidia V100 GPU server.

C Additional Results

In this section, we provide additional results under various combinations of settings, and additional
metrics and supporting evidence to complement the main results. For clarity, we summarize main
result tables in Table C.1 for easier indexing.

C.1 Additional Fine-Tuning Results

This section demonstrate more fine-tuning results listed in the main text. Besides the fine-tuned PM6
dataset pre-trained mode, we performed fine-tuning experiments on the model pre-trained with the
SPICE force and PM6 subset force datasets, as well. The results are presented in Table C.2. Similar to
the case in Table 3, we can again observe that while finetuning improves structure prediction accuracy
in all settings (compared to Table 2), pre-training the model with consistency loss still enhances the
accuracy universally.

C.2 Coverage Evaluation for Structure Generation

Following the common practice in structure-generation literature, we also test the coverage of the
ground-truth structure over model-generated structures. This metric is defined as:

COV(Sgen,Req) =
1

|Sgen|

∣∣∣{R̂ ∈ Sgen | RMSD(Req, R̂) < δ}
∣∣∣, (C.1)
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Table C.2: Test RMSD (Å; lower is better) after finetuning for structure prediction pre-trained by
multi-task learning and consistency learning on the PM6 dataset with additional SPICE force data or
PM6 subset force data.

(Pre-)Training
Set

Test Set PCQ QM9

Generated by Denoising DDIM Denoising DDIM

Struct. Stat. Mean Min Mean Min Mean Min Mean Min

PM6 with
SPICE force

Multi-Task 1.161 0.618 0.930 0.219 0.855 0.444 0.505 0.081
Consistency 1.132 0.581 0.916 0.215 0.832 0.418 0.492 0.073

PM6 with
subset force

Multi-Task 1.143 0.603 0.927 0.224 0.855 0.441 0.497 0.080
Consistency 1.099 0.542 0.914 0.215 0.822 0.419 0.490 0.076

where Sgen denotes the set of generated structures, Req denotes the ground-truth equilibrium structure
provided from the evaluation dataset, δ is a threshold parameter, and |·| takes the cardinality of a
set. Note that since for the task of equilibrium structure prediction, there is only one ground-truth
structure, we only evaluate the so-called precision coverage, since the recall coverage (by switching
the roles of Sgen and Req in the definition Eq. (C.1)) evaluates to 1 in all cases. Here, the RMSD
is evaluated after alignment of the two structures by Kabsch algorithm [62]. We choose δ as 0.9
and 1.25 for QM9 and PCQ dataset. Same as the RMSD test, we use the same test molecules and
sample 200 structure for each molecule. The coverage (COV) of the PM6 dataset model prediction
and including force dataset model prediction are shown in Table C.3. The results present consistent
results as the RMSD. After adding the consistency loss, all have improvement over the multi-task
setting. Besides, incorporating the force data can also improve the accuracy.

Table C.3: Test coverage (higher is better) of structure prediction by multi-task learning and consis-
tency learning on the PM6 dataset, and together with additional SPICE force data or PM6 subset
force data.

Training
Set

Test Set PCQ QM9

Generated by Denoising DDIM Denoising DDIM

Struct. Stat. Mean Median Mean Median Mean Median Mean Median

PM6 Multi-Task 0.597 0.670 0.649 0.675 0.468 0.478 0.717 0.780
Consistency 0.626 0.695 0.671 0.730 0.604 0.660 0.732 0.825

PM6 with
SPICE force

Multi-Task 0.614 0.660 0.645 0.685 0.550 0.580 0.715 0.765
Consistency 0.644 0.710 0.675 0.725 0.617 0.705 0.740 0.835

PM6 with
subset force

Multi-Task 0.590 0.650 0.662 0.705 0.493 0.520 0.736 0.835
Consistency 0.677 0.775 0.671 0.720 0.643 0.690 0.737 0.845

We also evaluated the coverage on the fine-tuned models. The results are shown in Table C.4, where
we again observe that pre-training with consistency loss improves structure prediction accuracy even
after fine-tuning.

C.3 Energy Gap Analysis

Our goal is to predict the equilibrium structure Req = argminR EG(R). It is desirable for the
predicted structure to approximate this state of minimal energy. To quantify the proximity of the
predicted structure to the equilibrium state, we introduce the energy gap metric, which is defined as:

EGap =
E

(ϕ,θE)
G (Rpred)− E

(ϕ,θE)
G (Req)

|E(ϕ,θE)
G (Req)|

.

The EGap metric serves to evaluate the energy difference between the predicted and equilibrium
structures, with a smaller energy gap signifying a more accurate prediction.

18



Table C.4: Test coverage (higher is better) after finetuning for structure prediction pre-trained by
multi-task learning and consistency learning on the PM6 dataset, and together with additional SPICE
force data or PM6 subset force data.

(Pre-)Training
Set

Test Set PCQ QM9

Generated by Denoising DDIM Denoising DDIM

Struct. Stat. Mean Median Mean Median Mean Median Mean Median

PM6 Multi-Task 0.629 0.675 0.721 0.800 0.543 0.595 0.790 0.960
Consistency 0.632 0.700 0.724 0.795 0.622 0.690 0.788 0.990

PM6 with
SPICE force

Multi-Task 0.632 0.705 0.714 0.760 0.597 0.660 0.784 0.980
Consistency 0.649 0.725 0.721 0.795 0.631 0.710 0.791 0.990

PM6 with
subset force

Multi-Task 0.643 0.705 0.719 0.795 0.600 0.650 0.786 0.990
Consistency 0.680 0.780 0.720 0.794 0.643 0.715 0.789 0.990

To compute this metric, we randomly select 200 molecules from the intersection of PM6 and PCQ
dataset, using the structure from the PCQ dataset as Req. The predicted structure Rpred is generated
using the denoising method. The results are presented in Table C.5. We observe that the incorporation
of the consistency loss reduces the EGap metric, particularly in cases with additional force labels.
These results demonstrate that the consistency loss effectively transfers information from the energy
model to the structure model.

Table C.5: Comparison of averaged EGap between structure prediction by multi-task learning and
consistency learning. Lower EGap values suggest that the energy of the predicted structure is closer
to the theoretical minimum energy.

Training Set PM6 PM6 with
SPICE force

PM6 with
PM6 subset force

Multi-Task 0.1278 0.0546 0.1163
Consistency 0.1172 0.0306 0.1013

C.4 Validation Results

To make sure that the conclusions drawn from the above results are solid, we further provide validation
results for energy and structure.

For the energy, we randomly selected 200 molecules from the intersection of the PM6 dataset (training
set) and the PCQ dataset (test set). This choice allows evaluating energy on both PM6 structure and
PCQ structure for each molecule, where the former reflects training quality, and the latter reflects
the utility for consistency learning of structure prediction. Although the original PCQ dataset [27]
does not provide energy labels, we noticed that it is curated based on the PubChemQC Project
dataset [26], which provides energy labels on the same PCQ structures under the same DFT settings
(B3LYP/6-31G*) as the PM6 energy labels.

The results are listed in Table C.6 and boxplots of the distributions of energy prediction MAE (eV)
evaluated on the PM6 structures are shown in Fig. C.1. We can observe that energy prediction on
PM6 structures are reasonably accurate, and it gets even better when consistency training is activated.
This indicates that consistency training does not sacrifice energy prediction. The energy prediction
error is larger on PCQ structures, which is not surprising since the model does not see data with PCQ
structures in training. But as we mentioned in the main paper, better generalization can be expected if
force data are available, which enriches the information on the energy landscape hence improving
the generalization on unseen structures. From the table, we can observe that the energy prediction
accuracy on PCQ structures is indeed improved. We also notice that including force data in training
even improves energy prediction accuracy on PM6 structures, for which a possible explanation is that
introducing additional relevant prediction tasks could help the model learn a more comprehensive
representation of the input molecular structure, which in turn helps other tasks.
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Table C.6: Validation MAE (eV) of energy prediction trained by multi-task learning and consistency
learning. Validation molecules are randomly selected from the intersection of PM6 and PCQ, and
results on both PM6 structures and PCQ structures of the molecules are shown.

Validation
structures from Training Set PM6 PM6 with

SPICE force
PM6 with

PM6 subset force

PM6 structures Multi-Task 96.08 83.15 79.00
Consistency 88.58 78.56 72.61

PCQ structures Multi-Task 136.66 135.93 117.22
Consistency 127.06 110.80 108.71

Figure C.1: Box plots for the distributions of energy prediction MAE (eV) evaluated on the PM6
structures of randomly selected 200 molecules from the intersection of PM6 and PCQ datasets.

For structure prediction, we validate the trained model by evaluating the RMSD of generated structures
on 200 randomly selected PM6 molecules. From the results shown in Table C.7, we can see that the
models trained by both multi-task learning and consistency learning achieve reasonable predictions.

Table C.7: Validation RMSD (Å) evaluated on the PM6 validation set of structure prediction trained
by multi-task learning and consistency learning on the PM6 dataset, and together with additional
SPICE force data or PM6 subset force data. Predicted structures are generated by the DDIM method.

Training Set PM6 PM6 with
SPICE force

PM6 with
PM6 subset force

Struct. Stat. Mean Min Mean Min Mean Min

Multi-Task 0.970 0.287 0.983 0.314 0.953 0.267
Consistency 0.931 0.280 0.944 0.286 0.958 0.290

C.5 Standard Deviations and Statistical Significance

To evaluate the significance of our comparison results, for each experimental setup, we repeated five
independent runs using different random seeds (666666, 666667, 666668, 666669, 666670). The
reported results in the main paper are the means of the five repeats, while the standard deviations
are listed in Table C.8 and Table C.9 here, which cover the results for the pre-trained models and for
fine-tuned models, respectively. We can see that all the standard deviations are around 0.003 Å, which
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is clearly lower than the improvements by consistency training, hence indicating the significance of
the effectiveness of the proposed methods.

To more seriously assess the statistical significance, we also conducted a paired t-test for each
comparison. The p-values are listed in Table C.10, where each number represents the probability of
the observed results under the null hypothesis that the means by multi-task learning and consistency
learning are the same, hence the lower value the more significant that consistency learning outperforms
multi-task learning. Nearly all p-values are well below the 0.05 significance threshold, indicating that
the improvement by consistency learning is significant. Exceptional cases almost all correspond to
the setting where the result in each repeat is the “Min”imum RMSD over 200 generated samples, in
which case multi-task learning may also has a chance to hit the target structure.

Table C.8: Standard deviations for the test RMSD (Å) of structure prediction by multi-task learning
and consistency learning on the PM6 dataset (corresponding to Table 1), and together with additional
SPICE force data or PM6 subset force data (corresponding to Table 2).

Training
Set

Test Set PCQ QM9

Generated by Denoising DDIM Denoising DDIM

Struct. Stat. Mean Min Mean Min Mean Min Mean Min

PM6 Multi-Task 0.0013 0.0045 0.0019 0.0059 0.0004 0.0026 0.0017 0.0015
Consistency 0.0021 0.0021 0.0016 0.0053 0.0018 0.0022 0.0080 0.0016

PM6 with
SPICE force

Multi-Task 0.0021 0.0042 0.0020 0.0067 0.0013 0.0040 0.0084 0.0024
Consistency 0.0026 0.0024 0.0017 0.0030 0.0019 0.0034 0.0025 0.0030

PM6 with
subset force

Multi-Task 0.0113 0.0048 0.0044 0.0127 0.0015 0.0134 0.0020 0.0025
Consistency 0.0027 0.0040 0.0023 0.0043 0.0011 0.0030 0.0033 0.0030

Table C.9: Standard deviations for the test RMSD (Å) after finetuning for structure prediction pre-
trained by multi-task learning and consistency learning on the PM6 dataset (corresponding to Table 3),
and together with additional SPICE force data or PM6 subset force data (corresponding to Table C.2).

(Pre-)Training
Set

Test Set PCQ QM9

Generated by Denoising DDIM Denoising DDIM

Struct. Stat. Mean Min Mean Min Mean Min Mean Min

PM6 Multi-Task 0.0021 0.0059 0.0025 0.0036 0.0008 0.0026 0.0011 0.0044
Consistency 0.0024 0.0064 0.0020 0.0033 0.0011 0.0028 0.0022 0.0023

PM6 with
SPICE force

Multi-Task 0.0023 0.0053 0.0012 0.0051 0.0016 0.0038 0.0019 0.0033
Consistency 0.0023 0.0047 0.0030 0.0013 0.0018 0.0030 0.0027 0.0015

PM6 with
subset force

Multi-Task 0.0022 0.0042 0.0016 0.0053 0.0013 0.0036 0.0019 0.0014
Consistency 0.0019 0.0038 0.0019 0.0072 0.0016 0.0068 0.0016 0.0023
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Table C.10: Paired t-test p-values on structure prediction RMSD means over 5 repeats (standard
deviations are shown in Tables C.8 and C.9) corresponding to the results in Table 1 (row 1, pre-
training on PM6), Table 2 (rows 2 and 3, pre-training on PM6 together with force labels), and Table 3
(row 4, pre-training on PM6 then finetuning). Values lower than the 0.05 significance threshold are
shown in bold.

Test Set PCQ QM9

Generated by Denoising DDIM Denoising DDIM

Struct. Stat. Mean Min Mean Min Mean Min Mean Min

PM6 7.8×10−4 5.6×10−3 3.8×10−7 8.9×10−4 4.5×10−7 8.2×10−7 1.1×10−3 7.4×10−4

PM6 w/ SPICE force 2.4×10−5 1.0×10−5 6.0×10−4 3.1×10−5 9.9×10−8 4.5×10−1 2.3×10−2 1.5×10−4

PM6 w/ subset force 4.5×10−3 2.4×10−5 2.9×10−3 2.4×10−2 6.5×10−7 1.2×10−4 5.1×10−2 7.5×10−1

PM6 + finetuning 4.2×10−3 2.4×10−1 2.4×10−3 1.7×10−1 1.2×10−7 2.5×10−6 1.0×10−4 8.5×10−3

C.6 Evaluation on Dissimilar Molecules

To further consolidate the effectiveness of our method, we give a closer look into the influence of the
similarity of the test dataset to the training dataset. Recall that we have excluded identical molecules
appearing in the training dataset from the test dataset, but there remains the possibility that the test
dataset may still contain similar molecules as those in the training dataset. For this, we first investigate
the Tanimoto similarity [67] between the training and test datasets. This similarity can be computed
from the molecular graphs of two molecules, while considering structural similarity between the two
molecules. We plot in Fig. C.2 where each column visualizes the count of PCQ test molecules that
have a certain portion of similar (Tanimoto similarity > 0.7) molecules in the PM6 training dataset.
We can observe that most (almost all) of the test molecules only has less than 1× 10−7 (2.5× 10−7)
similar molecules in PM6. This indicates that excluding identical molecules appearing in the training
dataset from the test dataset already makes the test dataset sufficiently dissimilar to the training
dataset, hence the presented results are valid prediction evaluations that are not close to “memorizing
the training molecules”.

Figure C.2: Histogram showing the distribution of the portion of similar (Tanimoto similarity > 0.7)
molecules in PM6 (the training dataset) over the 200 PCQ test molecules. Note that the x-axis is
scaled by 1× 10−6.

For a completely sanitized evaluation on dissimilar molecules, we provide the results evaluated on
PCQ test molecules that do not have any similar (Tanimoto similarity > 0.7) molecules in the PM6
(training) dataset. Such molecules make up 49% of the total 200 PCQ test molecules. Table C.11
shows the results in both RMSD and Coverage using the denoising generation method, corresponding
to the settings in Tables 1 and C.3 (row block 1) (pre-training on PM6), and Tables 2 and C.3 (row
blocks 2 and 3) (pre-training on PM6 together with force labels). The results confirmed the advantage
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of consistency learning on dissimilar molecules that cannot rely on memorizing the training dataset,
which further consolidates the conclusion.

Table C.11: Test RMSD (Å; lower is better) and coverage (higher is better) on dissimilar molecules
for structure prediction pre-trained by multi-task learning and consistency learning on the PM6
dataset, and together with additional SPICE force data or PM6 subset force data.

Training Set Method
RMSD (Å) Cov

Mean Min Mean Median

PM6
(c.f. Tables 1 or C.3 (row block 1))

Multi-Task 1.175 0.642 0.613 0.675
Consistency 1.135 0.625 0.644 0.745

PM6 w/ SPICE force
(c.f. Tables 2 (row block 1) or C.3 (row block 2))

Multi-Task 1.136 0.609 0.639 0.735
Consistency 1.121 0.579 0.672 0.790

PM6 w/ subset force
(c.f. Tables 2 (row block 2) or C.3 (row block 3))

Multi-Task 1.174 0.653 0.612 0.660
Consistency 1.099 0.616 0.697 0.830
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should reflect on how these assumptions might be violated in practice and what the
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have provided complete proof for the assumptions in Sec. 3 and Ap-
pendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have disclosed all the needed information for reproducibility in Ap-
pendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Releasing data and code requires an internal asset releasing review process in
our organization. We have started the process, but cannot guarantee availability during the
review period.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: We have included all details of the model architecture, data processing, and
hyperparameter settings in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have report the standard deviations and statistical significance of the main
results in Appendix C.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The required computational resources are provided in Appendix B.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This work develops techniques for better solving molecular science tasks
using machine learning. The techniques could potentially foster the development of related
industries, e.g., drug discovery and material design. Possible caveats include inaccurate
generated structures or predicted properties which may lead to failure in downstream
research.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not release data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our paper has properly credited and cited the code and data used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The new asset in this paper is the in-house generated force labels on a subset
of PM6 molecules. Releasing the new asset requires internal releasing review process in our
organization. We cannot guarantee releasing the asset during the review period.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing experiments nor
research with human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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