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Abstract

Complex Word Identification (CWI) is an im-001
portant step in the lexical simplification task002
and has recently become a task on its own.003
Some variations of this binary classification004
task have emerged, such as lexical complex-005
ity prediction (LCP) and complexity evaluation006
of multi-word expressions (MWE). Large lan-007
guage models (LLMs) recently became popular008
in the Natural Language Processing commu-009
nity because of their versatility and capability010
to solve unseen tasks in zero/few-shot settings.011
Our work investigates LLM usage, specifically012
Llama 2 and ChatGPT 3.5 turbo, in the CWI,013
LCP, and MWE settings. We show that LLMs014
may struggle in certain conditions or achieve015
comparable results against existing methods.016

1 Introduction017

Complex word identification (CWI) aims to iden-018

tify whether words or phrases can be difficult for019

a target group of readers to understand. Often, it020

is used in lexical simplification – a task that tar-021

gets replacing complex words and expressions with022

simplified alternatives (North et al., 2023a). CWI023

represents the first step, and it was treated as part024

of the lexical simplification task until 2012, when025

it became a standalone task (Shardlow, 2013).026

CWI was initially addressed as a binary classifi-027

cation task (Paetzold and Specia, 2016), identify-028

ing whether a word is complex in a given sentence.029

When the task became more popular (North et al.,030

2023b), it was extended to the continuous domain031

as Lexical Complexity Prediction (LCP, also re-032

ferred to as the probabilistic classification for CWI)033

(Yimam et al., 2018) addressing multi-language034

and multi-domain settings, and then it was ex-035

tended to multi-word expressions (Shardlow et al.,036

2021). Recently, new datasets started to emerge in037

various languages and domains (Ortiz Zambrano038

and Montejo-Ráez, 2021; Venugopal et al., 2022;039

Ilgen and Biemann, 2023; Zambrano et al., 2023).040

Previous approaches to CWI ranged from using 041

Support Vector Machines (S.P et al., 2016) to deep 042

neural networks based on Bidirectional Representa- 043

tion from Encoder Transformers (Pan et al., 2021), 044

multi-task learning with domain adaptation (Za- 045

haria et al., 2022), and sequence modeling (Good- 046

ing and Kochmar, 2019). 047

With the recent large language models (LLMs) 048

breakthrough, OpenAI showed that Generative Pre- 049

trained Transformer (GPT) models (Radford et al., 050

2019; Brown et al., 2020) are capable of improved 051

performances on various natural language process- 052

ing tasks as we scale up the model size and the 053

amount of training data. Since ChatGPT1 and GPT- 054

4 (OpenAI et al., 2023) were announced, many 055

other models (close- and open-source) emerged, 056

such as PaLM (Anil et al., 2023), LLaMA (Touvron 057

et al., 2023), Orca (Mitra et al., 2023), and Mis- 058

tral (Jiang et al., 2023), with better performances, 059

hence, the race to develop and fine-tune such mod- 060

els for various applications. 061

Our work shows that LLMs can address CWI 062

and LCP and achieve comparable results with state- 063

of-the-art approaches. We evaluate pre-trained 064

LLaMA 2 (Touvron et al., 2023) and OpenAI’s 065

ChatGPT-3 turbo in zero-shot and fine-tuning set- 066

tings. We summarize the contributions as follows: 067

• To the best of our knowledge, we are the first 068

to employ LLMs for CWI and LCP. 069

• We evaluate LLMs in binary (discrete set of 070

labels) and probabilistic classification (con- 071

tinuous space labels) on multi-domain and 072

multi-lingual corpora. 073

• We show that fine-tuned LLMs can achieve 074

comparable results or exceed other existing 075

approaches with some limitations, and we pro- 076

vide some insights about the results. 077

1https://openai.com/blog/chatgpt
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2 Related Work078

2.1 Complex Word Identification079

Aroyehun et al. (2018) compared CNN-based mod-080

els with various feature engineering methods based081

on tree ensembles and features, achieving com-082

parable results. Zaharia et al. (2020) employed083

zero- and few-shot learning techniques, along with084

Transformers and Recurrent Neural Networks, in085

a multilingual setting. CWI was also considered086

in a sequential task, where Gooding and Kochmar087

(2019) used a bidirectional LSTM with word em-088

beddings and character-level representations and a089

language modeling objective to learn the complex-090

ity of words given the context. Other approaches091

such as graph-based (Ehara, 2019), domain adapta-092

tion (Zaharia et al., 2022), and transformer-based093

models (Pan et al., 2021; Cheng Sheang et al.,094

2022) were used to improved CWI performances.095

2.2 Large Language Models096

LLMs were successfully utilized in various gen-097

erative tasks (Pu et al., 2023; Chen et al., 2021).098

The new paradigm in solving other non-generative099

tasks is based on prompting pre-trained language100

models to perform the prediction task (Liu et al.,101

2023a; Sun et al., 2023). Fine-tuning models on in-102

structions showed improved results in zero-shot set-103

tings, especially on unseen tasks (Wei et al., 2022a).104

Prompt-based methods such as the use of demon-105

strations (Min et al., 2022), intermediate reasoning106

steps by breaking down complex tasks into simpler107

subtasks (also known as a chain of thought) (Wei108

et al., 2022b), and using LLMs to optimize their109

prompts (Zhou et al., 2023) made zero-shot infer-110

ence much more appealing due to reduced costs111

and more efficient than fine-tuning LLMs.112

3 Method113

3.1 Problem Formulation in Pre-LLM Era114

Word complexity can be defined as absolute and115

relative (North et al., 2023b). Absolute complexity116

is determined by the objective linguistic proper-117

ties (e.g., semantic, morphological, phonological),118

while relative complexity is related to the subjec-119

tive speaker’s point of view (e.g., familiarity with120

sound and meaning). In this work, we evaluate121

the relative complexity of words, in general, for122

non-native speakers. Considering an annotated123

dataset D = {(xi, yi)}Ni=1 of N samples, the task124

can be viewed as a binary classification (known125

as CWI), where, given the pair xi = (Ci, wi) of 126

a sentence Ci = (w1, w2, ...) and word wi ∈ Ci 127

the system outputs yCWI
i ∈ {0, 1} (i.e., complex 128

or non-complex) (Paetzold and Specia, 2016). A 129

variation of the CWI task is to evaluate the com- 130

plexity yMWE
i ∈ {0, 1} of a multi-word expres- 131

sion ei = (w1, w2, ...) containing multiple words 132

wj , j = 1 : |e|, from a given context Ci (i.e., 133

xi = (Ci, ei)) (Shardlow et al., 2021). Later, 134

CWI was considered in the continuous domain 135

(known as LCP), indicating the degree of difficulty 136

yLCP
i ∈ [0, 1], for the given word wi ∈ Ci in the 137

context Ci (Yimam et al., 2018). 138

3.2 Problem Formulation in LLM Era 139

Starting from the previous formulation, we derive 140

the formalism in the context of LLMs. 141

Binary classification. Given an example xi = 142

(Ci, wi), the model predicts if a given phrase wi 143

from the sentence Ci is complex. Since the access 144

to the tokens logits is limited for closed-source 145

models (e.g., OpenAI’s ChatGPT), we consider 146

that the model only outputs “true” or “false” (or any 147

equivalent form) without a confidence estimation. 148

Probabilistic classification. The model pro- 149

duces a real value between 0 and 1, representing 150

the degree of complexity for (Ci, wi). LLMs are 151

known to suffer from hallucination (OpenAI et al., 152

2023), and directly predicting real values is chal- 153

lenging. We abide by Liu et al. (2023b)’s solution 154

for estimating the scoring function. We ask the 155

model to predict on the 5-point Likert scale, in natu- 156

ral language, one of “very easy”, “easy”, “neutral”, 157

“difficult”, or “very difficult”. This scale is con- 158

verted to a numerical representation using the fol- 159

lowing mapping: very easy - 0, easy - 0.25, neutral 160

- 0.5, difficult - 0.75, and very difficult - 1. Since 161

LLMs output tokens from a probability distribution, 162

we set the temperature (in our experiments, we use 163

0.8) to determine how random the outputs are. The 164

numerical representation constructed from LLM’s 165

output is denoted as sk ∈ S for a sampling step 166

k, with S = {0, 0.25, 0.5, 0.75, 1}. The model’s 167

probability to output one 5-point Likert score is 168

p(sk). The final score S is: 169

Ep[S] =
∑
s∈S

p(s) · s (1) 170

For experiments, we use the sample mean esti- 171

mator S̄ = 1
K

∑K
k=1 sk of K sampling steps. 172
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3.3 Prompting LLMs173

We provide the instructions to the model regarding174

the task and how the output should be formatted,175

and then we ask the model to predict an example.176

All prompt templates are listed in Appendix A,177

which were obtained after multiple trial-and-error178

interactions until we reached the wanted behavior.179

The prompts for German and Spanish are transla-180

tions of the English prompts. The same prompts181

are used across different models.182

4 Experimental Setup183

4.1 Models184

We employ two families of LLMs: Llama 2 (Tou-185

vron et al., 2023) and ChatGPT-3.5-turbo (OpenAI186

et al., 2023). For Llama 2, we use the pre-trained 7187

and 13 billion parameter variants, both base (pre-188

trained on 2 trillion tokens) and chat models (fined-189

tuned using reinforcement learning with human190

feedback). The chat model is used in the zero-shot191

setting. In addition, we fine-tune the base model on192

the training set for CWI/LCP. In the multi-lingual193

settings, because the base Llama 2 models were not194

trained to handle languages other than English, we195

use instead checkpoints found on Huggingface for196

German2 and Spanish3. These checkpoints are used197

for Llama 2 in the same way as the English check-198

point but in multilingual settings. For ChatGPT-199

3.5-turbo (175 billion parameters), we use the lat-200

est available checkpoint gpt-3.5-turbo-1106 to201

accomplish all experiments. For inference and fine-202

tuning, we use OpenAI’s API4.203

4.2 Datasets204

CompLex LCP 2021. Proposed at SemEval 2021205

Task 1 (Shardlow et al., 2021), CompLex LCP 2021206

comprises around 10,000 sentences in English from207

three domains: European Parliament proceedings,208

the Bible, and biomedical literature. The data is209

split across two tasks: single-word (Single) and210

multi-word expressions (MWE). The complexity is211

provided as continuous values between 0 and 1, ad-212

dressed as the probabilistic classification task. The213

average complexity is 0.3 for single and 0.42 for214

MWE. For evaluation, the test set has 907 samples215

2https://huggingface.co/LeoLM/
leo-hessianai-7b

3https://huggingface.co/clibrain/
Llama-2-7b-ft-instruct-es

4https://platform.openai.com/docs/guides/
fine-tuning

for single words and 185 for multi-word expres- 216

sions. 217

CWI Shared Dataset. It was proposed at the 218

CWI Shared Task in 2018 (Yimam et al., 2018) and 219

addresses English multi-domain and multi-lingual 220

settings. The English split contains samples from 221

three sources (News, WikiNews, and Wikipedia) 222

totaling approx. 35,000 samples. In the multi- 223

lingual setting, the dataset features German and 224

Spanish with approx. 8,000 and 17,600 samples, 225

respectively, and a French test set containing 2,251 226

samples. The dataset was developed to address 227

binary and probabilistic classification tasks by of- 228

fering probabilities and labels such that samples 229

with 0% probability are non-complex and others as 230

complex. We consider only the binary classifica- 231

tion tasks (see Limitations 7). The English News 232

dataset has 2,095 samples for the test sets, English 233

WikiNews has 1,287 samples, English Wikipedia 234

has 870 samples, German has 961 samples, and 235

Spanish has 2,233 samples. 236

4.3 Baselines 237

We compare against top-performing methods at 238

CWI Shared task and LCP 2021. Camb (Good- 239

ing and Kochmar, 2018) employs heterogeneous 240

features combined with an ensemble of AdaBoost 241

classifiers. TMU system (Kajiwara and Komachi, 242

2018) uses a random forest classifier on multiple 243

hand-crafted features. ITEC (De Hertog and Tack, 244

2018) combines CNN and LSTM layers. SB@GU 245

(Alfter and Pilán, 2018) employs Random Forest 246

and Extra Tree on top of multiple hand-crafted fea- 247

tures. In addition, we include the XLM-RoBERTa- 248

based approach combined with text simplification 249

and domain adaptation (Zaharia et al., 2022), the 250

MLP combined with Sent2Vec solution Almeida 251

et al. (2021), and RoBERTaLARGE with an en- 252

semble of RoBERTa-based models (LR-Ensemble) 253

(Pan et al., 2021). 254

4.4 Evaluation 255

We adopt the same evaluation methodology as in 256

Shardlow et al. (2021) for CompLex and Yimam 257

et al. (2018) for CWI datasets. Therefore, we use 258

Pearson correlation (P) and Mean Average Error 259

(MAE) on the CompLex dataset and F1-score (F1) 260

for the CWI dataset. We also include accuracy 261

(Acc) on the CWI dataset. We report all results on 262

a single run for CWI and multiple runs (described 263

by N ) for LCP. 264
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Model News WikiNews Wikipedia
F1↑ Acc↑ F1↑ Acc↑ F1↑ Acc↑

Camb 87.3 - 84.0 - 81.2 -
ITEC 86.4 - 81.1 - 78.1 -
TMU 86.3 - 78.7 - 76.1 -

Zero-shot
Llama-2-7b-chat 54.8 59.5 46.9 48.7 63.3 60.3
Llama-2-13b-chat 47.6 61.6 41.0 57.6 51.4 53.4
ChatGPT-3.5-turbo 47.3 68.6 47.0 64.3 52.3 61.6

Fine-tuned
Llama-2-7b-ft 78.0 82.9 78.2 81.1 77.4 76.7
Llama-2-13b-ft 77.6 83.3 77.7 81.3 73.1 74.6
ChatGPT-3.5-turbo-ft 80.7 83.9 80.9 83.1 80.2 79.4

Table 1: Results on the multi-domian English test set
from CWI 2018 Shared Dataset. In bold, we denote the
best score and underlined are the second-best results for
zero-shot and fine-tuned settings.

Model German Spanish
F1↑ Acc↑ F1↑ Acc↑

TMU 74.5 - 77.0 -
ITEC - - 76.3 -
SB@GU 74.2 - 72.8 -
Llama-2-7b-ft 66.9 75.1 66.3 72.3
Llama-2-13b-ft 70.8 76.6 75.3 81.0
ChatGPT-3.5-turbo-ft 66.6 78.0 78.1 74.4
ChatGPT-3.5-turbo 61.5 67.6 66.3 63.7

Table 2: Results on the multi-lingual test sets from CWI
2018 Shared Dataset. In bold we denote the best score,
and underlined are the second-best results.

Model Single-Word Multi-Word
P↑ MAE↓ P↑ MAE↓

MLP+Sent2Vec .4598 .0866 .3941 .1145
XLM-RoBERTa-based .7744 .0652 .8285 .0708
RoBERTaLARGE .7903 .0648 .7900 .0753
LR-Ensemble - - .8612 .0616

Zero-shot
Llama-2-7b-chat .3302 .1977 .4979 .1797
Llama-2-13b-chat .4429 .1355 .5794 .1186
ChatGPT-3.5-turbo .5231 .2307 .6665 .1952

Fine-tuned
Llama-2-7b-ft .7732 .0670 .7919 .0766
Llama-2-13b-ft .7815 .0797 .8317 .0717
ChatGPT-3.5-turbo-ft .7372 .1379 .7493 .1834

Table 3: Results on the CompLex LCP 2021 dataset. In
bold we denote the best score, and underlined are the
second-best results.

5 Results265

5.1 English Multi-Domain Setup266

We notice that LLM-based methods fall behind267

these classifiers on the CWI Shared dataset (see268

Table 1). The top-performing LLM is ChatGPT-269

3.5-turbo, which generally achieves higher scores,270

especially when fined-tuned, over 80% F1-score.271

Llama-2-7b variants achieve higher scores than the272

larger 13b variant. In addition, we noticed that273

fine-tuned models obtain consistent results across 274

datasets. 275

5.2 Multi-Lingual Setup 276

The results are presented in Table 2 for the German 277

and Spanish languages. On the German dataset, 278

the best LLM result is achieved by Llama2-13b-ft, 279

which achieves 3.7% lower than the random-forest- 280

based classifier. ChatGPT-3.5-turbo showed lower 281

performances than Llama-based models. However, 282

it outperforms all other approaches on the Spanish 283

dataset. The reason could be the imbalance and 284

the text quality across languages in the pre-training 285

stage since Llama models reveal this case. The Ger- 286

man checkpoint was pre-trained on text translated 287

by ChatGPT and generated by GPT-4. 288

5.3 Lexical Complexity Prediction Setup 289

On the CompLex LCP dataset, Pan et al. (2021) 290

achieved the highest scores. For Llama 2, we set 291

the number of inference steps N = 20, while 292

for ChatGPT-3-5 turbo, we evaluated on N = 293

10 inferences (see Appendix G). Refer to Ta- 294

ble 3 for the results. Fine-tuned LLM-based mod- 295

els outperform RoBERTa-based models, the best- 296

performing model being Llama-2-13b-ft. Llama-2- 297

7b-ft performs similarly to the XLM-RoBERTa- 298

based model. We notice a considerable perfor- 299

mance drop in the zero-shot settings, where the 300

models tend to predict and consider the phrases eas- 301

ier (see Appendix F). The ensemble of RoBERTa 302

models outperforms LLMs. 303

6 Conclusions 304

In conclusion, we addressed CWI and LCP us- 305

ing LLMs, specifically Llama 2 and OpenAI’s 306

ChatGPT-3.5 turbo. We observed that these models 307

can determine the word difficulty level in multi- 308

ple domains and languages. But simultaneously, 309

these models struggle to label very difficult phrases 310

correctly. Future directions imply investigating 311

multiple models in more languages, including the 312

state-of-the-art GPT-4 model. Also, as we noticed 313

that the prompts and example selection greatly in- 314

fluence the models’ performance, other future work 315

should rely on reducing hallucination and determin- 316

ing which adversarial examples affect the model’s 317

capabilities most in the context of CWI. 318

4



7 Limitations319

Our approach has some limitations regarding320

prompt design. During experiments, we noticed321

that prompt design can highly influence the results,322

especially in the case of zero-shot settings. Using323

the same prompt across all models is not optimal,324

but we tried to find those instructions that benefit325

all models. Providing the model with specific in-326

structions helps the model to better focus on the327

task and reduce hallucination. One way to mitigate328

hallucinations was to use a specific JSON format329

(see Appendix A), which the model required to330

confirm the task. We do not provide results for the331

zero-shot multi-lingual setup using Llama 2 since332

the model could not output the requested format,333

which made evaluation very difficult.334

Also, we know that random sampling is not the335

optimal solution for choosing fine-tuning exam-336

ples for ChatGPT–3.5-turbo. The size and qual-337

ity of data greatly impact the prediction perfor-338

mance. To reduce this effect, we created a bal-339

anced dataset among label difficulties, such that the340

model equally sees easy and difficult words. We341

also kept a uniform distribution among complexity342

probabilities strictly greater than zero for both tasks343

(CWI and LCP).344

Another limitation during experiments was ac-345

cess to hardware and pricing. We trained and ran346

inferences on NVIDIA RTX 4080 (consumer-class347

GPU) and NVIDIA A100 40GB-PCIe (server-class348

GPU), depending on the minimal requirements to349

run the model. For using OpenAI’s API, we tried350

to keep the budget for all experiments under $50351

while achieving good performances (with the pric-352

ing at the time of writing this paper: $0.0005 per353

1k input tokens and $0.0015 per 1k output tokens354

for chatgpt-3.5-turbo; and $0.0080 per training to-355

kens, $0.003 per 1k input tokens, and $0.006 per356

1k output tokens). For this reason, we limited our357

experiments to only classification on large test sets.358

8 Ethical Considerations359

Since we used pre-trained LLMs, all their limita-360

tions apply to our work. Developing CWI and LCP361

systems can be beneficial for new language learners362

(e.g., chat-based applications in which LLMs help363

new language learners to understand difficult words364

and even provide alternatives), but at the same time,365

because of hallucination and inaccuracies that such366

models may provide, these systems can violate367

codes of ethics and harm or address attacks to such368

individuals. We are aware of the fast-paced devel- 369

opment in the LLM area, and we think this area 370

of research needs some attention. Therefore, we 371

will make the fine-tuned models publicly available 372

for transparency and fair comparison with feature 373

works. These models should only be used for re- 374

search. All the data we used is already publicly 375

available, and the pre-trained LLaMA models are 376

available on HuggingFace5, under the LLaMA 2 377

License Agreement6. We did not use the resources 378

for other purposes than the ones allowed. 379
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A Prompting and Fine-Tuning780

For zero-shot settings, we employed chain of781

thoughts (Wei et al., 2022b) to reduce hallucina-782

tion and keep the model focused on the task. The783

model was asked to confirm the sentence and the784

word and then, before the final answer, to provide785

a short demonstration about the reason for the re-786

sponse. After we fine-tune the model, we follow a787

similar procedure, but we do not ask the model to788

produce a demonstration – only to confirm the task789

and directly provide the answer.790

For fine-tuning, we prepare the dataset as fol-791

lows. First, we discretize the probabilities as fol-792

lows, similar to Shardlow et al. (2021): scores be-793

tween 0 and 0.2 are very easy, between 0.2 and 0.4794

are easy, between 0.4 and 0.6 are neutral, between795

0.6 and 0.8 are difficult, and between 0.8 and 1 are796

very difficult. Next, we prepare the dataset follow-797

ing the prompt template specific to the model. For798

Llama 2 chat models, we followed the inference799

instructions specific to the model.800

Llama 2 models were fine-tuned using801

QLoRA (Dettmers et al., 2023) with 4-bit quan-802

tization. R was set to 16, α to 32 and dropout803

to 0.05. The batch size was set between 10 and804

32, and the learning rate using a linear scheduler805

with 10% warmup and a maximum value of 1e-4.806

Fine-tuning OpenAI’s ChatGPT models involved807

uploading the training and validation files and808

starting the training job. No hyper-parameter809

could be changed. Fine-tuning defaulted to three810

epochs. We limited the training size to 250 samples811

uniformly sampled among labels from the train set812

specific to the dataset task and language.813

A.1 Zero-shot Prompts814

A.1.1 LCP English Prompt815

You are a helpful, honest, and respectful816

assistant for identifying the word com-817

plexity for non-native English speakers.818

You are given one sentence in English819

and a word from that sentence. Your task820

is to evaluate the complexity of the word.821

Answer with one of the following: very822

easy, easy, neutral, difficult, very diffi-823

cult. Be concise. Please, answer using824

the following JSON format:825

{826

"sentence": "the sentence you were827

provided",828

"word": "the word or words you have 829

to analyze", 830

"proof": "explain your response in 831

maximum 50 words", 832

complex": "either very easy, easy, 833

neutral, difficult, or very difficult", 834

} 835

What is the difficulty of ‘{token}‘ from 836

‘{sentence}‘? 837

A.1.2 CWI English Prompt 838

You are a helpful, honest, and respect- 839

ful assistant for identifying the words 840

complexity for beginner English learners. 841

You are given one sentence in English 842

and a phrase from that sentence. Your 843

task is to say whether the phrase is com- 844

plex. Assess the answer for the phrase, 845

given the context from the sentence. Be 846

concise. Please, use the following JSON 847

schema: 848

{ 849

"sentence": "the sentence you were 850

provided", 851

"word": "the word or words you have 852

to analyze", 853

"proof": "explain your response in 854

maximum 50 words", 855

"complex": "either false (for simple) 856

or true (for complex)", 857

} 858

Is ‘{token}‘ complex in 859

‘{sentence}‘? 860

A.1.3 CWI German Prompt 861

Sie sind ein hilfsbereiter, ehrlicher und 862

respektvoller Assistent, um die Wortkom- 863

plexität für Anfänger im Deutschen zu 864

identifizieren. Sie erhalten einen Satz 865

auf Deutsch und eine Phrase aus diesem 866

Satz. Ihre Aufgabe ist es zu sagen, ob 867

die Phrase komplex ist. Bewerten Sie 868

die Antwort für die Phrase, anhand des 869

Kontexts aus dem Satz. Seien Sie kurz. 870

Bitte verwenden Sie das folgende JSON- 871

Schema: 872

{ 873

"sentence": "der Satz, den Sie erhalten 874

haben", 875
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"word": "das Wort oder die Wörter,876

die Sie analysieren müssen",877

"proof": "erklären Sie Ihre Antwort878

in maximal 50 Wörtern",879

"complex": "entweder false (für880

einfach) oder true (für komplex)",881

}882

Ist ‘{token}‘ von ‘{sentence}‘ com-883

plex?884

A.1.4 CWI Spanish Prompt885

Eres un asistente útil, honesto y respetu-886

oso para identificar la complejidad de887

las palabras para los principiantes que888

aprenden español. Se te da una oración889

en español y una frase de esa oración.890

Tu tarea es decir si la frase es compleja.891

Evalúa la respuesta para la frase, dada el892

contexto de la oración. Sé conciso. Por893

favor, usa el siguiente esquema JSON:894

{895

"sentence": "la oración que se te896

proporcionó",897

"word": "la palabra o palabras que898

tienes que analizar",899

"proof": "explica tu respuesta en900

máximo 50 palabras",901

"complex": "false (para simple) o true902

(para complejo)"903

}904

¿Es ‘{token}‘ complejo en905

‘{sentence}‘?906

A.2 Fine-Tune Prompts907

A.2.1 LCP English Prompt908

You are a helpful, honest, and respect-909

ful assistant for identifying the word dif-910

ficulty for non-native English speakers.911

You are given one sentence in English912

and a word from that sentence. Your task913

is to evaluate the difficulty of the word.914

Answer only with one of the following:915

very easy, easy, neutral, difficult, very916

difficult.917

sentence: ‘{sentence}‘918

word: ‘{token}‘919

A.2.2 CWI English Prompt920

You are a helpful, honest, and respectful921

assistant for identifying the word com-922

plexity for non-native English speakers.923

You are given one sentence in English 924

and a word from that sentence. Your task 925

is to say whether a word is complex or 926

not. Answer only with one of the follow- 927

ing: yes, no. 928

sentence: ‘{sentence}‘ 929

word: ‘{token}‘ 930

A.2.3 CWI German Prompt 931

Du bist ein hilfsbereiter, ehrlicher und 932

respektvoller Assistent für die Identi- 933

fizierung der Wortkomplexität für nicht- 934

deutsche Muttersprachler. Dir wird ein 935

Satz auf Deutsch und ein Wort aus 936

diesem Satz gegeben. Deine Aufgabe 937

ist es zu sagen, ob ein Wort komplex ist 938

oder nicht. Antworten nur mit einem der 939

Folgenden: ja, nein. 940

Satz: ‘{sentence}‘ 941

Wort: ‘{token}‘ 942

A.2.4 CWI Spanish Prompt 943

Eres un asistente útil, honesto y respetu- 944

oso para identificar la complejidad de las 945

palabras para hablantes no nativos de in- 946

glés. Se te da una oración en inglés y 947

una palabra de esa oración. Tu tarea es 948

decir si una palabra es compleja o no. 949

Responde solo con una de las siguientes 950

opciones: sí, no. 951

oracion: ‘{sentence}‘ 952

palabra: ‘{token}‘ 953

B LLMs’ Task Understanding 954

In this section, we investigate what is the LLMs’ 955

level to understand the task firsthand before gener- 956

ating any output. That is, we check if the model, 957

before providing the answer, can reproduce what it 958

has to solve (the sentence and word pair). We re- 959

port the sentence error count (S) and the word error 960

count (W). In this setting, we mainly focus on the 961

chat models. In our experiments, the fine-tuned 962

models follow the provided instructions. Note 963

that we do not include results for the multi-lingual 964

datasets (i.e., German, Spanish) since these models 965

could not produce a meaningful output. 966

In the CWI setting, we obtained an output us- 967

ing various packages such as Outlines (Willard and 968

Louf, 2023), but it was not correlated with the ex- 969

amples, and the overall performance was not better 970

than random. The results for the chat models on 971
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English domains are presented in Table 4. When972

the model is larger, in general, the error rates de-973

crease. The ChatGPT model obtains the lowest974

error counts, while the Llama 2 7b model obtains975

the highest. In general, the models struggle to976

understand what is the word they need to evalu-977

ate. Investigating the errors, we mostly see that978

the model considers more words than the target,979

for example, "America" (ground truth) vs "South980

America" (extracted by LLM). Other error cases981

we identified were completely different words to982

evaluate. For example, the target “years” was re-983

placed by Llama-2-13b-chat with “Aegyptosaurus”.984

Text locality is not always the main reason; in the985

previous examples, in the first one, we have local-986

ity; in the second one, the words were in different987

parts of the sentence.988

In the LCP setting, we considered all the sam-989

pling runs, and thus, we reported the average and990

standard deviation across those runs. We report991

lower absolute error counts. Similar to the previ-992

ous setting, we note that the sentence error count993

is lower than the word error count, in most cases994

being closer to 0. In addition, ChatGPT achieves995

error counts very close to 0, meaning that the mod-996

els understand the task it needs to solve. In the case997

of Llama-2-7b, the models struggle to recall the998

word.999

Model News Wikinews Wikipedia
S W S W S W

Llama-2-7b-chat 50 245 120 190 61 85
Llama-2-13b-chat 36 225 44 173 93 125
chatgpt-3.5-turbo 2 47 4 17 0 10

Table 4: LLMs’ task understanding capabilities on
the CWI English multi-domain dataset. The S column
indicates wrong sentences, and the W column indicates
wrong words.

Model LCP-single LCP-multi
S W S W

Llama-2-7b-chat 2.4±0.7 0.1±0.2 1.0±0.2 6.5±0.5

Llama-2-13b-chat 0±0 0.1±0.3 0±0 3.9±1.2

chatgpt-3.5-turbo 0±0 0±0 0.1±0.3 0±0

Table 5: LLMs’ task understanding capabilities on the
LCP English datasets. The S column indicates wrong
sentences, and the W column indicates wrong words.

C LLMs’ Difficulty Understanding1000

In the zero-shot learning stage, before letting the1001

model output the answer, we ask it to provide a1002

brief proof regarding the choice. We ask first about1003

the proof and then ask for the answer to enforce the 1004

model to "think before answer". If we let the model 1005

answer and then provide proof, the proof would 1006

have been influenced by the initial answer, which 1007

would have influenced the model’s internal bias. In 1008

Table 6, we show some examples of reasoning re- 1009

garding the answer provided by Llama-2-13b-chat 1010

on the CWI English dataset. The proof motivates 1011

the answer in our setting, but we notice some flaws 1012

in the reasoning. For example, the model says that 1013

"ft" (i.e., feet as a unit of measurement) is common 1014

in English, but at the same time, it tends to contra- 1015

dict that being an abbreviation makes it difficult to 1016

understand. We notice this pattern quite often in 1017

the Llama models. 1018

D Confusion Matrices on CWI 1019

To investigate how the predictions are affected by 1020

the domain, language, and LLM, we generate the 1021

confusion matrices, which are shown in Figures 1 1022

and 2. The general tendency is that chat models 1023

have higher false-positive or false-negative rates. 1024

The same model checkpoints have the same bias 1025

towards one false rate in the multi-domain setting. 1026

For example, Llama-2-7b-chat has a high false- 1027

positive rate, while Llama-2-13b-chat has a high 1028

false rate. Correlated with the proofs generated 1029

by the LLMs, this is motivated by the fact that 1030

LLMs tend to either overestimate or underestimate 1031

the difficulty of a word. This is especially true 1032

if the model finds a synonym for the target word. 1033

Also, the high false rates correlate with the model’s 1034

incapacity to understand the task in the zero-shot 1035

setting. 1036

On the other hand, fine-tuned models show lower 1037

false-positive/negative rates, meaning that fine- 1038

tuning makes the model focus better on the task 1039

and learn latent instructions directly from the data. 1040

E Fine-tuned Predictions on LCP 1041

We analyzed the complexity probability distribu- 1042

tion outputted by the LLMs in Figures 3, 6, 4, 5, 1043

6. This is constructed by binning the models’ real- 1044

valued estimates (on the x-axis) and generating a 1045

histogram (on the y-axis). The discrete labels were 1046

mapped equidistantly in the range 0-1, i.e., very 1047

easy (VE) in 0-0.2, easy (E) in 0.2-0.4, neutral (N) 1048

in 0.4-0.6, difficult (D) in 0.6-0.8, and very difficult 1049

(VE) in 0.8-1. In gray, we indicate the outside of 1050

the expected label (i.e., wrong labels); in the white 1051

stripe, we indicate the correctly predicted labels. 1052
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Sentence Word Answer Proof Ground
Truth

Toronto traded Stewart to
Chicago early in the 1947-48
season in a deal that brought
Max Bentley to the Leafs.

brought False The verb ’brought’ is not com-
plex as it is a commonly used
verb in everyday language with
a straightforward meaning

True

His use of Russian language
formed the basis of the style of
novelists Ivan Turgenev, Ivan
Goncharov, and Leo Tolstoy, as
well as that of subsequent lyric
poets such as Mikhail Lermon-
tov.

basis False The word ’basis’ is not particu-
larly complex, but the concept it
represents (i.e., the foundation
or starting point of something)
may be unfamiliar to some be-
ginner English learners

True

Vertical distance measurements
in the "down" direction are com-
monly referred to as depth.

depth True The word ’depth’ has multiple
meanings, including a vertical
extent or height, making it po-
tentially complex for beginning
English learners to understand
without proper context or expla-
nation

True

The lack of oxygen above 2,400
meters (8,000 ft) can cause
serious illnesses such as alti-
tude sickness, high altitude pul-
monary edema, and high alti-
tude cerebral edema.

ft True The abbreviation ’ft’ is com-
monly used in English to rep-
resent feet, which is a unit of
measurement. However, in this
context, it may be challenging
for beginners to understand be-
cause they might not be familiar
with the abbreviation.

False

Table 6: Examples of predictions and proofs for the Llama-2-13b-chat model on the CWI English Wikipedia dataset.
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(c) CWI 2018 EN Wikipedia

Figure 1: Confusion matrices computed on the English CWI datasets for News, WikiNews, and Wikipedia domains.
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Prediction
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(b) CWI 2018 ES

Figure 2: Confusion matrices computed on the German and Spanish CWI datasets.

In the case of chat models, we notice a more1053

uniform distribution among models’ predictions,1054

especially for the low-complexity words. The ab-1055

solute error is more than one step in the difficulty1056

scale. We notice that the models struggle to iden-1057

tify the very difficult label, regardless of whether1058

the model was fine-tuned or not. In the fine-tuned1059

setting, we notice that Llama-based models tend to 1060

misclassify neutral and difficult words, generally 1061

considering the words easier than the ground truth. 1062

Also, there is a tendency to label very easy words 1063

as easy. In the case of ChatGPT-3.5-turbo-ft, we no- 1064

tice that the outputs tend to be more deterministic – 1065

the majority of labels lie on the class scores. 1066
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Figure 3: Predictive probability distribution of zero-shot LLMs on LCP single-word test set. Highlighted is the
ground truth interval. Neither model predicts in the VD interval. VE – very easy, E – easy, N – neutral, D – difficult,
VD – very difficult.

F Results Discussions1067

LLMs can grasp word complexity, depending on1068

the model’s capabilities. We observed that perfor-1069

mances across domains, language, and whether we1070

deal with a word or a phrase, are similar if the1071

model is fine-tuned. In the zero-shot setting, the in-1072

put prompt and prediction temperature yield a high1073

variance across the results. Also, we noticed that1074

sometimes the models (especially Llama-2-13b-1075

chat, in the zero-shot setting) refused to answer1076

some examples (especially in the Biblical domain)1077

because of racial discrimination, despite that not1078

being the case. Models tend to consider words eas-1079

ier than they are, mainly because if asked to explain1080

the choice, they could find another synonym that is1081

not necessarily simpler.1082

In addition, zero-shot prompting is achieved ev-1083

ery time poor performances, and the main effect is1084

that models tend to have a high false positive rate1085

in the CWI task. This can be changed during fine-1086

tuning when we notice that imbalanced datasets1087

towards a class lead to the model being biased and1088

producing more often the predominant label from 1089

the fine-tuning set. 1090

G Choice for Number of Inference Steps 1091

As presented in Section 3, the estimated score in the 1092

LCP setting was an average of scores obtained after 1093

N inference steps. We wanted to know what is the 1094

minimum number of inference steps required until 1095

the results do not change significantly anymore. 1096

Therefore, we set N = 25 for Llama-2-7b-ft, N = 1097

20 for Llama-2-13b-ft, and N = 10 for ChatGPT- 1098

3.5-turbo-ft, and then estimated the average score 1099

per number of iterations using bootstrapping, with 1100

100 samples. The plots are shown in Figure 7. We 1101

obtained that at least 10 to 15 runs are required, 1102

after which the scores do not change significantly. 1103
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Figure 4: Predictive probability distribution of zero-shot LLMs on LCP multi-word test set. Highlighted is the
ground truth interval. Neither model predicts in the VD interval. VE – very easy, E – easy, N – neutral, D – difficult,
VD – very difficult.
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(c) ChatGPT-3.5-turbo-ft

Figure 5: Predictive probability distribution of fine-tuned LLMs on LCP single-word test set. Highlighted is the
ground truth interval. Neither model predicts in the VD interval. VE - very easy, E - easy, N - neutral, D - difficult,
VD - very difficult.

17



VE E N D VD

0.0 0.2 0.4 0.6 0.8 1.0
complexity probability

0

1

2

3

4

5

co
un

t

VE E N D VD

0.0 0.2 0.4 0.6 0.8 1.0
complexity probability

0

10

20

30
VE E N D VD

0.0 0.2 0.4 0.6 0.8 1.0
complexity probability

0

10

20

VE E N D VD

0.0 0.2 0.4 0.6 0.8 1.0
complexity probability

0.0

2.5

5.0

7.5

10.0

VE E N D VD

0.0 0.2 0.4 0.6 0.8 1.0
complexity probability

0.0

0.5

1.0

1.5

2.0

(a) Llama-2-7b-ft
VE E N D VD

0.0 0.2 0.4 0.6 0.8 1.0
complexity probability

0

2

4

6

co
un

t

VE E N D VD

0.0 0.2 0.4 0.6 0.8 1.0
complexity probability

0

10

20

30
VE E N D VD

0.0 0.2 0.4 0.6 0.8 1.0
complexity probability

0

10

20

VE E N D VD

0.0 0.2 0.4 0.6 0.8 1.0
complexity probability

0

2

4

6

8

VE E N D VD

0.0 0.2 0.4 0.6 0.8 1.0
complexity probability

0.0

0.5

1.0

1.5

2.0

(b) Llama-2-13b-ft
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(c) ChatGPT-3.5-turbo-ft

Figure 6: Predictive probability distribution of fine-tuned LLMs on LCP multi-word test set. Highlighted is the
ground truth interval. Neither model predicts in the VD interval. VE - very easy, E - easy, N - neutral, D - difficult,
VD - very difficult.
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(a) Pearson score on Llama-2-7b-ft

(b) MAE score on Llama-2-7b-ft

(c) Pearson score on Llama-2-13b-ft

(d) MAE score on Llama-2-13b-ft

(e) Pearson score on ChatGPT-3.5-turbo-ft

(f) MAE score on ChatGPT-3.5-turbo-ft

Figure 7: Estimated Pearson and MAE scores against
the number of LLM inference steps.

19


	Introduction
	Related Work
	Complex Word Identification
	Large Language Models

	Method
	Problem Formulation in Pre-LLM Era
	Problem Formulation in LLM Era
	Prompting LLMs

	Experimental Setup
	Models
	Datasets
	Baselines
	Evaluation

	Results
	English Multi-Domain Setup
	Multi-Lingual Setup
	Lexical Complexity Prediction Setup

	Conclusions
	Limitations
	Ethical Considerations
	Prompting and Fine-Tuning
	Zero-shot Prompts
	LCP English Prompt
	CWI English Prompt
	CWI German Prompt
	CWI Spanish Prompt

	Fine-Tune Prompts
	LCP English Prompt
	CWI English Prompt
	CWI German Prompt
	CWI Spanish Prompt


	LLMs' Task Understanding
	LLMs' Difficulty Understanding
	Confusion Matrices on CWI
	Fine-tuned Predictions on LCP
	Results Discussions
	Choice for Number of Inference Steps

