Investigating Large Language Models for Complex Word Identification in
Multilingual and Multidomain Setups

Anonymous ACL submission

Abstract

Complex Word Identification (CWI) is an im-
portant step in the lexical simplification task
and has recently become a task on its own.
Some variations of this binary classification
task have emerged, such as lexical complex-
ity prediction (LCP) and complexity evaluation
of multi-word expressions (MWE). Large lan-
guage models (LLMs) recently became popular
in the Natural Language Processing commu-
nity because of their versatility and capability
to solve unseen tasks in zero/few-shot settings.
Our work investigates LLM usage, specifically
Llama 2 and ChatGPT 3.5 turbo, in the CWI,
LCP, and MWE settings. We show that LLMs
may struggle in certain conditions or achieve
comparable results against existing methods.

1 Introduction

Complex word identification (CWI) aims to iden-
tify whether words or phrases can be difficult for
a target group of readers to understand. Often, it
is used in lexical simplification — a task that tar-
gets replacing complex words and expressions with
simplified alternatives (North et al., 2023a). CWI
represents the first step, and it was treated as part
of the lexical simplification task until 2012, when
it became a standalone task (Shardlow, 2013).
CWI was initially addressed as a binary classifi-
cation task (Paetzold and Specia, 2016), identify-
ing whether a word is complex in a given sentence.
When the task became more popular (North et al.,
2023b), it was extended to the continuous domain
as Lexical Complexity Prediction (LCP, also re-
ferred to as the probabilistic classification for CWI)
(Yimam et al., 2018) addressing multi-language
and multi-domain settings, and then it was ex-
tended to multi-word expressions (Shardlow et al.,
2021). Recently, new datasets started to emerge in
various languages and domains (Ortiz Zambrano
and Montejo-Réez, 2021; Venugopal et al., 2022;
Ilgen and Biemann, 2023; Zambrano et al., 2023).

Previous approaches to CWI ranged from using
Support Vector Machines (S.P et al., 2016) to deep
neural networks based on Bidirectional Representa-
tion from Encoder Transformers (Pan et al., 2021),
multi-task learning with domain adaptation (Za-
haria et al., 2022), and sequence modeling (Good-
ing and Kochmar, 2019).

With the recent large language models (LLMs)
breakthrough, OpenAl showed that Generative Pre-
trained Transformer (GPT) models (Radford et al.,
2019; Brown et al., 2020) are capable of improved
performances on various natural language process-
ing tasks as we scale up the model size and the
amount of training data. Since ChatGPT' and GPT-
4 (OpenAl et al., 2023) were announced, many
other models (close- and open-source) emerged,
such as PaLM (Anil et al., 2023), LLaMA (Touvron
et al., 2023), Orca (Mitra et al., 2023), and Mis-
tral (Jiang et al., 2023), with better performances,
hence, the race to develop and fine-tune such mod-
els for various applications.

Our work shows that LLMs can address CWI
and LCP and achieve comparable results with state-
of-the-art approaches. We evaluate pre-trained
LLaMA 2 (Touvron et al., 2023) and OpenAl’s
ChatGPT-3 turbo in zero-shot and fine-tuning set-
tings. We summarize the contributions as follows:

* To the best of our knowledge, we are the first
to employ LLMs for CWI and LCP.

* We evaluate LLMs in binary (discrete set of
labels) and probabilistic classification (con-
tinuous space labels) on multi-domain and
multi-lingual corpora.

* We show that fine-tuned LLMs can achieve
comparable results or exceed other existing
approaches with some limitations, and we pro-
vide some insights about the results.
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2 Related Work

2.1 Complex Word Identification

Aroyehun et al. (2018) compared CNN-based mod-
els with various feature engineering methods based
on tree ensembles and features, achieving com-
parable results. Zaharia et al. (2020) employed
zero- and few-shot learning techniques, along with
Transformers and Recurrent Neural Networks, in
a multilingual setting. CWI was also considered
in a sequential task, where Gooding and Kochmar
(2019) used a bidirectional LSTM with word em-
beddings and character-level representations and a
language modeling objective to learn the complex-
ity of words given the context. Other approaches
such as graph-based (Ehara, 2019), domain adapta-
tion (Zaharia et al., 2022), and transformer-based
models (Pan et al., 2021; Cheng Sheang et al.,
2022) were used to improved CWI performances.

2.2 Large Language Models

LLMs were successfully utilized in various gen-
erative tasks (Pu et al., 2023; Chen et al., 2021).
The new paradigm in solving other non-generative
tasks is based on prompting pre-trained language
models to perform the prediction task (Liu et al.,
2023a; Sun et al., 2023). Fine-tuning models on in-
structions showed improved results in zero-shot set-
tings, especially on unseen tasks (Wei et al., 2022a).
Prompt-based methods such as the use of demon-
strations (Min et al., 2022), intermediate reasoning
steps by breaking down complex tasks into simpler
subtasks (also known as a chain of thought) (Wei
et al., 2022b), and using LL.Ms to optimize their
prompts (Zhou et al., 2023) made zero-shot infer-
ence much more appealing due to reduced costs
and more efficient than fine-tuning LL.Ms.

3 Method
3.1 Problem Formulation in Pre-LLM Era

Word complexity can be defined as absolute and
relative (North et al., 2023b). Absolute complexity
is determined by the objective linguistic proper-
ties (e.g., semantic, morphological, phonological),
while relative complexity is related to the subjec-
tive speaker’s point of view (e.g., familiarity with
sound and meaning). In this work, we evaluate
the relative complexity of words, in general, for
non-native speakers. Considering an annotated
dataset D = {(x;,;)}Y, of N samples, the task
can be viewed as a binary classification (known

as CWI), where, given the pair x; = (C;, w;) of
a sentence C; = (wy,wa, ...) and word w; € C;j
the system outputs ylc WI ¢ {0,1} (i.e., complex
or non-complex) (Paetzold and Specia, 2016). A
variation of the CWI task is to evaluate the com-
plexity yMWE € {0,1} of a multi-word expres-
sion e¢; = (wy, we, ...) containing multiple words
wj,j = 1 : |e|, from a given context C; (i.e.,
x; = (Cj,e;)) (Shardlow et al., 2021). Later,
CWI was considered in the continuous domain
(known as LCP), indicating the degree of difficulty
yFCF € [0,1], for the given word w; € C; in the
context C; (Yimam et al., 2018).

3.2 Problem Formulation in LLM Era

Starting from the previous formulation, we derive
the formalism in the context of LLMs.

Binary classification. Given an example z; =
(Ci,w;), the model predicts if a given phrase w;
from the sentence C;; is complex. Since the access
to the tokens logits is limited for closed-source
models (e.g., OpenAl’s ChatGPT), we consider
that the model only outputs “true” or “false” (or any
equivalent form) without a confidence estimation.

Probabilistic classification. The model pro-
duces a real value between O and 1, representing
the degree of complexity for (C;, w;). LLMs are
known to suffer from hallucination (OpenAl et al.,
2023), and directly predicting real values is chal-
lenging. We abide by Liu et al. (2023b)’s solution
for estimating the scoring function. We ask the
model to predict on the 5-point Likert scale, in natu-
ral language, one of “very easy”, “easy”, “neutral”,
“difficult”, or “very difficult”. This scale is con-
verted to a numerical representation using the fol-
lowing mapping: very easy - 0, easy - 0.25, neutral
- 0.5, difficult - 0.75, and very difficult - 1. Since
LLMs output tokens from a probability distribution,
we set the temperature (in our experiments, we use
0.8) to determine how random the outputs are. The
numerical representation constructed from LLM’s
output is denoted as s; € S for a sampling step
k, with S = {0,0.25,0.5,0.75,1}. The model’s
probability to output one 5-point Likert score is
p(sk). The final score S is:

Ep[S] = p(s)-s (1)
sesS

For experiments, we use the sample mean esti-
mator S = % Zle sg of K sampling steps.



3.3 Prompting LLMs

We provide the instructions to the model regarding
the task and how the output should be formatted,
and then we ask the model to predict an example.
All prompt templates are listed in Appendix A,
which were obtained after multiple trial-and-error
interactions until we reached the wanted behavior.
The prompts for German and Spanish are transla-
tions of the English prompts. The same prompts
are used across different models.

4 Experimental Setup

4.1 Models

We employ two families of LLMs: Llama 2 (Tou-
vron et al., 2023) and ChatGPT-3.5-turbo (OpenAl
et al., 2023). For Llama 2, we use the pre-trained 7
and 13 billion parameter variants, both base (pre-
trained on 2 trillion tokens) and chat models (fined-
tuned using reinforcement learning with human
feedback). The chat model is used in the zero-shot
setting. In addition, we fine-tune the base model on
the training set for CWI/LCP. In the multi-lingual
settings, because the base Llama 2 models were not
trained to handle languages other than English, we
use instead checkpoints found on Huggingface for
German? and Spanish?. These checkpoints are used
for Llama 2 in the same way as the English check-
point but in multilingual settings. For ChatGPT-
3.5-turbo (175 billion parameters), we use the lat-
est available checkpoint gpt-3.5-turbo-1106 to
accomplish all experiments. For inference and fine-
tuning, we use OpenAI’s API*.

4.2 Datasets

CompLex LCP 2021. Proposed at SemEval 2021
Task 1 (Shardlow et al., 2021), CompLex LCP 2021
comprises around 10,000 sentences in English from
three domains: European Parliament proceedings,
the Bible, and biomedical literature. The data is
split across two tasks: single-word (Single) and
multi-word expressions (MWE). The complexity is
provided as continuous values between 0 and 1, ad-
dressed as the probabilistic classification task. The
average complexity is 0.3 for single and 0.42 for
MWE. For evaluation, the test set has 907 samples

2https://huggingface.co/LeolM/
leo-hessianai-7b

3https://huggingface.co/clibrain/
Llama-2-7b-ft-instruct-es

4https://platform.openai.com/docs/guides/
fine-tuning

for single words and 185 for multi-word expres-
sions.

CWI Shared Dataset. It was proposed at the
CWI Shared Task in 2018 (Yimam et al., 2018) and
addresses English multi-domain and multi-lingual
settings. The English split contains samples from
three sources (News, WikiNews, and Wikipedia)
totaling approx. 35,000 samples. In the multi-
lingual setting, the dataset features German and
Spanish with approx. 8,000 and 17,600 samples,
respectively, and a French test set containing 2,251
samples. The dataset was developed to address
binary and probabilistic classification tasks by of-
fering probabilities and labels such that samples
with 0% probability are non-complex and others as
complex. We consider only the binary classifica-
tion tasks (see Limitations 7). The English News
dataset has 2,095 samples for the test sets, English
WikiNews has 1,287 samples, English Wikipedia
has 870 samples, German has 961 samples, and
Spanish has 2,233 samples.

4.3 Baselines

We compare against top-performing methods at
CWI Shared task and LCP 2021. Camb (Good-
ing and Kochmar, 2018) employs heterogeneous
features combined with an ensemble of AdaBoost
classifiers. TMU system (Kajiwara and Komachi,
2018) uses a random forest classifier on multiple
hand-crafted features. ITEC (De Hertog and Tack,
2018) combines CNN and LSTM layers. SB@GU
(Alfter and Pildn, 2018) employs Random Forest
and Extra Tree on top of multiple hand-crafted fea-
tures. In addition, we include the XLM-RoBERTa-
based approach combined with text simplification
and domain adaptation (Zaharia et al., 2022), the
MLP combined with Sent2Vec solution Almeida
et al. (2021), and RoBERT aj arcr With an en-
semble of ROBERTa-based models (LR-Ensemble)
(Pan et al., 2021).

4.4 Evaluation

We adopt the same evaluation methodology as in
Shardlow et al. (2021) for CompLex and Yimam
et al. (2018) for CWI datasets. Therefore, we use
Pearson correlation (P) and Mean Average Error
(MAE) on the CompLex dataset and F1-score (F1)
for the CWI dataset. We also include accuracy
(Acc) on the CWI dataset. We report all results on
a single run for CWI and multiple runs (described
by N) for LCP.
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News WikiNews Wikipedia

Model FIt Acet F1 Acet F1f Acct

Camb 873 - 840 - 82 -

ITEC 864 - 811 - 781 -

TMU 83 - 787 - 761 -
Zero-shot

Llama-2-7h-chat 548 59.5 469 487 633 603

Llama-2-13b-chat 476 61.6 41.0 57.6 514 534
ChatGPT-3.5-turbo 473 68.6 47.0 643 523 61.6

Fine-tuned
Llama-2-7b-ft 78.0 829 78.2 8l1.1 774 76.7
Llama-2-13b-ft 77.6 833 77.7 813 73.1 74.6
ChatGPT-3.5-turbo-ft 80.7 83.9 80.9 83.1 80.2 79.4

Table 1: Results on the multi-domian English test set
from CWI 2018 Shared Dataset. In bold, we denote the
best score and underlined are the second-best results for
zero-shot and fine-tuned settings.

German Spanish

Model FI1 Acet F1 Acct

TMU 745 - 710 -
ITEC - - 763 -
SB@GU 742 - 728 -
Llama-2-7b-ft 669 751 663 1723
Llama-2-13b-ft 70.8 76.6 753 81.0

ChatGPT-3.5-turbo-ft 66.6 78.0 78.1 744
ChatGPT-3.5-turbo 61.5 67.6 663 63.7

Table 2: Results on the multi-lingual test sets from CWI
2018 Shared Dataset. In bold we denote the best score,
and underlined are the second-best results.

Single-Word Multi-Word

Model Pt MAE, Pt MAE/|
MLP+Sent2Vec 4598 .0866 .3941 .1145
XLM-RoBERTa-based .7744 .0652 .8285 .0708
RoBERTaLARGE 7903 .0648 .7900 .0753
LR-Ensemble - - 8612 .0616

Zero-shot
Llama-2-7b-chat 3302 .1977 4979 1797
Llama-2-13b-chat 4429 1355 5794 1186
ChatGPT-3.5-turbo 5231 2307 .6665 .1952

Fine-tuned
Llama-2-7b-ft 7732 .0670 .7919 .0766
Llama-2-13b-ft 7815 .0797 .8317 .0717
ChatGPT-3.5-turbo-ft .7372 .1379 .7493 .1834

Table 3: Results on the CompLex LCP 2021 dataset. In
bold we denote the best score, and underlined are the
second-best results.

5 Results

5.1 English Multi-Domain Setup

We notice that LLLM-based methods fall behind
these classifiers on the CWI Shared dataset (see
Table 1). The top-performing LLLM is ChatGPT-
3.5-turbo, which generally achieves higher scores,
especially when fined-tuned, over 80% F1-score.
Llama-2-7b variants achieve higher scores than the
larger 13b variant. In addition, we noticed that

fine-tuned models obtain consistent results across
datasets.

5.2 Multi-Lingual Setup

The results are presented in Table 2 for the German
and Spanish languages. On the German dataset,
the best LLM result is achieved by Llama2-13b-ft,
which achieves 3.7% lower than the random-forest-
based classifier. ChatGPT-3.5-turbo showed lower
performances than Llama-based models. However,
it outperforms all other approaches on the Spanish
dataset. The reason could be the imbalance and
the text quality across languages in the pre-training
stage since Llama models reveal this case. The Ger-
man checkpoint was pre-trained on text translated
by ChatGPT and generated by GPT-4.

5.3 Lexical Complexity Prediction Setup

On the CompLex LCP dataset, Pan et al. (2021)
achieved the highest scores. For Llama 2, we set
the number of inference steps N = 20, while
for ChatGPT-3-5 turbo, we evaluated on N =
10 inferences (see Appendix G). Refer to Ta-
ble 3 for the results. Fine-tuned LL.M-based mod-
els outperform RoBERTa-based models, the best-
performing model being Llama-2-13b-ft. Llama-2-
7b-ft performs similarly to the XLM-RoBERTa-
based model. We notice a considerable perfor-
mance drop in the zero-shot settings, where the
models tend to predict and consider the phrases eas-
ier (see Appendix F). The ensemble of ROBERTa
models outperforms LLMs.

6 Conclusions

In conclusion, we addressed CWI and LCP us-
ing LLMs, specifically Llama 2 and OpenAl’s
ChatGPT-3.5 turbo. We observed that these models
can determine the word difficulty level in multi-
ple domains and languages. But simultaneously,
these models struggle to label very difficult phrases
correctly. Future directions imply investigating
multiple models in more languages, including the
state-of-the-art GPT-4 model. Also, as we noticed
that the prompts and example selection greatly in-
fluence the models’ performance, other future work
should rely on reducing hallucination and determin-
ing which adversarial examples affect the model’s
capabilities most in the context of CWL.



7 Limitations

Our approach has some limitations regarding
prompt design. During experiments, we noticed
that prompt design can highly influence the results,
especially in the case of zero-shot settings. Using
the same prompt across all models is not optimal,
but we tried to find those instructions that benefit
all models. Providing the model with specific in-
structions helps the model to better focus on the
task and reduce hallucination. One way to mitigate
hallucinations was to use a specific JSON format
(see Appendix A), which the model required to
confirm the task. We do not provide results for the
zero-shot multi-lingual setup using Llama 2 since
the model could not output the requested format,
which made evaluation very difficult.

Also, we know that random sampling is not the
optimal solution for choosing fine-tuning exam-
ples for ChatGPT-3.5-turbo. The size and qual-
ity of data greatly impact the prediction perfor-
mance. To reduce this effect, we created a bal-
anced dataset among label difficulties, such that the
model equally sees easy and difficult words. We
also kept a uniform distribution among complexity
probabilities strictly greater than zero for both tasks
(CWI and LCP).

Another limitation during experiments was ac-
cess to hardware and pricing. We trained and ran
inferences on NVIDIA RTX 4080 (consumer-class
GPU) and NVIDIA A100 40GB-PCle (server-class
GPU), depending on the minimal requirements to
run the model. For using OpenAl’s API, we tried
to keep the budget for all experiments under $50
while achieving good performances (with the pric-
ing at the time of writing this paper: $0.0005 per
1k input tokens and $0.0015 per 1k output tokens
for chatgpt-3.5-turbo; and $0.0080 per training to-
kens, $0.003 per 1k input tokens, and $0.006 per
1k output tokens). For this reason, we limited our
experiments to only classification on large test sets.

8 Ethical Considerations

Since we used pre-trained LLMs, all their limita-
tions apply to our work. Developing CWI and LCP
systems can be beneficial for new language learners
(e.g., chat-based applications in which LLMs help
new language learners to understand difficult words
and even provide alternatives), but at the same time,
because of hallucination and inaccuracies that such
models may provide, these systems can violate
codes of ethics and harm or address attacks to such

individuals. We are aware of the fast-paced devel-
opment in the LLM area, and we think this area
of research needs some attention. Therefore, we
will make the fine-tuned models publicly available
for transparency and fair comparison with feature
works. These models should only be used for re-
search. All the data we used is already publicly
available, and the pre-trained LLaMA models are
available on HuggingFace’, under the LLaMA 2
License Agreement®. We did not use the resources
for other purposes than the ones allowed.
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A Prompting and Fine-Tuning

For zero-shot settings, we employed chain of
thoughts (Wei et al., 2022b) to reduce hallucina-
tion and keep the model focused on the task. The
model was asked to confirm the sentence and the
word and then, before the final answer, to provide
a short demonstration about the reason for the re-
sponse. After we fine-tune the model, we follow a
similar procedure, but we do not ask the model to
produce a demonstration — only to confirm the task
and directly provide the answer.

For fine-tuning, we prepare the dataset as fol-
lows. First, we discretize the probabilities as fol-
lows, similar to Shardlow et al. (2021): scores be-
tween 0 and 0.2 are very easy, between 0.2 and 0.4
are easy, between 0.4 and 0.6 are neutral, between
0.6 and 0.8 are difficult, and between 0.8 and 1 are
very difficult. Next, we prepare the dataset follow-
ing the prompt template specific to the model. For
Llama 2 chat models, we followed the inference
instructions specific to the model.

Llama 2 models were fine-tuned using
QLoRA (Dettmers et al., 2023) with 4-bit quan-
tization. R was set to 16, « to 32 and dropout
to 0.05. The batch size was set between 10 and
32, and the learning rate using a linear scheduler
with 10% warmup and a maximum value of 1e-4.
Fine-tuning OpenAI’s ChatGPT models involved
uploading the training and validation files and
starting the training job. No hyper-parameter
could be changed. Fine-tuning defaulted to three
epochs. We limited the training size to 250 samples
uniformly sampled among labels from the train set
specific to the dataset task and language.

A.1 Zero-shot Prompts
A.1.1 LCP English Prompt

You are a helpful, honest, and respectful
assistant for identifying the word com-
plexity for non-native English speakers.
You are given one sentence in English
and a word from that sentence. Your task
is to evaluate the complexity of the word.
Answer with one of the following: very
easy, easy, neutral, difficult, very diffi-
cult. Be concise. Please, answer using
the following JSON format:

"sentence”:
provided”,

"the sentence you were
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"word"”: "the word or words you have
to analyze”,

"proof”: "explain your response in
maximum 50 words”,

complex": "either very easy, easy,
neutral, difficult, or very difficult”,

b

What is the difficulty of ‘{token}¢ from
‘{sentence}‘?

A.1.2 CWI English Prompt

You are a helpful, honest, and respect-
ful assistant for identifying the words
complexity for beginner English learners.
You are given one sentence in English
and a phrase from that sentence. Your
task is to say whether the phrase is com-
plex. Assess the answer for the phrase,
given the context from the sentence. Be
concise. Please, use the following JSON

schema:
{
"sentence”": "the sentence you were
provided”,
"word”: "the word or words you have
to analyze”,
"proof"”: "explain your response in
maximum 50 words”,
"complex”: "either false (for simple)
or true (for complex)”,
}
Is ‘{token}‘ complex in

‘{sentence}‘?

A.1.3 CWI German Prompt

Sie sind ein hilfsbereiter, ehrlicher und
respektvoller Assistent, um die Wortkom-
plexitit fiir Anfanger im Deutschen zu
identifizieren. Sie erhalten einen Satz
auf Deutsch und eine Phrase aus diesem
Satz. Ihre Aufgabe ist es zu sagen, ob
die Phrase komplex ist. Bewerten Sie
die Antwort fiir die Phrase, anhand des
Kontexts aus dem Satz. Seien Sie kurz.
Bitte verwenden Sie das folgende JSON-
Schema:

"sentence”: "der Satz, den Sie erhalten
haben”,



"word”: "das Wort oder die Worter,
die Sie analysieren missen”,
"proof"”: "erklaren Sie Ihre Antwort
in maximal 5@ Wortern",
"complex”: "entweder false (fir
einfach) oder true (fur komplex)",

b

Ist ‘{token}‘ von ‘{sentence}‘ com-
plex?

A.1.4 CWI Spanish Prompt

Eres un asistente Util, honesto y respetu-
0so para identificar la complejidad de
las palabras para los principiantes que
aprenden espafiol. Se te da una oracion
en espafiol y una frase de esa oracidn.
Tu tarea es decir si la frase es compleja.
Evalia la respuesta para la frase, dada el
contexto de la oracién. Sé conciso. Por
favor, usa el siguiente esquema JSON:

{

"sentence”: "la oracidon que se te
proporciono”,

"word”: "la palabra o palabras que

tienes que analizar”,
"proof"”: "explica tu respuesta en
maximo 50 palabras”,
"complex": "false (para simple) o true
(para complejo)”

3

(Es ‘{token}* en

‘{sentence}‘?

complejo

A.2 Fine-Tune Prompts
A.2.1 LCP English Prompt

You are a helpful, honest, and respect-
ful assistant for identifying the word dif-
ficulty for non-native English speakers.
You are given one sentence in English
and a word from that sentence. Your task
is to evaluate the difficulty of the word.
Answer only with one of the following:
very easy, easy, neutral, difficult, very
difficult.

sentence: ‘{sentence}‘
word: ‘{token}‘
A.2.2 CWI English Prompt

You are a helpful, honest, and respectful
assistant for identifying the word com-
plexity for non-native English speakers.
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You are given one sentence in English
and a word from that sentence. Your task
is to say whether a word is complex or
not. Answer only with one of the follow-
ing: yes, no.

sentence: ‘{sentence}*
word: ‘{token}*

A.2.3 CWI German Prompt

Du bist ein hilfsbereiter, ehrlicher und
respektvoller Assistent fiir die Identi-
fizierung der Wortkomplexitit fiir nicht-
deutsche Muttersprachler. Dir wird ein
Satz auf Deutsch und ein Wort aus
diesem Satz gegeben. Deine Aufgabe
ist es zu sagen, ob ein Wort komplex ist
oder nicht. Antworten nur mit einem der
Folgenden: ja, nein.

Satz: ‘{sentence}‘
Wort: ‘{token}*

A.2.4 CWI Spanish Prompt

Eres un asistente 1til, honesto y respetu-
0so para identificar la complejidad de las
palabras para hablantes no nativos de in-
glés. Se te da una oracién en inglés y
una palabra de esa oracién. Tu tarea es
decir si una palabra es compleja o no.
Responde solo con una de las siguientes
opciones: si, no.

oracion: ‘{sentence}‘
palabra: ‘{token}‘

B LLMs’ Task Understanding

In this section, we investigate what is the LLMs’
level to understand the task firsthand before gener-
ating any output. That is, we check if the model,
before providing the answer, can reproduce what it
has to solve (the sentence and word pair). We re-
port the sentence error count (S) and the word error
count (W). In this setting, we mainly focus on the
chat models. In our experiments, the fine-tuned
models follow the provided instructions. Note
that we do not include results for the multi-lingual
datasets (i.e., German, Spanish) since these models
could not produce a meaningful output.

In the CWI setting, we obtained an output us-
ing various packages such as Outlines (Willard and
Louf, 2023), but it was not correlated with the ex-
amples, and the overall performance was not better
than random. The results for the chat models on



English domains are presented in Table 4. When
the model is larger, in general, the error rates de-
crease. The ChatGPT model obtains the lowest
error counts, while the Llama 2 7b model obtains
the highest. In general, the models struggle to
understand what is the word they need to evalu-
ate. Investigating the errors, we mostly see that
the model considers more words than the target,
for example, "America" (ground truth) vs "South
America" (extracted by LLM). Other error cases
we identified were completely different words to
evaluate. For example, the target “years” was re-
placed by Llama-2-13b-chat with “Aegyptosaurus”.
Text locality is not always the main reason; in the
previous examples, in the first one, we have local-
ity; in the second one, the words were in different
parts of the sentence.

In the LCP setting, we considered all the sam-
pling runs, and thus, we reported the average and
standard deviation across those runs. We report
lower absolute error counts. Similar to the previ-
ous setting, we note that the sentence error count
is lower than the word error count, in most cases
being closer to 0. In addition, ChatGPT achieves
error counts very close to 0, meaning that the mod-
els understand the task it needs to solve. In the case
of Llama-2-7b, the models struggle to recall the
word.

News Wikinews Wikipedia
Model S WS WS W
Llama-2-7b-chat 50 245 120 190 61 85
Llama-2-13b-chat 36 225 44 173 93 125
chatgpt-3.5-turbo 2 47 4 17 0 10

Table 4: LLMs’ task understanding capabilities on
the CWI English multi-domain dataset. The S column
indicates wrong sentences, and the W column indicates
wrong words.

LCP-single LCP-multi
Model S W S W
Llama-2-7b-chat 2.4.07 0.1102 1.0402 6.5105
Llama-2-13b-chat 019 0.1103 0Ox0 3.941.2
chatgpt-3.5-turbo 04 O0+0 0.1103 Oxo

Table 5: LLMs’ task understanding capabilities on the
LCP English datasets. The S column indicates wrong
sentences, and the W column indicates wrong words.

C LLMs’ Difficulty Understanding

In the zero-shot learning stage, before letting the
model output the answer, we ask it to provide a
brief proof regarding the choice. We ask first about
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the proof and then ask for the answer to enforce the
model to "think before answer". If we let the model
answer and then provide proof, the proof would
have been influenced by the initial answer, which
would have influenced the model’s internal bias. In
Table 6, we show some examples of reasoning re-
garding the answer provided by Llama-2-13b-chat
on the CWI English dataset. The proof motivates
the answer in our setting, but we notice some flaws
in the reasoning. For example, the model says that
"ft" (i.e., feet as a unit of measurement) is common
in English, but at the same time, it tends to contra-
dict that being an abbreviation makes it difficult to
understand. We notice this pattern quite often in
the Llama models.

D Confusion Matrices on CWI

To investigate how the predictions are affected by
the domain, language, and LLM, we generate the
confusion matrices, which are shown in Figures 1
and 2. The general tendency is that chat models
have higher false-positive or false-negative rates.
The same model checkpoints have the same bias
towards one false rate in the multi-domain setting.
For example, Llama-2-7b-chat has a high false-
positive rate, while Llama-2-13b-chat has a high
false rate. Correlated with the proofs generated
by the LLMs, this is motivated by the fact that
LLMs tend to either overestimate or underestimate
the difficulty of a word. This is especially true
if the model finds a synonym for the target word.
Also, the high false rates correlate with the model’s
incapacity to understand the task in the zero-shot
setting.

On the other hand, fine-tuned models show lower
false-positive/negative rates, meaning that fine-
tuning makes the model focus better on the task
and learn latent instructions directly from the data.

E Fine-tuned Predictions on LCP

We analyzed the complexity probability distribu-
tion outputted by the LLMs in Figures 3, 6, 4, 5,
6. This is constructed by binning the models’ real-
valued estimates (on the x-axis) and generating a
histogram (on the y-axis). The discrete labels were
mapped equidistantly in the range 0-1, i.e., very
easy (VE) in 0-0.2, easy (E) in 0.2-0.4, neutral (N)
in 0.4-0.6, difficult (D) in 0.6-0.8, and very difficult
(VE) in 0.8-1. In gray, we indicate the outside of
the expected label (i.e., wrong labels); in the white
stripe, we indicate the correctly predicted labels.



Sentence

Word Answer

Proof

Ground
Truth

Toronto traded Stewart to
Chicago early in the 1947-48
season in a deal that brought
Max Bentley to the Leafs.

brought False

The verb ’brought’ is not com-
plex as it is a commonly used
verb in everyday language with
a straightforward meaning

True

His use of Russian language
formed the basis of the style of
novelists Ivan Turgenev, Ivan
Goncharov, and Leo Tolstoy, as
well as that of subsequent lyric
poets such as Mikhail Lermon-
tov.

basis

False

The word ’basis’ is not particu-
larly complex, but the concept it
represents (i.e., the foundation
or starting point of something)
may be unfamiliar to some be-
ginner English learners

True

Vertical distance measurements
in the "down" direction are com-
monly referred to as depth.

depth

True

The word ’depth’ has multiple
meanings, including a vertical
extent or height, making it po-
tentially complex for beginning
English learners to understand
without proper context or expla-
nation

True

The lack of oxygen above 2,400
meters (8,000 ft) can cause
serious illnesses such as alti-
tude sickness, high altitude pul-
monary edema, and high alti-
tude cerebral edema.

ft

True

The abbreviation ’ft’ is com-
monly used in English to rep-
resent feet, which is a unit of
measurement. However, in this
context, it may be challenging
for beginners to understand be-
cause they might not be familiar
with the abbreviation.

False
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Table 6: Examples of predictions and proofs for the Llama-2-13b-chat model on the CWI English Wikipedia dataset.
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Figure 1: Confusion matrices computed on the English CWI datasets for News, WikiNews, and Wikipedia domains.

% chatgpt-3.5-turbo chatgpt-3.5-turbo-ft Llama-2-7b-ft Llama-2-13b-ft
a
=1 g 183 45 111 119
29
Ec
5 2
c
38
1G] g— 128 248 166 210 133 243 105 271
]
non-complex complex non-complex complex non-complex complex non-complex complex
Prediction Prediction Prediction Prediction
(a) CWI 2018 DE
% chatgpt-3.5-turbo chatgpt-3.5-turbo-ft Llama-2-7b-ft Llama-2-13b-ft
a
< £ PP 504 321 166
29
Ec
5 2
c
38
1G] g— 248 659 298 609 259 648
o
o

non-complex complex
Prediction

non-complex complex
Prediction

non-complex complex
Prediction

(b) CWI 2018 ES

non-complex complex
Prediction

Figure 2: Confusion matrices computed on the German and Spanish CWI datasets.

In the case of chat models, we notice a more
uniform distribution among models’ predictions,
especially for the low-complexity words. The ab-
solute error is more than one step in the difficulty
scale. We notice that the models struggle to iden-
tify the very difficult label, regardless of whether
the model was fine-tuned or not. In the fine-tuned
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setting, we notice that Llama-based models tend to
misclassify neutral and difficult words, generally
considering the words easier than the ground truth.
Also, there is a tendency to label very easy words
as easy. In the case of ChatGPT-3.5-turbo-ft, we no-
tice that the outputs tend to be more deterministic —
the majority of labels lie on the class scores.
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Figure 3: Predictive probability distribution of zero-shot LLMs on LCP single-word test set. Highlighted is the
ground truth interval. Neither model predicts in the VD interval. VE — very easy, E — easy, N — neutral, D — difficult,

VD - very difficult.

F Results Discussions

LLMs can grasp word complexity, depending on
the model’s capabilities. We observed that perfor-
mances across domains, language, and whether we
deal with a word or a phrase, are similar if the
model is fine-tuned. In the zero-shot setting, the in-
put prompt and prediction temperature yield a high
variance across the results. Also, we noticed that
sometimes the models (especially Llama-2-13b-
chat, in the zero-shot setting) refused to answer
some examples (especially in the Biblical domain)
because of racial discrimination, despite that not
being the case. Models tend to consider words eas-
ier than they are, mainly because if asked to explain
the choice, they could find another synonym that is
not necessarily simpler.

In addition, zero-shot prompting is achieved ev-
ery time poor performances, and the main effect is
that models tend to have a high false positive rate
in the CWI task. This can be changed during fine-
tuning when we notice that imbalanced datasets
towards a class lead to the model being biased and
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producing more often the predominant label from
the fine-tuning set.

G Choice for Number of Inference Steps

As presented in Section 3, the estimated score in the
LCP setting was an average of scores obtained after
N inference steps. We wanted to know what is the
minimum number of inference steps required until
the results do not change significantly anymore.
Therefore, we set N = 25 for Llama-2-7b-ft, N =
20 for Llama-2-13b-ft, and N = 10 for ChatGPT-
3.5-turbo-ft, and then estimated the average score
per number of iterations using bootstrapping, with
100 samples. The plots are shown in Figure 7. We
obtained that at least 10 to 15 runs are required,
after which the scores do not change significantly.
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Figure 7: Estimated Pearson and MAE scores against
the number of LLM inference steps.

19



	Introduction
	Related Work
	Complex Word Identification
	Large Language Models

	Method
	Problem Formulation in Pre-LLM Era
	Problem Formulation in LLM Era
	Prompting LLMs

	Experimental Setup
	Models
	Datasets
	Baselines
	Evaluation

	Results
	English Multi-Domain Setup
	Multi-Lingual Setup
	Lexical Complexity Prediction Setup

	Conclusions
	Limitations
	Ethical Considerations
	Prompting and Fine-Tuning
	Zero-shot Prompts
	LCP English Prompt
	CWI English Prompt
	CWI German Prompt
	CWI Spanish Prompt

	Fine-Tune Prompts
	LCP English Prompt
	CWI English Prompt
	CWI German Prompt
	CWI Spanish Prompt


	LLMs' Task Understanding
	LLMs' Difficulty Understanding
	Confusion Matrices on CWI
	Fine-tuned Predictions on LCP
	Results Discussions
	Choice for Number of Inference Steps

