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Abstract

Multivariate time-series data in fields like healthcare and industry are informa-
tive but challenging due to high dimensionality and lack of labels. Recent self-
supervised learning methods excel in learning rich representations without la-
bels but struggle with disentangled embeddings and inductive bias issues like
transformation-invariance. To address these challenges, we introduce TimeDRL,
a framework for multivariate time-series representation learning with dual-level
disentangled embeddings. TimeDRL features: (i) disentangled timestamp-level and
instance-level embeddings using a [CLS] token strategy; (ii) timestamp-predictive
and instance-contrastive tasks for representation learning; and (iii) avoidance of
augmentation methods to eliminate inductive biases. Experiments on forecasting
and classification datasets show TimeDRL outperforms existing methods, with
further validation in semi-supervised settings with limited labeled data.

1 Introduction

Multivariate time-series data are critical in applications like power forecasting [1, 2] and smartwatch
activity classification [3, 4], but they require extensive labeled data due to their complexity. To
overcome this, researchers are increasingly using unsupervised representation learning, especially
self-supervised learning (SSL), to extract embeddings from large unlabeled datasets, which can then
be fine-tuned with limited labeled data for specific tasks. SSL has shown success in fields like NLP
[5, 6] and computer vision [7, 8, 9], but its application to time-series data presents two challenges.

The first challenge is learning disentangled dual-level representations. Existing methods typically
focus on either timestamp-level [10, 11] or instance-level embeddings [12, 13, 14], but not both,
despite their distinct roles—timestamp-level for tasks like forecasting and anomaly detection, and
instance-level for classification and clustering [15]. While instance-level embeddings can theoreti-
cally be derived from timestamp-level ones via pooling [10], this often leads to anisotropy issues,
limiting their expressiveness [16, 17, 18]. The second challenge is inductive bias, which arises from
inappropriate data augmentation methods borrowed from other domains, such as image rotation or
masking in NLP [19, 20, 5], which can distort temporal patterns crucial to time-series analysis. Even
time-series-specific augmentations like permutation [21] and cropping [10] may impose limiting
assumptions about transformation invariance, overlooking the diverse nature of time-series datasets.

To address the challenges in time-series SSL, we propose TimeDRL, a framework that learns
disentangled dual-level embeddings for multivariate time-series, optimizing both timestamp-level and
instance-level representations for broad applicability across downstream tasks. The contributions are:

• Disentangled Dual-Level Embeddings: TimeDRL introduces a [CLS] token strategy
with patched time-series data, enabling effective learning of both timestamp-level and
instance-level embeddings, ensuring rich semantic capture for diverse tasks.
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Figure 1: Two categories of time-series representation learning. (a) Entangled learning derives
timestamp-level embeddings first, followed by pooling to extract instance-level embeddings. (b)
Disentangled learning, as in TimeDRL, separately derives both embedding types.

Figure 2: Two categories of self-supervised learning. (a) and (c) show predictive learning, using a
single representation to predict inherent features. (b) and (d) depict contrastive learning, focusing on
distinguishing data differences. TimeDRL avoids augmentation in both to prevent inductive bias.

• Dual Pretext Tasks: Two tailored pretext tasks are employed—timestamp-predictive for
timestamp-level optimization and instance-contrastive for instance-level—ensuring special-
ized and effective learning for each level.

• Mitigation of Inductive Bias: TimeDRL avoids common inductive biases by not applying
external augmentations, instead using dropout layers in the instance-contrastive task and a
reconstruction approach without masking in the timestamp-predictive task.

• Proven Effectiveness: TimeDRL outperforms state-of-the-art methods across 11 real-world
time-series forecasting and classification benchmarks, demonstrating its generalizability.

2 Method

Given an unlabeled set of N multivariate time-series samples Du = {x(n)}Nn=1, the goal is to develop
an encoder network fθ that maps each sample x(n) to its corresponding representation z(n). For
simplicity, the sample index (n) is omitted below. The encoder fθ produces either (i) Timestamp-
Level Embedding: x ∈ RT×C is encoded into zt ∈ RT×Dt , where T is the sequence length, C is the
number of features, and Dt is the dimension of the timestamp-level embedding, or (ii) Instance-Level
Embedding: x ∈ RT×C is encoded into zi ∈ RDi , where Di is the dimension of the instance-level
embedding. Here, zi represents the overall information of the entire time-series x.

2.1 Disentangled Dual-Level Embeddings

In BERT and RoBERTa, the [CLS] token is used for sentence-level embeddings, which inspired
us to adopt it for instance-level embeddings in the time-series domain. Although instance-level
embeddings can be derived from timestamp-level ones through pooling methods like global average
pooling [10], this can lead to anisotropy problems [16, 17, 18], where embeddings are confined to a
narrow region in the space, limiting their diversity. NLP studies [22, 23] have shown that optimizing
the [CLS] token through contrastive learning produces better results than traditional pooling methods.

To generate embeddings, we normalize the input x ∈ RT×C using instance normalization (IN) [24]
and apply patching to produce xpatched ∈ RTp×C·P , where Tp is the number of patches and P the
patch length. Later, a [CLS] token is appended, forming the encoder input xenc_in ∈ R(1+Tp)×C·P .
The encoder fθ consists of a linear token encoding layer Wtoken ∈ RD×C·P , a positional encoding
layer PE ∈ R(1+Tp)×D, and Transformer blocks TBs. This produces the final embeddings z ∈
R(1+Tp)×D as z = TBs(xenc_inW

⊤
token + PE). The instance-level embedding zi ∈ RD is extracted

from the first position of the embedding z[0, :], corresponding to the [CLS] token, while the timestamp-
level embedding zt ∈ RTp×D is derived from the remaining positions z[1 : Tp + 1, :]. This approach
avoids the anisotropy problem and leverages the strengths of Transformers in time-series SSL.
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Figure 3: TimeDRL Framework. The framework has two stages: (a) Pre-training and (b) Fine-
tuning. In (a), a Siamese network with a Transformer encoder generates two views of embeddings
using dropout layer randomness, avoiding data augmentations. In (b), these embeddings are fine-tuned
for time-series forecasting and classification tasks, highlighting TimeDRL’s adaptability.

2.2 Timestamp-Predictive Task in TimeDRL

To capture relationships between timestamps, we develop a timestamp-predictive task that derives
timestamp-level embeddings through predictive loss, avoiding inductive bias. Unlike methods in
NLP [5, 25] and time-series [26] that rely on augmentation like masked language modeling (MLM),
TimeDRL focuses on direct reconstruction of patched time-series data without augmentation.

Given a timestamp-level embedding zt, it passes through a predictive head pθ (a linear layer) to
generate a prediction. The predictive loss LP is calculated as the Mean Squared Error (MSE) between
the original patched data xpatched and the predicted output: LP = MSE(xpatched, pθ(zt)). The
instance-level embeddings zi are not updated by this loss. Since the input x is processed twice to
generate two views, z1 and z2, the predictive loss is computed for both timestamp-level embeddings
z1t and z2t as: LP 1 = MSE(xpatched, pθ(z1t )) and LP 2 = MSE(xpatched, pθ(z2t )). The total predictive
loss LP is the average of LP 1 and LP 2 : LP = 1

2LP 1 + 1
2LP 2 .

2.3 Instance-Contrastive Task in TimeDRL

To capture the overall information of the entire series, we develop an instance-contrastive task to
derive instance-level embeddings through contrastive loss. In contrastive learning, two different views
of embeddings are needed. To avoid data augmentations, we introduce randomness using dropout
layers within the encoder, generating two distinct views by passing the data through the encoder
twice: z1 = fθ(xpatched) and z2 = fθ(xpatched). The first position of each embedding, z1i = z1[0, :]
and z2i = z2[0, :], is used as the instance-level embedding, avoiding external data augmentations and
inductive bias. To address sampling bias in contrastive learning, we remove negative samples and
focus exclusively on positive pairs, preventing model collapse by using a stop-gradient operation.

After obtaining instance-level embeddings z1i and z2i , they are passed through an instance-contrastive
head cθ (a two-layer MLP) to produce ẑ1i = cθ(z1i ) and ẑ2i = cθ(z2i ). The contrastive loss is calculated
to align ẑ1i with z2i using negative cosine similarity: LC1 = −cosine(ẑ1i , stop_gradient(z2i )). A
symmetric loss is also calculated: LC2 = −cosine(ẑ2i , stop_gradient(z1i )). The total contrastive
loss LC is the average of LC1 and LC2 : LC = 1

2LC1 + 1
2LC2 . Finally, the overall loss combines

timestamp-predictive and instance-contrastive tasks, with λ balancing them: L = LP + λ · LC .

3 Experiments

We evaluate TimeDRL in two key areas: forecasting, testing timestamp-level embeddings, and
classification, focusing on instance-level embeddings.

3.1 Linear Evaluation on Time-Series Forecasting (TSF)

To evaluate TimeDRL’s timestamp-level embeddings, we perform a linear evaluation on time-
series forecasting. The encoder is pre-trained with pretext tasks, then frozen, and a linear layer
is trained for the downstream forecasting task. Following SimTS [11], we set prediction lengths T ∈
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Table 1: Linear Eval on Multivariate TSF.
Unsupervised Representation Learning End-to-end ForecastingMethods TimeDRL SimTS TS2Vec TNC CoST Informer TCN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 0.396 0.421 0.643 0.582 0.794 0.650 0.904 0.702 0.650 0.585 0.907 0.934 0.872 0.692
ETTh2 0.303 0.360 1.165 0.798 1.544 0.947 1.869 1.053 1.283 0.851 2.371 1.199 2.564 1.216
ETTm1 0.321 0.364 0.393 0.423 0.631 0.554 0.740 0.599 0.419 0.439 0.749 0.640 0.751 0.610
ETTm2 0.208 0.283 0.572 0.502 0.652 0.543 0.784 0.608 0.644 0.534 1.003 0.654 2.042 0.960

Exchange 0.247 0.315 0.789 0.613 0.835 0.622 0.732 0.583 1.049 0.742 1.308 0.888 2.689 1.356
Weather 0.199 0.239 0.424 0.458 0.456 0.476 0.445 0.470 0.430 0.464 0.574 0.552 0.440 0.461

Table 2: Linear Eval on Univariate TSF.
Unsupervised Representation Learning End-to-end ForecastingMethods TimeDRL SimTS TS2Vec TNC CoST Informer TCN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 0.061 0.188 0.080 0.210 0.116 0.258 0.147 0.301 0.091 0.228 0.186 0.327 0.326 0.470
ETTh2 0.147 0.297 0.159 0.306 0.166 0.319 0.168 0.322 0.161 0.307 0.204 0.358 0.180 0.335
ETTm1 0.036 0.138 0.059 0.158 0.065 0.181 0.079 0.205 0.054 0.164 0.194 0.337 0.134 0.270
ETTm2 0.085 0.205 0.109 0.209 0.112 0.243 0.114 0.248 0.098 0.221 0.136 0.273 0.134 0.268

Exchange 0.346 0.375 0.443 0.423 0.419 0.427 0.524 0.502 0.455 0.431 0.908 0.646 0.390 0.407
Weather 0.043 0.127 0.162 0.303 0.181 0.308 0.175 0.303 0.183 0.307 0.223 0.370 0.166 0.291

{24, 48, 168, 336, 720} for ETTh1, ETTh2, Exchange, and Weather, and T ∈ {24, 48, 96, 228, 672}
for ETTm1 and ETTm2. TimeDRL demonstrates its versatility with an average MSE improvement
of 58.02% for multivariate and 29.09% for univariate forecasting (Table 1 and 2).

3.2 Linear Evaluation on Time-Series Classification (TSC)

To assess TimeDRL’s instance-level embeddings, we use a linear evaluation for time-series classifi-
cation. TimeDRL shows an average accuracy improvement of 1.48% over state-of-the-art methods
(Table 3). On challenging datasets like FingerMovements, TimeDRL achieves a 22.86% accuracy
boost and a 58.13% improvement in Cohen’s Kappa. In the Epilepsy dataset, TimeDRL’s accuracy is
only 0.07% lower than the best baseline, demonstrating its strong performance with univariate data.

Table 3: Linear evaluation on TSC.
Dataset Metric TimeDRL MHCCL CCL SimCLR BYOL TS2Vec TSTCC T-Loss

ACC 64.00 52.09 50.23 49.20 49.60 50.00 50.17 50.50
MF1 63.77 50.51 47.32 43.08 49.38 49.99 49.07 50.33FingerMovements
κ 28.26 17.87 9.18 -0.69 -0.49 -0.01 0.33 4.01

ACC 98.00 98.69 91.27 89.24 94.93 97.83 97.44 97.86
MF1 98.01 98.71 88.61 89.17 94.96 97.80 97.45 97.87PenDigits
κ 97.78 97.43 87.66 88.04 94.37 97.59 97.16 97.63

ACC 89.01 91.60 86.84 81.06 89.46 90.47 89.22 91.06
MF1 89.41 91.77 83.56 80.62 89.31 90.46 89.23 90.94HAR
κ 86.79 89.90 81.46 77.25 87.33 89.15 87.03 89.26

ACC 97.78 97.85 95.47 93.00 98.08 96.32 97.19 96.94
MF1 96.53 95.44 91.38 88.09 96.99 94.27 95.47 95.20Epilepsy
κ 93.07 91.08 79.42 76.27 93.99 88.54 90.94 90.41

ACC 91.45 93.60 85.18 83.04 87.84 92.33 81.48 91.48
MF1 82.37 91.70 81.22 75.83 84.02 90.27 69.17 88.79WISDM
κ 87.85 90.96 79.19 75.15 82.43 90.36 73.13 87.79

Figure 4: Semi-supervised learning.

3.3 Semi-supervised learning

Self-supervised learning thrives in semi-supervised settings with limited labeled data and abundant
unlabeled data. We first pre-train an encoder on unlabeled data, then fine-tune it with limited labeled
data, adjusting the encoder weights during fine-tuning. To simulate limited labels, we withhold some
labels in our datasets. Figure 4 shows that TimeDRL boosts forecasting and classification performance,
especially as labeled data decreases, with benefits evident even with full label availability.

3.4 Ablation Study

We conducted ablation studies to assess the impact of key components in the TimeDRL framework,
including pretext tasks, data augmentation, pooling methods, encoder architectures, and stop-gradient
operations. The results highlight the importance of each component in enhancing the model’s
performance across different time-series tasks. Detailed findings are provided in Appendix B.8.

4 Conclusion

This paper presents TimeDRL, a novel framework for multivariate time-series representation learning
with disentangled dual-level embeddings, optimized for tasks like forecasting and classification.
TimeDRL uses a [CLS] token strategy to extract instance-level embeddings and employs two pretext
tasks: a timestamp-predictive task for timestamp-level embeddings and an instance-contrastive task
for instance-level embeddings. To prevent inductive bias, TimeDRL avoids direct data augmentations,
relying instead on reconstruction error and dropout randomness. Experiments on 6 forecasting
and 5 classification datasets show TimeDRL’s superiority, with a 58.02% improvement in MSE for
forecasting and a 1.48% accuracy boost for classification. TimeDRL also excels in semi-supervised
learning with limited labeled data. Future work will enhance TimeDRL for classification and explore
comparisons with large language models (LLMs) in time-series analysis.
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A Related Work

A.1 Foundational Concepts of Self-Supervised Learning: A Pre-Time-Series Perspective

Self-Supervised Learning (SSL) techniques have proven to be effective for learning generic represen-
tations by designing pretext tasks, which are generally categorized into two main types: predictive
and contrastive learning [27]. As shown in Figure 2, predictive learning involves using a single
representation to forecast characteristics that are intrinsic to the data. Conversely, contrastive learning
focuses on discerning subtle differences between data samples by calculating loss based on pairs of
representations. Siamese networks [28], which are weight-sharing neural networks, are frequently
utilized in contrastive learning to process input pairs simultaneously.

The concepts of predictive and contrastive learning initially arose in the fields of Natural Language
Processing (NLP) and Computer Vision (CV). In NLP, BERT [5] introduces predictive tasks such as
masked language modeling and next sentence prediction to derive semantically rich representations,
whereas GPT [6] uses autoregressive predictive tasks to showcase its few-shot learning capabilities.
SimCSE [22] enhances sentence-level embeddings using contrastive tasks applied to the [CLS] token,
incorporating dropout layers to add variability without the need for external augmentation techniques.
In CV, SimCLR [7] leverages contrastive learning to create detailed representations by treating
different augmented views of the same instance as positive pairs, with all other instances in the
minibatch treated as negative pairs. BYOL [8] and SimSiam [9], however, implement an additional
prediction head along with a stop-gradient strategy to circumvent the use of negative samples and to
eliminate the requirement for large batch sizes.

Recently, SSL methods have been adopted in new domains, such as tabular data and Graph Neural
Networks (GNNs). In the realm of tabular data, VIME [29] introduces a predictive task involving the
estimation of a mask vector using an autoencoder structure, while SCARF [30] applies contrastive
learning to capture more refined representations. In GNNs, GraphCL [31] and BGRL [32] have
successfully implemented contrastive learning in tasks such as graph classification and edge prediction.
However, applying SSL techniques across domains often introduces inductive bias. For example, data
augmentation methods used in CV, such as image colorization [19] and rotation [20], or masking [5]
and synonym replacement [33] in NLP, may lead to biases that are not suitable for the target domain.
To mitigate this, domain-specific solutions have been proposed in various studies. For instance, MTR
[34] in tabular data introduces a specially designed augmentation method for tabular formats. In
GNNs, SimGRACE [35] completely avoids the use of data augmentation. Taking inspiration from
this, TimeDRL eliminates the use of data augmentation across all pretext tasks to minimize any
potential inductive biases.

A.2 Self-Supervised Learning for Time-Series Data

Self-supervised learning for time-series data representation has gained significant momentum in
recent years. T-Loss [13] applies a triplet loss with time-based negative sampling to learn effective
representations for time-series data. TNC [12] leverages the Augmented Dickey-Fuller (ADF)
statistical test to identify temporal neighborhoods and employs Positive-Unlabeled (PU) learning
to mitigate sampling bias. TS-TCC [21] generates two views of the data using strong and weak
augmentations, then learns representations by contrasting temporal and contextual information across
views. TS2Vec [10] focuses on capturing multi-scale contextual information at both the instance
and timestamp levels, making it the first versatile framework applicable across various time-series
tasks. TF-C [36] proposes encoding temporal neighborhoods to align closely with their frequency-
based counterparts through time-frequency consistency. MHCCL [14] utilizes semantic information
from a hierarchical structure of latent partitions in multivariate time-series, which is further refined
by hierarchical clustering for improved positive and negative pair selection. SimTS [11] offers a
streamlined approach to time-series forecasting by learning to predict future states from past data in a
latent space, without relying on negative pairs or making specific assumptions about the time-series.
Many self-supervised learning efforts for time-series data have primarily concentrated on generating
instance-level embeddings by extracting them from timestamp-level embeddings via pooling methods
[10]. However, this method often leads to an anisotropy issue, where embeddings become confined
to a limited area within the embedding space, thereby restricting their expressiveness [16, 17, 18].
TimeDRL addresses this limitation by disentangling timestamp-level and instance-level embeddings
to enhance their flexibility and representational power.
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Table 4: Statistical overview of the 7 datasets for time-series forecasting.
Datasets Features Timesteps Granularity

ETTh1 & ETTh2 7 17,420 1 hour
ETTm1 & ETTm2 7 69,680 5 min

Exchange 8 7,588 1 day
Weather 21 52,696 10 min

Table 5: Statistical overview of the 5 datasets for time-series classification.
Datasets Samples Features Classes Length

HAR 10,299 9 6 128
WISDM 4,091 3 6 256
Epilepsy 11,500 1 2 178
PenDigits 10,992 2 10 8

FingerMovements 416 28 2 50

B More on Experiments

B.1 Datasets

Datasets for Time-Series Forecasting For our time-series forecasting experiments, we used
six real-world, publicly available benchmark datasets. Table 4 presents an overview of the key
characteristics of each dataset, including the number of features, total dataset length, and sampling
frequency.

ETT [1] contains long-term electric power deployment data. The dataset includes two hourly-sampled
datasets (ETTh1, ETTh2) and two 15-minute-sampled datasets (ETTm1, ETTm2), covering two
years from different provinces in China. It comprises one oil temperature feature and six power load
features. For multivariate forecasting, all features are used, while only the oil temperature feature is
employed for univariate forecasting. Exchange [37] includes daily exchange rates of eight foreign
countries, spanning from 1990 to 2016. The countries include Australia, Britain, Canada, Switzerland,
China, Japan, New Zealand, and Singapore. For multivariate forecasting, data from all countries are
used, and for univariate forecasting, the focus is on Singapore’s exchange rate. Weather1 provides
local climatological data collected from nearly 1,600 U.S. locations over four years. Each record
contains 11 weather variables, with the ’web bulb’ feature as the target. All variables are used for
multivariate forecasting, while the ’web bulb’ feature is utilized for univariate forecasting.

Datasets for Time-Series Classification For our time-series classification experiments, we used
five real-world, publicly available benchmark datasets. Table 4 outlines the characteristics of each
dataset, including the number of time-series samples, features, classes, and sample lengths.

HAR [38] includes sensor data from 30 subjects performing six activities. The data were collected
using a Samsung Galaxy S2 device, and the task is to predict the activity based on accelerometer and
gyroscope measurements. WISDM [4] comprises time-series data from accelerometers and gyro-
scopes in smartphones and smartwatches. The data were gathered from 51 participants performing
18 activities, with each activity recorded for three minutes. Epilepsy [39] contains EEG recordings
from 500 individuals using a single-channel EEG sensor at a frequency of 174 Hz. Each subject’s
brain activity was recorded for 23.6 seconds, and the data were classified as either indicating epilepsy
or not. PenDigits [40] focuses on handwritten digit classification, where 44 participants wrote digits
from 0 to 9, with the x and y coordinates recorded. The data were captured at a 500x500 pixel
resolution and resampled to eight spatial points. FingerMovements [41] consists of time-series data
from subjects performing self-paced key typing on a computer keyboard. The task involved three
six-minute sessions conducted on the same day, with breaks in between, and the subjects typed at an
average speed of one key per second.

1https://www.ncei.noaa.gov/data/local-climatological-data/
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B.2 Evaluation Metrics

Evaluation Metrics for Time-Series Forecasting In time-series forecasting, we mainly rely on
Mean Squared Error (MSE) and Mean Absolute Error (MAE) as the primary evaluation metrics. The
Mean Squared Error (MSE) is calculated as:

MSE =
1

N

N∑
n=1

(y(n) − ŷ(n))2. (1)

Here, y(n) represents the actual future value corresponding to input x(n), ŷ(n) is the predicted value,
and N is the total number of samples. The Mean Absolute Error (MAE) is defined as:

MAE =
1

N

N∑
n=1

|y(n) − ŷ(n)|. (2)

Evaluation Metrics for Time-Series Classification In time-series classification, the metrics we
use include accuracy (ACC), macro-averaged F1-score (MF1), and Cohen’s Kappa coefficient (κ).
Accuracy is defined by:

ACC =
TP + TN

TP + TN + FP + FN
, (3)

where TP, TN, FP, and FN stand for true positive, true negative, false positive, and false negative,
respectively. The macro-averaged F1-score is determined by:

MF1 =
2× P × R

P + R
, (4)

where Precision (P) is given by:

P =
TP

TP + FP
, (5)

and Recall (R) is defined as:

R =
TP

TP + FN
. (6)

Cohen’s Kappa coefficient is calculated as:

κ =
ACC − pe
1− pe

, (7)

where pe is the expected probability of chance agreement, computed as:

pe =
(TP + FN)× (TP + FP) + (FP + TN)× (FN + TN)

N2
, (8)

with N representing the total number of samples. The Kappa coefficient ranges from −1 (complete
disagreement) to 1 (perfect agreement), with 0 indicating no agreement beyond chance. Cohen’s
Kappa (κ) is particularly useful for evaluating classifiers on imbalanced datasets, as it adjusts for the
probability of agreement by chance. This helps identify when classifier performance is comparable to
random guessing (κ close to 0) or when κ is negative, indicating worse-than-random performance,
offering valuable insights into addressing class imbalance.

B.3 Baselines

Baselines for Time-Series Forecasting SimTS [11] simplifies time-series forecasting by learning
to predict future outcomes from past data within a latent space, avoiding the need for negative
pairs or any specific assumptions about time-series properties. TS2Vec [10] is the first universal
framework for time-series representation learning, emphasizing the differentiation of multi-scale
contextual information at both instance and timestamp levels, and has shown effectiveness across a
variety of time-series tasks. TNC [12] utilizes the Augmented Dickey-Fuller test to detect temporal
neighborhoods, and applies Positive-Unlabeled learning to reduce the impact of sampling bias. CoST
[42] combines contrastive losses from both time and frequency domains, allowing it to capture distinct
trend and seasonal representations.
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Table 6: Linear evaluation on multivariate time-series forecasting. We use prediction lengths T ∈
{24, 48, 168, 336, 720} for ETTh1, ETTh2, Exchange, and Weather; and T ∈ {24, 48, 96, 228, 672}
for ETTm1 and ETTm2. The best results are in bold, while the second-best are underlined.

Unsupervised Representation Learning End-to-end ForecastingMethods
TimeDRL SimTS TS2Vec TNC CoST Informer TCN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
24 0.327 0.378 0.377 0.422 0.590 0.531 0.708 0.592 0.386 0.429 0.577 0.549 0.583 0.547
48 0.353 0.392 0.427 0.454 0.624 0.555 0.749 0.619 0.437 0.464 0.685 0.625 0.670 0.606

168 0.418 0.427 0.638 0.577 0.762 0.639 0.884 0.699 0.643 0.582 0.931 0.752 0.811 0.680
336 0.437 0.446 0.815 0.685 0.931 0.728 1.020 0.768 0.812 0.679 1.128 0.873 1.132 0.815

ETTh1

720 0.446 0.461 0.956 0.771 1.063 0.799 1.157 0.830 0.970 0.771 1.215 1.869 1.165 0.813
24 0.183 0.279 0.336 0.434 0.424 0.489 0.612 0.595 0.447 0.502 0.720 0.665 0.935 0.754
48 0.229 0.308 0.564 0.571 0.619 0.605 0.840 0.716 0.699 0.637 1.457 1.001 1.300 0.911

168 0.334 0.376 1.407 0.926 1.845 1.074 2.359 1.213 1.549 0.982 3.489 1.515 4.017 1.579
336 0.372 0.407 1.640 0.996 2.194 1.197 2.782 1.349 1.749 1.042 2.723 1.340 3.460 1.456

ETTh2

720 0.395 0.428 1.878 1.065 2.636 1.370 2.753 1.394 1.971 1.092 3.467 1.473 3.106 1.381
24 0.217 0.299 0.232 0.314 0.453 0.444 0.522 0.472 0.246 0.329 0.323 0.369 0.522 0.472
48 0.279 0.339 0.311 0.368 0.592 0.521 0.695 0.567 0.381 0.386 0.494 0.503 0.542 0.508
96 0.302 0.357 0.360 0.402 0.635 0.554 0.731 0.595 0.378 0.419 0.678 0.614 0.666 0.578

288 0.377 0.398 0.450 0.467 0.693 0.597 0.818 0.649 0.472 0.486 1.056 0.786 0.991 0.735
ETTm1

672 0.429 0.424 0.612 0.563 0.782 0.653 0.932 0.712 0.620 0.574 1.192 0.926 1.032 0.756
24 0.104 0.205 0.108 0.223 0.180 0.293 0.185 0.297 0.122 0.244 0.173 0.301 0.180 0.324
48 0.138 0.236 0.164 0.285 0.244 0.350 0.264 0.360 0.183 0.305 0.303 0.409 0.204 0.327
96 0.174 0.265 0.271 0.376 0.360 0.427 0.389 0.458 0.294 0.394 0.365 0.453 3.041 1.330

288 0.270 0.326 0.716 0.646 0.723 0.639 0.920 0.788 0.723 0.652 1.047 0.804 3.162 1.337
ETTm2

672 0.354 0.381 1.600 0.979 1.753 1.007 2.164 1.135 1.899 1.073 3.126 1.302 3.624 1.484
24 0.026 0.110 0.059 0.172 0.108 0.252 0.105 0.236 0.136 0.291 0.611 0.626 2.483 1.327
48 0.042 0.143 0.135 0.265 0.200 0.341 0.162 0.270 0.250 0.387 0.680 0.644 2.328 1.256

168 0.146 0.279 0.713 0.635 0.412 0.492 0.397 0.480 0.924 0.762 1.097 0.825 2.372 1.279
336 0.340 0.422 1.409 0.938 1.339 0.901 1.008 0.866 1.774 1.063 1.672 1.036 3.113 1.459

Exchange

720 0.679 0.620 1.628 1.056 2.114 1.125 1.989 1.063 2.160 1.209 2.478 1.310 3.150 1.458
24 0.101 0.145 0.298 0.359 0.308 0.364 0.320 0.373 0.298 0.360 0.335 0.381 0.321 0.367
48 0.128 0.181 0.359 0.410 0.375 0.417 0.380 0.421 0.359 0.411 0.395 0.459 0.386 0.423

168 0.194 0.244 0.426 0.461 0.496 0.506 0.479 0.495 0.464 0.491 0.608 0.567 0.491 0.501
336 0.249 0.285 0.504 0.520 0.532 0.533 0.505 0.514 0.497 0.517 0.702 0.620 0.502 0.507

Weather

720 0.323 0.341 0.535 0.542 0.567 0.558 0.543 0.547 0.533 0.542 0.831 0.731 0.498 0.508

In addition to unsupervised representation learning methods, we also include two end-to-end learning
approaches where representation learning and forecasting are trained together. Informer [1] tackles
the challenges of quadratic time complexity and memory usage in the standard Transformer by
introducing ProbSparse self-attention and distilling operations. TCN [43] integrates dilations and
residual connections with causal convolutions, which are crucial for autoregressive forecasting.

Baselines for Time-Series Classification MHCCL [14] leverages semantic information from a
hierarchical structure in multivariate time-series, using hierarchical clustering to enhance positive
and negative sample pairing. CCL [44] uses a clustering-based approach for representation learning,
generating discriminative features by utilizing labels obtained from clustering and constraints. Sim-
CLR [7] applies contrastive learning, treating augmented views of the same instance as positive pairs
and different instances within the minibatch as negatives. BYOL [8] employs two networks—online
and target—that interact, where the online network predicts the target’s representation under varying
augmentations, and the target network is updated as a slow-moving average of the online network.
TS2Vec [10], known as a universal framework for time-series representation learning, is also used in
our analysis for time-series classification. TS-TCC [21] creates two views using strong and weak
augmentations, and learns representations by contrasting these views in both temporal and contextual
dimensions. T-Loss [13] learns representations by training with triplet loss, using time-based negative
sampling.
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Table 7: Linear evaluation on univariate time-series forecasting. We use prediction lengths T ∈
{24, 48, 168, 336, 720} for ETTh1, ETTh2, Exchange, and Weather; and T ∈ {24, 48, 96, 228, 672}
for ETTm1 and ETTm2. The best results are in bold, while the second-best are underlined.

Unsupervised Representation Learning End-to-end ForecastingMethods
TimeDRL SimTS TS2Vec TNC CoST Informer TCN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
24 0.027 0.126 0.036 0.143 0.039 0.151 0.057 0.184 0.040 0.152 0.098 0.147 0.104 0.254
48 0.040 0.152 0.054 0.176 0.062 0.189 0.094 0.239 0.060 0.186 0.158 0.319 0.206 0.366
168 0.068 0.200 0.084 0.216 0.142 0.291 0.171 0.329 0.097 0.236 0.183 0.346 0.462 0.586
336 0.084 0.228 0.100 0.239 0.160 0.316 0.179 0.345 0.112 0.258 0.222 0.387 0.422 0.564

ETTh1

720 0.086 0.231 0.126 0.277 0.179 0.345 0.235 0.408 0.148 0.306 0.269 0.435 0.438 0.578
24 0.070 0.205 0.077 0.206 0.097 0.230 0.097 0.238 0.079 0.207 0.093 0.240 0.109 0.251
48 0.097 0.241 0.116 0.259 0.124 0.274 0.131 0.281 0.118 0.259 0.155 0.314 0.147 0.302
168 0.166 0.323 0.191 0.340 0.198 0.355 0.197 0.354 0.189 0.339 0.232 0.389 0.209 0.366
336 0.177 0.340 0.199 0.354 0.205 0.364 0.207 0.366 0.206 0.360 0.263 0.417 0.237 0.391

ETTh2

720 0.222 0.378 0.212 0.370 0.208 0.371 0.207 0.370 0.214 0.371 0.277 0.431 0.200 0.367
24 0.012 0.080 0.013 0.084 0.016 0.093 0.019 0.103 0.015 0.088 0.030 0.137 0.027 0.127
48 0.019 0.105 0.024 0.112 0.028 0.126 0.045 0.162 0.025 0.117 0.069 0.203 0.040 0.154
96 0.028 0.129 0.041 0.143 0.045 0.162 0.054 0.178 0.038 0.147 0.194 0.372 0.097 0.246
288 0.051 0.173 0.098 0.207 0.095 0.235 0.142 0.290 0.077 0.209 0.401 0.544 0.305 0.455

ETTm1

672 0.070 0.201 0.117 0.242 0.142 0.290 0.136 0.290 0.113 0.257 0.277 0.431 0.200 0.367
24 0.024 0.104 0.022 0.099 0.038 0.139 0.045 0.151 0.027 0.112 0.036 0.141 0.048 0.153
48 0.048 0.155 0.045 0.149 0.069 0.194 0.080 0.201 0.054 0.159 0.069 0.200 0.063 0.191
96 0.065 0.187 0.068 0.189 0.089 0.225 0.094 0.229 0.072 0.196 0.095 0.240 0.129 0.265
288 0.117 0.258 0.160 0.272 0.161 0.306 0.155 0.309 0.153 0.307 0.211 0.367 0.208 0.352

ETTm2

672 0.172 0.322 0.249 0.334 0.201 0.351 0.197 0.352 0.183 0.329 0.267 0.417 0.222 0.377
24 0.026 0.122 0.027 0.128 0.033 0.142 0.082 0.227 0.028 0.128 0.103 0.262 0.033 0.139
48 0.047 0.163 0.049 0.169 0.059 0.191 0.116 0.268 0.048 0.169 0.121 0.283 0.060 0.188
168 0.174 0.309 0.158 0.314 0.180 0.340 0.275 0.411 0.161 0.319 0.168 0.337 0.214 0.350
336 0.412 0.485 0.382 0.488 0.465 0.533 0.579 0.582 0.399 0.497 1.672 1.036 0.476 0.527

Exchange

720 1.070 0.793 1.600 1.016 1.357 0.931 1.570 1.024 1.639 1.044 2.478 1.310 1.166 0.830
24 0.005 0.052 0.098 0.214 0.096 0.215 0.102 0.221 0.096 0.213 0.117 0.251 0.109 0.217
48 0.002 0.032 0.136 0.260 0.140 0.264 0.139 0.264 0.138 0.262 0.178 0.318 0.143 0.269
168 0.017 0.095 0.120 0.328 0.207 0.335 0.198 0.328 0.207 0.334 0.266 0.398 0.188 0.319
336 0.067 0.190 0.221 0.349 0.231 0.360 0.215 0.347 0.230 0.356 0.197 0.416 0.192 0.320

Weather

720 0.126 0.268 0.235 0.365 0.233 0.365 0.219 0.353 0.242 0.370 0.359 0.466 0.198 0.329

B.4 Implementation Details

We divide the dataset into three portions: 60% for training, 20% for validation, and 20% for testing,
unless a predefined train-test split is provided. For optimization, we use the AdamW optimizer [45]
with weight decay. The experiments are carried out on an NVIDIA GeForce RTX 3070 GPU.

The model architecture utilizes a Transformer encoder as the main architecture for fθ. The timestamp-
predictive head pθ is implemented using a linear layer, while the instance-contrastive head pθ is
designed as a two-layer bottleneck MLP with BatchNorm and ReLU activation in between.

In the time-series forecasting task, we adopt channel-independence along with patching, a concept
introduced by PatchTST [26]. This approach treats multivariate time-series as a collection of
univariate series, all processed by a single model. Although channel-mixing models leverage cross-
channel data directly, channel-independence captures cross-channel interactions indirectly through
shared weights. We found that channel-independence greatly improved performance in time-series
forecasting, which led to its inclusion in our experiments. However, in the case of time-series
classification, omitting channel-independence produced better results.
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Figure 5: Comparison of training time (in seconds) in the pre-training stage on forecasting
datasets.

B.5 Linear Evaluation on Time-Series Forecasting

To evaluate the effectiveness of TimeDRL’s timestamp-level embeddings, we conduct a linear
evaluation on time-series forecasting. This process involves pre-training the encoder using pretext
tasks, then freezing the encoder weights and attaching a linear layer for training on the downstream
forecasting task. Following the experimental setup from SimTS [11], we define various prediction
lengths T ∈ {24, 48, 168, 336, 720} for datasets such as ETTh1, ETTh2, Exchange, and Weather, and
T ∈ {24, 48, 96, 228, 672} for ETTm1 and ETTm2. The performance of TimeDRL in multivariate
forecasting is summarized in Table 6, where it demonstrates an average MSE improvement of 58.02%
over state-of-the-art methods.

Notably, TimeDRL outperforms all baselines, including SimTS, despite SimTS being specifically
designed for forecasting tasks with its contrastive learning objective. While SimTS excels at predicting
the latent representation of future data from historical data, its performance is constrained by its
inability to account for randomness in the data. In contrast, TimeDRL incorporates randomness,
enabling it to better capture temporal dynamics and improve prediction accuracy. The lack of
randomness in SimTS leads to diminished generalizability, as it fails to capture the inherent variability
and unpredictability present in real-world data. This limitation becomes especially evident with
longer prediction lengths. For instance, on the ETTh2 dataset with a prediction length of 720,
TimeDRL achieves a 78.96% improvement in MSE compared to SimTS, highlighting its substantial
enhancement in long-term forecasting accuracy. Additionally, to evaluate the model’s capability in
univariate time-series forecasting, we conducted experiments on univariate forecasting. As shown
in Table 7, TimeDRL shows an average improvement of 29.09% in MSE, further confirming its
versatility.

The execution time of TimeDRL, compared to the top-performing baselines SimTS and TS2Vec, is
illustrated in Figure 5, with evaluations performed on an NVIDIA GeForce RTX 3070 GPU. For
a fair comparison across all methods, we set the batch size to 32, the number of epochs to 10, and
the sequence length T to 512. SimTS and TS2Vec utilize fast, convolutional-based encoders, while
TimeDRL employs a Transformer encoder, which is known for its superior capability to capture
temporal dependencies, though with a longer execution time. To enhance efficiency, TimeDRL inte-
grates a patching mechanism, reducing the input sequence length from L to ⌊(L−P )/S⌋+2, which
lowers computational and memory requirements quadratically. Although TimeDRL has a longer
execution time compared to its convolutional counterparts, the patching mechanism substantially
narrows the efficiency gap, allowing it to capture complex temporal dependencies without sacrificing
performance.

B.6 Linear Evaluation on Time-Series Classification

To assess the effectiveness of TimeDRL’s instance-level embeddings, we use a linear evaluation
method for time-series classification. Similar to the approach in the forecasting evaluation, we first
pre-train the encoder using self-supervised learning, freeze the encoder’s weights, and then add a
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Figure 6: Sensitivity analysis on λ. When λ is smaller, the focus is more on predictive loss (LP );
conversely, a larger λ shifts the focus towards contrastive loss (LC).

linear layer to train on classification tasks. The performance of TimeDRL in time-series classification
is shown in Table 3, where it achieves an average accuracy improvement of 1.48For datasets where
baseline models already reach around 90Notably, on the more difficult FingerMovements dataset,
where baseline models generally struggle, TimeDRL achieves a significant 22.86In addition, Time-
DRL demonstrates its capability with univariate data, performing nearly on par with the top baseline
method on the Epilepsy dataset, with only a 0.07

B.7 Semi-Supervised Learning

The most practical use of self-supervised learning in real-world applications is in semi-supervised
learning, where labeled data are scarce but large amounts of unlabeled data are available. Traditional
supervised learning methods focus solely on the limited labeled data, ignoring the potential value
of the unlabeled data. Self-supervised learning excels in this scenario by enabling the use of vast
amounts of unlabeled data to learn strong representations. In this process, we first train an encoder
on a large, unlabeled dataset to extract rich representations and then fine-tune the model using a
small set of labeled data alongside the downstream task head. Unlike in linear evaluation, where
the encoder weights remain frozen, in this scenario, the encoder weights are fine-tuned during the
adjustment phase. To simulate limited labeled data availability, we randomly withhold a portion of
the labels from our datasets. The comparison between using only labeled data (supervised learning)
and combining both unlabeled and labeled data (TimeDRL with fine-tuning) is depicted in Figure 4.
The results show that integrating unlabeled data with TimeDRL significantly enhances performance
in both forecasting (measured by MSE) and classification (measured by accuracy), especially when
the amount of labeled data is reduced. This trend underscores TimeDRL’s ability to utilize unlabeled
data effectively, improving performance as labeled data becomes more limited. Interestingly, the
advantages of TimeDRL’s pre-training phase are evident even when 100

B.8 Ablation Study

B.8.1 Pretext Tasks

In TimeDRL, we purposefully use two pretext tasks to enhance both timestamp-level and instance-
level embeddings. The timestamp-predictive task targets loss specifically on timestamp-level em-
beddings, while the instance-contrastive task focuses on optimizing instance-level embeddings. We
conducted a sensitivity analysis of the lambda parameter in L = LP + λ · LC to evaluate its effect
on representation learning. As shown in Figure 6, combining both pretext tasks achieves the best
performance in both forecasting and classification tasks, emphasizing the importance of each task
in refining the dual-level embeddings. Interestingly, the instance-contrastive task, despite primarily
improving instance-level embeddings, significantly enhances performance in time-series forecasting
tasks that rely on timestamp-level embeddings. When the instance-contrastive task’s contribution
is minimal (λ = 0.001), the MSE increases sharply compared to the scenario where both tasks
contribute equally (λ = 1). A similar trend is observed in the classification task, where prioritizing
the instance-contrastive task over the timestamp-predictive task (λ = 1000) leads to a noticeable drop
in accuracy. These results highlight the critical role both pretext tasks play in the overall success of
TimeDRL across diverse time-series applications.
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Table 8: Ablation study on data augmentation. We use the prediction length T = 168. The best
results are in bold.

Data Augmentation ETTh1 Exchange
None (Ours) 0.418 0.146

Jitter 0.462 (+10.36%) 0.149 (+2.06%)
Scaling 0.534 (+27.67%) 0.256 (+74.77%)
Rotation 0.703 (+68.15%) 0.402 (+174.46%)

Permutation 0.607 (+45.09%) 0.199 (+35.73%)
Masking 0.438 (+4.76%) 0.160 (+9.47%)
Cropping 0.462 (+10.57%) 0.216 (+47.70%)

Table 9: Ablation study on pooling methods. The best results are in bold.
Pooling Method FingerMovements Epilepsy

[CLS] (Ours) 63.00 95.83
Last 57.00 (-9.52%) 79.78 (-16.75%)
GAP 51.00 (-19.05%) 79.78 (-16.75%)
All 60.00 (-4.76%) 79.78 (-16.75%)

B.8.2 Data Augmentations

The core design principle of TimeDRL is to avoid any data augmentation in order to prevent the
introduction of inductive biases. As a result, neither the timestamp-predictive task nor the instance-
contrastive task relies on augmentation methods. In this experiment, we aimed to showcase the
potential negative impact of overlooking inductive bias. In Table 8, we experiment with six time-
series-specific data augmentation techniques [46, 10]. Jittering introduces sensor noise through
additive Gaussian noise. Scaling modifies data magnitude by multiplying it with a random scalar.
Rotation permutes the order of features and can flip the sign of feature values. Permutation divides
the data into segments and rearranges them randomly to create new time-series instances. Masking
randomly sets portions of the time-series data to zero. Cropping removes sections from the left and
right of a time-series instance and fills the gaps with zeros to maintain the original sequence length.

In Table 8, the use of any augmentation method led to reduced performance, with an average
MSE increase of 27.77% for the ETTh1 dataset and 57.37% for the Exchange dataset. The largest
performance drop was observed with the Rotation augmentation, which resulted in a 68.15% increase
in MSE for the ETTh1 dataset and 174.46% for the Exchange dataset. Although TS2Vec [10]
addresses the issue of inductive bias, it still employs Masking and Cropping augmentations. Our
results indicate that while these two methods are less detrimental than others, they still degrade
performance. This experiment supports our hypothesis that completely avoiding augmentation
methods is crucial for eliminating inductive bias and ensuring TimeDRL’s optimal performance.

B.8.3 Pooling Methods

In TimeDRL, we use a dedicated [CLS] token strategy to obtain instance-level embeddings directly
from the patched time-series data. However, we acknowledge the possibility of extracting instance-
level embeddings from timestamp-level embeddings using various pooling methods. To explore this,
we conducted experiments with three alternative pooling strategies for instance-level embeddings, as
shown in Table 8. Last takes the last timestamp-level embedding as the instance-level representation.
GAP (Global Average Pooling) averages the timestamp-level embeddings across the time axis to
generate the instance-level embedding. All flattens all timestamp-level embeddings to form a single
instance-level representation.

The results in Table 9 show that using pooling methods other than TimeDRL’s [CLS] token strategy
leads to an average accuracy drop of 11.11% on the FingerMovements dataset and 16.75The least
effective pooling method is GAP, a commonly used method in the time-series domain [10], which
suffers the most significant performance decline due to the anisotropy problem. These findings
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Table 10: Ablation study on the architecture of the backbone encoder. We use the prediction
length T = 168. The best results are in bold.

Backbones ETTh1 Exchange
Transformer Encoder (Ours) 0.418 0.146

Transformer Decoder 0.465 (+11.26%) 0.159 (+8.28%)
ResNet 0.576 (+37.76%) 0.160 (+9.50%)
TCN 0.517 (+23.72%) 0.148 (+1.13%)

LSTM 0.451 (+7.84%) 0.160 (+9.46%)
Bi-LSTM 0.443 (+5.92%) 0.153 (+4.62%)

Table 11: Ablation study on the stop gradient operation. The best results are in bold.
Stop Gradient FingerMovements Epilepsy

TimeDRL 63.00 95.83
TimeDual w/o SG 56.00 (-11.11%) 79.78 (-16.75%)

underscore the importance of separating timestamp-level and instance-level embeddings, a crucial
element in TimeDRL’s enhanced performance compared to other baseline methods.

B.8.4 Encoder Architectures

Transformers are widely recognized for their success in downstream time-series tasks [47, 26],
but in self-supervised learning for time-series, CNN-based [21, 10] and RNN-based [12] models
are more frequently used than Transformers. TimeDRL is specifically designed to leverage the
strengths of Transformers in self-supervised learning for time-series data, aiming to showcase the
Transformer’s capabilities in this domain. In TimeDRL, the Transformer encoder serves as the core
architecture. To benchmark its performance against other encoders, we conducted experiments using
five different models, as shown in Table 10. Transformer Decoder adopts a structure similar to the
Transformer encoder but uses masked self-attention, ensuring that each timestamp can only attend to
prior timestamps, preventing access to future information. ResNet adapts the ResNet18 architecture
from computer vision by employing one-dimensional convolutions suited for time-series data. TCN
[43] combines dilations and residual connections with causal convolutions, making it well-suited
for autoregressive prediction in time-series tasks. LSTM uses Long Short-Term Memory units to
capture sequential dependencies. In this case, a uni-directional LSTM is used, focusing on past and
present data to avoid future data leakage. Bi-LSTM follows the LSTM architecture but incorporates
bi-directional processing, enabling the model to access both past and future timestamps.

The results in Table 10 indicate that not using the Transformer encoder in combination with the two
pretext tasks leads to decreased performance. This results in an average MSE increase of 17.30% for
the ETTh1 dataset and 6.60% for the Exchange dataset, underscoring the superior performance of the
Transformer encoder. In comparison, the Transformer Decoder shows a performance drop, with an
11.26% increase in MSE for the ETTh1 dataset and 8.28% for the Exchange dataset, emphasizing
the importance of bidirectional self-attention for a thorough understanding of the entire sequence.
Similarly, when comparing LSTM with Bi-LSTM, the latter outperforms the former due to its ability
to process both past and future information. These results highlight the significance of full temporal
access at each timestamp, confirming the Transformer encoder’s effectiveness in capturing robust
time-series representations.

B.8.5 Stop Gradient

To address sampling bias, TimeDRL incorporates an additional prediction head with a stop-gradient
operation. This asymmetric design, with one path using the extra prediction head and the other
utilizing the stop-gradient, is effective in preventing model collapse, as supported by prior work
[9, 48]. The results in Table 11 demonstrate that removing the stop-gradient operation leads to a
notable accuracy drop of 11.11% on the FingerMovements dataset and 16.75% on the Epilepsy dataset,
emphasizing the critical role the stop-gradient mechanism plays in this asymmetric architecture.
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