PDF-to-Tree: Parsing PDF Text Blocks into a Tree

Anonymous ACL submission

Abstract

In PDF documents, the reading order of text
blocks is missing, which can hinder machine
understanding of the document’s content. Exist-
ing works try to extract one universal reading
order for a PDF file. However, applications,
like Retrieval Augmented Generation (RAG),
require breaking long articles into sections,
subsections and table cells for better indexing.
For this reason, this paper introduces a new
task and dataset, PDF-to-Tree, which organizes
the text blocks of a PDF into a tree structure.
Since a PDF may contain thousands of text
blocks, far exceeding the number of words in
a sentence, this paper proposes a transition-
based parser that uses a greedy strategy to
build the tree structure. Compared to the
parser for plain text, we also use multi-modal
features to encode the parser state. Experiments
show that our approach achieves an accuracy
of 93.93%, surpassing the performance of
baseline methods by an improvement of 6.72%.

1 Introduction

Document Al is a research field that has emerged
in recent years. It focuses on automating the
reading, comprehension, and analysis of data in
PDF documents. These documents can be either
scanned or digital-born(rendered) files. Although
many PDFs are digital-born, their formats were
designed for layout purposes. As a result, the
structural information retained within them is
often incomplete, which can hinder machine
understanding of the document’s content.

There’s a lot of research on PDF layout an-
alyzing, like categorizing text blocks and pre-
dicting the relationships between them. Earlier
studies relies on purely visual features, such as,
DeepDeSRT(Schreiber et al., 2017), PDFTableDec-
tion(Hao et al., 2016), VisualDetection(Soto and
Yoo, 2019) and dhSegment(Ares Oliveira et al.,
2018) Later research incorporates visual, textual,

root
> title
> abstract
paragraph
token — token

> section

subsection

[a] |—> paragraph

token - token

subsection
|—> table
4 |—> table row

|—> cell - cell

5 - footnote

annotation

[b] [c]

Figure 1: In a PDF([a]), text blocks are independent
of each other and don’t have a specific order. The
reading order prediction task([b]) can partially resolve
this issue. However there’s only one text sequence,
footnotes, captions and other irrelevant text blocks are
inserted into the main text sequence. This might lead
to confusion. Additionally, some applications, like
RAG, require breaking down long articles into sections
for better content retrieval. To tackle this issue, we
propose a new task and dataset, PDF-to-Tree task([c]),
which organizes text blocks into a tree structure for
downstream task to retrieve.

and positional information. Such works inlude
LayoutLM serials (Xu et al., 2020), (Xu et al.,
2021a), (Xu et al., 2021b), DocStruct(Wang et al.,
2020), SPADE(Hwang et al., 2021), BROS(Hong
et al., 2021), StructuralLM(Li et al., 2021a) and
StrucTexT(Li et al., 2021b). There are also
many datasets developed in this area, including,
RVL_CDIP(Harley et al., 2015) FUNSD(Jaume
et al.,, 2019a), EPHOIE(Jaume et al., 2019b),
PubLayNet(Zhong et al., 2019), and SROIE(Huang
etal., 2019), DocBank(Li et al., 2020), CORD(Park

Input Document Text Blocks Transition-based Parser Desired Tree
T1 BUFFER STACK title
Femmmmmm————— P
T2 ! H H abstract
T3 1 i E ' i aragraph
) ! T4 " T2 ! PAragrap
PDF Miner T4 ! i 1 section
or OCR ! T5 H H v
T5 e paragraph
Step Stack | Buffer Transition A—9
0 [ROOT] | [T1, T2, T3, T4, T5] ARC(ROOT, T1, title) AU (ROOT, T1, title)
1 [ROOT, T1] | [T2, T3, T4, T5] ARC(T1, T2, abstract) AU (T1, T2, abstract)
2 [ROOT, T1,T2] | [T3, T4, T5] SHIFT A

Figure 2: We leverage a transition-based parser to predict tree structure of a document from a sequence of input
text blocks. The input document is processed by PDF Miner or OCR tools to get text block sequence. Then the
sequence is processed by the parser to predict a serial of transition actions that build the tree. The parser archive this
by using a buffer to hold input sequence and a stack to hold intermediate tree nodes. In each step, the parser predicts
a shift or arc operation that pops elements from the buffer and reconstructs the tree in the stack.

et al., 2019), SciTSR(Chi et al., 2019), .

To address the issue of missing structure in-
formation in PDF documents, existing research
develops the task of reading order prediction.
This involves predicting a global rank for each
text block and linking them into a text sequence.
Such efforts include LayoutParser(Shen et al.,
2021), LayoutReader(Wang et al., 2021), ERNIE-
layout(Peng et al., 2022).

However, we believe that placing all text blocks
in the same sequence is insufficient. This is
because there are independent document elements
like footnotes and captions, which should have
their own reading order. Especially for RAG
applications, which require breaking down long
documents into sections, subsections and table
rows, a more detailed method is needed to represent
the content of PDF documents. Therefore, we
introduce the PDF-to-Tree task and dataset. By
organizing text blocks into a tree structure, we aim
to solve the issue of complex document structures.
We manually annotate the tree structures of 9,310
PDF pages. As shown in Figure 1, through the PDF-
to-Tree task, text blocks in a PDF are organized into
a tree structure. Compared to reading unordered
text blocks directly from a PDF file, downstream
tasks can accurately access the content needed
from the document through its tree structure. This
dataset will be published on GitHub after the
anonymity period ends.

Additionally, we propose a transition-based
parser that effectively completes the PDF-to-Tree
task. There are multiple ways to construct a
tree from a sequence. Considering a PDF may

contain thousands of text blocks, depending on the
document’s length, we opt for a transition-based
parser to address this issue. Compared to other
algorithms (the minimum spanning tree or pairwise
linking methods), the time and memory complexity
of a transition-based parser scales linearly with
the length of the document. Unlike sentence
dependency parsing, text blocks in PDF documents
contain more information besides text, such as
visual details and layout. We also use features from
different modalities to encode the parser state.

In general, our main contributions are in three
folders: 1) We introduce a new task and dataset
for digital document understanding, called PDF-to-
Tree. This task converts PDFs into a tree structure,
making it easier for downstream tasks, like RAG,
to precisely locate content in the articles. 2) We
develop a transition-based parser for implementing
PDF-to-Tree. This approach scales linearly with
document length, and can handle PDFs made up
of thousands of text blocks. We also use multi-
modal features to encode the parser state. 3) Our
experiments show that our method achieves an
accuracy of 93.93%, which is 12.12% higher than
the baseline methods.

2 Method

In this section, we discuss how to reconstruct
document structure from a sequence of input text
blocks.

2.1 PDF-to-Tree

To reconstruct the tree structure of a document,
we leverage a transition-based parser. Given an

Text

Image
Embedding Embedding Embedding

Label
Prediction

Encoded
Features

Layout

STACK

(T,, V, bbox,)

(T, V5, bboxy)

BUFFER

(T3, V3, bboxs)

[CLS] hicLg) title
501 hysiop | byser | 5l abstract
T, A\ bbox, h,
B n + & hygy) | hisyy | 9 other
T, v, bbox, é’_ h, a
2 5; title
[SEP] e, gather (5#1)
501 hsso) -
T Vs bbox; hy other

Figure 3: An overall illustration of transition prediction

Position

Prediction

xewgry

arc(title, [S#0], [B#0])

input document d, we first extract all text blocks
[T1,T5,...,T,] from d with PDF Miner or OCR
tools depends on whether the input is a scanned
or digital born document. Then a transition-based
parser turns text block sequence into a tree. Let’s
denote the final desired tree by the set of arcs in
that tree, A = [(head, tail, label), ...]. Now the
goal of PDF-to-Tree is to predict A.

We can archive that via a transition-based parser
with a configuration c consists of a stack s, a buffer
b, and a set of arcs A. In the initial state, A = ¢,
s = [ROOT), and b = [T}, T3, ...,T,]. In each
step, the classifier predicts actions based on the
content of s and b, as shown in Figure 2. At the end
of each step, A is updated by adding the predicted
arc into the set, A <« A U [predicted_arc].
Eventually, we will get our desired tree, A — A.

Specifically, in each step we predict the follow-
ing actions:

* SHIFT - pop the first element and push it into
the stack.

* ARC - create a new arc from any element of
the stack to the first element in the buffer and
predict the label of arc.

As Equation 1 shows, our parser needs to predict
not only the label of the arc but also the starting
point of the arc. In practice, we limit the start
position of an arc with in a fixed size window of
the stack to ease the prediction process.

label, arc_start = classifier(a,b, A) (1)

2.2 Transition Prediction

Figure 3 illustrates the process of PDF-to-Tree
predicting transition actions based on the current
configuration at the current step. First, embeddings
are created for the nodes in the stack and buffer.

Text, bounding boxes and their corresponding
images are concatenated together in the order they
appear in the stack. The concatenated sequence
is then separately embedded for text, image, and
layout. These embeddings are combined according
to their positions and served as inputs for the
encoder. The encoder produces hidden state for
each node, and classification is performed to obtain
labels and the starting position of arcs.

Given the current configuration of a parser,
denoted as ¢ = (s,b, A), we use the following
notations to introduce the out model. n; represents
a node from either s or b. ¢; represents the text
within the node n;, bbox; represents the bounding
box of n;, and v; represents the image information
of n;.

2.2.1 Text Embedding

We connect the t; from nodes in both s and b in
sequential order to form a sequence .S. Before each
node n;, a special token is inserted as a separator.
For nodes in s, we use the special character [S#i],
and for nodes in b, we use [B#i|. As a result, we
obtain the sequence S as shown in Equation 2.

S = [CLS], [S#0], to, [S#1], t1, ..., [SEP], [B#0], L.
2)

2.2.2 Layout Embedding

For each node, n;, besides embedding %;, it’s
also necessary to embed layout information, bbox;.
To be specific, we employ four distinct types of
layout embedding, including absolute position,
relative position, bounding box size(width and
height), and font size. Absolute position refers
to the coordinates bbox; = (z},yi, 24, y!) of the
bounding box. Relative position indicates the
position of the bounding box relative to the first
node in the buffer, bbox;, = (xgo, ygo, x?o,ylf“). If
bbox; and bboxy, are from different pages, then

based on the page number, the model will add
the corresponding page height to the y-coordinate
of the bounding box below. All coordinates are
normalized to the range of 0 to 1000. The results
of embedding b; are also ordered according to the
corresponding ¢; sequence, and the embeddings’
outcomes at each position are averaged.

A A A
x07y07x1,y1)

io.d g 0 bo . bo ..bo . bo
0, Y0, 1, Y1) — (20, Yo" 1%, ¥1°)

w, h), width and height
fs), font size

(
Emblayout = E
(

3)
2.2.3 Image Embedding
Out model embeds visual inputs with
LayoutLM(Xu et al., 2020). Specifically,

LayoutLMvl1/v2 employs ResNet to embed
images, while LayoutLMv3 uses a transformer to
embed image patches. For situations where arcs
span across pages, page images are concatenated.
All page images, including those stitched together
for spanning page elements, are resized to 512 x
512.

2.2.4 Label and Position Prediction

After completing the embedding for all the modal-
ities, the model will sum the embeddings for
corresponding positions together. Then, it will
encode the sequence of embeddings to get the
hidden state, denoted as hg, for the input sequence
S. For each node in stack s, the model extract the
hidden value at the position of the special character
[S#Z] from hS, to get h[5#0}7 h[S#l]? ceey h[S#n]
As Equation 4 shows, the model will put the
selected hidden state through a bi-linear module
and obtain classification results for each node in the
stack. Let’s denote labelg,) as the label of node
n; in the stack, and score[g4; as the corresponding
score. Finally, the model will take [S#i] with the
maximum score(score(sy,)) as the start position
for the predicted arc and corresponding label as arc
label, as Equation 5 illustrates.

label(gui), scoresu;) = classifier(higu;) (4)

arc_start = argmax(score(su;)) ®)
[S#il

3 Experiments

In this section, we dive into the implementation
details of PDF-to-Tree and conduct experiments

Labels Train Test Dev
of documents 1,040 129 129
of pages 7,554 786 970

Table 1: Statistics of training, development, and testing
sets

on the PDF-to-Tree dataset. Also, we create a
baseline with SPADE(Hwang et al., 2021) and
StrucTexTv1/v2(Li et al., 2021b), (Yu et al., 2023).
Those models are commonly used approaches in
structured text understanding. All experiments
were carried out using one to eight NVIDIA Tesla
A800 80GB GPUs.

3.1 Dataset

We introduce a new dataset called PDF-to-Tree,
which annotates the text blocks in each document
into a tree structure. In contrast, previous
entity linking datasets, such as FUNSD(Jaume
et al.,, 2019a), EPHOIE(Jaume et al., 2019b),
SROIE(Huang et al., 2019), mainly focused on
information extraction, containing only partial text
blocks from single pages, such as forms. As shown
in Figure 4, the annotation information consists of
two parts: text blocks with bounding boxes, and
arcs that represent the relationships between the
text boxes. Please refer to Appendix A for more
details.

[MATERIALS ANDMETHODS

AN

"id": 99

"text": "2 MATERIA...",
"bbox": [50, 83, 124, 97]
"font_size": 12

"arcs'": [
[96, 99, “section"],
[99, 100, " paragraph "],
[100, 101, " paragraph "],
]

Figure 4: An annotation example of the PDF-to-Tree
Dataset. We use code to automatically extract text
blocks from PDFs and then manually annotate the
relationships between these blocks to create a tree
structure.

All the files in the PDF-to-Tree dataset are
digital-born(rendered) PDFs from public domain,
including product manuals, public technical reports,
white papers, and so on. We use the open-source
tool PDF Miner to automatically extract text blocks
from PDF documents. Then, we manually label

the relationships between the blocks to create a
tree structure. For each document, we have at least
two crowdsourced annotators working on it. All of
our annotators are college students. We pay $0.20
per page for the annotation. Please refer to the
Appendix A for the details of our annotation tool.

In total, we gather 1290 documents comprising
9310 pages. There are 18 categories of labels. We
allocate 80% of the documents for training, 10%
for testing, and retain 10% as a development set.
Specific data proportions are detailed in Table 1.

Additionally, in previous document layout
datasets, like DocBank(Li et al., 2020),
PubLayout(Zhong et al., 2019), most commonly,
academic papers were used as document
sources(such as LaTeX or XML), and layout
annotations were automatically generated by
analyzing the source files. While this covered
a larger number of documents, the layouts were
relatively uniform. On the other hand, the
PDF-to-Tree dataset employs a combination of
machine and human annotations. This means that
even when the source files of the documents are
not available, complete structural information of
the document can still be obtained. As a result,
the entire collection of documents encompasses
a wider range of layouts, including elements like
product manuals and public technical reports,
which are not typically found in academic papers.
Additionally, due to this diversity of document
types, the distribution of document lengths also
varies considerably, ranging from a minimum of 1
page to a maximum of 85 pages.

3.2 Baseline

In current Document Al work, entity linking is used
to predict the relationships between text blocks,
such as arcs in the PDF-to-Tree task. Therefore,
we select three methods of entity linking to build
our baseline, including SPADE (Hwang et al.,
2021) and StrucTextV1 (Li et al., 2021b), and
StrucTextV2(Yu et al., 2023). These models
outperform other methods on entity linking tasks
of the FUNSD dataset. We use the code provided
by the original authors. However, the code of
StrucText doesn’t include the fine-tuning code, we
implement that part ourselves according to the
description mentioned in the original paper. After
the anonymous period ends, we plan to open-source
this training code along with our own model code.

Since PDF-to-Tree has documents up to 85
pages in length, it’s not realistic to fit all the text

blocks of a document into the input window size
of aforementioned baseline models. To tackle this,
we preprocess the dataset, dividing documents into
blocks of no more than 500 tokens each for training
and prediction and ignore the arcs between blocks.
This simplification will only affect approximately
5% arcs in test set.

3.3 Training

For our PDF-to-Tree model, we opt for both
text-only and text-image multi-modal pre-trained
models as encoders, comparing how different
modalities affect the outcomes. Specifically, we
choose BERT for text-only pre-training models,
and LayoutLM for the multi-modal pre-training
model. We utilized both the base and large versions
of the aforementioned pre-trained models in our
training code. We use PyTorch to implement our
model and the pre-trained weights are provided by
Hugging Face.

Throughout training, our model employs the
AdamW optimizer and a linear warm-up scheduler
for the initial 10% of steps. Cross entropy loss
is used for label and position prediction. We
conduct hyperparameter searches for learning rate,
batch size, and dropout using the dev dataset.
For the base version of BERT and ReBERTa, we
use a learning rate of 4 x 107>, while for the
large version, we use a learning rate of 2 x 1075,
Comparatively, for LayoutLMv1/2/3, a smaller
learning rate is needed to make the model converge.
We ultimately chose 2 x 107° as the learning rate
for the base version and 1 x 107 for the large
version. In all cases, the dropout is set to 0.1,
the batch size is 32, and the number of epochs
is 6. Our code and dataset will be open-sourced
after the anonymous period ends. For the baseline
models, we follow the hyperparameters provided
in the original paper.

3.4 Metrics

To assess the accuracy of the model in reconstruct-
ing document structure, we utilize the attachment
score, which is widely used metrics in dependency
parsing. Unlabeled attachment score(UAS) is
the percentage of tokens with correctly assigned
heads, while labeled attachment score (LAS) is
the percentage of tokens with correctly assigned
heads and dependency relation labels. We define
UAS and LAS in the PDF-to-Tree task by replacing
tokens with text blocks, as Equation 6 and 7
illustrates. The primary emphasis of UAS lies in

Model Modality" Params | UAS LAS | Label F1*
StrucTexTV 1y (Li et al., 2021b) T+L+V 110M | 0.8046 0.7636 | 0.8899
BROSpase (Hong et al., 2021) T+L+V 110M | 0.8384 0.7800 | 0.8722
BROS|yre (Hong et al., 2021) T+L+V 340M | 0.8721 0.8210 | 0.8925
LayoutLMv2-RE,, ., (Xuetal., 2021a) T+L+V ~ 220M | 0.8419 0.7530 | 0.8007
LayoutLMv2-RE,, .. (Xuetal,, 2021a) T+L+V ~ 426M | 0.8451 0.8020 | 0.8592
PDF-to-Treeper; T+L 110M | 0.9158 0.7900 | 0.8609
PDF-to-Treelayoutm T+L 160M | 0.9229 0.7551 | 0.8342
PDF-to-Treejayoutimv2 T+L+V 220M | 0.9338 0.7994 | 0.8678
PDF-to-Treejayoutimy3 T+L+V 133M | 0.9385 0.8020 | 0.8709
PDF-to-Treehert large T+L 340M | 09189 0.7757 | 0.8532
PDF-to-Treejayoutim-large T+L 390M | 0.9233 0.7836 | 0.8547
PDF-to-Treejayoutimy2-large T+L+V 426M | 0.9363 0.8070 | 0.8757
PDF-to-Tree1ayoutimy3-large T+L+V 368M | 0.9393 0.8166 | 0.8817

T refers to text, “L” refers to layout and “V” refers to visual.

 F1-Score of entity labeling.

Table 2: Accuracy on PDF-to-Tree Dataset. Our method has advantages in extracting structural information from
PDFs. However, BROS(Hong et al., 2021) performs better in labeling.

the precision associated with the construction of
the document’s structure. LAS takes into account
both the labels and the links of text blocks.

of blocks with correct link
UAS = # of all blocks ©)

of blocks with correct link and label
of all blocks
@)

LAS =

4 Results

In this section, we compare our model with
the baselines on both PDF-to-Tree and FUNSD
datasets. We also evaluate the effects of various
modality encoders on structure parsing for the PDF-
to-Tree dataset. Additionally, we perform error
analysis, ablation experiments, and inference speed
analysis.

4.1 Accuracy on PDF-to-Tree

In general, the transition-based parser module
shows a significant improvement in the task of
document-level structure parsing. Our method,
PDF-to-Tree outperforms the baseline models by
6.72% in the UAS. This indicates that incorporating
the transition-based parser module effectively
filters out many irrelevant pairs and enhances
the precision of link prediction, compared to
the pairwise linking strategy in the baseline.

This approach effectively leverages the inherent
characteristics of the document structure. However,
BROS(Hong et al., 2021) performs better in
labeling, with a 0.44% higher LAS score than
ours. We separately calculated the entity level
labeling accuracy. Without considering linking,
BROS has an F1 score of 89.25%, while our F1
score is 88.17%.

Furthermore, the modality of the pretrained
weights also plays an important role in the results.
By leverage the text-image multi-modal pretrained
weights, LayoutLMv3, the UAS and LAS are
improved, comparing to BERT, which are pre-
trained solely on text. Among the LayoutL.M series,
LayoutLMv1 only uses image embeddings during
pre-training. On the other hand, LayoutLMv2/3
utilize image embeddings in both pre-training
and fine-tuning. Consequently, when employing
LayoutLMv3, the PDF-to-Tree model achieves the
highest UAS and LAS scores.

4.2 Accuracy on FUNSD

To better understand the performance of our
method on entity labeling and linking tasks, we
also conducted experiments on the FUNSD dataset.
As shown in Table 3, the results are generally
consistent with those from the PDF-to-Tree dataset.
Overall, our method excels in linking but falls
short in labeling. In the future, we might enhance
overall performance by combining the labeling
components of other methods with ours.

Model Label F1 Link F1
BERTpse 0.6092 0.2765
LayoutLM, .. 0.7854 0.4586
LayoutLMv2,,.. 0.8189 0.4291
StrucTexThase 0.8309 0.4410
BROSpse 0.8305 0.7146
PDF-to-Treejayoutimv3 0.8012 0.7261

Table 3: Accuracy on FUNSD.

4.3 Ablation Study

Despite of visual modality, we also want to
know how the other types of modalities affect the
outcomes. As shown in Table 4, by removing
layout as input, the model’s UAS and LAS decrease
by 3.25% and 2.52%. It shows the layout input is
helpful for document structure parsing. It indicates
that the model can still achieve a certain level of
document structure parsing ability solely relying
on layout information.

Model Modality UAS LAS

P2Tayoutimy3 T+L+V 0.9393 0.8166
P2Ther T+L 0.9158 0.7900
P2Tpert-wo-layout T 0.8833 0.7280

Table 4: Ablation Study on PDF-to-Tree Dataset

0.8 1 10
2
m 0.6 g
< 10° =
— 04 b
H*

021 102

NP O @& F.22. &S
B SO e e
@\;@&@é)d} RN S L&
Q«v‘ g ¢ %‘s &

Figure 5: Labeled Attachment Score of Different Labels.

The bars illustrate the LAS of labels. The line shows
the number of labels. Labels with lower occurrence
rates exhibit much lower scores. Some document
components, such as meta and header, have a sufficient
number of annotations, but their scores are not high due
to their varied forms.

4.4 Score of Different Labels

Besides overall accuracy, we also analyze the
accuracy for each label. As shown in the figure, the
model performs well in predicting more common
labels, such as paragraph, table, and reference. It

Model Sec / Page
BROSpe 0.362
LayoutLMv2-RE, . 0.528
StrucTexThase 0.262
Pleayoutlmv3 1.138

Table 5: The inference speed of P2T is slightly slower
than the baseline. However, considering that all cross-
page links are ignored in the baseline models, this speed
difference is acceptable.

also does well with simpler labels like authors and
titles. The model finds labels like meta and header,
which vary a lot in form, the most challenging.
Compared to the least common labels, meta and
header have a decent number of samples, but their
scores are still not good. This is because document
headers and meta information are more varied than
fixed elements like titles and paragraphs. Overall,
these results are as expected. Handling these rare
and variably formatted tags is still a challenging
task.

4.5 Inference Speed

We choose PDF-to-Treejayoutimys t0 compare the
inference speed with the baseline models because
these models share the similar parameter size and
modality. As shown in Table 5, due to PDF-to-Tree
encoding each state during the parsing process,
it’s slower in speed compared to the baselines.
Specifically, on PDF-to-Treeayouumy3, the average
time to complete predictions for one page is 1.138
seconds, whereas the baselines only needs 0.511
and 0.262 seconds. Considering that the baseline
models ignore all arcs cross pages due to not being
able to fit the entire document into memory, this
difference is acceptable. Moreover, the time cost
of PDF-to-Tree only depends on document length.
As depicted in Figure 6, with an increase in pages,
the time cost of PDF-to-Tree grows linearly. In
the future, we can further improve the inference
speed of PDF-to-Tree by optimizing the encoding
process.

5 Related Work

Document Al is a research area that has gained
attention in recent years. There’s a lot of valuable
information stored in the form of digital documents.
The goal is to extract and convert digital documents
into structured data. Jaume et al. divides Document
Al into two subtasks: One involves categorizing
blocks within the document to obtain labels for

20 4

9
!

Seconds

12345678 910111213141516
Number of Pages

Figure 6: The inference cost of PDF-to-Tree increases
linearly with the length of the document.

these blocks, which is called entity labeling. The
other involves establishing connections between
blocks to identify the relationships between them,
which is known as entity linking.

5.1 Entity Labeling

For entity labeling, many studies use the NER
framework to label sequences at the token level.
These studies include BERTgrid(Denk and Reiss-
wig, 2019), Post-OCR-Parsing(Hwang et al., 2019).
Additionally, there are some studies that aim to
combine the spatial information of text blocks for
labeling sequences at the block level. Examples
of such studies are GraphlE(Qian et al., 2018),
TRIE(Zhang et al., 2020), LayoutParser(Shen et al.,
2021), LayoutLM serials(Xu et al., 2020), (Xu
et al., 2021a), (Xu et al., 2021b). Also Wang
et al. finds that formatting can disrupt sequence
labeling. In addition to providing semantic labels
for text blocks, predicting the reading order is also
necessary. Research in this field includes works
like LayoutReader(Wang et al., 2021), ERNIE-
Layout(Peng et al., 2022).

5.2 Entity Linking

Studies, such as dhSegment(Ares Oliveira et al.,
2018), DocStruct(Wang et al., 2020), StrucTexT
serials(Li et al., 2021b), (Yu et al., 2023) combine
these two tasks and perform Entity Labeling and
Linking at the block Level simultaneously. Those
studies mainly deal with blocks of individual pages.
SPADE(Hwang et al., 2021) formulates entity
linking as a spatial dependency parsing problem.
However the linking strategy is pair-wise. What
sets this paper apart is the utilization of a transition-
based parser for constructing entity links.
Numerous datasets have been introduced

to support research in this direction, such as
FUNSD(Jaume et al., 2019a), EPHOIE(Jaume
et al., 2019b), SROIE(Huang et al., 2019). Unlike
our work, these datasets usually focus only on
information extraction. The annotated text blocks
and relationships often cover only part of the
information on a single page. In contrast, the
PDEF-to-Tree dataset and task aim to organize the
information from an entire document into a tree
structure.

5.3 Multi-Modal Feature Representation

Early works typically involved using a single
mode for predictions, either text or images. Lay-
outLM(Xu et al., 2020) find that utilizing multi-
modal data can significantly enhance the model’s
performance in understanding structured text. Sim-
ilar works include StructuralLM(Li et al., 2021a),
StrucTexT serials(Li et al., 2021b), (Yu et al.,
2023). Meanwhile, datasets like DocBank(Li et al.,
2020), PubLayout(Zhong et al., 2019), and RVL-
CDIP(Harley et al., 2015) are introduced to support
pre-training for layout understanding. BROS(Hong
et al., 2021) leverages 2D relative positions with
area masking strategy to develop a pre-trained
language model. These datasets share the common
characteristic of being annotated directly from
the source code of electronic documents. In this
paper, we employed a combination of automated
and manual annotation. This enables support for
a broader range of document types, including
product manuals, public technical reports, white
papers, and so on.

6 Discusion

In this paper, we discuss the task of document
structure parsing. This task is more intricate
compared to the traditional reading order predi-
tion. This complexity arises because we need to
consider connecting paragraphs across pages and
linking paragraphs into sections. To address these
challenges, we introduce a transition-based parser
as a solution. Alongside this, we introduce a new
dataset called PDF-to-Tree to support this task.
Experimental results demonstrate the effectiveness
of our approach. However, there is still room for
improvement in identifying less common labels.
Moreover, there are areas where the efficiency of
inference can be enhanced.

7 Limitation

All the PDFs used in the PDF-to-Tree dataset are
born digital(rendered). In theory, our method could
also be applied to scanned documents. However,
due to resource constraints, it has not been used on
the PDF-to-Tree dataset yet. In future work, we
plan to include scanned documents in our dataset as
well. Additionally, the high cost of manual labeling
limits the amount of annotated data we can obtain.
In future work, we believe it’s worth discussing
how to automatically label the tree structure of a
document.

References

Sofia Ares Oliveira, Benoit Seguin, and Frederic
Kaplan. 2018. dhsegment: A generic deep-
learning approach for document segmentation. In
2018 16th International Conference on Frontiers in
Handwriting Recognition (ICFHR).

Zewen Chi, Heyan Huang, Heng-Da Xu, Houjin
Yu, Wanxuan Yin, and Xian-Ling Mao. 2019.
Complicated table structure recognition. ArXiv,
abs/1908.04729.

Timo Denk and Christian Reisswig. 2019. Bertgrid:
Contextualized embedding for 2d document repre-
sentation and understanding.

Leipeng Hao, Liangcai Gao, Xiaohan Yi, and Zhi Tang.
2016. A table detection method for pdf documents
based on convolutional neural networks. In 2016
12th IAPR Workshop on Document Analysis Systems
(DAS).

AdamW. Harley, Alex Ufkes, and KonstantinosG.
Derpanis. 2015. Evaluation of deep convolutional
nets for document image classification and retrieval.
Cornell University - arXiv,Cornell University - arXiv.

Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok
Hwang, Daehyun Nam, and Sungrae Park. 2021.
Bros: A pre-trained language model focusing on
text and layout for better key information extraction
from documents. In AAAI Conference on Artificial
Intelligence.

Zheng Huang, Kai Chen, Jianhua He, Xiang Bai,
Dimosthenis Karatzas, Shijian Lu, and C. V. Jawahar.
2019. Icdar2019 competition on scanned receipt ocr
and information extraction. In 2019 International
Conference on Document Analysis and Recognition
(ICDAR).

Wonseok Hwang, Seonghyeon Kim, Minjoon Seo,
Jinyeong Yim, Seunghyun Park, Sungrae Park,
Junyeop Lee, Bado Lee, and Hwalsuk Lee. 2019.
Post-ocr parsing: building simple and robust parser
via bio tagging.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park,
Sohee Yang, and Minjoon Seo. 2021. Spatial
dependency parsing for semi-structured document
information extraction. In Findings of the
Association for Computational Linguistics: ACL-
IJCNLP 2021.

Guillaume Jaume, Hazim Kemal Ekenel, and Jean-
Philippe Thiran. 2019a. Funsd: A dataset for form
understanding in noisy scanned documents. In 2019
International Conference on Document Analysis and
Recognition Workshops (ICDARW).

Guillaume Jaume, Hazim Kemal Ekenel, and Jean-
Philippe Thiran. 2019b. Funsd: A dataset for form
understanding in noisy scanned documents. In 2019
International Conference on Document Analysis and
Recognition Workshops (ICDARW).

Chenliang Li, Bin Bi, Ming Yan, Wei Wang, Songfang
Huang, Fei Huang, and Luo Si. 2021a. Structurallm:
Structural pre-training for form understanding. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers).

Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu
Wei, Zhoujun Li, and Ming Zhou. 2020. Docbank: A
benchmark dataset for document layout analysis. In
Proceedings of the 28th International Conference on
Computational Linguistics.

Yulin Li, Yuxi Qian, Yuechen Yu, Xiameng Qin,
Chengquan Zhang, Yan Liu, Kun Yao, Junyu Han,
Jingtuo Liu, and Errui Ding. 2021b. Structext:
Structured text understanding with multi-modal
transformers. In Proceedings of the 29th ACM
International Conference on Multimedia.

Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee,
Jaeheung Surh, Minjoon Seo, and Hwalsuk Lee. 2019.
Cord: A consolidated receipt dataset for post-ocr
parsing.

Qiming Peng, Yinxu Pan, Wenjin Wang, Bin Luo,
Zhenyu Zhang, Zhengjie Huang, Teng Hu, Weichong
Yin, Yongfeng Chen, Yin Zhang, Shikun Feng,
Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang.
2022. Ernie-layout: Layout knowledge enhanced pre-
training for visually-rich document understanding.

Yujie Qian, Enrico Santus, Zhijing Jin, Jiang Guo,
and Regina Barzilay. 2018. Graphie: A graph-
based framework for information extraction. arXiv:
Computation and Language,arXiv: Computation and
Language.

Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas
Dengel, and Sheraz Ahmed. 2017. Deepdesrt: Deep
learning for detection and structure recognition of
tables in document images. In 2017 14th IAPR
International Conference on Document Analysis and
Recognition (ICDAR).

https://doi.org/10.1109/icfhr-2018.2018.00011
https://doi.org/10.1109/icfhr-2018.2018.00011
https://doi.org/10.1109/icfhr-2018.2018.00011
https://api.semanticscholar.org/CorpusID:199552037
https://doi.org/10.1109/das.2016.23
https://doi.org/10.1109/das.2016.23
https://doi.org/10.1109/das.2016.23
https://api.semanticscholar.org/CorpusID:237485613
https://api.semanticscholar.org/CorpusID:237485613
https://api.semanticscholar.org/CorpusID:237485613
https://api.semanticscholar.org/CorpusID:237485613
https://api.semanticscholar.org/CorpusID:237485613
https://doi.org/10.1109/icdar.2019.00244
https://doi.org/10.1109/icdar.2019.00244
https://doi.org/10.1109/icdar.2019.00244
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.1145/3474085.3475345
https://doi.org/10.1145/3474085.3475345
https://doi.org/10.1145/3474085.3475345
https://doi.org/10.1145/3474085.3475345
https://doi.org/10.1145/3474085.3475345
https://api.semanticscholar.org/CorpusID:207900784
https://api.semanticscholar.org/CorpusID:207900784
https://api.semanticscholar.org/CorpusID:207900784
https://doi.org/10.1109/icdar.2017.192
https://doi.org/10.1109/icdar.2017.192
https://doi.org/10.1109/icdar.2017.192
https://doi.org/10.1109/icdar.2017.192
https://doi.org/10.1109/icdar.2017.192

Zejiang Shen, Ruochen Zhang, Melissa Dell, Benjamin
Charles Germain Lee, Jacob Carlson, and Weining
Li. 2021. LayoutParser: A Unified Toolkit for Deep
Learning Based Document Image Analysis., page

131-146.

Carlos Soto and Shinjae Yoo. 2019. Visual detection
with context for document layout analysis. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-1JCNLP).

Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang,
and Furu Wei. 2021. Layoutreader: Pre-training
of text and layout for reading order detection. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing.

Zilong Wang, Mingjie Zhan, Xuebo Liu, and Ding
Liang. 2020. Docstruct: A multimodal method to
extract hierarchy structure in document for general
form understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio,
Cha Zhang, Wanxiang Che, Min Zhang, and Lidong
Zhou. 2021a. Layoutlmv2: Multi-modal pre-
training for visually-rich document understanding.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers).

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang,
Furu Wei, and Ming Zhou. 2020. Layoutlm: Pre-
training of text and layout for document image
understanding. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining.

Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang,
Yijuan Lu, Dinei Florencio, Cha Zhang, and Furu
Wei. 2021b. Layoutxlm: Multimodal pre-training for
multilingual visually-rich document understanding.
arXiv: Computation and Language,arXiv: Computa-
tion and Language.

Yuechen Yu, Yulin Li, Chengquan Zhang, Xiaoqgiang
Zhang, Zengyuan Guo, Xiameng Qin, Kun Yao,
Junyu Han, Errui Ding, and Jingdong Wang. 2023.
Structextv2: Masked visual-textual prediction for
document image pre-training.

Peng Zhang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu,
Jing Lu, Liang Qiao, Yi Niu, and Fei Wu. 2020. Trie:
End-to-end text reading and information extraction
for document understanding. In Proceedings of the
28th ACM International Conference on Multimedia.

Xu Zhong, Jianbin Tang, and AntonioJimeno Yepes.
2019. Publaynet: largest dataset ever for document
layout analysis. Cornell University - arXiv,Cornell
University - arXiv.

10

A Dataset Annotation

The goal of the PDF-to-Tree annotation task is to
extract text blocks from a PDF file and label their
relationships in a tree structure. We start by using
the open-source tool PDF Miner to extract text
blocks from the PDF. Any incorrectly extracted
blocks are manually corrected. Next, we use multi-
level numbering to label the relationships between
text blocks. Finally, we can add arcs between
adjacent text blocks with serial numbers to form a
tree structure.

Figure 7: An illustration of annotation tool used for the
PDF-to-Tree dataset.

As Figure 7 illustrates, with two-level num-
bering, the first level represents the global order
of document components, and the second level
represents the order of the text block within the
document component. For instance, the label
“paragraph-3-2” means that this text block is is
the second block within that paragraph and the
paragraph is the third component in the entire
document. Please note that the numbering is not
continuous. We use number to represent relative
order, making it easy to insert new labels anywhere
in the sequence. For example, we can insert 15
between 10 and 20.

For more complex components like tables, we
can extend to more levels of numbering, such as
using the second level for row numbers and the
third level for column numbers. For example, the
label “table-5-3-1” indicates that it is the first cell in
the third row of the table, which is the fifth element
in the article.

https://doi.org/10.1007/978-3-030-86549-8_9
https://doi.org/10.1007/978-3-030-86549-8_9
https://doi.org/10.1007/978-3-030-86549-8_9
https://doi.org/10.18653/v1/d19-1348
https://doi.org/10.18653/v1/d19-1348
https://doi.org/10.18653/v1/d19-1348
https://doi.org/10.18653/v1/2021.emnlp-main.389
https://doi.org/10.18653/v1/2021.emnlp-main.389
https://doi.org/10.18653/v1/2021.emnlp-main.389
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394171.3413900
https://doi.org/10.1145/3394171.3413900
https://doi.org/10.1145/3394171.3413900
https://doi.org/10.1145/3394171.3413900
https://doi.org/10.1145/3394171.3413900

	Introduction
	Method
	PDF-to-Tree
	Transition Prediction
	Text Embedding
	Layout Embedding
	Image Embedding
	Label and Position Prediction

	Experiments
	Dataset
	Baseline
	Training
	Metrics

	Results
	Accuracy on PDF-to-Tree
	Accuracy on FUNSD
	Ablation Study
	Score of Different Labels
	Inference Speed

	Related Work
	Entity Labeling
	Entity Linking
	Multi-Modal Feature Representation

	Discusion
	Limitation
	Dataset Annotation

