
PDF-to-Tree: Parsing PDF Text Blocks into a Tree

Anonymous ACL submission

Abstract

In PDF documents, the reading order of text001
blocks is missing, which can hinder machine002
understanding of the document’s content. Exist-003
ing works try to extract one universal reading004
order for a PDF file. However, applications,005
like Retrieval Augmented Generation (RAG),006
require breaking long articles into sections,007
subsections and table cells for better indexing.008
For this reason, this paper introduces a new009
task and dataset, PDF-to-Tree, which organizes010
the text blocks of a PDF into a tree structure.011
Since a PDF may contain thousands of text012
blocks, far exceeding the number of words in013
a sentence, this paper proposes a transition-014
based parser that uses a greedy strategy to015
build the tree structure. Compared to the016
parser for plain text, we also use multi-modal017
features to encode the parser state. Experiments018
show that our approach achieves an accuracy019
of 93.93%, surpassing the performance of020
baseline methods by an improvement of 6.72%.021

1 Introduction022

Document AI is a research field that has emerged023

in recent years. It focuses on automating the024

reading, comprehension, and analysis of data in025

PDF documents. These documents can be either026

scanned or digital-born(rendered) files. Although027

many PDFs are digital-born, their formats were028

designed for layout purposes. As a result, the029

structural information retained within them is030

often incomplete, which can hinder machine031

understanding of the document’s content.032

There’s a lot of research on PDF layout an-033

alyzing, like categorizing text blocks and pre-034

dicting the relationships between them. Earlier035

studies relies on purely visual features, such as,036

DeepDeSRT(Schreiber et al., 2017), PDFTableDec-037

tion(Hao et al., 2016), VisualDetection(Soto and038

Yoo, 2019) and dhSegment(Ares Oliveira et al.,039

2018) Later research incorporates visual, textual,040

title

abstract

section
subsection

paragraph
token token

paragraph
token token

subsection
table

table row
cell

footnote
annotation

[a]

[b] [c]

cell

1

2
4

3
5

root

Figure 1: In a PDF([a]), text blocks are independent
of each other and don’t have a specific order. The
reading order prediction task([b]) can partially resolve
this issue. However there’s only one text sequence,
footnotes, captions and other irrelevant text blocks are
inserted into the main text sequence. This might lead
to confusion. Additionally, some applications, like
RAG, require breaking down long articles into sections
for better content retrieval. To tackle this issue, we
propose a new task and dataset, PDF-to-Tree task([c]),
which organizes text blocks into a tree structure for
downstream task to retrieve.

and positional information. Such works inlude 041

LayoutLM serials (Xu et al., 2020), (Xu et al., 042

2021a), (Xu et al., 2021b), DocStruct(Wang et al., 043

2020), SPADE(Hwang et al., 2021), BROS(Hong 044

et al., 2021), StructuralLM(Li et al., 2021a) and 045

StrucTexT(Li et al., 2021b). There are also 046

many datasets developed in this area, including, 047

RVL_CDIP(Harley et al., 2015) FUNSD(Jaume 048

et al., 2019a), EPHOIE(Jaume et al., 2019b), 049

PubLayNet(Zhong et al., 2019), and SROIE(Huang 050

et al., 2019), DocBank(Li et al., 2020), CORD(Park 051

1

Step Stack Buffer Transition A ← ∅

0 [ROOT] [T1, T2, T3, T4, T5] ARC(ROOT, T1, title) A∪ (ROOT, T1, title)

1 [ROOT, T1] [T2, T3, T4, T5] ARC(T1, T2, abstract) A∪ (T1, T2, abstract)

2 [ROOT, T1, T2] [T3, T4, T5] SHIFT A

...

title

abstract

paragraph

section

paragraph

T1

T2

T3

T4

T5

Input Document Text Blocks Desired Tree

PDF Miner
or OCR

Transition-based Parser

T3 T1

T4

T5

BUFFER STACK

T2

Figure 2: We leverage a transition-based parser to predict tree structure of a document from a sequence of input
text blocks. The input document is processed by PDF Miner or OCR tools to get text block sequence. Then the
sequence is processed by the parser to predict a serial of transition actions that build the tree. The parser archive this
by using a buffer to hold input sequence and a stack to hold intermediate tree nodes. In each step, the parser predicts
a shift or arc operation that pops elements from the buffer and reconstructs the tree in the stack.

et al., 2019), SciTSR(Chi et al., 2019), .052

To address the issue of missing structure in-053

formation in PDF documents, existing research054

develops the task of reading order prediction.055

This involves predicting a global rank for each056

text block and linking them into a text sequence.057

Such efforts include LayoutParser(Shen et al.,058

2021), LayoutReader(Wang et al., 2021), ERNIE-059

layout(Peng et al., 2022).060

However, we believe that placing all text blocks061

in the same sequence is insufficient. This is062

because there are independent document elements063

like footnotes and captions, which should have064

their own reading order. Especially for RAG065

applications, which require breaking down long066

documents into sections, subsections and table067

rows, a more detailed method is needed to represent068

the content of PDF documents. Therefore, we069

introduce the PDF-to-Tree task and dataset. By070

organizing text blocks into a tree structure, we aim071

to solve the issue of complex document structures.072

We manually annotate the tree structures of 9,310073

PDF pages. As shown in Figure 1, through the PDF-074

to-Tree task, text blocks in a PDF are organized into075

a tree structure. Compared to reading unordered076

text blocks directly from a PDF file, downstream077

tasks can accurately access the content needed078

from the document through its tree structure. This079

dataset will be published on GitHub after the080

anonymity period ends.081

Additionally, we propose a transition-based082

parser that effectively completes the PDF-to-Tree083

task. There are multiple ways to construct a084

tree from a sequence. Considering a PDF may085

contain thousands of text blocks, depending on the 086

document’s length, we opt for a transition-based 087

parser to address this issue. Compared to other 088

algorithms (the minimum spanning tree or pairwise 089

linking methods), the time and memory complexity 090

of a transition-based parser scales linearly with 091

the length of the document. Unlike sentence 092

dependency parsing, text blocks in PDF documents 093

contain more information besides text, such as 094

visual details and layout. We also use features from 095

different modalities to encode the parser state. 096

In general, our main contributions are in three 097

folders: 1) We introduce a new task and dataset 098

for digital document understanding, called PDF-to- 099

Tree. This task converts PDFs into a tree structure, 100

making it easier for downstream tasks, like RAG, 101

to precisely locate content in the articles. 2) We 102

develop a transition-based parser for implementing 103

PDF-to-Tree. This approach scales linearly with 104

document length, and can handle PDFs made up 105

of thousands of text blocks. We also use multi- 106

modal features to encode the parser state. 3) Our 107

experiments show that our method achieves an 108

accuracy of 93.93%, which is 12.12% higher than 109

the baseline methods. 110

2 Method 111

In this section, we discuss how to reconstruct 112

document structure from a sequence of input text 113

blocks. 114

2.1 PDF-to-Tree 115

To reconstruct the tree structure of a document, 116

we leverage a transition-based parser. Given an 117

2

[CLS]
[S#0]

T1
[S#1]

T2
...

[SEP]
[B#0]
T3

Encoder

Text
Embedding

Layout
Embedding

V1

V2
...

V3

Image
Embedding

bbox1

bbox2
...

bbox3

+ +

h[CLS]
h[S#0]

h1
h[S#1]

h2
...

h[SEP]
h[B#0]

h3

Encoded
Features

Label
Prediction

STACK
(T1, V1, bbox1)
(T2, V2, bbox2)

BUFFER
(T3, V3, bbox3)

h[S#0]

h[S#1]

0.7

0.1

...

0.0

0.1

0.6

...

0.0

C
lassifier

title

abstract

...

other

title

abstract

...

other

arc(title, [S#0], [B#0])
A
rgm

ax

Position
Prediction

[S#0]

[S#1]gather

Figure 3: An overall illustration of transition prediction

input document d, we first extract all text blocks118

[T1, T2, ..., Tn] from d with PDF Miner or OCR119

tools depends on whether the input is a scanned120

or digital born document. Then a transition-based121

parser turns text block sequence into a tree. Let’s122

denote the final desired tree by the set of arcs in123

that tree, Â = [(head, tail, label), ...]. Now the124

goal of PDF-to-Tree is to predict Â.125

We can archive that via a transition-based parser126

with a configuration c consists of a stack s, a buffer127

b, and a set of arcs A. In the initial state, A = ϕ,128

s = [ROOT], and b = [T1, T2, ..., Tn]. In each129

step, the classifier predicts actions based on the130

content of s and b, as shown in Figure 2. At the end131

of each step, A is updated by adding the predicted132

arc into the set, A ← A ∪ [predicted_arc].133

Eventually, we will get our desired tree, A→ Â.134

Specifically, in each step we predict the follow-135

ing actions:136

• SHIFT - pop the first element and push it into137

the stack.138

• ARC - create a new arc from any element of139

the stack to the first element in the buffer and140

predict the label of arc.141

As Equation 1 shows, our parser needs to predict142

not only the label of the arc but also the starting143

point of the arc. In practice, we limit the start144

position of an arc with in a fixed size window of145

the stack to ease the prediction process.146

label, arc_start = classifier(a, b, A) (1)147

2.2 Transition Prediction148

Figure 3 illustrates the process of PDF-to-Tree149

predicting transition actions based on the current150

configuration at the current step. First, embeddings151

are created for the nodes in the stack and buffer.152

Text, bounding boxes and their corresponding 153

images are concatenated together in the order they 154

appear in the stack. The concatenated sequence 155

is then separately embedded for text, image, and 156

layout. These embeddings are combined according 157

to their positions and served as inputs for the 158

encoder. The encoder produces hidden state for 159

each node, and classification is performed to obtain 160

labels and the starting position of arcs. 161

Given the current configuration of a parser, 162

denoted as c = (s, b, A), we use the following 163

notations to introduce the out model. ni represents 164

a node from either s or b. ti represents the text 165

within the node ni, bboxi represents the bounding 166

box of ni, and vi represents the image information 167

of ni. 168

2.2.1 Text Embedding 169

We connect the ti from nodes in both s and b in 170

sequential order to form a sequence S. Before each 171

node ni, a special token is inserted as a separator. 172

For nodes in s, we use the special character [S#i], 173

and for nodes in b, we use [B#i]. As a result, we 174

obtain the sequence S as shown in Equation 2. 175

S = [CLS], [S#0], t0, [S#1], t1, ..., [SEP], [B#0], tn.
(2) 176

2.2.2 Layout Embedding 177

For each node, ni, besides embedding ti, it’s 178

also necessary to embed layout information, bboxi. 179

To be specific, we employ four distinct types of 180

layout embedding, including absolute position, 181

relative position, bounding box size(width and 182

height), and font size. Absolute position refers 183

to the coordinates bboxi = (xi0, y
i
0, x

i
1, y

i
1) of the 184

bounding box. Relative position indicates the 185

position of the bounding box relative to the first 186

node in the buffer, bboxb0 = (xb00 , yb00 , xb01 , yb01). If 187

bboxi and bboxb0 are from different pages, then 188

3

based on the page number, the model will add189

the corresponding page height to the y-coordinate190

of the bounding box below. All coordinates are191

normalized to the range of 0 to 1000. The results192

of embedding bi are also ordered according to the193

corresponding ti sequence, and the embeddings’194

outcomes at each position are averaged.195

Emblayout =


(xi

0, y
i
0, x

i
1, y

i
1)

(xi
0, y

i
0, x

i
1, y

i
1)− (xb0

0 , yb0
0 , xb0

1 , yb0
1)

(w, h), width and height
(fs), font size

(3)196

2.2.3 Image Embedding197

Out model embeds visual inputs with198

LayoutLM(Xu et al., 2020). Specifically,199

LayoutLMv1/v2 employs ResNet to embed200

images, while LayoutLMv3 uses a transformer to201

embed image patches. For situations where arcs202

span across pages, page images are concatenated.203

All page images, including those stitched together204

for spanning page elements, are resized to 512 x205

512.206

2.2.4 Label and Position Prediction207

After completing the embedding for all the modal-208

ities, the model will sum the embeddings for209

corresponding positions together. Then, it will210

encode the sequence of embeddings to get the211

hidden state, denoted as hS , for the input sequence212

S. For each node in stack s, the model extract the213

hidden value at the position of the special character214

[S#i] from hS , to get h[S#0], h[S#1], ..., h[S#n].215

As Equation 4 shows, the model will put the216

selected hidden state through a bi-linear module217

and obtain classification results for each node in the218

stack. Let’s denote label[S#i] as the label of node219

ni in the stack, and score[S#i] as the corresponding220

score. Finally, the model will take [S#i] with the221

maximum score(score[S#i]) as the start position222

for the predicted arc and corresponding label as arc223

label, as Equation 5 illustrates.224

label[S#i], score[S#i] = classifier(h[S#i]) (4)225

arc_start = argmax
[S#i]

(score[S#i]) (5)226

3 Experiments227

In this section, we dive into the implementation228

details of PDF-to-Tree and conduct experiments229

Labels Train Test Dev
of documents 1,040 129 129
of pages 7,554 786 970

Table 1: Statistics of training, development, and testing
sets

on the PDF-to-Tree dataset. Also, we create a 230

baseline with SPADE(Hwang et al., 2021) and 231

StrucTexTv1/v2(Li et al., 2021b), (Yu et al., 2023). 232

Those models are commonly used approaches in 233

structured text understanding. All experiments 234

were carried out using one to eight NVIDIA Tesla 235

A800 80GB GPUs. 236

3.1 Dataset 237

We introduce a new dataset called PDF-to-Tree, 238

which annotates the text blocks in each document 239

into a tree structure. In contrast, previous 240

entity linking datasets, such as FUNSD(Jaume 241

et al., 2019a), EPHOIE(Jaume et al., 2019b), 242

SROIE(Huang et al., 2019), mainly focused on 243

information extraction, containing only partial text 244

blocks from single pages, such as forms. As shown 245

in Figure 4, the annotation information consists of 246

two parts: text blocks with bounding boxes, and 247

arcs that represent the relationships between the 248

text boxes. Please refer to Appendix A for more 249

details. 250

"blocks": [
 ... ,
 {
 "id": 99
 "text": ”2 MATERIA...",
 "bbox": [50, 83, 124, 97]
 "font_size": 12
 }, ...
]

"arcs": [
 [96, 99, ”section"],
 [99, 100, " paragraph "],
 [100, 101, " paragraph "],
]

Figure 4: An annotation example of the PDF-to-Tree
Dataset. We use code to automatically extract text
blocks from PDFs and then manually annotate the
relationships between these blocks to create a tree
structure.

All the files in the PDF-to-Tree dataset are 251

digital-born(rendered) PDFs from public domain, 252

including product manuals, public technical reports, 253

white papers, and so on. We use the open-source 254

tool PDF Miner to automatically extract text blocks 255

from PDF documents. Then, we manually label 256

4

the relationships between the blocks to create a257

tree structure. For each document, we have at least258

two crowdsourced annotators working on it. All of259

our annotators are college students. We pay $0.20260

per page for the annotation. Please refer to the261

Appendix A for the details of our annotation tool.262

In total, we gather 1290 documents comprising263

9310 pages. There are 18 categories of labels. We264

allocate 80% of the documents for training, 10%265

for testing, and retain 10% as a development set.266

Specific data proportions are detailed in Table 1.267

Additionally, in previous document layout268

datasets, like DocBank(Li et al., 2020),269

PubLayout(Zhong et al., 2019), most commonly,270

academic papers were used as document271

sources(such as LaTeX or XML), and layout272

annotations were automatically generated by273

analyzing the source files. While this covered274

a larger number of documents, the layouts were275

relatively uniform. On the other hand, the276

PDF-to-Tree dataset employs a combination of277

machine and human annotations. This means that278

even when the source files of the documents are279

not available, complete structural information of280

the document can still be obtained. As a result,281

the entire collection of documents encompasses282

a wider range of layouts, including elements like283

product manuals and public technical reports,284

which are not typically found in academic papers.285

Additionally, due to this diversity of document286

types, the distribution of document lengths also287

varies considerably, ranging from a minimum of 1288

page to a maximum of 85 pages.289

3.2 Baseline290

In current Document AI work, entity linking is used291

to predict the relationships between text blocks,292

such as arcs in the PDF-to-Tree task. Therefore,293

we select three methods of entity linking to build294

our baseline, including SPADE (Hwang et al.,295

2021) and StrucTextV1 (Li et al., 2021b), and296

StrucTextV2(Yu et al., 2023). These models297

outperform other methods on entity linking tasks298

of the FUNSD dataset. We use the code provided299

by the original authors. However, the code of300

StrucText doesn’t include the fine-tuning code, we301

implement that part ourselves according to the302

description mentioned in the original paper. After303

the anonymous period ends, we plan to open-source304

this training code along with our own model code.305

Since PDF-to-Tree has documents up to 85306

pages in length, it’s not realistic to fit all the text307

blocks of a document into the input window size 308

of aforementioned baseline models. To tackle this, 309

we preprocess the dataset, dividing documents into 310

blocks of no more than 500 tokens each for training 311

and prediction and ignore the arcs between blocks. 312

This simplification will only affect approximately 313

5% arcs in test set. 314

3.3 Training 315

For our PDF-to-Tree model, we opt for both 316

text-only and text-image multi-modal pre-trained 317

models as encoders, comparing how different 318

modalities affect the outcomes. Specifically, we 319

choose BERT for text-only pre-training models, 320

and LayoutLM for the multi-modal pre-training 321

model. We utilized both the base and large versions 322

of the aforementioned pre-trained models in our 323

training code. We use PyTorch to implement our 324

model and the pre-trained weights are provided by 325

Hugging Face. 326

Throughout training, our model employs the 327

AdamW optimizer and a linear warm-up scheduler 328

for the initial 10% of steps. Cross entropy loss 329

is used for label and position prediction. We 330

conduct hyperparameter searches for learning rate, 331

batch size, and dropout using the dev dataset. 332

For the base version of BERT and ReBERTa, we 333

use a learning rate of 4 × 10−5, while for the 334

large version, we use a learning rate of 2 × 10−5. 335

Comparatively, for LayoutLMv1/2/3, a smaller 336

learning rate is needed to make the model converge. 337

We ultimately chose 2× 10−5 as the learning rate 338

for the base version and 1 × 10−5 for the large 339

version. In all cases, the dropout is set to 0.1, 340

the batch size is 32, and the number of epochs 341

is 6. Our code and dataset will be open-sourced 342

after the anonymous period ends. For the baseline 343

models, we follow the hyperparameters provided 344

in the original paper. 345

3.4 Metrics 346

To assess the accuracy of the model in reconstruct- 347

ing document structure, we utilize the attachment 348

score, which is widely used metrics in dependency 349

parsing. Unlabeled attachment score(UAS) is 350

the percentage of tokens with correctly assigned 351

heads, while labeled attachment score (LAS) is 352

the percentage of tokens with correctly assigned 353

heads and dependency relation labels. We define 354

UAS and LAS in the PDF-to-Tree task by replacing 355

tokens with text blocks, as Equation 6 and 7 356

illustrates. The primary emphasis of UAS lies in 357

5

Model Modality† Params UAS LAS Label F1‡

StrucTexTv1base (Li et al., 2021b) T+L+V 110M 0.8046 0.7636 0.8899
BROSbase (Hong et al., 2021) T+L+V 110M 0.8384 0.7800 0.8722
BROSlarge (Hong et al., 2021) T+L+V 340M 0.8721 0.8210 0.8925
LayoutLMv2-REbase (Xu et al., 2021a) T+L+V 220M 0.8419 0.7530 0.8007
LayoutLMv2-RElarge (Xu et al., 2021a) T+L+V 426M 0.8451 0.8020 0.8592
PDF-to-Treebert T+L 110M 0.9158 0.7900 0.8609
PDF-to-Treelayoutlm T+L 160M 0.9229 0.7551 0.8342
PDF-to-Treelayoutlmv2 T+L+V 220M 0.9338 0.7994 0.8678
PDF-to-Treelayoutlmv3 T+L+V 133M 0.9385 0.8020 0.8709
PDF-to-Treebert-large T+L 340M 0.9189 0.7757 0.8532
PDF-to-Treelayoutlm-large T+L 390M 0.9233 0.7836 0.8547
PDF-to-Treelayoutlmv2-large T+L+V 426M 0.9363 0.8070 0.8757
PDF-to-Treelayoutlmv3-large T+L+V 368M 0.9393 0.8166 0.8817
† “T” refers to text, “L” refers to layout and “V” refers to visual.
‡ F1-Score of entity labeling.

Table 2: Accuracy on PDF-to-Tree Dataset. Our method has advantages in extracting structural information from
PDFs. However, BROS(Hong et al., 2021) performs better in labeling.

the precision associated with the construction of358

the document’s structure. LAS takes into account359

both the labels and the links of text blocks.360

UAS =
of blocks with correct link

of all blocks
(6)361

LAS =
of blocks with correct link and label

of all blocks
(7)362

4 Results363

In this section, we compare our model with364

the baselines on both PDF-to-Tree and FUNSD365

datasets. We also evaluate the effects of various366

modality encoders on structure parsing for the PDF-367

to-Tree dataset. Additionally, we perform error368

analysis, ablation experiments, and inference speed369

analysis.370

4.1 Accuracy on PDF-to-Tree371

In general, the transition-based parser module372

shows a significant improvement in the task of373

document-level structure parsing. Our method,374

PDF-to-Tree outperforms the baseline models by375

6.72% in the UAS. This indicates that incorporating376

the transition-based parser module effectively377

filters out many irrelevant pairs and enhances378

the precision of link prediction, compared to379

the pairwise linking strategy in the baseline.380

This approach effectively leverages the inherent 381

characteristics of the document structure. However, 382

BROS(Hong et al., 2021) performs better in 383

labeling, with a 0.44% higher LAS score than 384

ours. We separately calculated the entity level 385

labeling accuracy. Without considering linking, 386

BROS has an F1 score of 89.25%, while our F1 387

score is 88.17%. 388

Furthermore, the modality of the pretrained 389

weights also plays an important role in the results. 390

By leverage the text-image multi-modal pretrained 391

weights, LayoutLMv3, the UAS and LAS are 392

improved, comparing to BERT, which are pre- 393

trained solely on text. Among the LayoutLM series, 394

LayoutLMv1 only uses image embeddings during 395

pre-training. On the other hand, LayoutLMv2/3 396

utilize image embeddings in both pre-training 397

and fine-tuning. Consequently, when employing 398

LayoutLMv3, the PDF-to-Tree model achieves the 399

highest UAS and LAS scores. 400

4.2 Accuracy on FUNSD 401

To better understand the performance of our 402

method on entity labeling and linking tasks, we 403

also conducted experiments on the FUNSD dataset. 404

As shown in Table 3, the results are generally 405

consistent with those from the PDF-to-Tree dataset. 406

Overall, our method excels in linking but falls 407

short in labeling. In the future, we might enhance 408

overall performance by combining the labeling 409

components of other methods with ours. 410

6

Model Label F1 Link F1
BERTbase 0.6092 0.2765
LayoutLMbase 0.7854 0.4586
LayoutLMv2base 0.8189 0.4291
StrucTexTbase 0.8309 0.4410
BROSbase 0.8305 0.7146
PDF-to-Treelayoutlmv3 0.8012 0.7261

Table 3: Accuracy on FUNSD.

4.3 Ablation Study411

Despite of visual modality, we also want to412

know how the other types of modalities affect the413

outcomes. As shown in Table 4, by removing414

layout as input, the model’s UAS and LAS decrease415

by 3.25% and 2.52%. It shows the layout input is416

helpful for document structure parsing. It indicates417

that the model can still achieve a certain level of418

document structure parsing ability solely relying419

on layout information.420

Model Modality UAS LAS
P2Tlayoutlmv3 T+L+V 0.9393 0.8166
P2Tbert T+L 0.9158 0.7900
P2Tbert-wo-layout T 0.8833 0.7280

Table 4: Ablation Study on PDF-to-Tree Dataset

pa
rag

rap
h

tab
le

tex
t

ref
ere

nc
e

fig
ure

 te
xt

eq
ua

tio
n

sec
tio

n

cap
tio

n
meta

he
ad

er
au

tho
r
titl

e

an
no

tat
ion
foo

ter

qu
est

ion

an
sw

er
0.0

0.2

0.4

0.6

0.8

LA
S

102

103

104

of

 la
be

ls

Figure 5: Labeled Attachment Score of Different Labels.
The bars illustrate the LAS of labels. The line shows
the number of labels. Labels with lower occurrence
rates exhibit much lower scores. Some document
components, such as meta and header, have a sufficient
number of annotations, but their scores are not high due
to their varied forms.

4.4 Score of Different Labels421

Besides overall accuracy, we also analyze the422

accuracy for each label. As shown in the figure, the423

model performs well in predicting more common424

labels, such as paragraph, table, and reference. It425

Model Sec / Page
BROSbase 0.362
LayoutLMv2-REbase 0.528
StrucTexTbase 0.262
P2Tlayoutlmv3 1.138

Table 5: The inference speed of P2T is slightly slower
than the baseline. However, considering that all cross-
page links are ignored in the baseline models, this speed
difference is acceptable.

also does well with simpler labels like authors and 426

titles. The model finds labels like meta and header, 427

which vary a lot in form, the most challenging. 428

Compared to the least common labels, meta and 429

header have a decent number of samples, but their 430

scores are still not good. This is because document 431

headers and meta information are more varied than 432

fixed elements like titles and paragraphs. Overall, 433

these results are as expected. Handling these rare 434

and variably formatted tags is still a challenging 435

task. 436

4.5 Inference Speed 437

We choose PDF-to-Treelayoutlmv3 to compare the 438

inference speed with the baseline models because 439

these models share the similar parameter size and 440

modality. As shown in Table 5, due to PDF-to-Tree 441

encoding each state during the parsing process, 442

it’s slower in speed compared to the baselines. 443

Specifically, on PDF-to-Treelayoutlmv3, the average 444

time to complete predictions for one page is 1.138 445

seconds, whereas the baselines only needs 0.511 446

and 0.262 seconds. Considering that the baseline 447

models ignore all arcs cross pages due to not being 448

able to fit the entire document into memory, this 449

difference is acceptable. Moreover, the time cost 450

of PDF-to-Tree only depends on document length. 451

As depicted in Figure 6, with an increase in pages, 452

the time cost of PDF-to-Tree grows linearly. In 453

the future, we can further improve the inference 454

speed of PDF-to-Tree by optimizing the encoding 455

process. 456

5 Related Work 457

Document AI is a research area that has gained 458

attention in recent years. There’s a lot of valuable 459

information stored in the form of digital documents. 460

The goal is to extract and convert digital documents 461

into structured data. Jaume et al. divides Document 462

AI into two subtasks: One involves categorizing 463

blocks within the document to obtain labels for 464

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Pages

5

10

15

20

Se
co

nd
s

Figure 6: The inference cost of PDF-to-Tree increases
linearly with the length of the document.

these blocks, which is called entity labeling. The465

other involves establishing connections between466

blocks to identify the relationships between them,467

which is known as entity linking.468

5.1 Entity Labeling469

For entity labeling, many studies use the NER470

framework to label sequences at the token level.471

These studies include BERTgrid(Denk and Reiss-472

wig, 2019), Post-OCR-Parsing(Hwang et al., 2019).473

Additionally, there are some studies that aim to474

combine the spatial information of text blocks for475

labeling sequences at the block level. Examples476

of such studies are GraphIE(Qian et al., 2018),477

TRIE(Zhang et al., 2020), LayoutParser(Shen et al.,478

2021), LayoutLM serials(Xu et al., 2020), (Xu479

et al., 2021a), (Xu et al., 2021b). Also Wang480

et al. finds that formatting can disrupt sequence481

labeling. In addition to providing semantic labels482

for text blocks, predicting the reading order is also483

necessary. Research in this field includes works484

like LayoutReader(Wang et al., 2021), ERNIE-485

Layout(Peng et al., 2022).486

5.2 Entity Linking487

Studies, such as dhSegment(Ares Oliveira et al.,488

2018), DocStruct(Wang et al., 2020), StrucTexT489

serials(Li et al., 2021b), (Yu et al., 2023) combine490

these two tasks and perform Entity Labeling and491

Linking at the block Level simultaneously. Those492

studies mainly deal with blocks of individual pages.493

SPADE(Hwang et al., 2021) formulates entity494

linking as a spatial dependency parsing problem.495

However the linking strategy is pair-wise. What496

sets this paper apart is the utilization of a transition-497

based parser for constructing entity links.498

Numerous datasets have been introduced499

to support research in this direction, such as 500

FUNSD(Jaume et al., 2019a), EPHOIE(Jaume 501

et al., 2019b), SROIE(Huang et al., 2019). Unlike 502

our work, these datasets usually focus only on 503

information extraction. The annotated text blocks 504

and relationships often cover only part of the 505

information on a single page. In contrast, the 506

PDF-to-Tree dataset and task aim to organize the 507

information from an entire document into a tree 508

structure. 509

5.3 Multi-Modal Feature Representation 510

Early works typically involved using a single 511

mode for predictions, either text or images. Lay- 512

outLM(Xu et al., 2020) find that utilizing multi- 513

modal data can significantly enhance the model’s 514

performance in understanding structured text. Sim- 515

ilar works include StructuralLM(Li et al., 2021a), 516

StrucTexT serials(Li et al., 2021b), (Yu et al., 517

2023). Meanwhile, datasets like DocBank(Li et al., 518

2020), PubLayout(Zhong et al., 2019), and RVL- 519

CDIP(Harley et al., 2015) are introduced to support 520

pre-training for layout understanding. BROS(Hong 521

et al., 2021) leverages 2D relative positions with 522

area masking strategy to develop a pre-trained 523

language model. These datasets share the common 524

characteristic of being annotated directly from 525

the source code of electronic documents. In this 526

paper, we employed a combination of automated 527

and manual annotation. This enables support for 528

a broader range of document types, including 529

product manuals, public technical reports, white 530

papers, and so on. 531

6 Discusion 532

In this paper, we discuss the task of document 533

structure parsing. This task is more intricate 534

compared to the traditional reading order predi- 535

tion. This complexity arises because we need to 536

consider connecting paragraphs across pages and 537

linking paragraphs into sections. To address these 538

challenges, we introduce a transition-based parser 539

as a solution. Alongside this, we introduce a new 540

dataset called PDF-to-Tree to support this task. 541

Experimental results demonstrate the effectiveness 542

of our approach. However, there is still room for 543

improvement in identifying less common labels. 544

Moreover, there are areas where the efficiency of 545

inference can be enhanced. 546

8

7 Limitation547

All the PDFs used in the PDF-to-Tree dataset are548

born digital(rendered). In theory, our method could549

also be applied to scanned documents. However,550

due to resource constraints, it has not been used on551

the PDF-to-Tree dataset yet. In future work, we552

plan to include scanned documents in our dataset as553

well. Additionally, the high cost of manual labeling554

limits the amount of annotated data we can obtain.555

In future work, we believe it’s worth discussing556

how to automatically label the tree structure of a557

document.558

References559

Sofia Ares Oliveira, Benoit Seguin, and Frederic560
Kaplan. 2018. dhsegment: A generic deep-561
learning approach for document segmentation. In562
2018 16th International Conference on Frontiers in563
Handwriting Recognition (ICFHR).564

Zewen Chi, Heyan Huang, Heng-Da Xu, Houjin565
Yu, Wanxuan Yin, and Xian-Ling Mao. 2019.566
Complicated table structure recognition. ArXiv,567
abs/1908.04729.568

Timo Denk and Christian Reisswig. 2019. Bertgrid:569
Contextualized embedding for 2d document repre-570
sentation and understanding.571

Leipeng Hao, Liangcai Gao, Xiaohan Yi, and Zhi Tang.572
2016. A table detection method for pdf documents573
based on convolutional neural networks. In 2016574
12th IAPR Workshop on Document Analysis Systems575
(DAS).576

AdamW. Harley, Alex Ufkes, and KonstantinosG.577
Derpanis. 2015. Evaluation of deep convolutional578
nets for document image classification and retrieval.579
Cornell University - arXiv,Cornell University - arXiv.580

Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok581
Hwang, Daehyun Nam, and Sungrae Park. 2021.582
Bros: A pre-trained language model focusing on583
text and layout for better key information extraction584
from documents. In AAAI Conference on Artificial585
Intelligence.586

Zheng Huang, Kai Chen, Jianhua He, Xiang Bai,587
Dimosthenis Karatzas, Shijian Lu, and C. V. Jawahar.588
2019. Icdar2019 competition on scanned receipt ocr589
and information extraction. In 2019 International590
Conference on Document Analysis and Recognition591
(ICDAR).592

Wonseok Hwang, Seonghyeon Kim, Minjoon Seo,593
Jinyeong Yim, Seunghyun Park, Sungrae Park,594
Junyeop Lee, Bado Lee, and Hwalsuk Lee. 2019.595
Post-ocr parsing: building simple and robust parser596
via bio tagging.597

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, 598
Sohee Yang, and Minjoon Seo. 2021. Spatial 599
dependency parsing for semi-structured document 600
information extraction. In Findings of the 601
Association for Computational Linguistics: ACL- 602
IJCNLP 2021. 603

Guillaume Jaume, Hazim Kemal Ekenel, and Jean- 604
Philippe Thiran. 2019a. Funsd: A dataset for form 605
understanding in noisy scanned documents. In 2019 606
International Conference on Document Analysis and 607
Recognition Workshops (ICDARW). 608

Guillaume Jaume, Hazim Kemal Ekenel, and Jean- 609
Philippe Thiran. 2019b. Funsd: A dataset for form 610
understanding in noisy scanned documents. In 2019 611
International Conference on Document Analysis and 612
Recognition Workshops (ICDARW). 613

Chenliang Li, Bin Bi, Ming Yan, Wei Wang, Songfang 614
Huang, Fei Huang, and Luo Si. 2021a. Structurallm: 615
Structural pre-training for form understanding. In 616
Proceedings of the 59th Annual Meeting of the 617
Association for Computational Linguistics and the 618
11th International Joint Conference on Natural 619
Language Processing (Volume 1: Long Papers). 620

Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu 621
Wei, Zhoujun Li, and Ming Zhou. 2020. Docbank: A 622
benchmark dataset for document layout analysis. In 623
Proceedings of the 28th International Conference on 624
Computational Linguistics. 625

Yulin Li, Yuxi Qian, Yuechen Yu, Xiameng Qin, 626
Chengquan Zhang, Yan Liu, Kun Yao, Junyu Han, 627
Jingtuo Liu, and Errui Ding. 2021b. Structext: 628
Structured text understanding with multi-modal 629
transformers. In Proceedings of the 29th ACM 630
International Conference on Multimedia. 631

Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee, 632
Jaeheung Surh, Minjoon Seo, and Hwalsuk Lee. 2019. 633
Cord: A consolidated receipt dataset for post-ocr 634
parsing. 635

Qiming Peng, Yinxu Pan, Wenjin Wang, Bin Luo, 636
Zhenyu Zhang, Zhengjie Huang, Teng Hu, Weichong 637
Yin, Yongfeng Chen, Yin Zhang, Shikun Feng, 638
Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. 639
2022. Ernie-layout: Layout knowledge enhanced pre- 640
training for visually-rich document understanding. 641

Yujie Qian, Enrico Santus, Zhijing Jin, Jiang Guo, 642
and Regina Barzilay. 2018. Graphie: A graph- 643
based framework for information extraction. arXiv: 644
Computation and Language,arXiv: Computation and 645
Language. 646

Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas 647
Dengel, and Sheraz Ahmed. 2017. Deepdesrt: Deep 648
learning for detection and structure recognition of 649
tables in document images. In 2017 14th IAPR 650
International Conference on Document Analysis and 651
Recognition (ICDAR). 652

9

https://doi.org/10.1109/icfhr-2018.2018.00011
https://doi.org/10.1109/icfhr-2018.2018.00011
https://doi.org/10.1109/icfhr-2018.2018.00011
https://api.semanticscholar.org/CorpusID:199552037
https://doi.org/10.1109/das.2016.23
https://doi.org/10.1109/das.2016.23
https://doi.org/10.1109/das.2016.23
https://api.semanticscholar.org/CorpusID:237485613
https://api.semanticscholar.org/CorpusID:237485613
https://api.semanticscholar.org/CorpusID:237485613
https://api.semanticscholar.org/CorpusID:237485613
https://api.semanticscholar.org/CorpusID:237485613
https://doi.org/10.1109/icdar.2019.00244
https://doi.org/10.1109/icdar.2019.00244
https://doi.org/10.1109/icdar.2019.00244
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.18653/v1/2021.findings-acl.28
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.1109/icdarw.2019.10029
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2021.acl-long.493
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.18653/v1/2020.coling-main.82
https://doi.org/10.1145/3474085.3475345
https://doi.org/10.1145/3474085.3475345
https://doi.org/10.1145/3474085.3475345
https://doi.org/10.1145/3474085.3475345
https://doi.org/10.1145/3474085.3475345
https://api.semanticscholar.org/CorpusID:207900784
https://api.semanticscholar.org/CorpusID:207900784
https://api.semanticscholar.org/CorpusID:207900784
https://doi.org/10.1109/icdar.2017.192
https://doi.org/10.1109/icdar.2017.192
https://doi.org/10.1109/icdar.2017.192
https://doi.org/10.1109/icdar.2017.192
https://doi.org/10.1109/icdar.2017.192

Zejiang Shen, Ruochen Zhang, Melissa Dell, Benjamin653
Charles Germain Lee, Jacob Carlson, and Weining654
Li. 2021. LayoutParser: A Unified Toolkit for Deep655
Learning Based Document Image Analysis., page656
131–146.657

Carlos Soto and Shinjae Yoo. 2019. Visual detection658
with context for document layout analysis. In659
Proceedings of the 2019 Conference on Empirical660
Methods in Natural Language Processing and the 9th661
International Joint Conference on Natural Language662
Processing (EMNLP-IJCNLP).663

Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang,664
and Furu Wei. 2021. Layoutreader: Pre-training665
of text and layout for reading order detection. In666
Proceedings of the 2021 Conference on Empirical667
Methods in Natural Language Processing.668

Zilong Wang, Mingjie Zhan, Xuebo Liu, and Ding669
Liang. 2020. Docstruct: A multimodal method to670
extract hierarchy structure in document for general671
form understanding. In Findings of the Association672
for Computational Linguistics: EMNLP 2020.673

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu674
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio,675
Cha Zhang, Wanxiang Che, Min Zhang, and Lidong676
Zhou. 2021a. Layoutlmv2: Multi-modal pre-677
training for visually-rich document understanding.678
In Proceedings of the 59th Annual Meeting of the679
Association for Computational Linguistics and the680
11th International Joint Conference on Natural681
Language Processing (Volume 1: Long Papers).682

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang,683
Furu Wei, and Ming Zhou. 2020. Layoutlm: Pre-684
training of text and layout for document image685
understanding. In Proceedings of the 26th ACM686
SIGKDD International Conference on Knowledge687
Discovery & Data Mining.688

Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang,689
Yijuan Lu, Dinei Florencio, Cha Zhang, and Furu690
Wei. 2021b. Layoutxlm: Multimodal pre-training for691
multilingual visually-rich document understanding.692
arXiv: Computation and Language,arXiv: Computa-693
tion and Language.694

Yuechen Yu, Yulin Li, Chengquan Zhang, Xiaoqiang695
Zhang, Zengyuan Guo, Xiameng Qin, Kun Yao,696
Junyu Han, Errui Ding, and Jingdong Wang. 2023.697
Structextv2: Masked visual-textual prediction for698
document image pre-training.699

Peng Zhang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu,700
Jing Lu, Liang Qiao, Yi Niu, and Fei Wu. 2020. Trie:701
End-to-end text reading and information extraction702
for document understanding. In Proceedings of the703
28th ACM International Conference on Multimedia.704

Xu Zhong, Jianbin Tang, and AntonioJimeno Yepes.705
2019. Publaynet: largest dataset ever for document706
layout analysis. Cornell University - arXiv,Cornell707
University - arXiv.708

A Dataset Annotation 709

The goal of the PDF-to-Tree annotation task is to 710

extract text blocks from a PDF file and label their 711

relationships in a tree structure. We start by using 712

the open-source tool PDF Miner to extract text 713

blocks from the PDF. Any incorrectly extracted 714

blocks are manually corrected. Next, we use multi- 715

level numbering to label the relationships between 716

text blocks. Finally, we can add arcs between 717

adjacent text blocks with serial numbers to form a 718

tree structure. 719

Figure 7: An illustration of annotation tool used for the
PDF-to-Tree dataset.

As Figure 7 illustrates, with two-level num- 720

bering, the first level represents the global order 721

of document components, and the second level 722

represents the order of the text block within the 723

document component. For instance, the label 724

“paragraph-3-2” means that this text block is is 725

the second block within that paragraph and the 726

paragraph is the third component in the entire 727

document. Please note that the numbering is not 728

continuous. We use number to represent relative 729

order, making it easy to insert new labels anywhere 730

in the sequence. For example, we can insert 15 731

between 10 and 20. 732

For more complex components like tables, we 733

can extend to more levels of numbering, such as 734

using the second level for row numbers and the 735

third level for column numbers. For example, the 736

label “table-5-3-1” indicates that it is the first cell in 737

the third row of the table, which is the fifth element 738

in the article. 739

10

https://doi.org/10.1007/978-3-030-86549-8_9
https://doi.org/10.1007/978-3-030-86549-8_9
https://doi.org/10.1007/978-3-030-86549-8_9
https://doi.org/10.18653/v1/d19-1348
https://doi.org/10.18653/v1/d19-1348
https://doi.org/10.18653/v1/d19-1348
https://doi.org/10.18653/v1/2021.emnlp-main.389
https://doi.org/10.18653/v1/2021.emnlp-main.389
https://doi.org/10.18653/v1/2021.emnlp-main.389
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2020.findings-emnlp.80
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394486.3403172
https://doi.org/10.1145/3394171.3413900
https://doi.org/10.1145/3394171.3413900
https://doi.org/10.1145/3394171.3413900
https://doi.org/10.1145/3394171.3413900
https://doi.org/10.1145/3394171.3413900

	Introduction
	Method
	PDF-to-Tree
	Transition Prediction
	Text Embedding
	Layout Embedding
	Image Embedding
	Label and Position Prediction

	Experiments
	Dataset
	Baseline
	Training
	Metrics

	Results
	Accuracy on PDF-to-Tree
	Accuracy on FUNSD
	Ablation Study
	Score of Different Labels
	Inference Speed

	Related Work
	Entity Labeling
	Entity Linking
	Multi-Modal Feature Representation

	Discusion
	Limitation
	Dataset Annotation

