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Abstract
Artificial Intelligence (AI) increasingly mediates web experiences—

ranking, recommendation, advertising, and moderation—yet in-

dependent verification of AI behaviour and data provenance re-

mains rare. We present a Decentralised Trust Layer (DTL) that turns
transparency from policy into protocol. DTL anchors provenance

claims, binds deployed model versions to signed metadata, and

produces privacy-preserving inference receipts in an append-only

transparency log inspired by certificate transparency. We formalise

a threat model, provide a deployable protocol suite (provenance an-

choring, model lineage registry, inference transparency, and decen-

tralised audit sampling), and specify a fully reproducible evaluation

protocol. To remain faithful to what can be executed without pro-

prietary dependencies, our measurements focus on cryptographic

and logging overheads and proof verification costs; results indi-

cate microsecond-scale per-request costs for receipt generation and

logarithmic proof sizes consistent with transparency-log theory.

We discuss governance, privacy, and regulatory alignment and out-

line how DTL can be integrated into existing web standards and

platform architectures.
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1 Introduction
The contemporary digital landscape is undergoing a fundamental re-

structuring as artificial intelligence (AI) transitions from a backend

utility to a primary mediator of human experience. On the modern

web, algorithmic systems now govern information retrieval, social
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discourse, and commercial recommendation with unprecedented

autonomy [1, 2]. However, this evolution has been accompanied by

a systemic erosion of trust in centralised web platforms, which often

operate as opaque "black boxes" under the exclusive control of a few

technology giants [3]. As AI increasingly assumes responsibility

for consequential decisions in healthcare, finance, and governance,

the lack of transparency regarding data provenance and algorith-

mic behaviour has created significant societal risks, including the

amplification of systemic bias and the proliferation of sophisticated

misinformation.

AI-powered web platforms shape information access and visibil-

ity through ranking, recommendation, advertising selection, and

moderation. Trust in these systems has eroded due to centralised

control of data and models, limited transparency into algorithmic

decisions, and difficulties in independently verifying claims about

deployment, training data, or policy changes [4]. Documentation

artefacts such as model cards and dataset datasheets improve dis-

closure, but they do not guarantee that a deployed service matches

its published artefacts nor that records are immutable [5, 6].

This paper asks a practical systems question: What would it take
for users, developers, auditors, and regulators to independently verify
key facts about an AI-powered web service—its data provenance, the
model version serving a decision, and whether a decision log was
rewritten—without requiring privileged access to the platform? We

argue that transparency must be backed by cryptographic com-

mitments, append-only logs, and verifiable identities that make

equivocation detectable and accountability enforceable.

Core idea. We propose a Decentralised Trust Layer (DTL): a mod-

ular trust substrate that can be deployed as a sidecar to AI services.

DTL provides: (i) tamper-evident provenance anchoring for data

and transformations, (ii) a model registry for signed lineage and

disclosures, (iii) inference transparency via append-only logging

of privacy-preserving receipts, and (iv) decentralised governance
and auditing for sampling-based verification and dispute resolu-

tion. DTL adapts transparency-log design patterns from the Web

PKI [7] to AI inference events, and aligns with W3C identity and

provenance standards [8–10].

Novelty and positioning. DTL does not introduce new crypto-

graphic primitives; instead, it protocolises AI transparency for web

decisions by turning narrative disclosures into append-only, non-

equivocating commitments with verifiable receipts and consis-

tency proofs. The novelty lies in (i) integrating provenance, signed

model/policy registries, and inference receipts into a sidecar de-

ployable architecture, and (ii) specifying an evaluation protocol

that third parties can execute without privileged platform access.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Contributions. Contributions.Wemake four contributions: Sys-
tem architecture for a decentralised trust layer spanning prove-

nance, model lineage, inference receipts, and governance, designed

for incremental adoption and standards interoperability; Formal
threat model and security analysis capturing security goals

(integrity, non-equivocation, accountability, privacy) and adversary

capabilities, plus a mapping to protocol defences; Protocol suite
including receipt commitments, transparency proofs, and audit

sampling; we provide pseudocode for implementers and highlight

configuration choices; and Reproducible evaluation protocol
and runnable measurements focusing on what can be executed

without proprietary access: receipt generation, Merkle batching,

proof sizes, and verification times, with confidence intervals and

reporting guidance.

2 Problem Setting and Requirements
2.1 Stakeholders and trust boundaries
DTL targets web ecosystems where decisions are made by a plat-

form operator but must be trusted by others: users (affected by

ranking and moderation), developers (building on platform APIs),

auditors (third-party assessors and researchers), and regulators
(requiring traceability, record-keeping, and accountability). The op-

erator controls infrastructure, models, and logs; DTL assumes the

operator is not fully trusted to faithfully retain or disclose records.

2.2 Use cases
We focus on web-native use cases with high accountability de-

mands: Recommendation and ranking: provide verifiable evi-
dence that a recommendation was produced by model version 𝑣

under policy 𝑝 at time 𝑡 .; Conversational AI services: bind re-

sponses to a deployed model build and a policy configuration (e.g.,

safety filters), while preserving input privacy.; Content modera-
tion: log moderation decisions with policy digests for later dispute

resolution and longitudinal auditing.; Data provenance for web
mining pipelines: track dataset lineage and transformations used

to train/refresh models..

2.3 Design requirements
From these use cases, we derive requirements: (R1) verifiability
by non-privileged parties, (R2) non-equivocation (no split-view

histories), (R3) privacy-by-default with selective disclosure, (R4)
incremental deployability (sidecar or gateway), (R5) interoper-
abilitywith web standards (DID/VC, PROV), and (R6)measurable
overhead suitable for production services.

3 Background and Related Work
Provenance and documentation. PROV provides a standard

model for representing provenance as entities, activities, and agents

[10]. Model cards and datasheets articulate ML documentation and

intended-use disclosure. Responsible AI literature emphasises that

disclosure alone is insufficient without organisational and technical

accountability mechanisms [11, 12].

Transparency logs.Certificate Transparency introduced append-
only Merkle logs, inclusion proofs, and consistency proofs to de-

tect certificate mis-issuance and log equivocation at Internet scale

[7, 13]. DTL generalises this pattern to AI inference receipts and
model/policy versioning.

Supply chain and attestations. in-toto and SLSA formalise

software supply-chain provenance, verification, and tamper-evident

attestations [14, 15]. ML systems inherit analogous supply-chain

risks (data poisoning, artefact substitution, dependency compro-

mise) [16, 17]. DTL borrows attestation principles but targets web

AI decisions rather than binaries alone.

Decentralised identity and claims. W3C DIDs and verifiable

credentials provide decentralised identifiers and cryptographically

verifiable claims [8, 9]. DTL uses DIDs/VCs to bind model registries,

auditors, and operators to accountable identities and to publish

signed metadata with controlled disclosure.

Decentralised auditing of LLMs. Recent work explores de-

centralised frameworks for auditing LLM reasoning [18]. Our goal

differs: DTL focuses onweb platform transparency across data prove-
nance, model lineage, and inference events, and designs for incre-

mental adoption via a sidecar architecture.

Table 1 summarises how DTL differs from adjacent approaches:

it combines non-equivocating transparency logs with explicit bind-

ings to model and policy versions, producing privacy-preserving

inference receipts that enable third-party verification.

4 DTL Architecture
DTL is deployable as a sidecar microservice adjacent to model

serving. Large artefacts (datasets, scripts, model cards) are stored off-

chain (e.g., IPFS, Solid pods, or object stores) with content-addressed

references [19]. Only compact commitments (hashes, signatures,

roots) are anchored in an append-only structure or ledger.

4.1 Layer 1: provenance anchoring
DTL represents lineage using PROV: data artefacts as entities, trans-

formations as activities, and organisations or tools as agents [10].

Each record contains: (i) a content hash of the artefact, (ii) a PROV

statement (or reference), (iii) an agent identifier (DID), and (iv) a

signature. Anchors may be posted to a ledger or a transparency

log for tamper-evidence; the key property is append-only verifiable

history, not the specific chain.

4.2 Layer 2: model registry
The registry binds a deployed model version 𝑣 to a metadata bundle

including: model card, training data summary, evaluation report,

dependencies and build provenance (SLSA-style statements), and

policy-compatible constraints. The bundle is content-addressed

and signed by the operator (and optionally third-party evaluators).

Verifiers can check that a claimed version maps to an immutable

bundle and that signatures correspond to known identities.

4.3 Layer 3: inference transparency log
DTL logs inference receipts per request (or per decision event). Re-

ceipts are hashed and appended as leaves in a Merkle tree, peri-

odically publishing signed roots. Inclusion and consistency proofs

allow any verifier to check a receipt is in the log and that the log

has not been rewritten [7].
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Table 1: Positioning of DTL relative to adjacent transparency and provenance mechanisms (∼ denotes partial/optional support).

Approach Non-equiv. log Model

bind.

Policy/decision

bind.

Sidecar de-

ployable

Auditor re-

ceipts/proofs

Privacy-

by-default

PROV / model cards / datasheets – – – – – ∼
Certificate Transparency-style logs ✓ – – – ✓ –

in-toto / SLSA attestations ∼ ∼ – – ∼ ∼
DTL (this work) ✓ ✓ ✓ ✓ ✓ ✓

(a) DTL deployment & trust flows (sidecar, off-chain artefacts, append-only anchoring,
verification).

(b) Layered DTL functions (provenance, registry, transparency log, governance).

Figure 1: DTL architecture overview. Top (a): DTL is deployable as a sidecar adjacent to model serving; large artefacts (datasets,
scripts, model cards) remain off-chain (e.g., object stores or content-addressed storage) and are referenced by content hashes,
while compact commitments are appended to an append-only transparency structure.Bottom (b): Layered functions—provenance
anchoring, model lineage registry, inference transparency, and governance—produce signed receipts plus inclusion/consistency
proofs, enabling independent auditors to replay and verify web-facing decisions without access to proprietary internals.
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4.4 Layer 4: governance and auditing
Governance defines who may operate logs, how auditors are ad-

mitted, and how disputes are resolved. Auditors sample receipts,

verify proofs and signatures, and can request selective disclosure

for contested cases. Governance policies can be codified as smart

contracts or as a consortium policy; DTL remains agnostic, but

requires that governance decisions are themselves recorded with

accountable identities.

5 Protocol Suite
5.1 Receipt commitments and privacy
For an input 𝑥 and random salt 𝑟 , define an input commitment:

𝑐𝑥 = 𝐻 (𝑥 ∥ 𝑟 ). (1)

Let the platform output be 𝑦 = 𝑓𝑣 (𝑥) and let 𝑝 denote the policy

configuration. We define a minimal receipt:

𝜌 = (𝑐𝑥 , 𝐻 (𝑦), 𝑣, 𝐻 (𝑝), 𝑡, 𝜎op), (2)

where 𝜎op is a signature by the operator and 𝑡 is a timestamp. The

log leaf is 𝐿 = 𝐻 (𝜌). Commitments enable later selective disclosure:

a user can reveal (𝑥, 𝑟 ) to prove 𝑐𝑥 corresponds to an interaction

without requiring the operator to expose raw inputs by default.

5.2 Merkle transparency and non-equivocation
Let 𝑇𝑛 be a Merkle tree with 𝑛 leaves and root 𝑅𝑛 . A transparency

log publishes signed roots 𝜎log (𝑅𝑛, 𝑛, 𝑡). Verifiers obtain: inclusion
proofs (a leaf is in a given tree) and consistency proofs (a later tree
extends an earlier tree) [7]. These proofs make split-view attacks

detectable: if a log presents inconsistent histories, it cannot provide

valid consistency proofs to all verifiers.

5.3 Audit sampling and detection
If auditors sample 𝑘 receipts from a window containing misbe-

haviour fraction 𝑞, the probability of detecting at least one violation

under uniform sampling is:

𝑃detect = 1 − (1 − 𝑞)𝑘 . (3)

This yields a simple policy knob: increasing 𝑘 increases detection

probability but raises audit cost. We later visualise Eq. 3 as part of

the reproducible evaluation.

5.4 Dispute resolution (high-level)
Adispute bundles evidence: (i) the receipt 𝜌 , (ii) inclusion/consistency

proofs, (iii) themodel registry entry for 𝑣 , (iv) the policy digest𝐻 (𝑝),
and optionally (v) selective disclosure of (𝑥, 𝑟 ) or plaintext output 𝑦
under governance rules. The governance layer adjudicates accord-

ing to policy (e.g., mislabelling, policy noncompliance, or version

misreporting).

6 Threat Model and Security Analysis
6.1 Security goals
evDTL targets the following properties. extbfRecord integrity: prove-

nance anchors, model metadata, and receipts are append-only and

tamper-evident. extbfPublic verifiability: any verifier can validate

proofs and signatureswithout privileged access. extbfNon-equivocation:

Algorithm 1 Receipt generation and logging (DTL sidecar)

Require: Input 𝑥 , model version 𝑣 , policy 𝑝

1: 𝑦 ← ServeModel(𝑥, 𝑣, 𝑝)
2: 𝑟 ← {0, 1}𝜆 uniformly at random

3: 𝑐𝑥 ← 𝐻 (𝑥 ∥ 𝑟 )
4: 𝜌 ← (𝑐𝑥 , 𝐻 (𝑦), 𝑣, 𝐻 (𝑝), 𝑡, 𝜎op)
5: 𝐿 ← 𝐻 (𝜌)
6: Append 𝐿 to transparency log; obtain signed root and proofs

7: return (𝑦, 𝜌, 𝜋incl) to client

Table 2: Threats and protocol defences.

Threat DTL defence

Omit or rewrite deci-

sion logs

Merkle transparency log with signed

roots and consistency proofs [7].

Claim wrong model

version/policy

Receipt binds (𝑣, 𝐻 (𝑝)); registry binds 𝑣

to signed metadata bundle.

Substitute provenance

artefacts

Content addressing (hashes) + signatures

over PROV statements [10].

Split-view equivoca-

tion

Inconsistent histories fail global consis-

tency verification; gossip among auditors

detects divergence.

Privacy leakage from

receipts

Commitments 𝐻 (𝑥 ∥𝑟 ) and 𝐻 (𝑦); selec-
tive disclosure under governance poli-

cies.

Sybil auditor influ-

ence

Admission via verifiable credentials; gov-

ernance rules for quorum and penalty

policies [9].

a platform cannot present divergent histories to different verifiers

without detection. extbfAccountability: decisions link to a model

version and policy digest at a given time. extbfPrivacy preservation:

raw user data is not exposed by default; disclosures are selective.

6.2 Adversary capabilities
We consider adversaries who may:

(1) Misbehaving operator: omit receipts, rewrite logs, misreport

model versions, or launder provenance.

(2) Network attacker: replay or delay messages, substitute arte-

facts, or attempt downgrade attacks.

(3) Sybil/colluding auditors: create multiple auditor identities or

collude to suppress findings.

(4) Curious verifiers: infer sensitive user data from receipts and

metadata.

6.3 Mitigation mapping
Table 2 maps threats to defences. The central mechanism is cryp-
tographic accountability: receipts, model bundles, and provenance

claims are signed; history is append-only and verifiable; and equiv-

ocation requires producing inconsistent proofs.



Decentralised Trust Layers for the Web: Towards Transparent AI-Powered Platforms TIME ’26, April 2026, Dubai, United Arab Emirates

6.4 Discussion: residual risks
DTL does not eliminate all harms. A malicious operator can still

choose harmful policies or deploy biased models; DTL increases

detectability and evidentiary support, but normative questions re-

main (e.g., what counts as “fair” ranking). In addition, selective

disclosure policies must be carefully designed to avoid enabling

targeted surveillance or privacy regressions.

Scope and non-goals. DTL strengthens verifiability and attribu-
tion but does not, by itself, ensure that a model or policy is beneficial,

fair, or socially acceptable. A platform could deploy a “lawful but

harmful” model or policy (e.g., consistently biased ranking) while

still producing perfectly valid receipts and logs. DTL’s role is to

make such deployments auditable and contestable by binding de-

cisions to the exact model and policy versions used; mitigating

normative harms requires complementary governance processes

(e.g., pre-deployment risk assessments, fairness/robustness testing,

human oversight, and appeal mechanisms).

7 Implementation Sketch
We implement DTL as a sidecar microservice with three primary

modules: (i) receipt engine (hashing, signing, commitment cre-

ation), (ii) log engine (Merkle batching, root signing, proof gen-

eration), and (iii) registry connector (fetch and verify model

bundles). A minimal deployment can run the log engine locally and

periodically anchor roots externally; more robust deployments use

multiple log witnesses and auditor gossip.

Deployment considerations. DTL is designed for incremental adop-

tion. In a Kubernetes setting, the receipt/log engine can run as a

per-pod sidecar alongside the model server, sharing request identi-

fiers via headers and emitting signed receipts back to the client or to

an internal policy/audit service. Alternatively, DTL can be deployed

at an API gateway (or service mesh filter) to front multiple model

replicas while preserving a consistent logging key. Keys should

be generated and stored in a hardened keystore (e.g., KMS/HSM-

backed signing) with explicit rotation policy; key identifiers are

embedded in receipts to support long-lived verification. To bound

per-request overhead, DTL batches leaves and publishes signed

Merkle roots on a configurable cadence (every 𝑁 requests or every

𝑇 seconds). Critically, if a receipt cannot be issued or an inclusion

proof cannot be obtained within a defined timeout, the system

should fail detectably (e.g., return an explicit “no-receipt” status)

rather than silently accepting unverifiable decisions. Robust deploy-

ments additionally use multiple log witnesses and auditor gossip

to detect equivocation.

Semi-realistic deployment case study. To ground DTL in an op-

erational setting, we outline an integration with an open-source

LLM-backed web API (e.g., a moderation or conversational end-

point) deployed on Kubernetes. The primary container serves in-

ference (e.g., vLLM/TGI/Triton behind a lightweight HTTP/gRPC

gateway), while the DTL sidecar performs: (i) receipt construction

over request/response digests, (ii) signature generation under a

rotating service key, and (iii) asynchronous append to a local log

engine that periodically publishes Merkle roots to an external trans-

parency service. Two deployment modes expose the key trade-off:

strict mode returns only after an inclusion proof is available (higher

tail latency, stronger synchrony), whereas async mode returns a

receipt identifier immediately and provides inclusion proofs on-

demand (lower latency, proofs may lag by a batching window).

Operational knobs include batching size, anchoring cadence (sec-

onds vs requests), timestamp bucketing, and DID rotation to reduce

cross-event linkage risk while preserving auditability.

API surface. A minimal interface includes: /receipt (gener-

ate receipt for inference), /append (append leaf batch), /proof/
inclusion and /proof/consistency (return proofs), and

/registry/resolve?v={v} (resolve model version to bundle di-

gest).

8 Evaluation: Reproducible Protocol
We rewrite evaluation as an executable protocol aligned with over-

head artefact evaluation expectations and constrained to what can

be run without proprietary models, platform logs, or on-chain de-

pendencies.

8.1 Scope and what we measure
To remain faithful to what can be executed, we measure: (i) per-

request receipt construction overhead, (ii) Merkle batching/root

computation overhead, (iii) inclusion-proof size and verification

time as log size scales, and (iv) analytic audit-detection trade-offs

derived from Eq. (3). We explicitly do not claim end-to-end latency

for (public) chains, proprietary recommenders, or closed-source

LLM serving stacks.

8.2 Datasets
The evaluation uses two synthetic but released datasets designed

to exercise the DTL protocol surfaces while avoiding privacy risks.

All artefacts are generated deterministically from fixed seeds and

released as CSV/JSONL alongside scripts.

D1: Synthetic recommendation traces (DTL-SynthRec). We gen-

erate a trace of request–response events that mimics a ranking/

recommendation service. Each event yields a receipt as in Eq. (2).

Construction. Fix a random seed 𝑠𝑟𝑒𝑐 . Generate: (i) a catalogue

of 𝑀 items, each with a 𝑑-dimensional embedding e𝑖 ∈ R𝑑
, (ii) 𝑁

sessions, each with a user embedding u ∈ R𝑑
, and (iii) for each

request, a candidate set of size 𝐶 sampled uniformly without re-

placement. Scores are computed deterministically as

score(𝑖) = u⊤e𝑖 ,

and the output𝑦 is the ordered top-𝑘 list of item IDswith their scores

(rounded to a fixed precision). This yields deterministic outputs for

fixed (𝑠𝑟𝑒𝑐 , 𝑀,𝑑,𝐶, 𝑘).
Default parameters used for reported results. 𝑁 = 65536

requests per trial (as in §8.6), 𝑀 = 10000, 𝑑 = 16, 𝐶 = 200, 𝑘 = 10.

(These parameters affect the synthetic payload sizes only; DTL over-

head measurements are dominated by hashing/Merkle operations.)

Released format.
We export data/synthrec/events.jsonl: one JSON object per

request: {req_id, session_id, x_bytes_len, y_bytes_len,
model_v, policy_id, timestamp}. Raw 𝑥 and 𝑦 are optional; by
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default, we store only lengths and stable digests to avoid unnec-

essary disclosure; and data/synthrec/payloads/: optional syn-
thetic plaintext payloads for full end-to-end replay (disabled by

default).

For transparency, we provide checksums for released files (SHA-

256) and a manifest listing generation parameters.

D2: Synthetic moderation prompts (DTL-SynthMod). We gener-

ate templated prompts and policy categories to emulate content-

moderation decisions. Each decision produces a receipt whose pol-

icy digest is 𝐻 (𝑝).
Construction. Fix seed 𝑠𝑚𝑜𝑑 . Define a finite set of policy cat-

egories (e.g., benign, spam, harassment, hate, misinformation)
and a template bank per category (short natural-language patterns).

A deterministic rule maps each generated prompt to a category

label and a binary decision (allow/block). We hash the policy con-

figuration string 𝑝 (category definitions + thresholds) to obtain

𝐻 (𝑝).
Default parameters. 𝑁 = 65536 decisions per trial, with cate-

gory proportions fixed by the seed.

Released format. data/synthmod/events.jsonl includes

{req_id, x_bytes_len, decision, policy_id, timestamp}
and optionally synthetic plaintext prompts.

8.3 Baselines
The three baselines used:

We compare against three baselines: B0 No logging: output
only; B1 Centralised mutable log: append receipt rows into

SQLite (WALmode) without Merkle proofs. Schema: (req_id TEXT
PRIMARY KEY, t INT, v TEXT, hp BLOB, cx BLOB, hy BLOB);
and B2 Transparency log only: run the Merkle log (Layer 3) with-

out provenance/registry resolution to isolate cryptographic/logging

overheads.

8.4 Metrics
The evaluation metrics include:

The evaluationmetrics includePer-request overhead (𝜇s): time

to construct receipt 𝜌 and leaf 𝐿 = 𝐻 (𝜌); Commit overhead
(𝜇s/leaf): amortised Merkle root computation per leaf under batch

size 𝑏; Proof size (bytes): inclusion proof length ×32 bytes for

SHA-256 nodes; Verification time (𝜇s): time to verify inclusion

proof for a sampled receipt; Coverage: fraction of requests with

verifiable receipts (target 1.0 unless the operator omits); Build time
(ms): total time to build a Merkle tree for 𝑁 leaves (reported in

Table 3); and p95 latency: report p95 for proof generation and

verification (Table 3 already reports mean/p95).

8.5 Experimental setup
Implementation under test. We benchmark the DTL sidecar mod-

ules responsible for: hashing, commitment construction 𝑐𝑥 = 𝐻 (𝑥 ∥𝑟 ),
receipt serialisation, Merkle batching/root computation, inclusion

proof generation, and inclusion proof verification. The implementa-

tion is single-process and single-threaded during timing tominimise

scheduler noise.

Hardware andOS (reference environment for reported tables/figures).
All numbers reported in Tables 2–3 and Figures 2–4 were obtained

on: CPU: 56 vCPU, GenuineIntel (family 6, model 85) under a

virtualised environment. Memory: 4GiB RAM available to the

container. OS: Linux kernel 4.4.0 (x86_64), glibc 2.36.

Software stack. Python: 3.11.2. Crypto/Hash: OpenSSL 3.0.17-

backed primitives where applicable; SHA-256 via hashlib.Numer-
ics/plots: NumPy 1.24.0; Matplotlib 3.7.5 (for figures only).

Timing method. We use time.perf_counter_ns() and report

𝜇s. Each trial includes a warm-up phase (first 1,000 requests dis-

carded) to mitigate cache and interpreter warm-up artefacts.

8.6 Experimental design, precision targets, and
confidence intervals

We follow the existing design and make the reporting requirements

explicit.

Runs. For each batch size 𝑏 ∈ {1, 2, 4, 8, 16, 32, 64, 128}, run 𝑅 = 5

independent trials, each with 𝑁 = 65536 requests.

Confidence intervals. Report mean ± 95% confidence intervals

via non-parametric bootstrap (10,000 resamples) over trial means.

Precision / power reporting (microbenchmark context). Because 𝑁
is large within each trial, the uncertainty is dominated by cross-trial

variance. We therefore treat the 𝑅 trial means as the independent

units for CI computation and report: (i) mean and 95% CI, and (ii)

a minimum detectable effect (MDE) at 80% power under a normal

approximation using the observed across-trial standard deviation

(script reports this automatically). This avoids over-claiming statis-

tical power by incorrectly treating per-request timings as i.i.d.

Reproducibility controls. Fix seeds (𝑠𝑟𝑒𝑐 , 𝑠𝑚𝑜𝑑 ), publish all scripts,

and release raw CSV measurements, manifests, and environment

metadata.

8.7 Reproduction steps
The protocol is reproduced by the following steps (all artefacts are

included in the accompanying package):

(1) Generate datasets: python3 scripts/generate_datasets.
py –out data/ –N 65536 –seed 42

(2) Run microbenchmarks (DTL and baselines): python3
dtl_microbench.py –dataset data/synthrec/events.
jsonl –trials 5 –batch-sizes 1 2 4 8 16 32 64 128

(3) Export tables/figures: python3 scripts/aggregate_and
_plot.py –in results/ –out plots/

(4) Verify checksums: sha256sum -c data/MANIFEST.sha256

8.8 Results 1: receipt generation + Merkle
batching

Table 3 reports µs/receipt (mean and 95% CI) for receipt generation

plus Merkle batching across batch sizes. Figure 2 shows that the per-

receipt cryptographic overhead remains in the low microsecond

range across all batch sizes, indicating that receipt construction and

hashing are unlikely to dominate end-to-end serving latency. The

curve is relatively flat, suggesting that batching primarily amortises

Merkle-root computation rather than changing the cost of receipt

formation itself. This supports DTL’s design goal of deployment

as a sidecar in interactive services: platforms can tune batching to
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Table 3: Receipt generation + Merkle batching microbench-
mark (µs/receipt, mean and 95% CI).

Batch size 𝑏 𝜇s/receipt 95% CI

1 5.894 [5.665, 6.123]

2 5.984 [5.840, 6.124]

4 6.284 [6.097, 6.500]

8 6.362 [6.231, 6.492]

16 6.254 [6.109, 6.348]

32 6.303 [6.185, 6.467]

64 6.221 [6.164, 6.293]

128 6.229 [6.146, 6.331]
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Figure 2: Cryptographic/logging overhead for receipts and
Merkle batching (reproducible microbenchmark).

anchor cadence without materially affecting per-request receipt

generation cost.

8.9 Results 2: proof size and verification scaling
DTL proofs are logarithmic in log size. We measure proof sizes and

verification times as the number of leaves grows from 2
10

to 2
18
.

Table 4 shows proof bytes and verification time; Figure 3 illustrates

the expected logarithmic scaling of inclusion proofs with tree depth:

proof size increases linearly in the number of levels while remaining

compact (hundreds of bytes) even for large logs. Verification time

grows modestly with depth, consistent with the small number of

hash operations required per proof. These trends imply that third-

party auditing can remain lightweight: auditors can verify receipts

at scale without needing access to platform internals, and proof

transmission overhead stays small relative to typical web payload

sizes.

8.10 Analytic audit trade-off visualisation
To support governance configuration, Figure 4 visualises the gover-

nance trade-off captured by Eq. (3): detection probability increases

rapidly with the audit sample size 𝑘 when the misbehaviour rate 𝑞

is moderate, but grows more slowly for rare violations. This high-

lights why DTL couples transparency with governance: operational

policies can choose 𝑘 to meet assurance targets (e.g., 𝑃detect ≥ 0.95)

while controlling audit cost. In practice, this enables risk-based

auditing, in which higher-stakes services or periods of elevated risk

trigger higher sampling rates.

Table 4: Merkle proof scaling (measured): 𝑁 leaves, depth,
proof size, build time, proof generation and verification
(mean/p95 in µs).

𝑁 depth proof

(B)

build

(ms)

gen (𝜇s) verify

(𝜇s)

1024 10 320 1.14 1.94/2.17 11.00/11.12

4096 12 384 38.04 2.64/3.83 14.54/21.04

16384 14 448 21.10 2.94/3.44 15.97/15.71

65536 16 512 89.15 3.99/4.79 17.91/18.28

262144 18 576 417.13 8.78/12.73 20.51/25.07
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Figure 3: Proof scaling: proof size grows linearly with depth;
verification time grows modestly with depth.

8.11 Extended experiment: end-to-end sidecar
overhead in an open-source serving stack

This extended experiment is structured as a semi-realistic case

study consistent with the integration described in Section 7. To

complement the cryptographic microbenchmarks, we extend the

evaluation protocol with an end-to-end experiment using an open-

source serving stack that is reproducible by third parties. The goal is

not model accuracy, but system impact: (i) p50/p95 request-latency

overhead attributable to receipt issuance and proof availability, (ii)

throughput impact under concurrent load, and (iii) storage growth

per million receipts. A representative setup uses a containerised

inference API (e.g., FastAPI/gRPC) with DTL as a co-located side-

car; a load generator issues requests with controlled concurrency

and payload sizes. We recommend reporting end-to-end latency

distributions (p50/p95/p99), sustained throughput, CPU utilisation,

and log growth (bytes/request) under multiple batch sizes.
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Figure 4: Detection probability versus audit sample size under
uniform sampling (Eq. 3).

8.12 Extended experiment: anchoring cadence
and failure-mode detectability

We further extend the protocol with (a) an anchoring-cadence study

and (b) a failure-mode study to demonstrate detectable unverifiabil-
ity. For cadence, vary root publication every𝑁 requests versus every

𝑇 seconds, and report the trade-off between proof freshness and

overhead (queueing/backpressure). For failures, inject controlled

disruptions (e.g., temporary log outage, delayed root publication,

or witness unavailability) and measure: (i) the rate of explicit “no-

receipt” outcomes, (ii) the fraction of decisions lacking inclusion

proofs within a timeout, and (iii) auditor detection outcomes (miss-

ing receipt, stale root, or inconsistency) as verifiable signals. These

experiments connect the non-equivocation goals to operational

behaviour and provide an adoption-relevant evidence trail without

relying on proprietary platform access.

9 Discussion: Trade-offs, Interoperability, and
Regulation

This section interprets the system and evaluation results in terms

of deployment realities. We highlight the key engineering trade-

offs (performance versus decentralisation), the privacy implications

of verifiable logging, and how DTL can be adopted incrementally

through standards-aligned interfaces. We also situate DTL as a

technical substrate that can support compliance and independent

assurance without prescribing a single governance regime.

9.1 Decentralisation vs performance
DTL is designed to decouple what must be globally verifiable from
what can remain local. In practice, most deployments should treat

the append-only anchor as a low-frequency commitment layer: re-

ceipts are batched, Merkle roots are published on a cadence aligned

with operational needs (e.g., every minute or every 𝑛 requests),

and only compact commitments (roots, signatures, digests) are an-

chored. This allows platforms to preserve interactive latency for

end-users while still enabling later verification. The evaluation’s

microsecond-scale cryptographic overhead suggests that, for many

services, receipt construction and hashing are not the dominant

cost; rather, the anchoring cadence and proof distribution strategy

determine user-perceived overhead.

A second performance consideration is the “verification surface”.

DTL does not require that every request be synchronously veri-

fied by third parties; instead, it supports asynchronous verification

and sampling-based audits (Eq. 3). Operationally, this mirrors how

certificate transparency is deployed: clients and monitors verify

according to policy and capacity. For high-throughput systems,

engineering choices such as witness replication, gossip frequency,

and retention windows can be tuned to meet SLAs while preserving

non-equivocation guarantees. Importantly, DTL’s layering supports

incremental adoption: deployments may start with Layer 3 receipts

and add Layer 1/2 provenance and registry binding as maturity

increases.

9.2 Privacy and selective disclosure
DTL’s receipts are intentionally privacy-preserving by default, but

privacy risks remain if identifiers or stable metadata enable link-

age across sessions. Even when inputs are committed via 𝐻 (𝑥 ∥𝑟 ),
repeated receipt fields (e.g., policy digests, model versions, coarse

timestamps) can support correlation if not carefully scoped. A prac-

tical mitigation is to treat salts and identifiers as first-class privacy

controls: salts should be high-entropy, per-request (or at least per-

session), and never reused across contexts; timestamps can be buck-

eted when fine granularity is unnecessary; and any user identifiers

should be avoided or replaced with unlinkable tokens.

Selective disclosure is also a governance risk: once a mechanism

exists to reveal plaintext inputs/outputs, it must be constrained by

an auditable policy [20]. DTL therefore benefits from “disclosure

transparency” alongside inference transparency: access requests,

approvals, and disclosures should themselves be logged (at least

as commitments) so that an auditor can verify that disclosures

occurred according to rules and were not silently over-used. In

privacy-sensitive settings, deployments can further minimise expo-

sure by disclosing only the minimal evidence required for a dispute

(e.g., revealing (𝑥, 𝑟 ) without revealing unrelated context), and by

enforcing strict retention limits consistent with data minimisation

principles.

Long-term privacy–verifiability trade-offs. Even with salted com-

mitments and selective disclosure, receipts and roots inevitably

emit metadata (e.g., timestamps, service identifiers, model-version

epochs, response sizes, and anchoring cadence). Over long horizons,

these quasi-identifiers can enable cross-event linkage—especially

when combined with external side information—even if payloads re-

main hidden. We therefore treat privacy as a tunable design dimen-

sion and add a systematic, auditor-facing risk assessment: choose a

quasi-identifier set 𝑄 , apply bucketing/suppression, and estimate

linkability via the expected anonymity-set size.

𝑘𝑖 (𝑄) =
��{ 𝑗 : 𝑄 𝑗 =𝑄𝑖

}�� , 𝐿(𝑄) = 1

E𝑖 [𝑘𝑖 (𝑄)]
. (4)

Here, lower𝐿(𝑄) indicates less linkability (larger expected anonymity

sets). Practical mitigations include (i) coarse time-bucketing, (ii)

batching receipts/roots to blur individual events, (iii) rotating pseudony-

mous DIDs and signing keys, (iv) minimising or suppressing size

and endpoint metadata, and (v) policy-driven retention and access

controls. These mitigations trade off audit granularity, proof latency,
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and investigative power; DTL’s design makes this trade-off explicit

and configurable rather than implicit.

9.3 Limits: lawful-but-harmful models and
policies

DTL is intentionally normative-agnostic: it cannot prevent a plat-
form from deploying a harmful yet compliant model or policy. What

it can do is make such choices transparent and attributable. In par-

ticular, DTL can bind decisions to (i) model versions, (ii) declared

policies (e.g., moderation/ranking rules), and (iii) signed evaluation

artefacts (e.g., fairness audits, red-team reports, or safety assess-

ments) expressed as verifiable credentials. This enables independent

parties to verify whether a deployment followed a stated process

and to contest outcomes with evidence. Preventing “lawful but

harmful” behaviour requires complementary governance (e.g., en-

forceable policy constraints, pre-deployment thresholds, human

review, and appeal/recourse mechanisms); DTL strengthens these

by providing tamper-evident records that regulators and auditors

can rely on.

9.4 Interoperability with web standards
A key design goal of DTL is to avoid introducing a bespoke ecosys-

tem. Provenance anchoring can directly reuse PROV concepts (en-

tities, activities, agents) and serialisations such as PROV-JSON or

JSON-LD, which makes it feasible to integrate with existing data

pipeline tooling and to exchange lineage claims across organisa-

tions [21]. Similarly, decentralised identifiers and verifiable cre-

dentials provide a standards-aligned way to represent accountable

identities (operators, auditors, regulators) and to attach crypto-

graphically verifiable claims to model metadata without requiring

a single identity provider.

Interoperability also matters for adoption pathways: platforms

already maintain artefact stores (object storage, registries, CI/CD

logs) and can map these to DTL’s content-addressed bundles rather

than rebuilding infrastructure. In practice, many deployments can

start by binding existing artefacts (model cards, evaluation reports,

training summaries) into signed bundles and publishing their di-

gests. Over time, the same interfaces can be extended to support

multi-party attestations (e.g., an external evaluator co-signing a

bundle) and cross-platform verification (e.g., auditors validating

receipts against a shared transparency log format).

9.5 Regulatory alignment
Regulatory regimes increasingly emphasise traceability, record-

keeping, and demonstrable accountability for AI-mediated deci-

sions. DTL provides a concrete technical mechanism to support

these requirements: model version bindingmakes it harder to “move

the goalposts” after an incident; append-only logging preserves an

evidentiary trail; and provenance anchors support claims about

data sources and transformations. Importantly, DTL does not re-

place legal compliance processes, but it can strengthen them by

making key facts independently verifiable rather than dependent

on internal platform assertions.

DTL can also support proportionate governance. Not every do-

main requires the same transparency granularity; for example,

consumer-facing recommendation may prioritise privacy and low

overhead, while high-stakes domains may require stronger au-

ditability and longer retention. By separating commitments (pub-

licly verifiable) from bulk artefacts (selectively disclosed), DTL

enables regulators and independent auditors to verify integrity

without mandating full public disclosure of sensitive data or pro-

prietary models. This “auditability without full openness” framing

is often necessary to reconcile accountability with confidentiality

and privacy constraints in real deployments.

Operational guidance. For production adoption, the most conse-

quential knobs are key management and anchoring cadence. Sign-

ing keys should be managed via KMS/HSM-backed services with

rotation and revocation semantics; receipts should embed key iden-

tifiers and policy/model digests to preserve long-term verifiabil-

ity. Anchoring cadence (𝑁 or 𝑇 ) trades proof freshness against

overhead; deployments should choose defaults aligned with au-

dit requirements (e.g., moderation decisions may require tighter

freshness than low-stakes personalisation). Finally, DTL’s security

value depends on detectable failure behaviour: missing receipts,

stale roots, and inconsistent proofs must be surfaced as verifiable

conditions for auditors and, where appropriate, for end users.

10 Conclusion
AI-powered web platforms increasingly determine what informa-

tion people see, how content is moderated, and which opportunities

are surfaced through ranking and recommendation. As argued in

the introduction, this shift has amplified longstanding concerns

about centralised control, limited transparency, and the difficulty

of independently verifying claims about model behaviour, policy

changes, or data provenance. This paper addresses that gap by

proposing theDecentralised Trust Layer (DTL): a modular, standards-

aligned trust substrate that can be deployed as a sidecar to existing

model-serving stacks to make key accountability signals verifiable
by design rather than dependent on platform disclosure.

DTL operationalises transparency through four complementary

layers: (i) provenance anchoring using PROV-style lineage state-

ments signed by accountable identities, (ii) a model registry that

binds deployed versions to content-addressed and signed metadata

bundles, (iii) an inference transparency log that produces privacy-

preserving receipts and anchors Merkle roots in an append-only

history, and (iv) governance and auditing mechanisms that enable

sampling-based verification, dispute resolution, and selective dis-

closure under policy. Together, these layers provide a principled

pathway to detect log rewriting and equivocation, to bind deci-

sions to specific model and policy configurations, and to preserve

evidence that can be independently checked by auditors and regu-

lators. Our threat model clarifies the adversary capabilities DTL is

designed to withstand and the security goals it prioritises (integrity,

non-equivocation, accountability, and privacy). Finally, we trans-

late evaluation into a reproducible protocol and report runnable

microbenchmarks that establish a practical baseline for receipt

construction and Merkle-based verification.

There are several directions for future work. First, while DTL’s

cryptographic primitives are lightweight, real-world deployments

will require careful engineering around log witnessing, auditor gos-

sip, and retention policies; evaluating these choices under realistic
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traffic patterns and failure modes (e.g., partial outages, delayed an-

choring, multi-region serving) is an important next step. Second, the

privacy model can be strengthened by integrating selective disclo-

sure mechanisms beyond salted commitments, including structured

disclosure of receipt fields and privacy-preserving auditing work-

flows that reduce the need to reveal raw inputs or outputs during

disputes. Third, governance remains a socio-technical challenge:

future work should explore incentive-compatible auditor admission,

Sybil resistance under decentralised identity, and mechanisms to

make governance decisions themselves auditable without creat-

ing new central points of control. Fourth, broader interoperability

studies are needed to map DTL bundles and receipts onto existing

platform artefacts (CI/CD attestations, model evaluation pipelines,

and content-policy systems), and to validate portability across mul-

tiple web platforms and jurisdictions.

DTL outlines a practical path towards a more trustworthy AI-

mediated Web by combining provenance anchoring, version-bound

model metadata, transparency-log-style inference receipts, and de-

centralised auditing. By shifting transparency from narrative claims

to verifiable commitments, DTL supports user-centric accountabil-

ity and provides a foundation upon which regulators, researchers,

and platforms can build credible assurance processes as AI contin-

ues to reshape the digital public sphere.
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