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Abstract

Artificial Intelligence (Al) increasingly mediates web experiences—
ranking, recommendation, advertising, and moderation—yet in-
dependent verification of Al behaviour and data provenance re-
mains rare. We present a Decentralised Trust Layer (DTL) that turns
transparency from policy into protocol. DTL anchors provenance
claims, binds deployed model versions to signed metadata, and
produces privacy-preserving inference receipts in an append-only
transparency log inspired by certificate transparency. We formalise
a threat model, provide a deployable protocol suite (provenance an-
choring, model lineage registry, inference transparency, and decen-
tralised audit sampling), and specify a fully reproducible evaluation
protocol. To remain faithful to what can be executed without pro-
prietary dependencies, our measurements focus on cryptographic
and logging overheads and proof verification costs; results indi-
cate microsecond-scale per-request costs for receipt generation and
logarithmic proof sizes consistent with transparency-log theory.
We discuss governance, privacy, and regulatory alignment and out-
line how DTL can be integrated into existing web standards and
platform architectures.
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1 Introduction

The contemporary digital landscape is undergoing a fundamental re-
structuring as artificial intelligence (Al) transitions from a backend
utility to a primary mediator of human experience. On the modern
web, algorithmic systems now govern information retrieval, social
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discourse, and commercial recommendation with unprecedented
autonomy [1, 2]. However, this evolution has been accompanied by
a systemic erosion of trust in centralised web platforms, which often
operate as opaque "black boxes" under the exclusive control of a few
technology giants [3]. As Al increasingly assumes responsibility
for consequential decisions in healthcare, finance, and governance,
the lack of transparency regarding data provenance and algorith-
mic behaviour has created significant societal risks, including the
amplification of systemic bias and the proliferation of sophisticated
misinformation.

Al-powered web platforms shape information access and visibil-
ity through ranking, recommendation, advertising selection, and
moderation. Trust in these systems has eroded due to centralised
control of data and models, limited transparency into algorithmic
decisions, and difficulties in independently verifying claims about
deployment, training data, or policy changes [4]. Documentation
artefacts such as model cards and dataset datasheets improve dis-
closure, but they do not guarantee that a deployed service matches
its published artefacts nor that records are immutable [5, 6].

This paper asks a practical systems question: What would it take
for users, developers, auditors, and regulators to independently verify
key facts about an AI-powered web service—its data provenance, the
model version serving a decision, and whether a decision log was
rewritten—without requiring privileged access to the platform? We
argue that transparency must be backed by cryptographic com-
mitments, append-only logs, and verifiable identities that make
equivocation detectable and accountability enforceable.

Core idea. We propose a Decentralised Trust Layer (DTL): a mod-
ular trust substrate that can be deployed as a sidecar to Al services.
DTL provides: (i) tamper-evident provenance anchoring for data
and transformations, (ii) a model registry for signed lineage and
disclosures, (iii) inference transparency via append-only logging
of privacy-preserving receipts, and (iv) decentralised governance
and auditing for sampling-based verification and dispute resolu-
tion. DTL adapts transparency-log design patterns from the Web
PKI [7] to Al inference events, and aligns with W3C identity and
provenance standards [8-10].

Novelty and positioning. DTL does not introduce new crypto-
graphic primitives; instead, it protocolises Al transparency for web
decisions by turning narrative disclosures into append-only, non-
equivocating commitments with verifiable receipts and consis-
tency proofs. The novelty lies in (i) integrating provenance, signed
model/policy registries, and inference receipts into a sidecar de-
ployable architecture, and (ii) specifying an evaluation protocol
that third parties can execute without privileged platform access.
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Contributions. Contributions. We make four contributions: Sys-
tem architecture for a decentralised trust layer spanning prove-
nance, model lineage, inference receipts, and governance, designed
for incremental adoption and standards interoperability; Formal
threat model and security analysis capturing security goals
(integrity, non-equivocation, accountability, privacy) and adversary
capabilities, plus a mapping to protocol defences; Protocol suite
including receipt commitments, transparency proofs, and audit
sampling; we provide pseudocode for implementers and highlight
configuration choices; and Reproducible evaluation protocol
and runnable measurements focusing on what can be executed
without proprietary access: receipt generation, Merkle batching,
proof sizes, and verification times, with confidence intervals and
reporting guidance.

2 Problem Setting and Requirements
2.1 Stakeholders and trust boundaries

DTL targets web ecosystems where decisions are made by a plat-
form operator but must be trusted by others: users (affected by
ranking and moderation), developers (building on platform APIs),
auditors (third-party assessors and researchers), and regulators
(requiring traceability, record-keeping, and accountability). The op-
erator controls infrastructure, models, and logs; DTL assumes the
operator is not fully trusted to faithfully retain or disclose records.

2.2 Use cases

We focus on web-native use cases with high accountability de-
mands: Recommendation and ranking: provide verifiable evi-
dence that a recommendation was produced by model version v
under policy p at time t.; Conversational Al services: bind re-
sponses to a deployed model build and a policy configuration (e.g.,
safety filters), while preserving input privacy.; Content modera-
tion: log moderation decisions with policy digests for later dispute
resolution and longitudinal auditing.; Data provenance for web
mining pipelines: track dataset lineage and transformations used
to train/refresh models..

2.3 Design requirements

From these use cases, we derive requirements: (R1) verifiability
by non-privileged parties, (R2) non-equivocation (no split-view
histories), (R3) privacy-by-default with selective disclosure, (R4)
incremental deployability (sidecar or gateway), (R5) interoper-
ability with web standards (DID/VC, PROV), and (R6) measurable
overhead suitable for production services.

3 Background and Related Work

Provenance and documentation. PROV provides a standard
model for representing provenance as entities, activities, and agents
[10]. Model cards and datasheets articulate ML documentation and
intended-use disclosure. Responsible Al literature emphasises that
disclosure alone is insufficient without organisational and technical
accountability mechanisms [11, 12].
Transparency logs. Certificate Transparency introduced append-

only Merkle logs, inclusion proofs, and consistency proofs to de-
tect certificate mis-issuance and log equivocation at Internet scale
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[7, 13]. DTL generalises this pattern to Al inference receipts and
model/policy versioning.

Supply chain and attestations. in-toto and SLSA formalise
software supply-chain provenance, verification, and tamper-evident
attestations [14, 15]. ML systems inherit analogous supply-chain
risks (data poisoning, artefact substitution, dependency compro-
mise) [16, 17]. DTL borrows attestation principles but targets web
Al decisions rather than binaries alone.

Decentralised identity and claims. W3C DIDs and verifiable
credentials provide decentralised identifiers and cryptographically
verifiable claims [8, 9]. DTL uses DIDs/VCs to bind model registries,
auditors, and operators to accountable identities and to publish
signed metadata with controlled disclosure.

Decentralised auditing of LLMs. Recent work explores de-
centralised frameworks for auditing LLM reasoning [18]. Our goal
differs: DTL focuses on web platform transparency across data prove-
nance, model lineage, and inference events, and designs for incre-
mental adoption via a sidecar architecture.

Table 1 summarises how DTL differs from adjacent approaches:
it combines non-equivocating transparency logs with explicit bind-
ings to model and policy versions, producing privacy-preserving
inference receipts that enable third-party verification.

4 DTL Architecture

DTL is deployable as a sidecar microservice adjacent to model
serving. Large artefacts (datasets, scripts, model cards) are stored off-
chain (e.g., IPFS, Solid pods, or object stores) with content-addressed
references [19]. Only compact commitments (hashes, signatures,
roots) are anchored in an append-only structure or ledger.

4.1 Layer 1: provenance anchoring

DTL represents lineage using PROV: data artefacts as entities, trans-
formations as activities, and organisations or tools as agents [10].
Each record contains: (i) a content hash of the artefact, (ii) a PROV
statement (or reference), (iii) an agent identifier (DID), and (iv) a
signature. Anchors may be posted to a ledger or a transparency
log for tamper-evidence; the key property is append-only verifiable
history, not the specific chain.

4.2 Layer 2: model registry

The registry binds a deployed model version v to a metadata bundle
including: model card, training data summary, evaluation report,
dependencies and build provenance (SLSA-style statements), and
policy-compatible constraints. The bundle is content-addressed
and signed by the operator (and optionally third-party evaluators).
Verifiers can check that a claimed version maps to an immutable
bundle and that signatures correspond to known identities.

4.3 Layer 3: inference transparency log

DTL logs inference receipts per request (or per decision event). Re-
ceipts are hashed and appended as leaves in a Merkle tree, peri-
odically publishing signed roots. Inclusion and consistency proofs
allow any verifier to check a receipt is in the log and that the log
has not been rewritten [7].
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Table 1: Positioning of DTL relative to adjacent transparency and provenance mechanisms (~ denotes partial/optional support).

Approach Non-equiv. log Model Policy/decision Sidecar de- Auditor re- Privacy-
bind. bind. ployable ceipts/proofs by-default

PROV / model cards / datasheets - - - - - ~

Certificate Transparency-style logs v/ - - - v -

in-toto / SLSA attestations ~ ~ - - ~ ~

DTL (this work) v v v v v v

User / Client request / response Al Platform Auditors / Verifiers

Model serving

(browser/app) + Policy engine

(third parties, regulators)

receipts & metadata hooks

DTL sidecar microservice

Layer 1: Provenance anchoring
PROV lineage (enmleslactlvmeslagents)
Record: PROV stmt/ref, DID, signature

{ Layer 2: Model registry } query registry /
)

Bind version v to signed metadata bundle
(model card, data summary, eval, SLSA-style provenance, constraints; provenance

Per-request receipt — leaf hash — Merkle tree

Layer 3: Inference transparency log
Publish signed roots; inclusion & consistency proofs

{ Layer 4: Governance & audmng ]
Adr i

imit
Disputes + selective dmlasure under policy

store/retrieve bundles anchor roots / commitments

[ Off-chain artefacts } [ Append-only anchor i‘venfypmfs&signamres

IPFS / Solid pods / object store ledger or transparency log [ == - o oo mm oo
tent. (CID: hashes, signatures, roots

(a) DTL deployment & trust flows (sidecar, off-chain artefacts, append-only anchoring,
verification).

y
Content Hosh, PROV Records,
— E_, Q_> Ledger / Agent ID,
Transparency Log Signature

Data & Models AgentDip  Digital
Lives /Objet Store/ Slbnature

S ——————

Model Registry

Model Card,
Al Model Training Info,
Serving Policies,

Dependencies

DLT Siderar

Inference Reccipts,
Merkle Proofs

A Gl Verification,
» ccess Control )
E Sampllng,

Governance Rules

Auditors
\ | Smort Contracts /
Policy

(b) Layered DTL functions (provenance, registry, transparency log, governance).

Figure 1: DTL architecture overview. Top (a): DTL is deployable as a sidecar adjacent to model serving; large artefacts (datasets,
scripts, model cards) remain off-chain (e.g., object stores or content-addressed storage) and are referenced by content hashes,
while compact commitments are appended to an append-only transparency structure. Bottom (b): Layered functions—provenance
anchoring, model lineage registry, inference transparency, and governance—produce signed receipts plus inclusion/consistency
proofs, enabling independent auditors to replay and verify web-facing decisions without access to proprietary internals.
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4.4 Layer 4: governance and auditing

Governance defines who may operate logs, how auditors are ad-
mitted, and how disputes are resolved. Auditors sample receipts,
verify proofs and signatures, and can request selective disclosure
for contested cases. Governance policies can be codified as smart
contracts or as a consortium policy; DTL remains agnostic, but
requires that governance decisions are themselves recorded with
accountable identities.

5 Protocol Suite

5.1 Receipt commitments and privacy

For an input x and random salt r, define an input commitment:
cx = H(x | r). (1)

Let the platform output be y = f,(x) and let p denote the policy
configuration. We define a minimal receipt:

p = (cx, H(y), 0, H(p), t, oop), @

where oy, is a signature by the operator and ¢ is a timestamp. The
log leafis L = H(p). Commitments enable later selective disclosure:
a user can reveal (x,r) to prove ¢, corresponds to an interaction
without requiring the operator to expose raw inputs by default.

5.2 Merkle transparency and non-equivocation

Let T,, be a Merkle tree with n leaves and root R,,. A transparency
log publishes signed roots o144 (Rp, 1, t). Verifiers obtain: inclusion
proofs (a leaf is in a given tree) and consistency proofs (a later tree
extends an earlier tree) [7]. These proofs make split-view attacks
detectable: if a log presents inconsistent histories, it cannot provide
valid consistency proofs to all verifiers.

5.3 Audit sampling and detection

If auditors sample k receipts from a window containing misbe-
haviour fraction g, the probability of detecting at least one violation
under uniform sampling is:

Pdetect =1- (1 - q)k (3)

This yields a simple policy knob: increasing k increases detection
probability but raises audit cost. We later visualise Eq. 3 as part of
the reproducible evaluation.

5.4 Dispute resolution (high-level)

A dispute bundles evidence: (i) the receipt p, (ii) inclusion/consistency
proofs, (iii) the model registry entry for v, (iv) the policy digest H(p),
and optionally (v) selective disclosure of (x, r) or plaintext output y
under governance rules. The governance layer adjudicates accord-
ing to policy (e.g., mislabelling, policy noncompliance, or version
misreporting).

6 Threat Model and Security Analysis

6.1 Security goals

evDTL targets the following properties. extbfRecord integrity: prove-
nance anchors, model metadata, and receipts are append-only and
tamper-evident. extbfPublic verifiability: any verifier can validate

proofs and signatures without privileged access. extbfNon-equivocation:
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Algorithm 1 Receipt generation and logging (DTL sidecar)

Require: Input x, model version v, policy p
1: y < SERVEMODEL(x, v, p)
. r « {0, 1}* uniformly at random
s ex — H(x|lr)
. p e (cx, H(y), 0, H(p), t, 0op)
: Append L to transparency log; obtain signed root and proofs
: return (y, p, inel) to client

N9 G R WN

Table 2: Threats and protocol defences.

Threat DTL defence

Omit or rewrite deci- Merkle transparency log with signed

sion logs roots and consistency proofs [7].

Claim wrong model Receipt binds (v, H(p)); registry binds v
version/policy to signed metadata bundle.

Substitute provenance Content addressing (hashes) + signatures
artefacts over PROV statements [10].

Split-view equivoca- Inconsistent histories fail global consis-
tion tency verification; gossip among auditors
detects divergence.

Privacy leakage from Commitments H(x||r) and H(y); selec-

receipts tive disclosure under governance poli-
cies.

Sybil auditor influ- Admission via verifiable credentials; gov-

ence ernance rules for quorum and penalty

policies [9].

a platform cannot present divergent histories to different verifiers
without detection. extbfAccountability: decisions link to a model
version and policy digest at a given time. extbfPrivacy preservation:
raw user data is not exposed by default; disclosures are selective.

6.2 Adversary capabilities

We consider adversaries who may:

(1) Misbehaving operator: omit receipts, rewrite logs, misreport
model versions, or launder provenance.

(2) Network attacker: replay or delay messages, substitute arte-
facts, or attempt downgrade attacks.

(3) Sybil/colluding auditors: create multiple auditor identities or
collude to suppress findings.

(4) Curious verifiers: infer sensitive user data from receipts and
metadata.

6.3 Mitigation mapping

Table 2 maps threats to defences. The central mechanism is cryp-
tographic accountability: receipts, model bundles, and provenance
claims are signed; history is append-only and verifiable; and equiv-
ocation requires producing inconsistent proofs.
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6.4 Discussion: residual risks

DTL does not eliminate all harms. A malicious operator can still
choose harmful policies or deploy biased models; DTL increases
detectability and evidentiary support, but normative questions re-
main (e.g., what counts as “fair” ranking). In addition, selective
disclosure policies must be carefully designed to avoid enabling
targeted surveillance or privacy regressions.

Scope and non-goals. DTL strengthens verifiability and attribu-
tion but does not, by itself, ensure that a model or policy is beneficial,
fair, or socially acceptable. A platform could deploy a “lawful but
harmful” model or policy (e.g., consistently biased ranking) while
still producing perfectly valid receipts and logs. DTL’s role is to
make such deployments auditable and contestable by binding de-
cisions to the exact model and policy versions used; mitigating
normative harms requires complementary governance processes
(e.g., pre-deployment risk assessments, fairness/robustness testing,
human oversight, and appeal mechanisms).

7 Implementation Sketch

We implement DTL as a sidecar microservice with three primary
modules: (i) receipt engine (hashing, signing, commitment cre-
ation), (ii) log engine (Merkle batching, root signing, proof gen-
eration), and (iii) registry connector (fetch and verify model
bundles). A minimal deployment can run the log engine locally and
periodically anchor roots externally; more robust deployments use
multiple log witnesses and auditor gossip.

Deployment considerations. DTL is designed for incremental adop-
tion. In a Kubernetes setting, the receipt/log engine can run as a
per-pod sidecar alongside the model server, sharing request identi-
fiers via headers and emitting signed receipts back to the client or to
an internal policy/audit service. Alternatively, DTL can be deployed
at an API gateway (or service mesh filter) to front multiple model
replicas while preserving a consistent logging key. Keys should
be generated and stored in a hardened keystore (e.g., KMS/HSM-
backed signing) with explicit rotation policy; key identifiers are
embedded in receipts to support long-lived verification. To bound
per-request overhead, DTL batches leaves and publishes signed
Merkle roots on a configurable cadence (every N requests or every
T seconds). Critically, if a receipt cannot be issued or an inclusion
proof cannot be obtained within a defined timeout, the system
should fail detectably (e.g., return an explicit “no-receipt” status)
rather than silently accepting unverifiable decisions. Robust deploy-
ments additionally use multiple log witnesses and auditor gossip
to detect equivocation.

Semi-realistic deployment case study. To ground DTL in an op-
erational setting, we outline an integration with an open-source
LLM-backed web API (e.g., a moderation or conversational end-
point) deployed on Kubernetes. The primary container serves in-
ference (e.g., vVLLM/TGI/Triton behind a lightweight HTTP/gRPC
gateway), while the DTL sidecar performs: (i) receipt construction
over request/response digests, (ii) signature generation under a
rotating service key, and (iii) asynchronous append to a local log
engine that periodically publishes Merkle roots to an external trans-
parency service. Two deployment modes expose the key trade-off:
strict mode returns only after an inclusion proof is available (higher
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tail latency, stronger synchrony), whereas async mode returns a
receipt identifier immediately and provides inclusion proofs on-
demand (lower latency, proofs may lag by a batching window).
Operational knobs include batching size, anchoring cadence (sec-
onds vs requests), timestamp bucketing, and DID rotation to reduce
cross-event linkage risk while preserving auditability.

API surface. A minimal interface includes: /receipt (gener-
ate receipt for inference), /append (append leaf batch), /proof/
inclusion and /proof/consistency (return proofs), and
/registry/resolve?v={v} (resolve model version to bundle di-
gest).

8 Evaluation: Reproducible Protocol

We rewrite evaluation as an executable protocol aligned with over-
head artefact evaluation expectations and constrained to what can
be run without proprietary models, platform logs, or on-chain de-
pendencies.

8.1 Scope and what we measure

To remain faithful to what can be executed, we measure: (i) per-
request receipt construction overhead, (ii) Merkle batching/root
computation overhead, (iii) inclusion-proof size and verification
time as log size scales, and (iv) analytic audit-detection trade-offs
derived from Eq. (3). We explicitly do not claim end-to-end latency
for (public) chains, proprietary recommenders, or closed-source
LLM serving stacks.

8.2 Datasets

The evaluation uses two synthetic but released datasets designed
to exercise the DTL protocol surfaces while avoiding privacy risks.
All artefacts are generated deterministically from fixed seeds and
released as CSV/JSONL alongside scripts.

D1: Synthetic recommendation traces (DTL-SynthRec). We gen-
erate a trace of request-response events that mimics a ranking/
recommendation service. Each event yields a receipt as in Eq. (2).

Construction. Fix a random seed s,... Generate: (i) a catalogue
of M items, each with a d-dimensional embedding e; € R, (i) N
sessions, each with a user embedding u € R4, and (iii) for each
request, a candidate set of size C sampled uniformly without re-
placement. Scores are computed deterministically as

score(i) =u'e;,

and the output y is the ordered top-k list of item IDs with their scores
(rounded to a fixed precision). This yields deterministic outputs for
fixed (syec, M, d, C, k).

Default parameters used for reported results. N = 65536
requests per trial (as in §8.6), M = 10000, d = 16, C = 200, k = 10.
(These parameters affect the synthetic payload sizes only; DTL over-
head measurements are dominated by hashing/Merkle operations.)

Released format.

We export data/synthrec/events. jsonl: one JSON object per
request: {req_id, session_id, x_bytes_len, y_bytes_len,
model_v, policy_id, timestamp}.Raw x and y are optional; by
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default, we store only lengths and stable digests to avoid unnec-
essary disclosure; and data/synthrec/payloads/: optional syn-
thetic plaintext payloads for full end-to-end replay (disabled by
default).

For transparency, we provide checksums for released files (SHA-
256) and a manifest listing generation parameters.

D2: Synthetic moderation prompts (DTL-SynthMod). We gener-
ate templated prompts and policy categories to emulate content-
moderation decisions. Each decision produces a receipt whose pol-
icy digest is H(p).

Construction. Fix seed s;,04. Define a finite set of policy cat-
egories (e.g., benign, spam, harassment, hate, misinformation)
and a template bank per category (short natural-language patterns).
A deterministic rule maps each generated prompt to a category
label and a binary decision (allow/block). We hash the policy con-
figuration string p (category definitions + thresholds) to obtain
H(p).

Default parameters. N = 65536 decisions per trial, with cate-
gory proportions fixed by the seed.

Released format. data/synthmod/events. jsonl includes
{req_id, x_bytes_len, decision, policy_id, timestamp}
and optionally synthetic plaintext prompts.

8.3 Baselines

The three baselines used:

We compare against three baselines: BO No logging: output
only; B1 Centralised mutable log: append receipt rows into
SQLite (WAL mode) without Merkle proofs. Schema: (req_id TEXT
PRIMARY KEY, t INT, v TEXT, hp BLOB, cx BLOB, hy BLOB);
and B2 Transparency log only: run the Merkle log (Layer 3) with-
out provenance/registry resolution to isolate cryptographic/logging
overheads.

8.4 Metrics

The evaluation metrics include:

The evaluation metrics include Per-request overhead (us): time
to construct receipt p and leaf L = H(p); Commit overhead
(us/leaf): amortised Merkle root computation per leaf under batch
size b; Proof size (bytes): inclusion proof length x32 bytes for
SHA-256 nodes; Verification time (us): time to verify inclusion
proof for a sampled receipt; Coverage: fraction of requests with
verifiable receipts (target 1.0 unless the operator omits); Build time
(ms): total time to build a Merkle tree for N leaves (reported in
Table 3); and p95 latency: report p95 for proof generation and
verification (Table 3 already reports mean/p95).

8.5 Experimental setup

Implementation under test. We benchmark the DTL sidecar mod-
ules responsible for: hashing, commitment construction ¢, = H(x||r),
receipt serialisation, Merkle batching/root computation, inclusion
proof generation, and inclusion proof verification. The implementa-
tion is single-process and single-threaded during timing to minimise
scheduler noise.

Hardware and OS (reference environment for reported tables/figures).
All numbers reported in Tables 2-3 and Figures 2-4 were obtained
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on: CPU: 56 vCPU, GenuineIntel (family 6, model 85) under a
virtualised environment. Memory: 4 GiB RAM available to the
container. OS: Linux kernel 4. 4.0 (x86_64), glibc 2. 36.

Software stack. Python: 3.11.2. Crypto/Hash: OpenSSL 3.0.17-
backed primitives where applicable; SHA-256 via hashlib. Numer-
ics/plots: NumPy 1.24.0; Matplotlib 3.7.5 (for figures only).

Timing method. We use time.perf_counter_ns() and report
us. Each trial includes a warm-up phase (first 1,000 requests dis-
carded) to mitigate cache and interpreter warm-up artefacts.

8.6 Experimental design, precision targets, and
confidence intervals

We follow the existing design and make the reporting requirements
explicit.

Runs. For each batch size b € {1,2,4,8,16,32,64,128}, runR =5
independent trials, each with N = 65536 requests.

Confidence intervals. Report mean + 95% confidence intervals
via non-parametric bootstrap (10,000 resamples) over trial means.

Precision / power reporting (microbenchmark context). Because N
is large within each trial, the uncertainty is dominated by cross-trial
variance. We therefore treat the R trial means as the independent
units for CI computation and report: (i) mean and 95% CI, and (ii)
a minimum detectable effect (MDE) at 80% power under a normal
approximation using the observed across-trial standard deviation
(script reports this automatically). This avoids over-claiming statis-
tical power by incorrectly treating per-request timings as i.i.d.

Reproducibility controls. Fix seeds (Syec, Smod), publish all scripts,
and release raw CSV measurements, manifests, and environment
metadata.

8.7 Reproduction steps

The protocol is reproduced by the following steps (all artefacts are
included in the accompanying package):
(1) Generate datasets: python3 scripts/generate_datasets.
py —out data/ -N 65536 —seed 42
(2) Run microbenchmarks (DTL and baselines): python3
dtl_microbench.py -dataset data/synthrec/events.
jsonl -trials 5 -batch-sizes 1 2 4 8 16 32 64 128
(3) Export tables/figures: python3 scripts/aggregate_and
_plot.py —in results/ —out plots/
(4) Verify checksums: sha256sum -c data/MANIFEST.sha256

8.8 Results 1: receipt generation + Merkle
batching

Table 3 reports ps/receipt (mean and 95% CI) for receipt generation
plus Merkle batching across batch sizes. Figure 2 shows that the per-
receipt cryptographic overhead remains in the low microsecond
range across all batch sizes, indicating that receipt construction and
hashing are unlikely to dominate end-to-end serving latency. The
curve is relatively flat, suggesting that batching primarily amortises
Merkle-root computation rather than changing the cost of receipt
formation itself. This supports DTL’s design goal of deployment
as a sidecar in interactive services: platforms can tune batching to
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Table 3: Receipt generation + Merkle batching microbench-
mark (ps/receipt, mean and 95% CI).

Batch size b ps/receipt 95% CI
1 5.894 [5.665, 6.123]
2 5.984 [5.840, 6.124]
4 6.284 [6.097, 6.500]
8 6.362 [6.231, 6.492]
16 6.254 [6.109, 6.348]
32 6.303 [6.185, 6.467]
64 6.221 [6.164, 6.293]
128 6.229 [6.146, 6.331]
T T T T T T T T
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Figure 2: Cryptographic/logging overhead for receipts and
Merkle batching (reproducible microbenchmark).

anchor cadence without materially affecting per-request receipt
generation cost.

8.9 Results 2: proof size and verification scaling

DTL proofs are logarithmic in log size. We measure proof sizes and
verification times as the number of leaves grows from 2! to 2!%.
Table 4 shows proof bytes and verification time; Figure 3 illustrates
the expected logarithmic scaling of inclusion proofs with tree depth:
proof size increases linearly in the number of levels while remaining
compact (hundreds of bytes) even for large logs. Verification time
grows modestly with depth, consistent with the small number of
hash operations required per proof. These trends imply that third-
party auditing can remain lightweight: auditors can verify receipts
at scale without needing access to platform internals, and proof
transmission overhead stays small relative to typical web payload
sizes.

8.10 Analytic audit trade-off visualisation

To support governance configuration, Figure 4 visualises the gover-
nance trade-off captured by Eq. (3): detection probability increases
rapidly with the audit sample size k when the misbehaviour rate g
is moderate, but grows more slowly for rare violations. This high-
lights why DTL couples transparency with governance: operational
policies can choose k to meet assurance targets (e.g., Pdetect = 0.95)
while controlling audit cost. In practice, this enables risk-based
auditing, in which higher-stakes services or periods of elevated risk
trigger higher sampling rates.
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Table 4: Merkle proof scaling (measured): N leaves, depth,
proof size, build time, proof generation and verification
(mean/p95 in ps).

N depth  proof build gen(us)  verify
(B) (ms) (s)
1024 10 320 1.14 1.94/2.17  11.00/11.12
4096 12 384 38.04 2.64/3.83  14.54/21.04
16384 14 448 21.10 2.94/3.44 15.97/15.71
65536 16 512 89.15 3.99/4.79  17.91/18.28
262144 18 576 417.13 8.78/12.73 20.51/25.07
B T T T T T
2 600 - -
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S
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Figure 3: Proof scaling: proof size grows linearly with depth;
verification time grows modestly with depth.

8.11 Extended experiment: end-to-end sidecar
overhead in an open-source serving stack

This extended experiment is structured as a semi-realistic case
study consistent with the integration described in Section 7. To
complement the cryptographic microbenchmarks, we extend the
evaluation protocol with an end-to-end experiment using an open-
source serving stack that is reproducible by third parties. The goal is
not model accuracy, but system impact: (i) p50/p95 request-latency
overhead attributable to receipt issuance and proof availability, (ii)
throughput impact under concurrent load, and (iii) storage growth
per million receipts. A representative setup uses a containerised
inference API (e.g., FastAPI/gRPC) with DTL as a co-located side-
car; a load generator issues requests with controlled concurrency
and payload sizes. We recommend reporting end-to-end latency
distributions (p50/p95/p99), sustained throughput, CPU utilisation,
and log growth (bytes/request) under multiple batch sizes.
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Figure 4: Detection probability versus audit sample size under
uniform sampling (Eq. 3).

8.12 Extended experiment: anchoring cadence
and failure-mode detectability

We further extend the protocol with (a) an anchoring-cadence study
and (b) a failure-mode study to demonstrate detectable unverifiabil-
ity. For cadence, vary root publication every N requests versus every
T seconds, and report the trade-off between proof freshness and
overhead (queueing/backpressure). For failures, inject controlled
disruptions (e.g., temporary log outage, delayed root publication,
or witness unavailability) and measure: (i) the rate of explicit “no-
receipt” outcomes, (ii) the fraction of decisions lacking inclusion
proofs within a timeout, and (iii) auditor detection outcomes (miss-
ing receipt, stale root, or inconsistency) as verifiable signals. These
experiments connect the non-equivocation goals to operational
behaviour and provide an adoption-relevant evidence trail without
relying on proprietary platform access.

9 Discussion: Trade-offs, Interoperability, and
Regulation

This section interprets the system and evaluation results in terms
of deployment realities. We highlight the key engineering trade-
offs (performance versus decentralisation), the privacy implications
of verifiable logging, and how DTL can be adopted incrementally
through standards-aligned interfaces. We also situate DTL as a
technical substrate that can support compliance and independent
assurance without prescribing a single governance regime.

9.1 Decentralisation vs performance

DTL is designed to decouple what must be globally verifiable from
what can remain local. In practice, most deployments should treat
the append-only anchor as a low-frequency commitment layer: re-
ceipts are batched, Merkle roots are published on a cadence aligned
with operational needs (e.g., every minute or every n requests),
and only compact commitments (roots, signatures, digests) are an-
chored. This allows platforms to preserve interactive latency for
end-users while still enabling later verification. The evaluation’s
microsecond-scale cryptographic overhead suggests that, for many
services, receipt construction and hashing are not the dominant
cost; rather, the anchoring cadence and proof distribution strategy
determine user-perceived overhead.
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A second performance consideration is the “verification surface”.
DTL does not require that every request be synchronously veri-
fied by third parties; instead, it supports asynchronous verification
and sampling-based audits (Eq. 3). Operationally, this mirrors how
certificate transparency is deployed: clients and monitors verify
according to policy and capacity. For high-throughput systems,
engineering choices such as witness replication, gossip frequency,
and retention windows can be tuned to meet SLAs while preserving
non-equivocation guarantees. Importantly, DTL’s layering supports
incremental adoption: deployments may start with Layer 3 receipts
and add Layer 1/2 provenance and registry binding as maturity
increases.

9.2 Privacy and selective disclosure

DTL’s receipts are intentionally privacy-preserving by default, but
privacy risks remain if identifiers or stable metadata enable link-
age across sessions. Even when inputs are committed via H(x||r),
repeated receipt fields (e.g., policy digests, model versions, coarse
timestamps) can support correlation if not carefully scoped. A prac-
tical mitigation is to treat salts and identifiers as first-class privacy
controls: salts should be high-entropy, per-request (or at least per-
session), and never reused across contexts; timestamps can be buck-
eted when fine granularity is unnecessary; and any user identifiers
should be avoided or replaced with unlinkable tokens.

Selective disclosure is also a governance risk: once a mechanism
exists to reveal plaintext inputs/outputs, it must be constrained by
an auditable policy [20]. DTL therefore benefits from “disclosure
transparency” alongside inference transparency: access requests,
approvals, and disclosures should themselves be logged (at least
as commitments) so that an auditor can verify that disclosures
occurred according to rules and were not silently over-used. In
privacy-sensitive settings, deployments can further minimise expo-
sure by disclosing only the minimal evidence required for a dispute
(e.g., revealing (x, r) without revealing unrelated context), and by
enforcing strict retention limits consistent with data minimisation
principles.

Long-term privacy—verifiability trade-offs. Even with salted com-
mitments and selective disclosure, receipts and roots inevitably
emit metadata (e.g., timestamps, service identifiers, model-version
epochs, response sizes, and anchoring cadence). Over long horizons,
these quasi-identifiers can enable cross-event linkage—especially
when combined with external side information—even if payloads re-
main hidden. We therefore treat privacy as a tunable design dimen-
sion and add a systematic, auditor-facing risk assessment: choose a
quasi-identifier set Q, apply bucketing/suppression, and estimate
linkability via the expected anonymity-set size.

ki(Q) =|{j: Q; =0Qi}|. L(Q) = (4)

1

B (k(Q)]
Here, lower L(Q) indicates less linkability (larger expected anonymity
sets). Practical mitigations include (i) coarse time-bucketing, (ii)

batching receipts/roots to blur individual events, (iii) rotating pseudony-
mous DIDs and signing keys, (iv) minimising or suppressing size
and endpoint metadata, and (v) policy-driven retention and access
controls. These mitigations trade off audit granularity, proof latency,
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and investigative power; DTL’s design makes this trade-off explicit
and configurable rather than implicit.

9.3 Limits: lawful-but-harmful models and
policies

DTL is intentionally normative-agnostic: it cannot prevent a plat-
form from deploying a harmful yet compliant model or policy. What
it can do is make such choices transparent and attributable. In par-
ticular, DTL can bind decisions to (i) model versions, (ii) declared
policies (e.g., moderation/ranking rules), and (iii) signed evaluation
artefacts (e.g., fairness audits, red-team reports, or safety assess-
ments) expressed as verifiable credentials. This enables independent
parties to verify whether a deployment followed a stated process
and to contest outcomes with evidence. Preventing “lawful but
harmful” behaviour requires complementary governance (e.g., en-
forceable policy constraints, pre-deployment thresholds, human
review, and appeal/recourse mechanisms); DTL strengthens these
by providing tamper-evident records that regulators and auditors
can rely on.

9.4 Interoperability with web standards

A key design goal of DTL is to avoid introducing a bespoke ecosys-
tem. Provenance anchoring can directly reuse PROV concepts (en-
tities, activities, agents) and serialisations such as PROV-JSON or
JSON-LD, which makes it feasible to integrate with existing data
pipeline tooling and to exchange lineage claims across organisa-
tions [21]. Similarly, decentralised identifiers and verifiable cre-
dentials provide a standards-aligned way to represent accountable
identities (operators, auditors, regulators) and to attach crypto-
graphically verifiable claims to model metadata without requiring
a single identity provider.

Interoperability also matters for adoption pathways: platforms
already maintain artefact stores (object storage, registries, CI/CD
logs) and can map these to DTL’s content-addressed bundles rather
than rebuilding infrastructure. In practice, many deployments can
start by binding existing artefacts (model cards, evaluation reports,
training summaries) into signed bundles and publishing their di-
gests. Over time, the same interfaces can be extended to support
multi-party attestations (e.g., an external evaluator co-signing a
bundle) and cross-platform verification (e.g., auditors validating
receipts against a shared transparency log format).

9.5 Regulatory alignment

Regulatory regimes increasingly emphasise traceability, record-
keeping, and demonstrable accountability for Al-mediated deci-
sions. DTL provides a concrete technical mechanism to support
these requirements: model version binding makes it harder to “move
the goalposts” after an incident; append-only logging preserves an
evidentiary trail; and provenance anchors support claims about
data sources and transformations. Importantly, DTL does not re-
place legal compliance processes, but it can strengthen them by
making key facts independently verifiable rather than dependent
on internal platform assertions.

DTL can also support proportionate governance. Not every do-
main requires the same transparency granularity; for example,
consumer-facing recommendation may prioritise privacy and low
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overhead, while high-stakes domains may require stronger au-
ditability and longer retention. By separating commitments (pub-
licly verifiable) from bulk artefacts (selectively disclosed), DTL
enables regulators and independent auditors to verify integrity
without mandating full public disclosure of sensitive data or pro-
prietary models. This “auditability without full openness” framing
is often necessary to reconcile accountability with confidentiality
and privacy constraints in real deployments.

Operational guidance. For production adoption, the most conse-
quential knobs are key management and anchoring cadence. Sign-
ing keys should be managed via KMS/HSM-backed services with
rotation and revocation semantics; receipts should embed key iden-
tifiers and policy/model digests to preserve long-term verifiabil-
ity. Anchoring cadence (N or T) trades proof freshness against
overhead; deployments should choose defaults aligned with au-
dit requirements (e.g., moderation decisions may require tighter
freshness than low-stakes personalisation). Finally, DTL’s security
value depends on detectable failure behaviour: missing receipts,
stale roots, and inconsistent proofs must be surfaced as verifiable
conditions for auditors and, where appropriate, for end users.

10 Conclusion

Al-powered web platforms increasingly determine what informa-
tion people see, how content is moderated, and which opportunities
are surfaced through ranking and recommendation. As argued in
the introduction, this shift has amplified longstanding concerns
about centralised control, limited transparency, and the difficulty
of independently verifying claims about model behaviour, policy
changes, or data provenance. This paper addresses that gap by
proposing the Decentralised Trust Layer (DTL): a modular, standards-
aligned trust substrate that can be deployed as a sidecar to existing
model-serving stacks to make key accountability signals verifiable
by design rather than dependent on platform disclosure.

DTL operationalises transparency through four complementary
layers: (i) provenance anchoring using PROV-style lineage state-
ments signed by accountable identities, (ii) a model registry that
binds deployed versions to content-addressed and signed metadata
bundles, (iii) an inference transparency log that produces privacy-
preserving receipts and anchors Merkle roots in an append-only
history, and (iv) governance and auditing mechanisms that enable
sampling-based verification, dispute resolution, and selective dis-
closure under policy. Together, these layers provide a principled
pathway to detect log rewriting and equivocation, to bind deci-
sions to specific model and policy configurations, and to preserve
evidence that can be independently checked by auditors and regu-
lators. Our threat model clarifies the adversary capabilities DTL is
designed to withstand and the security goals it prioritises (integrity,
non-equivocation, accountability, and privacy). Finally, we trans-
late evaluation into a reproducible protocol and report runnable
microbenchmarks that establish a practical baseline for receipt
construction and Merkle-based verification.

There are several directions for future work. First, while DTL’s
cryptographic primitives are lightweight, real-world deployments
will require careful engineering around log witnessing, auditor gos-
sip, and retention policies; evaluating these choices under realistic
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traffic patterns and failure modes (e.g., partial outages, delayed an-
choring, multi-region serving) is an important next step. Second, the
privacy model can be strengthened by integrating selective disclo-
sure mechanisms beyond salted commitments, including structured
disclosure of receipt fields and privacy-preserving auditing work-
flows that reduce the need to reveal raw inputs or outputs during
disputes. Third, governance remains a socio-technical challenge:
future work should explore incentive-compatible auditor admission,
Sybil resistance under decentralised identity, and mechanisms to
make governance decisions themselves auditable without creat-
ing new central points of control. Fourth, broader interoperability
studies are needed to map DTL bundles and receipts onto existing
platform artefacts (CI/CD attestations, model evaluation pipelines,
and content-policy systems), and to validate portability across mul-
tiple web platforms and jurisdictions.

DTL outlines a practical path towards a more trustworthy Al-
mediated Web by combining provenance anchoring, version-bound
model metadata, transparency-log-style inference receipts, and de-
centralised auditing. By shifting transparency from narrative claims
to verifiable commitments, DTL supports user-centric accountabil-
ity and provides a foundation upon which regulators, researchers,
and platforms can build credible assurance processes as Al contin-
ues to reshape the digital public sphere.
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