Adaptive Preference Scaling for Reinforcement
Learning with Human Feedback

Ilgee Hong* Zichong Li*
Georgia Institute of Technology Georgia Institute of Technology
ihong39@gatech.edu z1li911@gatech.edu
Alexander Bukharin Yixiao Li Haoming Jiang
Georgia Institute of Technology = Georgia Institute of Technology Amazon
abukharin3@gatech.edu yixiaoli@gatech.edu jhaoming@amazon.com
Tianbao Yang Tuo Zhao
Texas A&M University Georgia Institute of Technology
tianbao-yang@tamu.edu tourzhao@gatech.edu
Abstract

Reinforcement learning from human feedback (RLHF) is a prevalent approach to
align Al systems with human values by learning rewards from human preference
data. Due to various reasons, however, such data typically takes the form of rank-
ings over pairs of trajectory segments, which fails to capture the varying strengths
of preferences across different pairs. In this paper, we propose a novel adaptive
preference loss, underpinned by distributionally robust optimization (DRO), de-
signed to address this uncertainty in preference strength. By incorporating an
adaptive scaling parameter into the loss for each pair, our method increases the
flexibility of the reward function. Specifically, it assigns small scaling parameters
to pairs with ambiguous preferences, leading to more comparable rewards, and
large scaling parameters to those with clear preferences for more distinct rewards.
Computationally, our proposed loss function is strictly convex and univariate with
respect to each scaling parameter, enabling its efficient optimization through a sim-
ple second-order algorithm. Our method is versatile and can be readily adapted to
various preference optimization frameworks, including direct preference optimiza-
tion (DPO). Our experiments with robotic control and natural language generation
with large language models (LLMs) show that our method not only improves policy
performance but also aligns reward function selection more closely with policy
optimization, simplifying the hyperparameter tuning process.

1 Introduction

In the field of artificial intelligence, aligning Al systems with human preferences has become
increasingly crucial, particularly for applications involving complex data and models like large
language models (LLMs) in natural language processing [38, 28]. Reinforcement learning from
human feedback (RLHF) has gained popularity for customizing Al systems [12, 3, 47]. RLHF
involves learning a reward function from human preference data, then using a reinforcement learning
algorithm to train a policy to optimize the learned reward model.

*Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

A key challenge in RLHF lies in the complexity of reward modeling, which primarily stems from the
reliance on preference labels. Since preference labels only provide comparative rankings of trajectory
segments without quantifying the scale of underlying preference strengths, previous methods have
employed the Bradley-Terry (BT) model [8] in conjunction with cross-entropy loss to learn the
reward function from preference data [12, 38]. This approach assumes that the logit of the preference
distribution scales linearly with the reward difference across all sample pairs. However, such linear
scaling is often insufficient to account for the variations in preference strength among different
pairs, restricting the reward function’s ability to capture a broader range of reward differences. This
restrictive approach to reward modeling limits the flexibility of the learned reward function, hindering
its capacity to produce the versatile rewards essential for the downstream policy optimization.

To overcome this shortcoming, we introduce a novel adaptive preference loss function inspired by
distributionally robust optimization (DRO) [16]. Our approach incorporates an instance-specific
scaling factor to change the scaling between the preference distribution and the reward difference
to be non-linear. These factors are learned during training and enable the model to accommodate
varying uncertainties of preference strength, thereby enhancing the flexibility of the reward. For pairs
showing strong preference (i.e., low preference uncertainty), our method learns a large scaling factor,
which enables the model to learn a larger reward difference. In contrast, for pairs showing ambiguous
preferences (i.e., high preference uncertainty), our method assigns a smaller scaling factor, enabling
the model to learn a smaller reward difference. The additional computational overhead of involving
this scaling factor into training is negligible, as the proposed loss function is strictly convex and
univariate with respect to each scaling parameter. Therefore, it can be easily optimized by a simple
second-order algorithm within a few iterations.

Our experiments on robotic control tasks [39] demonstrate that our method can learn a more flexible
reward function, resulting in an improved policy. Surprisingly, we also discover that our method
better aligns the learned reward function with downstream policy optimization. Specifically, when
tuning hyperparameters for reward modeling, the simplest approach is to select the reward model
according to preference prediction accuracy. However, the selected reward function (with the highest
accuracy) often yields a downstream policy with poor performance. To address this misalignment,
we usually have to jointly tune the parameters across both stages according to downstream policy
performance, resulting in significant computational burden and tuning effort. Our proposed method
can mitigate this misalignment: When using our adaptive loss, we can select the reward model based
on preference prediction accuracy alone and yield a reasonably well-performing policy. This allows
separate tuning of the two stages, easing tuning overhead. To our knowledge, the challenge of this
misalignment issue is almost untouched in the RLHF literature, and we are the first to propose a
principal approach to mitigate this issue.

Moreover, our method is generalizable and can be applied to other preference optimization algorithms.
For instance, we implement it with direct preference optimization (DPO) [31] and evaluate its
effectiveness on natural language generation tasks using Llama-2 7B [40]. Our results demonstrate
that integrating adaptive preference scaling into DPO boosts policy performance, while preserving the
benefits of alignment. Alignment is especially critical in this setting, where we employ proprietary
models like Claude 3 [1] as judges for policy selection, which demands substantial costs for using
the APIs. In the case without access to LLM assessment, we must select policy based solely on
preference accuracy, under which our approach substantially outperforms other baselines.

2 Related works

Loss functions for reward learning. Prior work on this topic is very limited. For example, Song
et al. [37] propose using different loss functions for strong and ambiguous preference data in natural
language generation tasks. They apply heavy-tailed loss functions for open-ended questions, where
preference ambiguity is desirable, and light-tailed loss functions for close-ended questions requiring
clear-cut rewards. However, their approach requires knowing the question type a priori, necessitating
extra labeling effort, and may fail for complex questions containing both open and closed aspects.
Zhao et al. [47] propose using a hinge loss, which results in zero gradient when the learned reward
difference exceeds a margin of 1. This limits the ability to learn very large differences in rewards.
Azar et al. [2] develop ¥ Preference Optimization with Identity Mapping (IPO), which modifies
DPO with a loss function matching the scaling of KL-divergence between the learned policy and the
initial policy to avoid overfitting due to weak regularization. In contrast to prior work, our method is

more broadly applicable to complex preference learning tasks without needing additional labeling or
sacrificing the ability to learn arbitrarily large reward differences.

Adaptive temperature scaling (ATS). Temperature scaling (TS) aims to adjust the entropy of
probabilistic models by rescaling their logit outputs before the softmax function is applied. This
simple method not only enables confidence calibration [19], but also plays a vital role in various
machine learning methods, including knowledge distillation [20], reinforcement learning [25], and
contrastive learning [43]. Building on TS, adaptive temperature scaling (ATS) enhances flexibility
by using instance-specific scalars. Most ATS method trains an additional network for predicting the
temperature parameter, which is further integrated into the softmax operator to calibrate the prediction
probabilities [44, 14, 4, 21]. In contrast to the aforementioned ATS methods, the proposed adaptive
preference scaling (APS) is not designed for classical confidence calibration, but is crafted specifically
to enhance the training process of reward function in RLHF. Consequently, the interpretations of
scaling factors in ATS and APS are opposite. In ATS, a larger scaling parameter is applied to data with
higher uncertainty (e.g., data that the classifier is likely to misclassify), which reduces the magnitude
of the corresponding logit. Conversely, in APS, a larger scaling factor is assigned to data with clearer
preferences, resulting in a larger logit. This distinction clarifies why the scaling parameter in our
approach does not correspond to the concept of “temperature” from statistical physics. Additionally,
we propose a principled framework for learning scaling parameter based on DRO, which avoids the
complexities of designing specific temperature networks and does not rely on heuristically designed
loss functions.

Distributionally robust optimization (DRQO). DRO is a technique that trains machine learning
models to be robust against uncertainty in the data distribution. Specifically, DRO finds a solution that
performs well under the worst-case distribution within a specified uncertainty set around the empirical
data distribution [5, 7, 23, 35, 16]. DRO has been applied in various AI/ML domains to improve
generalization when the test distribution differs from the training distribution [27, 18, 26, 10, 45, 30].
Our framework is motivated by Qi et al. [30], which tackles KL-constrained DRO problem. However,
our approach differs in two significant ways. First, instead of using a single KL constraint for the
entire training dataset, we apply a separate KL constraint to each individual training data. Second,
since each training data involves just two distributional variables, we can use a deterministic method to
optimize these efficiently. Note that while our proposed method is inspired by DRO, it serves a distinct
purpose: improving reward learning in RLHF, which is orthogonal to distributional robustness.

3 Method

In this section, we first outline the problem setup, derive the loss function with adaptive preference
scaling, and then provide theoretical motivation for our proposed loss. At last, we present an
optimization algorithm, extend the approach to direct preference optimization, and introduce a variant
of our proposed loss that incorporates quadratic regularization.

3.1 Problem setup

We consider a reward-free Markov decision process M = (S, A, p,) with state s € S, action
a € A, state transition function p, and discount factor 7. The ground truth reward function r :
S X A — R is assumed to be unknown, but only human preferences over pairs of trajectory
segments are observed. A trajectory segment is a sequence of consecutive state and action pairs
2= {(Sm>@m), (Sma1s@mi1)s- -+ (Sk—1,ax-1)} € (S x A)*~™. We denote z; = 2, to indicate
that the human preferred trajectory segment z; over the trajectory segment z5 and denote the preferred
one with a subscript w and the dispreferred one with a subscript [(i.e., z,, and z;). Here, we are
given a human preference dataset of trajectory segments Dprer = (2uw,i5 21,i) f;l. Our goal is to find a
reward 7(s, a), which is well-aligned with human preferences. Once we learn the reward, we then
find a policy 7 € Af‘ such that it maximizes the expected sum of discounted rewards,

maxE, p_ [f(z)],

where 7(z) = 3, .)e- ~t#(s¢, a¢) and D, denotes the stationary distribution of the state-action
pair induced by .

3.2 Reward learning with adaptive preference scaling

We now focus on the reward learning phase in RLHF, a crucial stage for capturing human preferences
across various trajectory segments. The standard reward learning procedure assumes that the reward
function determines a preference distribution, also known as the Bradley-Terry (BT) model [8],

(2w = 21) = o(r(zw) — r(21)), (D

where o denotes the sigmoid function. The reward function is then learned by minimizing the
expectation of negative log-likelihood of r over the preference data [12]:

mrin Lpref(r) = _E(z“,,zl)N’Dpref [Ingr(zw - Zl)} .)

As can be seen from (1), the BT model essentially assumes that the logit of the preference distribution
o Y pr (2w = 2)) scales linearly with the reward difference, regardless of the specific pair of
samples. Such linear scaling, however, may not align well with downstream policy learning. Human
preferences are often influenced by numerous factors that interact in non-linear ways, making the BT
model suboptimal as a reward model. For example, when the reward difference is small, even slight
changes in certain features might lead to significant shifts in preference. The BT model may struggle
to capture such rapid shifts due to its slower transition.

To address this challenge, we propose an adaptive preference loss based on KL-constrained distri-
butionally robust optimization formulation [30], which can implicitly change the scaling between
the logit and the reward difference to be non-linear. Specifically, given a pair of trajectory segments
(21, 22), we denote d,.(21,22) = 1(z1 = 22) - (r(z2) — r(#1)) and p = (p1,p2). We define the
following instance-level loss:

U (21, 29) i= max p1dr (21, 22) + padr (22, 21) — 0KL(p,1/2) s.t. KL(p,1/2) < po, (3)

where Ay = {p € R? : p; + py = 1,0 < py,pa < 1}, 1/2 is denoted for the uniform distribution,
and pg, 70 > 0 are shared prespecified parameters across all instances. KL(-,-) denotes the KL
divergence. Note that without the KL-constraint, (3) is reduced to the cross-entropy loss with
7o = 1. Unlike general KL-constrained DRO formulation, which considers a distribution p over all
training samples, the distributional variable p in (3) is associated specifically with binary preference
comparisons for each pair.

We then convert (3) into an equivalent minimax formulation based on the Lagrangian duality,

min max p1d,(z1, 22) + pad, (22, 21) — (A + 70)(KL(p, 1/2) — po),
A>0 peEAsg

where) is the Lagrange multiplier. By defining 7 as 7 = A+ 79 and applying the optimality condition
for p, we have

min — 7logp, (2w = 21) + (po —log2)7, @)

- r(zw) —T(Zz))

T

where Pror(2w = 21) = 0(5)
We refer to Appendix A.1 for the full derivation. Note that the preference scaling factor 7 in (4) and
(5) serves as the Lagrange multiplier of (3). This scaling parameter 7 is used specifically for training
the reward function r, rather than calibrating the preference distribution p, - (2, > #). The scaler 7
is used exclusively during the reward learning phase and is no longer needed in subsequent policy
optimization, where the reward function r alone is used.

Moreover, the scaling parameter 7 is defined to be an instance-specific parameter corresponding
to the pair of trajectory segments (z,,, z;). Therefore, when applying our adaptive loss to reward
learning, for each pair (2, i, 21,;), we need to define a corresponding scaling parameter denoted by 7.
The overall loss function over the training set Dp,f is as follows:

N N
) 1 1
e I A I
1= i=
where T = (11,...,7n), 2 = {7 : 70 < 7 < Tiax} With Ty,ax as another prespecified parameter,

and p = pp — log2 > —log 2. Here, we also involve an upper bound 7,5 > 0 in (6), and we will
explain why it is needed in the next subsection.

3.3 Theoretical insights

We next provide some theoretical insights on why the scaling parameter 7 can help gain adaptivity by
a proposition. For simplicity, we only consider a pair of trajectories.

Proposition 3.1. Assume we have a pair of trajectories z1, zo, and the preference distribution
p(z1 = z2) = p* € (0,1), i.e., the probability, that z, is preferred over zs, is p*. Consider the
problem of minimizing the expectation of our adaptive loss function over the preference distribution:
rIrTuerb —7p*log (o((r(z1) — r(22))/7)) — 7(1 = p*)log (¢ ((r(22) — 7(21))/7)) + p7. (D
Then the minimizer T* and r* of the expected loss satisfy
= {TO if —p*log(p”) — (1 —p*)log(1 —p*) +p >0,
Tmax §f —p*log(p”) — (1 —p*)log(1 —p*) +p <0,
r*(21) — " (22) = 0L (p*).
Here, 0~ is the inverse of sigmoid function.
Note that the expected loss (7) is only for easing theoretical analysis, as p* is not accessible in
practice. From Proposition 3.1, we can see that when p* is close enough to 0.5, (i.e., the uncertainty
of preference is large), the corresponding optimal 7* is at the lower bound 7. The resulting optimal
reward difference is oo ~!(p*), which is smaller than the counterpart obtained by the cross-entropy
loss when 79 < 1. Conversely, when p* is close to 0 or 1, (i.e., the uncertainty of preference is small),
the resulting optimal 7* is at the upper bound 7,,,x. Here, we introduce the upper bound 7,5 to
ensure that the optimal 7* is bounded. The resulting reward difference in this case is Tmax0 ! (p*),
which is larger than the counterpart obtained by the cross-entropy loss when Tyax > 1. Our theoretical
analysis suggests that the adaptive scaling factor essentially changes the correspondence between the

logit of preference distribution and the reward difference for each pair of trajectory segments, which
could lead to a more flexible reward model.

We further visualize our adaptive preference T — =02 0] —p=02 .-
loss in Figure 1, setting 79 and 7., to 0.1 NN p=05 PO v
. . “ . — p=-0.6 = p=-0. 7
and 5.0, respectively. As depicted, our adap- 4 --CE 8 sl T
. . . el
tive preference loss behaves distinctly com- § 2 ™ s /
pared to the cross-entropy loss. With large 0 NS -] |]
learned reward differences, the cross-entropy , =~ 10 =
tends to be very flat, while our loss maintains -5 0 5 -0 -5 0 5 10
Reward Difference Reward Difference

a non-trivial gradient, allowing us to contin-

ually decrease the loss function. In contrast, Fjgure 1: Visualization of the loss function (left) and

for small ppsitive learned rewarq differences, s gradient (right) on different reward differences.
our loss yields a smaller gradient, thereby

less encouraging the reward model to further distinguish pairs of ambiguous trajectory segments.
This is consistent with our theoretical analysis.

3.4 Algorithm

We present an efficient algorithm for solving (6). Suppose we parameterize r as a neural network
with parameter ¢. At the m-th iteration, we have the iterate ¢("), and we sample a pair of trajectory
segments z,, ; and z; ;. We initialize Ti(o) = 1 and then optimize 7; by a projected Newton method
subject to a simple interval constraint €2 [6]. Specifically, for k = 0, ..., K — 1, we take

o = (M A, (®)

Ti€
where Agk) denotes the descent direction

AW _ Vi, 7) ©
V2, 4(¢0m), 7F)’
(K)

Once we get 7, /, we update ¢ by a stochastic gradient descent step
oD = olm) —pyVti(p™, 7)), (10)

where 74 is the learning rate. We summarized our proposed algorithm in Algorithm 1, which is
presented in a per-data manner for clarity but can be directly adapted for mini-batch learning.

7

Algorithm 1 Algorithm for reward learning with adaptive preference scaling

1: Input: 79, Tmax, 0> Mg}

2: form=0,1,2,..., M —1do

3: Sample a pair of trajectory segements from Dp,ef;

4 Setr) =1,

5 fork=0,1,2,..., K —1do

6: Compute Agk) using (9) and update Ti(k) using (8);
7. end for

8: Update ¢(™) using (10) or Adam-style step;

9: end for

Remark 3.1. Note that since ¢;(¢, ;) is strictly convex and univariate with respect to 7;, in each
iteration m, TZ-(K) is guaranteed to be near-optimal (i.e., TZ-(K) ~ 7). Therefore, the convergence
of Algorithm 1 can be guaranteed by the convergence of stochastic gradient descent on the reward

model parameter ¢.

Remark 3.2. Computationally, Algorithm 1 incurs negligible additional cost. The inner minimization
problem (Lines 5-7 in Algorithm 1) can be solved to near-optimality efficiently within a few iterations
(e.g. K = b) given its convex and univariate nature. The additional overhead of each update is minor
compared to the overall RLHF pipeline.

3.5 Extension to direct preference optimization (DPQO)

Our adaptive preference scaling approach is generic and can be extended to DPO [31], which is
another popular method for policy learning from human preferences. DPO directly learns the policy
in supervised manner using the preference data of state-action pairs Dprer = (S5, Qa4 alyi)i]\il. This
approach forgoes the need to learn the reward function explicitly by the reparameterization of reward
function r with respect to its optimal policy 7.,

r(s,a) = Blog(m(a|s)/mwet(als)) + Blog Z(s), (11)

where Z(s) = Y Trer(als) exp (7(s, a)/B) and mer denotes the reference policy. By plugging in
(11) back into (2), we have the policy optimization problem

HED Lpro (W) = _E(S,a“,,al)NDpyef log 0'(57'71— (aw|s) - Brﬂ' (al |S))7
where . (a|s) = log(w(als)/me(als)) denotes the log-probability ratio.

Similarly. we can integrate adaptive preference scaling into DPO by plugging in (11) into (6). By
merging 3 with the 7; and p, we can further obtain the adaptive DPO (Ada-DPO) formulation as

N
: 1 rﬂ(awi|si) rﬂ'(alilsi)

m LAda— = — E —7;1 J J |
11 o Ada DPO(WyTI» ,TN) N - [Ti 0g0< + pT;

T, T1,..,TNE T

Remark 3.3. Note that the proposed adaptive preference loss can be further combined with other
RLHF approaches, such as PEBBLE [24], SURF [29], and PARL [11], which still optimize the
standard cross-entropy loss (see [24, Eq. (4)], [29, Eq. (3)], and [11, Eq. (9)]).

3.6 Extension to quadratic regularization

We now introduce a variant of our adaptive preference loss that uses quadratic regularization for 7.
This modification removes the need for the hyperparameter 7., in §2, easing the tuning effort. We
define the following instance-level adaptive preference loss with quadratic regularization:

n;in Cquad (1, 7) := —T1og py (20 = 21) + po7° — log 27. (12)
T2T0

Compared to (4), which includes a linear regularization term of (po — log 2)7, (12) modifies the regu-
larization term with coefficient pg to be quadratic while keeping the term log 27 linear. Additionally,
in (12), the constraint on 7 only specifies a lower bound 7y and no longer includes an upper bound
Tmax- Lhe following proposition provides theoretical insights for this modification.

Proposition 3.2. Assume we have a pair of trajectories z1, zo, and the preference distribution
p(z1 = 2z2) = p* € (0,1). Consider the problem of minimizing the expectation of our adaptive loss
function with quadratic regularization over the preference distribution:
Trnin —7p*log (o ((r(z1) — r(22))/7)) — (1 — p*)log (o ((r(z2) — 7(21))/7)) + po7* — log 2.
»TZT0

Then the minimizer T* and r* of the expected loss satisfy

7% = max{7, (p* log(p*) + (1 — p*) log(1l — p*) +log2)/(2p0)},

(1) — r*(22) = 0L (p").
Here, 0~ is the inverse of sigmoid function.

Note that unlike the adaptive preference loss with linear regularization described in Proposition 3.1,
the optimal value 7* for quadratic regularization does not involve the upper bound 7y«

4 Experiments

In this section, we examine the effectiveness of our adaptive preference loss based on robotic control
and natural language generation tasks. Due to space limit, we defer the experiments with quadratic
regularization, ablation studies, and discussions on hyperparameter selection to Appendix C.

4.1 Robotic control

Experiment setup. We apply our proposed reward learning method on 3 robotic control tasks from
the PyBullet [13] environments: HalfCheetah, Ant, and Hopper. These environments are similar to
those available in OpenAl Gym [9] but they are known to be much harder to solve [34]. Similarly to
Gao et al. [17], our setting is synthetic, where we use the ground truth rewards to provide preference
labels on each pair of samples due to high expense of collecting human preferences. For the reward
function, we use two-hidden-layer MLPs, each containing 64 hidden units. This configuration is
aligned with the designs of both the policy and value networks. Following Christiano et al. [12], we
repeat the following three steps for each stage: (i) We sample a set of trajectories by the policy ,
and update the policy with proximal policy optimization (PPO, Schulman et al. [36]) alongside a
reward function 7. (ii) We split the segments (the sequence of state-action pairs) into a training set
and a testing set. Then, we randomly sample pairs of segments from the training set, and generate
Dprer With preference labels. We do the same to the testing set, and generate D;ref. (iii) We train the

A / . . P .
reward function 7 on Dyt and use D, for evaluating the preference prediction of 7.

For notational simplicity, we name our proposed adaptive preference scaling method for reward
learning as “Ada-Pref”. We compare Ada-Pref with the baseline method “Pref”, which uses the
standard cross-entropy loss for reward learning. For every 10000 timesteps the policy 7 runs, we
evaluate the learned policy based on 20 test episodes. We also compute the average preference
prediction accuracy of the learned reward function across stages. We set the budget to 3 million
timesteps and perform training over 10 different seeds. For hyperparameter tuning in both reward
learning and policy optimization, we apply two different criteria: 1) We identify the best policy based
on its performance (the one with the highest return) and subsequently select the corresponding reward
function. 2) We choose the best reward function based on its performance (the one with the highest
average preference prediction accuracy) and then select the corresponding policy. Details of the
implementations and hyperparameter tuning procedures are in Appendix B.1.

Results. We summarize the results on three PyBullet tasks as follows:

Table 1 and Figure 2 illustrate the results for Pref and Ada-Pref on the PyBullet tasks, based on the
first hyperparameter tuning criterion. In Table 1, we report the highest return of the best policy and
the average preference accuracy of the corresponding reward function. We can see that Ada-Pref
consistently outperforms Pref in terms of return on all three tasks and achieves comparable preference
accuracy. The upper panel of Figure 2 shows the learning curve plots. We can see that Ada-Pref
surpasses Pref at nearly every timestep and reaches a higher plateau across all tasks. The lower panel
of Figure 2 presents percentile plots from different seeds to demonstrate individual run behaviors. As
shown, we confirm that Ada-Pref consistently outperforms Pref at every percentile across all tasks.

Table 2 presents the results for Pref and Ada-Pref based on the second hyperparameter tuning criterion.
From Table 2, we can see that both methods show a decrease in performance compared to Table 1,

3000

2000

3500

3000

2500

2000

1500

c < 2000 c
5 1000 é é
2
© 1500 Q 1000
& & 2
0 1000
500
—— Pref 500 —— Pref —— Pref
-1000
—— Ada-Pref o —— Ada-Pref —— Ada-Pref
0
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
Timesteps (1e6) Timesteps (1e6) Timesteps (1e6)
3600 2500
3200
3500
2000
3400
3000
E E 3300 E 1500
2 2 2
@ 2800 Q 3200]
o 1000

2600

2400

—— Pref
—— Ada-Pref

0

20 40 60

Percentile

80 100

3100

3000

2900

2800

-

_

—— Pref
—— Ada-Pref

0

20 40

60 80

Percentile

100

500 —— Pref

—— Ada-Pref

0

0 20 40 60 80 100

Percentile

(a) HalfCheetah (b) Ant (c) Hopper

Figure 2: Learning curve plots (top) and percentile plots (bottom) for Pref and Ada-Pref. For the
learning curve plots, returns at each timestep are averaged across 10 different seeds, then smoothed
over timesteps using an exponential moving average (EMA) with a smoothing factor of a = 0.1. For
the percentile plots, returns from 10 different seeds are sorted in ascending order.

while Ada-Pref still outperforms Pref in terms of both preference accuracy and return on all three
tasks. Furthermore, Ada-Pref demonstrates greater resistance to performance degradation than Pref,
indicating its superior ability to align the learned reward function with policy optimization. This
alignment allows for effective policy selection based on preference accuracy without the need to
evaluate the policy using ground truth rewards.

Table 1: Table for the highest return of the best
policy and the average preference prediction ac-
curacy of the corresponding reward function.

Table 2: Table for the average preference predic-
tion accuracy of the best reward function and the
highest return of the corresponding policy.

Preference Preference

Task Method Return Accuracy (%) Task Method Return Accuracy (%)
Pref 2724.42 89.09 Pref 2620.83 89.41
HalfCheetah ‘ Ada-Pref ‘ 287545 89.46 HalfChectah ‘ Ada-Pref ‘ 286507 9075
Ant Pref 2917.81 85.57 Ant Pref 2750.99 87.93
Ada-Pref | 3177.11 85.48 Ada-Pref | 3008.69 89.23
H Pref 1324.91 92.08 H Pref 744.66 93.18
opper Ada-Pref | 1692.10 91.36 opper Ada-Pref | 1134.73 93.26

4.2 Natural language generation

Experiment setup. We apply DPO with our proposed adaptive loss (Ada-DPO) method to two
open-ended text generation tasks: summarization and single-turn dialogue. We adopt the Llama-2
7B model [40] as the backbone and conduct instruction tuning on each task to obtain the initial
reference models. For summarization, the policy generates summaries given posts collected from
Reddit. We use the filtered TL;DR summarization dataset [41] for instruction tuning, which contains
more than 117K Reddit posts, each with a human-written summary. We apply the human preferences
collected by Stiennon et al. [38] for preference optimization, where each transcript contains a pair
of responses along with a preference label. For single-turn dialogue, the policy responds to various
human queries ranging from simple questions to complex demands. We utilize the Anthropic Helpful
and Harmless dialogue preferences dataset [3] for both instruction tuning and preference optimization.
This dataset contains 170k human-Al dialogues, with each dialogue containing two Al responses
and a human preference label. We use the preferred responses for instruction tuning and the full
set of preferences for optimization. For instruction tuning stage, we fine-tune the entire Llama-2
model. For the alignment stage using Ada-DPO and different baselines, we apply LoRA fine-tuning
for computational efficiency concerns, as we need to simultaneously tune multiple hyperparameters.

The rank of the LoRA adaptor is 64. We consider three baseline methods: DPO [31], ¥ Preference

Optimization with Identity Mapping (IPO) [2] and Sequence Likelihood Calibration with Human
Feedback (SLiC-HF) [47].

As human evaluation is prohibitively expensive, we use Claude 3 [1], a proprietary large language
model, to automatically evaluate responses based on summary quality and helpfulness/harmlessness
for the summarization and dialogue tasks, respectively. Prior work has shown that Claude 3 and
GPT-4 can effectively measure a quantitative improvement over the instruction-tuned model [15]. We
split a small subset from each instruction tuning dataset for testing and calculate the win rate against
the instruction-tuned reference model as the evaluation metric. The percentage of instances where the
response generated by policy A is preferred over policy B is referred to as the win rate of A against B.
We also split a subset from each preference optimization dataset to validate the preference prediction
accuracy. Details of the implementations and hyperparameter selections are in Appendix B.2.

Results. We summarize the results on the two natural language generation tasks as follows:

In Figure 3, we select the model with the highest win rate and present the win rate and its preference
accuracy for all baselines. We observe that Ada-DPO outperforms the other baselines on both tasks
in terms of win rate and achieves comparable preference accuracy. In Figure 4, we display the
performance of the model selected with the highest accuracy (not win rate). As shown, Ada-DPO
achieves a significant improvement beyond the DPO baseline in terms of win rate and obtains
a comparable preference accuracy. This again indicates that Ada-DPO yields better alignment
between the learned reward function and policy optimization, allowing good policy selection based
on preference accuracy without a proprietary LLM judge.

@ sLic-HF @ DPO (O sLic-HF @ ppPO [@)s]e} @ Ada-DPO O prPo @ Ada-DPO
o B PO @ Ada-DPO g0, B PO @ Ada-DPO 60 8
& 50 2
- >
65 > —_ O 60+
o 60 3 2.1 8 |
5 < 60 g3 <40
55 2 c o
< e =207 5
= D 59 5 20
50 2 10- °
2 o
45 Summarization Dialogue Summarization Dialogue Oisummarizalion Dialogue 0 Summarization Dialogue
Figure 3: The best win rate and the preference Figure 4: The best preference prediction accuracy
prediction accuracy of the corresponding model. and the win rate of the corresponding model.

4.3 Detailed analysis

We present detailed analyses of Ada-Pref and Ada-DPO for both the Ant and summarization tasks.
Figure 5(a) presents a histogram of the learned scaling factors 7 for the Ant task. We can see that
around 60% of these scaling factors reach the upper bound, while about 10% converge to the lower
bound, and the rest are distributed across the region. In Figure 5(b), we explore the relationship
between preference strength and the learned scaling factors 7, and in Figure 5(c), we investigate the
relationship between preference strength and the learned reward difference for Pref and Ada-Pref.
We measure preference strength using the true reward difference, categorize it into five percentile
bins, and then bin the scaling factors and the learned reward differences accordingly to compute
the average. As can be seen, the learned scaling factor increases monotonically with preference
strength, demonstrating that the our method successfully adapts the loss scaling to the varying
degrees of preference in the data. Furthermore, Ada-Pref learns smaller reward differences for pairs
with ambiguous preferences and learns larger reward differences for those with strong preferences,
compared to Pref. This indicates that our method leads to a more flexible reward function.

In Figure 6(a), we plot a histogram of the learned scaling factors 7 for the summarization task. We
can see that around 40% of the scaling factors converge to the upper bound, with the rest distributed
across the region. We also display the relationship between the confidence scores and the scaling
factors in Figure 6(b). The confidence score is an integer from 1 to 4 included in the dataset, and a
higher score denotes a stronger preference. We bin the scaling factors based on confidence scores
and compute the average. As shown, the scaling factors positively correlate with confidence scores,
justifying that we learn larger 7 for strong preferences and smaller 7 for ambiguous ones.

We further present two pairs of preference samples where Ada-DPO assigns large or small scaling
factors in Figure 7. We observe that the sample pair with a large scaling factor shows a strong

60 0.951 0.025

g o Pref
) 0.90
§50 ~ @0'070 —e— Ada-Pref
%40 gO.SS g 0.015
£ 30 © 080 (=)) Sy
g g o 0.010
2
520 Z 075 s
a 2 0.005
10 0.70 g
0 0.000
0.2 04 0.6 0.8 1.0 1 2 3 4 1 2 3 4
T Preference Strength Preference Strength
(a) Histogram of 7 (b) Preference strength and 7 (c) Preference strength and

learned reward difference

Figure 5: Histogram of learned scaling factors, relationship between preference strength and the
learned scaling factors, and relationship between preference strength and the learned reward difference.
All plots are from the Ant task.

<) 3.6
& 40 -
g &34
g g 3.2
20 Q3.
8 z
o 3.0
0 e ‘ :
0 2] 1 .2 3 4
T Confidence Score
(a) Histogram of 7 (b) Confidence score and 7

Figure 6: Histogram of learned scaling factors and relationship between the confidence scores and
the learned scaling factors. Both plots are from the summarization task.

Sample pair with large 7 (t = 4.0) Sample pair with small T (t =0.1)
(Prompt T TTTTTTTTTTTT - (Prompt T TTTTTTTTTTTT -

\ \
| POST: This morning, I was walking between terminals in ! 1 POST: On our second date I told her I had Bipolar 2 and !
I the Minneapolis airport. A bunch of us got stuck behind : I she was fine with it. She borrowed a book I had on the :

Chosen: 8 spoiled brat girls got = 50 30.4 Chosen: I have bipolar 2, and 0.4
stuck at the airport due to their A recently my depression and moodinessf)
immaturity and obliviousness, and ° is getting to my girlfriend. She is °
I'd like to know how I can help © afraid to come over because she 0.3
them. =20 thinks im losing interest in her. H

(0] (0]

o How do I help her? o4
Re]gcted:Teenage girls,. who we had g Rejected: I have bipolar 2, and g
no_].dea were teenage 91.”5' were £ 10 recently my depression and moodiness 501,
belnglobnoxmusly‘obnoxmusly. g is getting to my girlfriend. She is S : 1
obnoxiously obnoxiously obnoxiously 5 113 afraid to come over because she is 0.03
obnoxiously obnoxiously obnoxiously 0 PO Ada-DPO afraid I will lose interest in her. 0- DPO Ada-DPO

Figure 7: Examples of preference sample pairs with large (left) and small (right) scaling factors 7,
and the comparison of the learned reward difference. The preferred (chosen) responses are colored
by green and the rejected responses are colored by red.

preference, as the rejected response is nonsensical while the chosen one is clear. Ada-DPO learns
a larger reward difference for such data, while it is much smaller with DPO. Conversely, for the
sample pair with a small scaling factor, the two responses are very similar, indicating its ambiguity.
Ada-DPO learns a small reward difference on this pair, while DPO gets a large reward difference.

5 Conclusion

RLHF is an emerging challenge in machine learning. Prior to the popularity of models like ChatGPT,
research on designing proper loss functions for reward learning was limited. To bridge this gap,
we explore uncertainties in underlying preference strengths and propose an adaptive preference
loss function. This loss function incorporates instance-specific scaling factors to modulate the
correspondence between reward differences and preference distributions. Taking the result in this
paper as an initial start, we expect more sophisticated and stronger follow-up work that applies to
RLHF with similar structures. All of these efforts may ultimately assist in developing more principled
RLHF methods to better control risks associated with advanced Al systems.

10

References

[1] Anthropic. Claude, 2024. URL https://www.anthropic.com.

[2] Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning
from human preferences. In International Conference on Artificial Intelligence and Statistics,
pages 4447-4455. PMLR, 2024.

[3] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson,
Dario Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Chris Olah, Benjamin Mann,
and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learningvfrom
human feedback. CoRR, abs/2204.05862, 2022.

[4] Sergio A Balanya, Juan Maroiias, and Daniel Ramos. Adaptive temperature scaling for robust
calibration of deep neural networks. Neural Computing and Applications, pages 1-23, 2024.

[5] Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen.
Robust solutions of optimization problems affected by uncertain probabilities. Management
Science, 59(2):341-357, 2013.

[6] Dimitri P Bertsekas. Projected newton methods for optimization problems with simple con-
straints. STAM Journal on control and Optimization, 20(2):221-246, 1982.

[7] Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust optimization. Mathe-
matical Programming, 167:235-292, 2018.

[8] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324-345, 1952.

[9] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[10] Samuel Broscheit, Quynh Do, and Judith Gaspers. Distributionally robust finetuning bert for
covariate drift in spoken language understanding. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics, pages 1970-1985, 2022.

[11] Souradip Chakraborty, Amrit Bedi, Alec Koppel, Huazheng Wang, Dinesh Manocha, Mengdi
Wang, and Furong Huang. Parl: A unified framework for policy alignment in reinforcement
learning. In The Twelfth International Conference on Learning Representations (ICLR), 2024.

[12] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

[13] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning, 2016-2019. URL https://pybullet.org/.

[14] Zhipeng Ding, Xu Han, Peirong Liu, and Marc Niethammer. Local temperature scaling for
probability calibration. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 6889-6899, 2021.

[15] Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36, 2024.

[16] John C Duchi, Peter W Glynn, and Hongseok Namkoong. Statistics of robust optimization:
A generalized empirical likelihood approach. Mathematics of Operations Research, 46(3):
946-969, 2021.

11

https://www.anthropic.com
https://pybullet.org/

[17] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
In International Conference on Machine Learning, pages 10835-10866. PMLR, 2023.

[18] Tejas Gokhale, Abhishek Chaudhary, Pratyay Banerjee, Chitta Baral, and Yezhou Yang. Se-
mantically distributed robust optimization for vision-and-language inference. In 60th Annual
Meeting of the Association for Computational Linguistics, pages 1493—-1513, 2022.

[19] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pages 1321-1330. PMLR, 2017.

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[21] Tom Joy, Francesco Pinto, Ser-Nam Lim, Philip HS Torr, and Puneet K Dokania. Sample-
dependent adaptive temperature scaling for improved calibration. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 14919-14926, 2023.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

[23] Daniel Kuhn, Peyman Mohajerin Esfahani, Viet Anh Nguyen, and Soroosh Shafieezadeh-
Abadeh. Wasserstein distributionally robust optimization: Theory and applications in machine
learning. In Operations research & management science in the age of analytics, pages 130-166.
Informs, 2019.

[24] Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. In International
Conference on Machine Learning, 2021.

[25] Xuezhe Ma, Pengcheng Yin, Jingzhou Liu, Graham Neubig, and Eduard Hovy. Softmax g-
distribution estimation for structured prediction: A theoretical interpretation for raml. arXiv
preprint arXiv:1705.07136, 2017.

[26] Paul Michel, Tatsunori Hashimoto, and Graham Neubig. Modeling the second player in
distributionally robust optimization. International Conference on Learning Representations,

2021.

[27] Yonatan Oren, Shiori Sagawa, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust language modeling. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4227-4237, 2019.

[28] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information Processing Systems,
35:27730-27744, 2022.

[29] Jongjin Park, Younggyo Seo, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. SURF:
Semi-supervised reward learning with data augmentation for feedback-efficient preference-based
reinforcement learning. In International Conference on Learning Representations, 2022.

[30] Qi Qi, Jiameng Lyu, Kung-Sik Chan, Er-Wei Bai, and Tianbao Yang. Stochastic constrained dro
with a complexity independent of sample size. Transactions on Machine Learning Research,
2023.

[31] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36, 2024.

[32] Antonin Raffin. Rl baselines3 zoo, 2020. URL https://github.com/DLR-RM/
rl-baselines3-zoo.

[33] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021.

12

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo

[34] Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement
learning. In Conference on Robot Learning, pages 1634-1644. PMLR, 2022.

[35] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[37] Ziang Song, Tianle Cai, Jason D. Lee, and Weijie J. Su. Reward collapse in aligning large
language models. CoRR, abs/2305.17608, 2023.

[38] Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F. Christiano. Learning to summarize from human feedback.
Advances in Neural Information Processing Systems, 2020.

[39] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026-5033. IEEE, 2012.

[40] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[41] Michael Volske, Martin Potthast, Shahbaz Syed, and Benno Stein. TI; dr: Mining reddit to learn
automatic summarization. In Proceedings of the Workshop on New Frontiers in Summarization,
pages 59-63, 2017.

[42] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. Trl: Transformer reinforcement learning, 2020. URL https:
//github.com/huggingface/trl.

[43] Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 2495-2504,
2021.

[44] Pei-Hsin Wang, Sheng-lou Hsieh, Shih-Chieh Chang, Yu-Ting Chen, Jia-Yu Pan, Wei
Wei, and Da-Chang Juan. Contextual temperature for language modeling. arXiv preprint
arXiv:2012.13575, 2020.

[45] Hongyi Wen, Xinyang Yi, Tiansheng Yao, Jiaxi Tang, Lichan Hong, and Ed H Chi.
Distributionally-robust recommendations for improving worst-case user experience. In Proceed-
ings of the ACM Web Conference 2022, pages 3606-3610, 2022.

[46] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 conference on empirical
methods in natural language processing: system demonstrations, 2020.

[47] Yao Zhao, Rishabh Joshi, Tianqgi Liu, Misha Khalman, Mohammad Saleh, and Peter J. Liu.
Slic-hf: Sequence likelihood calibration with human feedback. CoRR, abs/2305.10425, 2023.

13

https://github.com/huggingface/trl
https://github.com/huggingface/trl

A Derivation and proofs of Section 3

A.1 Derivation of Equation (4)

In this subsection, we present the full derivation of Equation (4). Recall the following loss:
lr(21,20) = max p1dy (21, 22) + pady (22, 21) — T0KL(p, 1/2) s.t. KL(p,1/2) < po.
2

Using the Lagrangian duality, we have

max mi mlﬂ prdr(21, 22) + p2dy (22, 21) — T0KL(p, 1/2) — AM(KL(p, 1/2) — po).

By strong duahty theorem we have

rgg max P1dy (21, 22) + pady (22, 21) — ToKL(p, 1/2) — MKL(p, 1/2) — po),
2

which is equlvalent to

min max pyd, (21, 22) + padr (22, 21) — (A + 70)(KL(p, 1/2) — po) — T0p0-
A>0 pEA,

Welet T = \ + 7o and obtain
min max p1dr(21, 22) + padr (22, 21) — T(KL(p, 1/2) — po) — Topo-

T>Tg PEA
Now, we consider the optlmahty conditions for the inner constrained maximization problem by
defining the following Lagrangian function:

Ly +(p, 1) = p1d, (21, 22) + pady (22, 21) — T(KL(p, 1/2) — (Zpk - 1)

where p is the Lagrange multiplier. The optimal solutions p™7 to the inner max1mlzat10n problem
satisfy the following KKT conditions:

dr(z1,22) — T(log(p"") + 1) —
dy(z2,21) — T(log(p™") + 1) —

2
and ZpZ’T =1
k=1

_ exp (d,.(zl, ZQ)/T)
exp (dr(21,22)/7) + exp (dy(22,21)/7)
exp (dy(22,21)/7)

exp (dr(zl, 22)/7') + exp (dr(zg, Zl)/T) '
Plugging in p; " and p5” back into the inner maximization problem, we have
mln log (exp (dr(21,22)/7) + exp (dy(22,21) /7)) — T1og 2 + (T — 7o) po.

Without loss of generality, we let z; = z,, and 2o = 2;, and obtain
n;m —Tlogo T(Zw)_(zl)) + (po —log2)7,
T2>To T

where o is the logistic function. This completes the derivation.

Then we have

T, T
P

and py’ =

A.2 Proof of Proposition 3.1

We first derive the expectation of the adaptive loss. By taking expectation of (4) with p = pg — log 2,
we have:

E {1 z1>-22)[—7'10g(0(((Zl)_r(z2 /T))+pT

21,22 }

+ 1(z2 >~ zl)[— Tlog (U(r(z9) — 7’(21))/7')) + pT]}
=p* [— 7 log (O’((T’(Zl) — 7‘(22))/7’)) + pT] (1-p" [— 71log (O’((T‘(Zg) — r(zl))/r)) + pr}
= —1p*log (o((r(z1) = r(22))/7)) = 7(L = p*)log (o ((r(22) — r(21))/7)) + p.

By the optimality condition of 7(z1) — r(z2) and 7, we have

r(z1) —r(z2) = T (p*), (13)
where o~ is the inverse of si m01d function. Plugging (13) into the objective in (7), we obtain

minl — p" log(p") -~ (1 1) log(1 ") + |7

whose objective is essentially linear in 7. Hence, when —p* log(p*) — (1—p*) log(1—p*)+p > 0, the
corresponding optimal 7* is at the lower bound 7y and the optimal reward difference r* (21) —1*(23) =
700~ (p*) given the optimality condition. Conversely, when —p* log(p*) — (1—p*) log(1—p*)+p <
0, we have 7% = Tiax and 7%(21) — 7*(22) = Tmaxo L (p*). This completes the proof.

14

A.3 Proof of Proposition 3.2

We first derive the expectation of the adaptive loss with quadratic regularization. By taking expectation
of (12), we have:

z11[’322{1(2’1 = 22) [— 7log (U((T(Zl) — 7(22))/7)) + por? — log 27_]
+ 1(z2 >~ 21)[— 7 log (a((r(z:2) _ T(Zl))/T)) + pm_z _ long”
=p*[—7log (o((r(z1) = (22))/7)) + po7* — log 27]
+ (1 —p*)[—7log (o((r(z2) — r(21))/7)) + por> — log 27]
= —7p*log (0((r(z1) = 7(22))/7)) = 7(1 = p*) log (o((r(22) — 7(21))/7)) + por* — log 2.

(14)
By the optimality condition of 7(z1) — r(z2) and 7, we have
r(z1) = r(z2) = r0 7 (p"), (15)
where 0! is the inverse of sigmoid function. Plugging (15) into the objective in (14), we obtain
Tn;i% [—p*log(p*) — (1 — p*)log(1 — p*) — log 2] 7 + po7°. (16)

Note that (16) is alv;ays bounded without the need of an upper bound of 7. Specifically, with any
p* € (0,1), we have —p* log(p*) — (1 —p*) log(1—p*) —log 2 < 0 and 7* = max{7o, (p* log(p*)+
(1 —p*)log(l —p*)+1log2)/(2p0)}. This completes the proof.

B Implementation details

B.1 Robotic control

Our implementations of robotic control tasks are based on Stable-Baselines3 [33] and RL Zoo training
framework [32]. We conducted our experiments using CPUs, and it took approximately four hours to
train a single model with more than 4096MB of memory. For both Ada-Pref and Pref, we set the
segment length to 1 as it is the most basic unit that the gold reward model is able to provide preference
for. Additional experiments with a segment size of 25 for the Ant, HalfCheetah, and Hopper are
in Appendix C.2. We calculate the average preference prediction accuracy over the first 1 million
timesteps. At each training step, we assign preference labels to every possible pair of trajectory
segments within a mini-batch based on their ranking from the gold reward model. We set the batch
size to 64 for the HalfCheetah and Ant tasks and 4 for the Hopper task. We tune the number of epochs
in {1,3,5}. We use Adam optimizer [22] and tune the learning rate in {5¢ —3, le —3,5e — 4, le — 4}
for the Ant and HalfCheetah, and set the learning rate to 1e — 2 for the Hopper. For Ada-Pref, we
tune the Tinay in {1.0, 3.0} and the pg in {0.1,0.3,0.5}. We fix 79 = 0.1 and the number of Newton
iterations to 3 for all experiments. Details of the chosen hyperparameters for reward learning for
all three tasks are summarized in Tables 3 and 4. For PPO, we reused all hyperparameters from the
original paper [36] optimized for the Mujoco benchmark [39]. Details of the hyperparameters for
PPO are in Table 5.

Table 3: Chosen hyperparameters for reward Table 4: Chosen hyperparameters for reward
learning used for Table 1. learning used for Table 2.
Task Method #epochs LR 7pax po Task Method #epochs LR 7Tpmax po
Pref 5 Se-3 - - . Pref 3 Se-3 - -
HalfCheetah ‘ Ada-Pref ‘ 3 le3 30 o5 alfCheetah ‘ Ada-Pref ‘ 5 le3 30 05
Ant Pref 1 Se-4 - - Ant Pref 5 Se-4 - -
Ada-Pref 5 le4 1.0 0.1 Ada-Pref 5 le-3 1.0 0.5
Hopper Pref 5 le-2 - - Hopper Pref 3 le-2 - -
PP Ada-Pref 5 le2 1.0 0.1 PP Ada-Pref 3 le2 30 03

B.2 Natural language generation

Our implementations of natural language generation tasks are based on transformers [46] and trl
training framework [42]. We conducted our experiments using eight A100 GPUs, each with 40GB of
memory. Training a single model took approximately two hours. We provide more details on each
task as follows:

15

Table 5: Chosen hyperparameters for PPO.

Parameter Value
optimizer Adam
discount () 0.99
value function coefficient 0.5
entropy coefficient 0.0
shared network between actor and critic False
max gradient norm 0.5
learning rate schedule constant
advantage normalization True
clip range value function no
number of steps per rollout 2048
initial log o 0.0
learning rate 3.1074
number of epochs 10
number of samples per mini-batch 64
non-linearity Tanh
GAE coefficient (\) 0.95
clip range 0.2
orthogonal initialization yes

B.2.1 Summarization

For the instruction tuning stage, we randomly select 800 data from the filtered TL;DR summarization
dataset [41] for testing the policy and leave the rest for supervised tuning. In the preference optimiza-
tion stage, we split the preference dataset [38] into a training and testing set to evaluate the preference
accuracy. For both stages, we omit the title and only use the post content as the prompt. The prompt
format follows: "POST: post content.\n\nTL;DR:".

For Ada-DPO and all baselines, we set the batch size to 32 and train 1 epoch for both instruction
tuning and preference optimization. We set the o parameters of LoRA fine-tuning to 16, and tune
the other parameters by grid search. The learning rate is tuned in {5e — 6,5e — 5, le — 4, 5e — 4}.
SLiC-HF, IPO and DPO include parameter §, which is tuned in a range of {0.01,0.1,0.3,0.5}.
For Ada-DPO, we tune the pg in {0.05,0.1,0.3,0.5} and the 7y in {1.0,4.0,5.0,10.0}. We fix
7o = 0.1 and the number of Newton iterations to 5 for all experiments. The best Ada-DPO is achieved
with [r = 5e — 5, pg = 0.1, and Ty = 4.0.

B.2.2 Single-turn dialogue

We use the original training split in the Anthropic Helpful and Harmless dialogue preferences dataset
[3] for training in both stages. We randomly select 800 samples from its testing split to calculate the
win rate, and use the rest of the data in the testing split for validation during preference optimization.
We use the original data format.

In the dialogue task, we use the same batch size of 32 and 1 epoch for training. The learning rate is
tuned in {5e — 6, 5¢ — 5, le —4}. The parameter (3 for baselines is tuned in a range of {0.01,0.1,0.3}.
For Ada-DPO, we tune the pg in {0.05,0.1,0.3,0.5}, Trax in {1, 5,10} and fix 79 = 0.1. The best
Ada-DPO is achieved with [r = 5e — 5, pg = 0.05, and 7. = 5.0.

B.2.3 [Evaluation prompt.

We apply Claude 3 for win rate judgments. Here, we include the used prompt for generating win
rates for both generation tasks. The order of responses is switched and a response only counts for
win if it wins in both orders.

Summarization win rate prompt.

16

Human: Which of the following summaries does a better job of
summarizing the most important points in the given forum post,
without including unimportant or irrelevant details? A good
summary is both precise and concise.

Post: <prompt>
Summary A: <response A>
Summary B: <response B>

FIRST provide a one-sentence comparison of the two summaries,
explaining which you prefer and why. SECOND, on a new line,

state only "A" or "B" to indicate your choice. Your response
should use the format:
Comparison: <one-sentence comparison and explanation>

Preferred: <"A" or "B">

Assistant:

Dialogue win rate prompt.

Human: For the following query to a chatbot, which response
is more helpful and harmless?

Query: <prompt >
Response A: <response A>
Response B: <response B>

FIRST provide a one-sentence comparison of the two responses
and explain which you feel is more helpful and harmless. SEC-
OND, on a new line, state only "A" or "B" to indicate which
response is more helpful. Your response should use the for-
mat :

Comparison: <one-sentence comparison and explanation>

More helpful: <"A" or "B">

Assistant:

C Additional experiments and discussions

C.1 Experiments with quadratic regularization

3600

s .
3400 o Pref .
045 0020 o pda-pref.quad
/

%)

Return
ge T

v
g
3200 %mn & xo;mms /./ I
500 —— Pref 3000 —— Pref 8 so <o §onns /'/ Y
. — Ada-Pref-Quad o 7/ — nda-Pref-Quad 2 025 & &
00 05 10 15 20 25 30 J 20 40 60 80 100 oo 02 0.4 06 08 1.0 1 2 3 4 5 1 2 3 4
Timesteps (16) Percentile r Preference Strength Preference Strength

(a) Learning curve (b) Percentile plot (c) Histogram of 7 (d) Preference (e) Preference
strength and 7 strength and learned

reward difference
Figure 8: Left: Learning curve and percentile plot for Pref and Ada-Pref-Quad. Middle: Histogram of
the learned scaling factors. Right: Relationship between preference strength and the learned scaling
factors, and relationship between preference strength and the learned reward difference. All plots are
from the Ant task.

We provide the experiment results for our adaptive preference loss with quadratic regularization.
Here, we name the method as “Ada-Pref-Quad" and the one applied to DPO as “Ada-DPO-Quad".
Table 6 and Figure 8 show the results for Pref and Ada-Pref-Quad on the Ant task, and DPO and
Ada-DPO-Quad on the single-turn dialogue. In Table 6, we report the performance of the best policy
and the preference prediction accuracy of the corresponding reward function. From Table 6, we can
see that Ada-Pref-Quad outperforms Pref on the Ant task, and Ada-DPO-Quad surpasses DPO on
the single-turn dialogue in terms of return and win rate, respectively. Figures 8(a) and 8(b) present
the learning curve and the percentile plot for the Ant task. As shown, Ada-Pref-Quad surpasses Pref
at every timestep and across all percentiles. Figure 8(c) shows a histogram of the learned scaling

17

factors 7. Compared to Figure 5(a), we can see much smoother distribution of 7 due to the quadratic
regularization. Figures 8(d) and 8(e) illustrate the relationship between the learned scaling factors 7
and preference strength, and the relationship between the learned reward difference and preference
strength. As can be seen, the learned scaling factor for Ada-Pref-Quad increases monotonically
with preference strength, indicating that the quadratic regularization maintains the adaptability of
loss scaling to the varying preference levels in the data. Moreover, Ada-Pref-Quad learns smaller
reward differences for pairs with ambiguous preferences and learns larger reward differences for
those with strong preferences. This demonstrates that Ada-Pref-Quad also leads to a more flexible
reward function compared to Pref.

Table 6: Table for the highest return (left) and the best win rate (right) of the best policy and the
average preference prediction accuracy of the corresponding reward function.

Preference Win Preference
Task Method Return Accuracy (%) Task Method Rate (%) Accuracy (%)
Ant Pref 2917.81 90.08 Dial DPO 53.38 54.39
M1 Ada-Pref-Quad | 3116.57 90.66 12108U€ | Ada-DPO-Quad | 56.00 53.56

C.2 Ablation studies

In this subsection, we present the results for three PyBullet tasks, using a segment size of 25. Table 7
and Figure 9 show the performance of Pref and Ada-Pref on the PyBullet tasks, based on the first
hyperparameter tuning criterion. Table 8 displays the results for Pref and Ada-Pref according to the
second hyperparameter tuning criterion. These results reconfirm the effectiveness of our adaptive
preference loss.

3000 30007 1750

25001 1500}
2000
12501
20001
c
£ 10001
1000 1500 5

Return
Return

ko]

9 150
10001

0 500

—— Pref
—— Ada-Pref

—— Ppref 500{ —— Pref 250

—— Ada-Pref ol —— Ada-Pref ol

-1000

0.0 05 10 15 2.0 0.0 2.0 0.0 2.0

0.5 1.0 15 0.5 1.0 15
Timesteps (1e6) Timesteps (1e6) Timesteps (1e6)
33001
3000 20001
32001

2800
3100 1500/

2600 3000

Return
Return
Return

1000
2400 2900

2200 —— Pref 2600 —— Pref 300] —— Pref
—— Ada-Pref 2700 —— Ada-Pref —— Ada-Pref
o

2000
20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Percentile Percentile Percentile

(a) HalfCheetah (b) Ant (c) Hopper

Figure 9: Learning curve plots (top) and percentile plots (bottom) for Pref and Ada-Pref. For the
learning curve plots, returns at each timestep are averaged across 10 different seeds, then smoothed
over timesteps using an exponential moving average (EMA) with a smoothing factor of & = 0.1. For
the percentile plots, returns from 10 different seeds are sorted in ascending order.

C.3 Discussions on hyperparameter tuning

Compared to the cross-entropy loss, our method needs three additional hyperparameters: the bounds
on the scaling factors 7y and 7y,.x, and the regularization parameter p. In our experiments, we fixed
7o at 0.1 without tuning it, as this value worked well for all five tasks. We did tune 7,,,x to adjust
the scale of 7, but this can be avoided by using the quadratic regularization formulation described
in Section 3.6. The parameter p turns out to be more important, because it controls the distribution
of the scaling factors. We performed a careful grid search to tune p in our experiments. Figure 10
shows the hyperparameter sensitivity of p on the Ant and summarization tasks. Overall, we found
that smaller values of p often lead to better performance.

18

Table 7: Table for the highest return of the best

Table 8: Table for the average preference predic-

policy and the average preference prediction ac- tion accuracy of the best reward function and the
curacy of the corresponding reward function. highest return of the corresponding policy.
Preference Preference
Task Method Return Accuracy (%) Task Method Return Accuracy (%)
. Pref 2575.69 90.82 . Pref 2564.49 91.38
HalfChectah ‘ Ada-Pref ‘ 2689.9 90.35 HalfChectah ‘ Ada-Pref ‘ 260903 90.79
Ant Pref 2832.87 84.88 Ant Pref 2738.4 86.21
Ada-Pref | 2960.47 84.09 Ada-Pref | 2917.22 85.15
Hopper Pref 883.49 85.0 Hopper Pref 796.52 85.79
PP Ada-Pref | 1025.74 85.15 PP Ada-Pref | 1025.74 85.15
82003 = Rewards| %4 Y -o- Win rate T
1 Accuracy go @ 501 9% Yo Accuracy [70 i
c] L] Qo o
S 3100- 08 8§, 68
2 i o
[0}] [Q c o
o] RS 66 ®
3000 b > 30 >
] ores 8 [o—ot643
] 20— F ’
-06 -04 -02 -06 <04 -02
P p

Figure 10: Hyperparameter sensitivity of p.

NeurlIPS Paper Checklist

. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Contributions and scope are explained in the methodology section 3 and
well-supported by results presented in section 4.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The full derivation of the proposed loss and the proofs for the propositions are
provided in Appendix A.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The proposed algorithm is summarized in Appendix B and the experiment
details are included in Section 4 and Appendix C.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19

10.

11.

12.

13.

Answer:

Justification: We will release the code after the submission deadline.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The basic experiment settings are included in Section 4 and more implementa-
tion details are in Appendix C.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are included in the robotic control experiments to indicate variability.
Additionally, percentile plots are provided to support the validity of the experimental results.
See Figures 2, 7, and 8 for reference. Only one seed is used for natural language tasks due
to computational concerns.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See implementation details in Appendix C.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research adheres to the NeurIPS Code of Ethics.
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not release data or models.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The used models and data are properly credited in experimental settings.
New Assets

20

https://neurips.cc/public/EthicsGuidelines

14.

15.

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

21

	Introduction
	Related works
	Method
	Problem setup
	Reward learning with adaptive preference scaling
	Theoretical insights
	Algorithm
	Extension to direct preference optimization (DPO)
	Extension to quadratic regularization

	Experiments
	Robotic control
	Natural language generation
	Detailed analysis

	Conclusion
	Derivation and proofs of Section 3
	Derivation of Equation (4)
	Proof of Proposition 3.1
	Proof of Proposition 3.2

	Implementation details
	Robotic control
	Natural language generation
	Summarization
	Single-turn dialogue
	Evaluation prompt.

	Additional experiments and discussions
	Experiments with quadratic regularization
	Ablation studies
	Discussions on hyperparameter tuning

