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ABSTRACT

Recent advances in few-step generative models (typically 1-8 steps), such as
consistency models, have yielded impressive performance. However, their broader
adoption is hindered by significant challenges, including substantial computational
overhead, the reliance on complex multi-component loss functions, and intricate
multi-stage training strategies that lack end-to-end simplicity. These limitations
impede their scalability and stability, especially when applied to large-scale models.
To address these issues, we introduce N -th order Recursive Consistent velocity
field estimation for Generative Modeling (RCGM), a novel framework that unifies
many existing approaches. Within this framework, we reveal that conventional
one-step methods, such as consistency and MeanFlow models, are special cases of
1st-order RCGM. This insight enables a natural extension to higher-order scenarios
(N ≥ 2), which exhibit markedly improved training stability and achieve state-
of-the-art (SOTA) performance. For instance, on ImageNet 256 × 256, RCGM
enables a 675M parameter diffusion transformer to achieve a 1.48 FID score in just
2 sampling steps. Crucially, RCGM facilitates the stable full-parameter training of
a large-scale (20B) unified multi-modal model, attaining a 0.86 GenEval score in
4 steps. In contrast, conventional 1st-order approaches, such as consistency and
MeanFlow models, typically suffer from training instability, model collapse, or
memory constraints under comparable settings. Code will be publicly available.

1 INTRODUCTION

Table 1: Comparison of different methods’
reliance on a 1st-order objective and JVP.
Our method is independent of both.

Method Independent of

1st-Order JVP

CM (Song et al., 2023) × ✓
sCM (Lu & Song, 2024) × ×
MeanFlow (Geng et al., 2025) × ×
RCGM (Ours) ✓ ✓

Existing PF-ODE-based generative models (Song et al.,
2020b), encompassing diffusion models (Ho et al., 2020;
Song et al., 2020a), flow-matching models (Lipman et al.,
2022; Ma et al., 2024), and consistency models (Song
et al., 2023; Lu & Song, 2024), have demonstrated re-
markable success in synthesizing high-fidelity data across
diverse applications, including image and video genera-
tion (Google, 2025a; OpenAI, 2025; Xie et al., 2024a; Ho
et al., 2022; Chen et al., 2025c; Wu et al., 2025a).

Within this landscape, few-step generative models (Song et al., 2023; Frans et al., 2024; Geng et al.,
2025) are particularly prized for their ability to generate high-quality samples with significantly
reduced computational cost, a critical factor for practical deployment. However, the pursuit of this
efficiency has introduced a distinct set of formidable challenges that plague current SOTA methods:
(a) a prohibitive computational and memory burden during training, often necessitating expensive
Jacobian-vector products (JVP) (Geng et al., 2025; Lu & Song, 2024); (b) the need to combine multi-
ple losses and train auxiliary models, e.g., combining consistency loss with adversarial loss (Chen
et al., 2025c) or training an additional fake image generation model (Yin et al., 2024b;a; Sauer
et al., 2024a); (c) a fractured theoretical landscape, where highly related methods like consistency
models (Song et al., 2023), shortcut models (Frans et al., 2024), and MeanFlow (Geng et al., 2025)
have been developed in isolation, lacking a common theoretical foundation.

These challenges restrict their broader application, particularly in generalizing to large-scale models
with guaranteed stability and efficiency. For instance, our experiments show that existing one-step
models, such as consistency models, often suffer from training instability and high computational
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Figure 1: Visualization results of RCGM on Qwen-Image-20B. The images shown were generated by the
RCGM-tuned Qwen-Image-20B model using NFE=8 (GenEval score=0.87). Please zoom in to see finer details.

demands when scaled up, frequently resulting in model collapse or GPU memory exhaustion (see
Tab. 4). We argue that this fragility originates from their implicit reliance on a 1st-order recursive
training objective (cf. Sec. 2 and Sec. 3). This critical insight leads us to the central question:

Problem 1 . Can we develop a unified and simple framework that: (a) encompasses existing
few-step generative models as a special case; (b) enhances training stability and generalization to
large-scale models by moving beyond the 1st-order limitation, thereby obviating the need for JVP
or training auxiliary models?

To address these challenges, we propose RCGM, a novel and principled framework that unifies and
generalizes existing approaches. Within our framework, we show that conventional one-step models
(e.g., consistency models and MeanFlow) correspond to the special case of 1st-order RCGM.

Notably, RCGM naturally supports higher-order formulations (i.e., N ≥ 2). These higher-order
variants utilize more comprehensive trajectory information from the PF-ODE, which contributes
to substantially improved training stability. This stability enables successful training in demanding
large-scale settings where 1st-order models often fail, ultimately achieving SOTA performance
without resorting to complex workarounds. In summary, our contributions are:

(a) We propose RCGM, a unified framework that contextualizes existing few-step generative models
as a specific 1st-order case and generalizes them to arbitrary N -th order formulations.

(b) We identify and empirically verify that higher-order RCGM (e.g., 2nd-order) can exhibit superior
training stability and robustness, enabling effective scaling to larger and more complex model
architectures (cf. Sec. 4).

(c) Our method achieves SOTA performance across a range of standard benchmarks, outperforming
existing methods in few-step generation tasks while maintaining computational efficiency.

As detailed in Fig. 1, Sec. 4 and App. D, our approach consistently matches or surpasses SOTA
methods across various datasets, architectures, and resolutions, setting a new standard for efficient,
high-fidelity generative modeling.

2 PRELIMINARIES

Let p(x) be the data distribution for a given training set D. This distribution can also be conditional,
denoted as p(x|c) for a given condition c. Diffusion-based generative models aim to learn a transfor-
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mation from a simple prior distribution p(z), typically the standard GaussianN (0, I), to the complex
target data distribution p(x).

This is often achieved by learning to reverse a forward noising process. The forward process
gradually perturbs a clean data sample x ∼ p(x) into a noisy intermediate sample xt using a
predefined trajectory, such as xt = α(t)z + γ(t)x, where z ∼ N (0, I). The time variable t spans
the interval [0, 1], with the perturbation effect intensifying as t increases. The scheduling functions
α(t) and γ(t) are continuously differentiable, i.e., α(t), γ(t) ∈ C1[0, 1], and satisfy the boundary
conditions: α(0) = 0, γ(0) = 1 (yielding the data) and α(1) = 1, γ(1) = 0 (yielding pure noise).

More formally, diffusion models learn a function that guides the transformation of samples along
the trajectory of the Probability Flow Ordinary Differential Equation (PF-ODE) (Song et al., 2020b),
which connects the prior distribution p(z) to the data distribution p(x).

In this paper, we define a general prediction function f(xt, r) := xr − xt that estimates the
displacement from xt to a target xr, with further details in (6). This function aims to predict the target
point xr from the current point xt along a specific PF-ODE trajectory. In the following sections, we
will introduce several prominent learning paradigms for deep generative models.

2.1 0TH-ORDER: DIFFUSION AND FLOW-MATCHING MODELS

Diffusion and Flow-Matching Models (Ho et al., 2020; Song et al., 2020b; Lipman et al., 2022;
Sun et al., 2025). Recent work by Sun et al. (Sun et al., 2025) established a unified framework for
diffusion and flow-matching models. This framework reveals that both paradigms aim to learn the
same PF-ODE (1), but they differ in their underlying transport processes (i.e., their specific choices
of α(t) and γ(t)) and training objectives.

Specifically, a neural network F θ is trained by minimizing a general objective of the form:
Ext,t [d (F θ(xt), α̂(t)z+ γ̂(t)x)], where d(·, ·) denotes a distance metric. As derived in (Sun et al.,
2025), the output of the trained network, F t := F θ(xt), can be used to construct the component
functions: fx(F t,xt, t) :=

α(t)·F t−α̂(t)·xt

α(t)·γ̂(t)−α̂(t)·γ(t) and fz(F t,xt, t) :=
γ̂(t)·xt−γ(t)·F t

α(t)·γ̂(t)−α̂(t)·γ(t) . These com-

ponents, in turn, define the velocity field of the PF-ODE: dxt

dt = dα(t)
dt · f

z(F t,xt, t) +
dγ(t)
dt ·

fx(F t,xt, t). The sampling process then involves numerically integrating this velocity field to solve
the PF-ODE. The integration proceeds backward in time, starting from a prior sample x1 ∼ p(z) at
t = 1 and ending at t = 0 to produce a data sample from p(x).

Within our framework, we adopt a zeroth-order inductive learning perspective to interpret this process,
a view supported by Fig. 2 (a). Specifically, for a sufficiently small step ∆t, the prediction function’s
learning target becomes the product of the velocity field and the time step:

f(xt, t−∆t)← dxt

dt
·∆t as ∆t→ 0.

In essence, given the current state xt, the prediction function f directly learns to predict the displace-
ment required to approximate the next state, xt−∆t, on the PF-ODE path.

2.2 1ST-ORDER: RECURSIVE CONSISTENCY MODELS

Consistency Models (Song et al., 2023; Lu & Song, 2024; Sun et al., 2025). Consistency models
are designed to bypass the iterative nature of diffusion models. Their primary goal is to learn a
function that maps any noisy state xt directly to the clean data endpoint x0 in a single step. This is
achieved by estimating the endpoint of the PF-ODE trajectory originating from xt, using the function
x0 = fx(F t,xt, t).

The training objective is specifically designed to instill a crucial "consistency" property. This
property ensures coherence between the model’s predictions for the clean data, even when originating
from two temporally adjacent noisy states that are separated by a finite time interval ∆t > 0:
Ext,t [d (f

x(F t,xt, t), stopgrad(f
x(F t−∆t,xt−∆t, t−∆t)))]. A known limitation of discrete-

time consistency models is their sensitivity to the choice of ∆t, which often requires manually tuned
annealing schedules for efficient training (Song & Dhariwal, 2023; Geng et al., 2024). This challenge
was later addressed by continuous consistency models, which derive their training objective by taking
the limit as ∆t→ 0 (Lu & Song, 2024).
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We interpret this process through a 1st-order inductive learning lens, a perspective supported by our
visualizations in Fig. 2 and theoretical analysis in App. E.1.1. This view frames the learning objective
as a recursive formulation:

f(xt, 0)←
dxt

dt
·∆t+ f(xt−∆t, 0)

This recursive principle—approximating a long-range prediction by combining an infinitesimal step
with another long-range prediction—is also reflected in follow-up works (Frans et al., 2024; Geng
et al., 2025). For instance, shortcut models (Frans et al., 2024) employ a similar self-recursive
formulation and generalize it to predict between arbitrary time points t and r ∈ [0, t]: f(xt, r) ←
f(xt, s)+f(xs, r). This is then combined with a flow-matching objective to train one-step generative
models. More recently, MeanFlow (Geng et al., 2025) extended this idea by training a one-step model
with the recursive objective f(xt, r)← dxt

dt ·∆t+ f(xt−∆t, r) for any target time r.

In summary, while diffusion and flow-matching models are inherently multi-step frameworks, consis-
tency models represent a paradigm shift towards few-step or one-step generation.

3 METHODOLOGY

We begin by deriving a recursive, N -th order velocity field estimator through the segmented integra-
tion of the Probability Flow ODE (PF-ODE) trajectory (Sec. 3.1). Building on this formulation, we
introduce a unified training objective that enables any-step generation (Sec. 3.2). Finally, we discuss
key practical considerations for implementing our method, RCGM (Sec. 3.3).

3.1 SEGMENTED INTEGRATION ALONG THE PF-ODE TRAJECTORY

Our methodology is grounded in the PF-ODE formulation, where a trajectory from a prior distribution
to the data distribution is defined by a velocity field v(xτ , τ). For a diffusion process specified by
xt = α(t)z+ γ(t)x0, this velocity is given by (Song et al., 2020b; Sun et al., 2025):

v(xτ , τ) :=
γ′(τ)

γ(τ)
xτ −

[
α(τ)α′(τ)− γ′(τ)

γ(τ)
α(τ)2

]
∇xτ

log pτ (xτ ) . (1)

The integral form of this ODE connects any two points xt and xtN+1
on a trajectory. We proceed

by partitioning the integration interval [t, tN+1] with N intermediate points, where t = t0 > t1 >
· · · > tN+1. This segmentation allows us to decompose the total displacement into a sum over the
sub-intervals:

xtN+1
− xt =

N∑
i=0

∫ ti+1

ti

v(xτ , τ)dτ =

∫ t1

t0

v(xτ , τ)dτ +

N∑
i=1

∫ ti+1

ti

v(xτ , τ)dτ . (2)

The core of our approach is to approximate the first integral segment. For a sufficiently small time
step ∆t := t1 − t0, a 1st-order Taylor approximation (i.e., a forward Euler step) is justified:∫ t1

t0

v(xτ , τ)dτ ≈ v(xt0 , t0)∆t =
dxt

dt
∆t . (3)

Substituting this approximation into the exact identity from (2) yields the relationship:

xtN+1
≈ xt +

dxt

dt
∆t+

N∑
i=1

∫ ti+1

ti

v(xτ , τ)dτ . (4)

By rearranging (4), we obtain our final estimator. We define the recursive N -th order velocity field
estimation as the target derived from this multi-step formula:

dxt

dt
≈ 1

∆t

[
(xtN+1

− xt)−
N∑
i=1

∫ ti+1

ti

v(xτ , τ)dτ

]
. (5)

This formulation is termed recursive because the estimation of the velocity v at time t depends on
the integral of the same velocity field over future time steps. The "N -th order" designation refers
to the N integral correction terms that refine the estimate beyond a simple one-step approximation,
thereby providing a more accurate target for model training.

4
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(a): (b):

(c): (d):

(e):

Figure 2: A conceptual illustration of our proposed framework, RCGM, which generalizes existing
generative models by formulating them within a unified higher-order structure. Trajectories map a current
state to a target learning state. (a) Standard diffusion (Ho et al., 2020) and flow-matching (Lipman et al.,
2022) models correspond to the 0th-order case (N = 0) of our framework. (b-d) Prominent one-step models,
including consistency models (Song et al., 2023), MeanFlow (Geng et al., 2025), and shortcut models (Frans
et al., 2024), are special instances of the 1st-order case (N = 1). (e) RCGM extends this hierarchy to arbitrary
orders (N ≥ 0), enabling the use of higher-order information for potentially more robust training dynamics.

3.2 A UNIFIED TRAINING FRAMEWORK FOR ANY-STEP GENERATION

Our goal is to train an any-step generative model capable of predicting the state xr at any future
time r < t from the current state xt along a given PF-ODE trajectory. To this end, we define a
displacement function f(xt, r) that maps the current state to the total displacement required to reach
the target state:

f(xt, r) := xr − xt =

∫ r

t

v(xτ , τ)dτ , r ∈ [0, t] . (6)

Using this definition, we can reformulate the recursive N -th order velocity estimator from (5) entirely
in terms of displacements:

dxt

dt
≈ 1

∆t

[
f(xt, tN+1)−

N∑
i=1

f(xti , ti+1)

]
. (7)

This identity forms the foundation of our training objective. It provides a multi-step target for the
instantaneous velocity dxt/dt, which is known analytically from the PF-ODE formulation (cf. (1)).

We parameterize the displacement function with a parameterized model fθ(xt, r). To train fθ, we
enforce the identity in (7). The terms f(xti , ti+1) for i ≥ 1 represent future displacements and are
treated as fixed targets during optimization. Following standard practice in consistency training (Song
et al., 2023), we use a target model fθ− (e.g., an exponential moving average of θ or a periodically
updated copy) for these terms, applying a stop-gradient operator to prevent backpropagation through
them. This yields the following learning objective:

L(θ) = Ex0,z,{ti}N+1
i=0

d
 dxt

dt︸︷︷︸
True Velocity

,
1

∆t

[
fθ(xt, tN+1)−

N∑
i=1

fθ−(xti , ti+1)

]
︸ ︷︷ ︸

Model’s Velocity Estimate


 , (8)

where xt = α(t)z + γ(t)x0 with z ∼ N (0, I), time points are sampled hierarchically (e.g., t ∼
U [0, T ], t1 ∼ U [0, t), etc.), and d(·, ·) is a suitable metric, such as the squared ℓ2-norm.

This unified formulation elegantly generalizes several established generative modeling paradigms:

(a) For N = 0, the objective simplifies to matching dxt/dt with fθ(xt, t1)/∆t. This is equivalent
to the objectives used in score-based diffusion models (Song et al., 2020b) and flow match-
ing (Lipman et al., 2022).

(b) For N = 1, the objective corresponds to those of one-step consistency models (Song et al., 2023;
Lu & Song, 2024) and shortcut-based methods (Frans et al., 2024), which use a single future
segment to define the training target.

5
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By extending this framework to higher orders (N ≥ 2), our approach leverages multiple future steps
to construct a more robust and stable training signal. As we demonstrate in our experiments (Sec. 4),
this generalization improves model performance and convergence across diverse generation tasks.

Notably, regardless of the setting of N , our training objective requires only a single model forward
pass with gradient calculation and N forward passes without. This design avoids increased GPU
memory costs during training, making it feasible for large-scale models 1. A detailed discussion on
the setting of N is provided in Sec. 4.2.

3.3 PRACTICAL IMPLEMENTATION OF RCGM

In this section, we detail several key aspects of the practical implementation of our method, RCGM.
We discuss the parameterization of our neural network under a linear transport path, the use of an
enhanced target score function to improve performance, the strategy for conditioning the model on
both input and target times, and the formulation of a practical loss function for stable and effective
training.

Linear transport and network parameterization. We employ the linear transport path common
in flow-matching literature (Lipman et al., 2022; Ma et al., 2024; Xie et al., 2024a), defined by
coefficients α(t) = t and γ(t) = 1 − t. This transport corresponds to a constant velocity field,
implying that the displacement between any two states xr and xt is directly proportional to the time
difference r − t. This property motivates our parameterization of the predictive function fθ(xt, t, r),
which estimates the displacement from xr to xt, as: fθ(xt, t, r) = F θ(xt, t, r) · (r − t) , where F θ

is a neural network designed to approximate the average displacement (xr − xt)/(r − t).

Enhanced target score function. The performance of continuous generative models can be sig-
nificantly improved by incorporating guidance during the training or sampling process (Ho &
Salimans, 2022; Dhariwal & Nichol, 2021; Karras et al., 2022). This is achieved by modifying
the conditional target score function from ∇xt

log pt(xt) (defined in (1)) to an enhanced version:
∇xt

log
(
pt(xt|c) (pt,θ(xt|c)/pt,θ(xt))

ζ
)

, where ζ ∈ (0, 1) is the enhancement ratio. We follow the
same implementation as previous studies (Frans et al., 2024; Sun et al., 2025).

Input time conditioning. Our method learns a continuous-time model, fθ(xt, r), designed to
predict the state xr at a target time r from an initial state xt along the probability flow ODE (PF-
ODE) trajectory. To accurately map between arbitrary time points, the model must be effectively
conditioned on both the input time t and the target time r. Following standard practice (Ho et al.,
2020; Frans et al., 2024), we employ a time embedding technique where t and r are embedded into
vector representations separately. These embeddings, along with the input xt, are then fed into the
neural network F θ, redefining the model as fθ(xt, r) = F θ(xt, t, r) · (r − t).

Practical loss design. The training objective in (8) necessitates a carefully designed loss function.
While the ℓ2-norm is a standard choice for the metric d(·, ·) (Ho et al., 2020; Song et al., 2020a),
directly optimizing the original objective is suboptimal. We observe that the magnitude of the model
output, fθ(xt, r) ≈ F θ · (r − t), scales linearly with the time interval (r − t). This introduces an
implicit, scale-dependent weighting that causes optimization instability, as larger time steps dominate
the gradients. To rectify this bias and stabilize training, we employ a variance-reduction technique
inspired by Lu & Song (2024). specifically, by leveraging the gradient identity derived in Lu &
Song (2024) (i.e., ∇θE[F⊤

θ y] =
1
2∇θE[∥F θ − F θ− + y∥22]), we reformulate our objective into a

regression form that decouples the gradient scale from the time interval. Substituting this into (8)
yields our final training objective:

L(θ) = Ex,z,{ti}N+1
i=0

[∥∥(F θ(xt, t, tN+1)− F θ−(xt, t, tN+1) + ξ(xt, {ti}N+1
i=0 )

)∥∥2
2

]
, (9)

where the target item is ξ(xt, {ti}N+1
i=0 ) := 1

∆t

[
fθ−(xt, tN+1)−

∑N
i=1 fθ−(xti , ti+1)

]
− dxt

dt .

1This is a significant advantage over conventional few-step training methods that often rely on Jacobian-
vector products (JVP), which can substantially increase GPU memory consumption (Geng et al., 2025; Lu &
Song, 2024). Furthermore, the use of JVP can introduce complex technical challenges when integrating with
widely-used architectural optimizations like Flash-Attention (Dao et al., 2022).
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4 EXPERIMENTS

This section presents the experimental validation of our proposed methodology, denoted as RCGM.
We begin by outlining the experimental setup, including datasets, network architectures, and imple-
mentation details. We then present a comprehensive evaluation of RCGM’s performance. Theoret-
ically, our approach converges to conventional flow-matching and diffusion models when N = 0.
Consequently, to rigorously assess the unique contributions of RCGM, our empirical investigation
focuses on the regime where N ≥ 1.

4.1 EXPERIMENTAL SETUP

Datasets. Our primary evaluation is conducted on the ImageNet-1K dataset (Deng et al., 2009),
utilizing resolutions of 256× 256 and 512× 512. This choice aligns with established benchmarks
in recent high-fidelity generative modeling literature (Karras et al., 2024; Song et al., 2023). We
adopt the data preprocessing pipeline from ADM (Dhariwal & Nichol, 2021) to ensure consistency
and comparability with prior work. All experiments are performed in the latent space of pretrained
autoencoders, a standard practice for efficient training of large-scale models. Specifically:

(a) For 256× 256 images, we leverage widely adopted autoencoders, including the SD-VAE (Rom-
bach et al., 2022) and the VA-VAE (Yao et al., 2025).

(b) For 512 × 512 images, in addition to the SD-VAE, we employ a DC-AE (Chen et al., 2024c)
with a higher compression ratio (f32c32) to mitigate computational demands.

Network architectures. We build upon the success of transformer-based architectures for generative
modeling. Our core model is a 675M-parameter Diffusion Transformer (DiT) (Peebles & Xie, 2023),
a backbone widely employed in SOTA models such as SiT (Ma et al., 2024), Lightening-DiT (Yao
et al., 2025), and DDT (Wang et al., 2025a).

Implementation details. Our models are implemented in PyTorch (Paszke, 2019) and trained using
the AdamW optimizer (Loshchilov & Hutter, 2017) with β1 = 0.9, β2 = 0.95, a constant learning
rate of 2 × 10−4, and a batch size of 1024. For the time distribution during training, we follow
the exact settings in Sun et al. (2025). To evaluate the quality of generated samples, we adhere to
standard protocols established in the literature (Song et al., 2020b; Ho et al., 2020; Lipman et al.,
2022; Brock et al., 2018). Our primary metric is the Fr’echet Inception Distance (FID) (Heusel et al.,
2017), computed over a standard set of 50, 000 generated samples (FID-50K) against the training set.

4.2 ANALYSIS OF HIGHER-ORDER TRAINING

It is widely known that training few-step models is challenging due to the instability of training (Song
et al., 2023; Lu & Song, 2024), especially when using a large model and a large learning rate, etc.

This issue is more severe when training few-step models in real-world applications such as high-
resolution text-to-image generation.

Using Exponential Moving Average (EMA) model in (8) is a key technique help stabilize training and
improve performance, which also evidenced in previous 1st-order methods (Song et al., 2023). For
those without using EMA model, they typically require a careful technical design to stabilize training,
e.g., using JVP (Lu & Song, 2024) or careful hyperparameter design (Song & Dhariwal, 2023).

In this section, to investigate how the order N in RCGM affects the training stability and performance
under different EMA decay rates κ, we conduct a series of ablation studies on ImageNet-1K 256×256
using 675M diffusion transformer with SD-VAE.

A large EMA decay rate κ is critical for 1st-order training stability. We first investigate the
effect of the EMA decay rate κ from (8) on the stability and performance of the conventional 1st-order
(N = 1) model. As illustrated in Fig. 3a, training without EMA (κ = 0) is highly unstable, causing
the FID score to fluctuate and fail to converge. A small decay rate (κ = 0.9) tempers this instability,
leading to a smoother decrease in FID, yet the final performance remains suboptimal (FID of 31.70).
Conversely, while large decay rates (κ ∈ {0.99, 0.999}) effectively stabilize training dynamics, they
severely hinder convergence. This "over-stabilization" is particularly pronounced at κ = 0.999,
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(a) 1st-order over training steps.
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(b) 2nd-order over training steps.
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Figure 3: Ablation studies of RCGM on ImageNet-1K 256×256. These studies evaluate key factors of the
proposed RCGM for training few-step models, i.e., the order of RCGM (N ) and the EMA decay rate κ. The
sampling is performed using one step (1-NFE).

where the model converges to a poor FID of 294.18. These results reveal a fundamental tension
between training stability and model performance in the 1st-order setting.

Higher-order approximations resolve the stability-performance trade-off. We next examine
whether higher-order approximations can alleviate the aforementioned tension. Fig. 3b shows the
results for our second-order model (N = 2). Strikingly, the second-order model thrives under the
large EMA decay rates that were detrimental in the 1st-order case. While the no-EMA (κ = 0)
setting remains unstable and the low-EMA (κ = 0.9) setting achieves a modest FID of 14.94, the
high-EMA regime is transformed. With N = 2, a large decay rate such as κ = 0.99 no longer cripples
performance but instead yields a competitive FID of 29.13. This demonstrates that higher-order
models possess substantially greater robustness to the choice of κ, enabling them to benefit from
strong EMA stabilization without sacrificing generative quality.

Further experiments, shown in Fig. 3c, confirm that increasing the order N (with a fixed, high
κ = 0.999) can yield additional gains. Performance steadily improves as N increases from 1 to 4,
which achieves the lowest FID. However, this trend reverses for N > 4, likely due to the accumulation
of approximation errors in the higher-order velocity estimates in (8).

In summary, 1st-order models face a difficult trade-off: a large κ is needed for stability but harms
final performance. Higher-order methods effectively resolve this conflict, achieving both stable
convergence and strong performance with large κ. Considering the balance between computational
cost and performance, we adopt N = 2 and κ = 0.999 as our default configuration.

4.3 COMPARISON WITH SOTA FEW-STEP METHODS

As demonstrated in Tab. 2, our proposed RCGM, when paired with various autoencoders, consistently
outperforms or remains highly competitive with SOTA few-step generative models. The following
analysis details its advantages across different VAE architectures.

(a) Performance with SD-VAE (256× 256 and 512× 512): When paired with a standard SD-VAE,
our method exhibits exceptional performance. At 256 × 256 resolution, it achieves an FID of
1.92 with 2 NFEs, outperforming IMM’s best result while requiring 8 times fewer sampling
steps. At 512× 512 resolution, our model achieves an FID of 2.25 with 2 NFEs, which is highly
competitive with specialized distillation models like sCD-L (2.04 FID) and sCD-M (2.26 FID),
despite their significantly higher training costs (1434 and 1997 epochs vs. our 360).

(b) Performance with DC-AE (512 × 512): When integrated with the DC-AE autoencoder, our
model achieves a new SOTA FID score of 1.79 with only 2 NFEs. This result surpasses the
leading consistency distillation model, sCD-XXL, which records an FID of 1.88 at 2 NFEs.
Notably, our method achieves this superior image quality using a significantly more efficient
model with only 675M parameters, compared to the 1.5B parameters of sCD-XXL.

(c) Performance with VA-VAE (256 × 256): Using the VA-VAE architecture, our method sets
another benchmark, achieving a remarkable FID of 1.48 in just 2 NFEs. This represents a
substantial improvement over the best-performing distillation method, IMM, which only reaches
an FID of 1.99 after a much more costly 8× 2 = 16 NFEs.
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Table 2: System-level quality comparison for few-step generation task on class-conditional ImageNet-1K.
The best results of each resolution are highlighted.

512× 512 256× 256

Method NFE ↓ FID ↓ #Params #Epochs Method NFE ↓ FID ↓ #Params #Epochs
Diffusion & flow-matching Models

ADM-G (Dhariwal & Nichol, 2021) 250×2 7.72 559M 388 ADM-G (Dhariwal & Nichol, 2021) 250×2 4.59 559M 396
U-ViT-H/4 (Bao et al., 2023) 50×2 4.05 501M 400 U-ViT-H/2 (Bao et al., 2023) 50×2 2.29 501M 400
DiT-XL/2 (Peebles & Xie, 2023) 250×2 3.04 675M 600 DiT-XL/2 (Peebles & Xie, 2023) 250×2 2.27 675M 1400
SiT-XL/2 (Ma et al., 2024) 250×2 2.62 675M 600 SiT-XL/2 (Ma et al., 2024) 250×2 2.06 675M 1400
MaskDiT (Zheng et al., 2023) 79×2 2.50 736M - MDT (Gao et al., 2023) 250×2 1.79 675M 1300
EDM2-S (Karras et al., 2024) 63 2.56 280M 1678 REPA-XL/2 (Yu et al., 2024) 250×2 1.96 675M 200
EDM2-L (Karras et al., 2024) 63 2.06 778M 1476 REPA-XL/2 (Yu et al., 2024) 250×2 1.42 675M 800
EDM2-XXL (Karras et al., 2024) 63 1.91 1.5B 734 Light.DiT (Yao et al., 2025) 250×2 2.11 675M 64
DiT-XL⊕DC-AE 250×2 2.41 675M 400 Light.DiT (Yao et al., 2025) 250×2 1.35 675M 800

GANs
BigGAN (Brock et al., 2018) 1 8.43 160M - BigGAN (Brock et al., 2018) 1 6.95 112M -
StyleGAN (Sauer et al., 2022) 1×2 2.41 168M - GigaGAN (Kang et al., 2023) 1 3.45 569M -

Masked & autoregressive models
MaskGIT (Chang et al., 2022) 12 7.32 227M 300 MaskGIT (Chang et al., 2022) 8 6.18 227M 300
VAR-d36-s (Tian et al., 2024) 10×2 2.63 2.3B 350 VAR-d30-re (Tian et al., 2024) 10×2 1.73 2.0B 350

1st-order consistency training & distillation
sCT-M (Lu & Song, 2024) 1 5.84 498M 1837 Shortcut-XL/2 (Frans et al., 2024) 1 10.6 676M 250

2 5.53 498M 1837 4 7.80 676M 250
sCT-L (Lu & Song, 2024) 1 5.15 778M 1274 IMM-XL/2 (Zhou et al., 2025) 1×2 7.77 675M 3840

2 4.65 778M 1274 2×2 5.33 675M 3840
sCT-XXL (Lu & Song, 2024) 1 4.29 1.5B 762 4×2 3.66 675M 3840

2 3.76 1.5B 762 8×2 2.77 675M 3840
sCD-M (Lu & Song, 2024) 1 2.75 498M 1997 IMM (ω = 1.5) 1×2 8.05 675M 3840

2 2.26 498M 1997 2×2 3.99 675M 3840
sCD-L (Lu & Song, 2024) 1 2.55 778M 1434 4×2 2.51 675M 3840

2 2.04 778M 1434 8×2 1.99 675M 3840
sCD-XXL (Lu & Song, 2024) 1 2.28 1.5B 921 MeanFlow-XL/2 (Geng et al., 2025) 1 3.43 676M 240

2 1.88 1.5B 921 2 2.93 676M 240
UCGM-XL (Sun et al., 2025) 1 2.63 675M 360 MeanFlow-XL/2 (longer training) 2 2.20 676M 1000

RCGM (Ours)
⊕SD-VAE (Rombach et al., 2022) 1 2.61 675M 360 ⊕SD-VAE (Rombach et al., 2022) 1 2.13 675M 424
⊕SD-VAE 2 2.25 675M 360 ⊕SD-VAE 2 1.92 675M 424
⊕DC-AE (Chen et al., 2024c) 1 2.45 675M 800 ⊕VA-VAE (Yao et al., 2025) 1 2.25 675M 424
⊕DC-AE 2 1.79 675M 800 ⊕VA-VAE 2 1.48 675M 424

In summary, across multiple autoencoder architectures, our RCGM consistently delivers a superior
trade-off between sample quality, sampling speed, and model parameter efficiency. It establishes
new SOTA results while substantially reducing the computational overhead required for high-fidelity
image generation.

Validating RCGM on real-world applications. To assess its practical efficacy, we evaluate
RCGM on two demanding real-world tasks: text-to-image generation (App. D.1) and the training
of few-step unified multimodal models (App. D.2). Our results demonstrate that RCGM exhibits
remarkable performance and versatility across these diverse settings, substantially outperforming
existing methods in the computationally constrained, few-step sampling regime.

For instance, in text-to-image synthesis, RCGM attains a GenEval score of 0.85 with only NFE= 2.
This marks a significant advance over the previous SOTA, SANA-Sprint (Chen et al., 2025c), which
achieves a score of 0.77, thereby establishing a new benchmark for highly efficient generation.

5 CONCLUSION AND LIMITATIONS

In this paper, we introduced RCGM, a unified framework for continuous generative modeling that
bridges the gap between multi-step and few-step synthesis. Our key innovation is a novel N -th
order flow matching objective that improves training stability and significantly boosts performance,
especially in few-step regimes. Through extensive experiments on ImageNet-1K, we demonstrated
that RCGM establishes a new state of the art across a spectrum of few-step generation settings.

Despite its strong performance, RCGM shares a limitation with contemporary generative models:
achieving high-fidelity synthesis in extreme few-step regimes (e.g., 1-NFE) remains an open challenge,
particularly for high-resolution imagery. We conjecture that this is partly attributable to the absence
of an adversarial objective, which has proven effective for enhancing perceptual quality in other
generative paradigms. Consequently, a promising direction for future research is the integration of
adversarial training into the RCGM framework to further push the boundaries of sample quality in
this challenging setting. We leave this promising avenue for future work.
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A UTILIZATION OF LARGE LANGUAGE MODELS (LLMS)

In this study, Large Language Models (LLMs) are employed at the sentence level to assist in linguistic
refinement. Their use was strictly confined to improving grammatical accuracy and overall readability
of the manuscript. All research concepts, methodological designs, experimental processes, and
analytical findings remain entirely original and have been solely contributed by the authors.

B IMPLEMENTATION DETAILS

Algorithm 1 N -th Order RCGM Training Step

Require: Data distribution p(x), order N ≥ 0, initial time step ∆t (we set ∆t = −0.01 in this
paper), EMA decay rate κ.

Require: Initial parameters θ, stop gradient operator sg, EMA parameters θ−.
1: Preparation Phase:
2: Sample data x ∼ p(x), noise z ∼ N (0, I).
3: Sample current time t ∼ U(0, 1) and target time tN+1 ∼ U(0, t).
4: Construct perturbed state xt = tz+ (1− t)x.
5: Compute target velocity v = z− x.
6: Define time trajectory: set t0 = t, t1 = t0 +∆t, and let {ti}N+1

i=1 be linearly spaced between t1
and tN+1.

7: Recursive Velocity Estimation:
8: Initialize accumulated displacement ∆ = 0.
9: Estimate state at t1: xt1 = xt + v∆t.

10: for i = 1 to N do
11: Estimate segment displacement: di = F θ−(xti , ti, ti+1) · (ti+1 − ti).
12: Update state: xti+1

← xti + di.
13: Accumulate: ∆←∆+ di {Note: ∆ approximates

∑N
i=1

∫ ti+1

ti
v(xτ , τ)dτ}

14: end for
15: Loss Calculation:
16: Compute model output: u = F θ(xt, t, tN+1).
17: Update θ by minimizing objective:

L(θ) =
∥∥∥∥u− sg(u)− 1

∆t
[sg(u) · (t− tN+1) +∆]− v

∥∥∥∥2
2

18: Update EMA parameters: θ− ← κθ− + (1− κ)θ.

Our sampling strategy is designed for simplicity and tuning independence. For one-step generation,
we rely on the direct prediction procedure in Sec. 2, which requires zero external hyperparameter
configuration. For few-step and multi-step generation, we adopt the UCGM sampler (Sun et al.,
2025), only using its standard settings without any custom adjustmentTT

B.1 QUALITATIVE ANALYSIS OF RCGM TRAINING DYNAMICS

We investigate the convergence properties of the proposed N -th Order RCGM by modeling the
training process as a dynamic interplay between a Ground-Truth Anchor and a Recursive Bootstrap
Tail. The student model aims to match a hybrid target displacement Dtarget constructed over the
interval [t, tN+1]. Based on Alg. 1, this target can be conceptually decomposed as:

Dtarget ≈ v ·∆t︸ ︷︷ ︸
Anchor

(Low Bias, High Variance)

+

N∑
i=1

F θ−(xti , ti, ti+1) · (ti+1 − ti)︸ ︷︷ ︸
Recursive Tail

(High Bias, Low Variance)

(10)

Here, the Anchor is derived from the real data distribution (providing unbiased instantaneous
direction), while the Tail is generated by the EMA teacher θ− (providing smooth but potentially
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biased manifold approximations). The stability of this system depends critically on the interaction
between the recursive order N and the EMA decay rate κ. We identify two distinct operating regimes:

Regime I: The Error Accumulation Regime (N ≥ 2). When the recursive order N is high, the
target trajectory is dominated by the model’s own predictions (the Tail). In this regime, the primary
challenge is recursive variance amplification. Since the estimation at step i depends on the state
xti predicted at step i − 1, small perturbations in the teacher’s parameters θ− are compounded
exponentially through the recursive chain. This phenomenon is analogous to error propagation in
numerical integration. If the teacher evolves too quickly (i.e., low κ), the target values become
non-stationary and noisy, preventing the student from converging. Consequently, high-order training
requires strong stabilization: we must employ a high EMA decay rate (e.g., κ ≈ 0.999) to effectively
“freeze” the teacher, minimizing the temporal variance of the target and ensuring that the recursive
tail provides a consistent guidance signal.

Regime II: The Bias Correction Regime (N = 1). When N = 1, the recursive tail is short, and
the dominant error source shifts from variance to geometric bias. A single-step linear approximation
inevitably undershoots the curvature of the true data manifold. If the teacher is too stable (i.e., κ ≈ 1),
the model risks converging to a spurious fixed point where the student simply mimics the teacher’s
biased linear prediction, ignoring the curvature information. Crucially, the Anchor term v · ∆t
contains the necessary first-order derivative information to correct this bias. To effectively incorporate
this correction, the system requires “plasticity”: the teacher must update rapidly to reflect the rectified
trajectory suggested by the Anchor. Thus, low-order training necessitates a lower EMA decay rate
(e.g., κ ≈ 0.90). This increases the system’s responsiveness, allowing the Anchor to actively correct
the Tail’s geometric errors and preventing the solidification of incorrect linear assumptions.

Synthesis. Our analysis reveals a fundamental trade-off between stability and plasticity. High N
enables better long-range approximation but introduces instability, necessitating a rigid teacher (High
κ). Low N is stable but geometrically biased, necessitating an adaptive teacher (Low κ) to drive
correction. This informs our hyperparameter selection strategy: κ should be positively correlated
with the recursive order N .

C RELATED WORK

The landscape of continuous-time generative models has evolved from multi-step integration towards
high-fidelity, few-step synthesis. Our work builds upon this trajectory by addressing the limitations
of existing paradigms. We contextualize our contributions by surveying the two dominant research
thrusts that enable rapid generation: interval-based consistency and adversarial refinement.

C.1 FOUNDATIONS: MULTI-STEP INTEGRATION OF INSTANTANEOUS FIELDS

The dominant paradigm in continuous generative modeling, including Denoising Diffusion Mod-
els (Ho et al., 2020; Song et al., 2020b) and Flow-Matching (Lipman et al., 2022), is the learning
of an instantaneous velocity field. These models train a neural network to approximate the local
dynamics dxt

dt of a Probability Flow Ordinary Differential Equation (PF-ODE). To generate a sample,
one must numerically integrate this field, typically requiring hundreds or thousands of steps to ensure
fidelity. The core limitation of this approach is its sensitivity to coarse discretization; when using few
steps, large truncation errors accumulate, particularly for trajectories with high curvature, leading to
a significant degradation in sample quality (Karras et al., 2022). This challenge has catalyzed the
development of methods designed for the few-step regime.

C.2 INTERVAL-BASED CONSISTENCY FOR FEW-STEP GENERATION

A major research thrust aims to overcome this limitation by enforcing consistency over finite time
intervals, effectively teaching the model about the integrated structure of the ODE path. Consistency
Models (CMs) (Song et al., 2023) pioneered this approach by enforcing a relative constraint: the
model’s prediction of the trajectory’s endpoint (x0) should be consistent across different starting
points (xt,xt−∆t) on the same path. This concept was extended by methods like MeanFlow (Geng
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et al., 2025), which directly model their proposed average velocity to predict other points beyond the
endpoint along the PF-ODE.

However, a critical implementation challenge emerged: the need to compute time derivatives to en-
force these interval-based objectives. Early methods relied on Jacobian-Vector Products (JVP) (Geng
et al., 2025; Lu & Song, 2024), which introduced a severe scalability bottleneck. JVP is computa-
tionally intensive and, more importantly, incompatible with essential modern training optimizations
like FlashAttention (Dao et al., 2022) and FSDP-based distributed training (Zhao et al., 2023),
hindering its application to billion-parameter models. Consequently, the field has pivoted to using
finite-difference estimators as a scalable and hardware-friendly alternative (Sun et al., 2025). These
estimators, which rely only on forward passes, ensure compatibility with contemporary large-scale
training infrastructures.

C.3 ADVERSARIAL REFINEMENT FOR ONE-STEP SYNTHESIS

A parallel and complementary approach achieves high-fidelity, one-step generation by incorporating
external, adversarial signals. This is motivated by the fact that relative consistency constraints do
not explicitly guarantee that the final output lies on the true data manifold. Adversarial objectives
provide an absolute anchor to the data distribution.

Methods in this family, such as distillation techniques like DMD/DMD2 (Yin et al., 2024b;a) and other
GAN-based refiners (Sauer et al., 2024b;a; Zheng et al., 2025), employ an auxiliary discriminator
to sharpen model outputs. This adversarial pressure can be powerful enough to enable a distilled
"student" model to surpass the performance of its "teacher." However, this reliance is a double-edged
sword. It often introduces training instability and increases computational overhead due to the
auxiliary network. Critically, these frameworks typically depend on a frozen, pre-trained teacher to
generate a large dataset of target samples. For ultra-large models, the cost of generating this dataset
can be prohibitive, in some cases exceeding the cost of training the student model itself (Yin et al.,
2024a). This trade-off between sample fidelity and training complexity remains a key challenge.

D DETAILED EXPERIMENT

D.1 COMPARISON WITH TEXT-TO-IMAGE MODELS

To validate the real-world applicability of our approach, we benchmarked RCGM on the text-to-image
synthesis task, presenting detailed results in Tab. 3. For this evaluation, we fine-tuned the SANA-0.6B
and SANA-1.6B backbones for 30, 000 steps, using batch sizes of 128 and 64, respectively. The
experimental results clearly demonstrate that RCGM achieves SOTA performance while operating
with an extremely low NFE. We conduct all experiments on publicly available datasets (Chen et al.,
2025d; Ye et al., 2025) and models (Chen et al., 2025c; Xie et al., 2024a) to ensure reproducibility
and transparency.

(a) SOTA quality at 2-NFE: With the addition of a second inference step, RCGM’s generative
quality is further enhanced, reaching a GenEval score of 0.85 for the 0.6B model and 0.84 for
the 1.6B version. This level of performance surpasses not only the leading few-step models but
also powerful multi-step architectures such as SANA-1.5 (0.81) and Playground v3 (0.76). This
top-tier output is delivered with a highly competitive throughput of 6.50 samples/s and a latency
of just 0.26s.

(b) Superiority in the 1-NFE setting: When constrained to a single inference step—a challenging
setting for generative models—RCGM markedly outperforms its peers. Our 0.6B variant
achieves a GenEval score of 0.80, placing it ahead of strong contenders like SANA-Sprint-1.6B
(0.76) and FLUX-Schnell (0.69). Crucially, this high-quality output is paired with unmatched
efficiency; at 7.30 samples/s, RCGM-0.6B stands as the fastest model in this category.

The success of RCGM is especially compelling given its fundamental simplicity. Powerful baselines
like SANA-Sprint employ a sophisticated hybrid loss, integrating sCM (Lu & Song, 2024) with
LADD (Sauer et al., 2024a)—an adversarial technique requiring a dedicated discriminator. Our
approach, however, relies solely on the straightforward objective in (8). The fact that this minimalist
framework yields SOTA results demonstrates that RCGM offers a more elegant and direct solution to
the enduring conflict between sampling speed and visual fidelity.
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Table 3: System-level benchmark of our RCGM against text-to-image models. Throughput (batch=10) and
latency (batch=1) were measured on a single A100 (BF16). The best and second-best results among few-step
models are highlighted. †Our evaluation.

Method NFE ↓ Throughput ↑ Latency (s) ↓ #Params GenEval ↑ DPG-Bench ↑(samples/s)

Multi-step models

SDXL (Podell et al., 2023) 50×2 0.15 6.5 2.6B 0.55 74.7
PixArt-Σ (Chen et al., 2024a) 20×2 0.40 2.7 0.6B 0.54 80.5
SD3-Medium (Esser et al., 2024b) 28×2 0.28 4.4 2.0B 0.62 84.1
FLUX-Dev (Labs, 2024) 50×2 0.04 23.0 12.0B 0.67 84.0
Playground v3 (Liu et al., 2024) - 0.06 15.0 24B 0.76 87.0
SANA-0.6B (Xie et al., 2024a) 20×2 1.7 0.9 0.6B 0.64 83.6
SANA-1.6B (Xie et al., 2024a) 20×2 1.0 1.2 1.6B 0.66 84.8
SANA-1.5 (Xie et al., 2025a) 20×2 0.26 4.2 4.8B 0.81 84.7
Lumina-Image-2.0 (Qin et al., 2025) 18×2 - - 2.6B 0.73 87.2

Few-step models

SDXL-DMD2 (Yin et al., 2024a) 2 2.89 0.40 0.9B 0.58 -
FLUX-Schnell (Labs, 2024) 2 0.92 1.15 12.0B 0.71 -
SANA-Sprint-0.6B (Chen et al., 2025c) 2 6.46 0.25 0.6B 0.76 81.5†

SANA-Sprint-1.6B (Chen et al., 2025c) 2 5.68 0.24 1.6B 0.77 82.1†

SDXL-LCM (Luo et al., 2023) 2 2.89 0.40 0.9B 0.44 -
PixArt-LCM (Chen et al., 2024b) 2 3.52 0.31 0.6B 0.42 -
PCM (Wang et al., 2024) 2 2.62 0.56 0.9B 0.55 -
SD3.5-Turbo (Esser et al., 2024a) 2 1.61 0.68 8.0B 0.53 -

PixArt-DMD (Chen et al., 2024a) 1 4.26 0.25 0.6B 0.45 -
SDXL-DMD2 (Yin et al., 2024a) 1 3.36 0.32 0.9B 0.59 -
FLUX-Schnell (Labs, 2024) 1 1.58 0.68 12.0B 0.69 -
SANA-Sprint-0.6B (Chen et al., 2025c) 1 7.22 0.21 0.6B 0.72 78.6†

SANA-Sprint-1.6B (Chen et al., 2025c) 1 6.71 0.21 1.6B 0.76 80.1†

SDXL-LCM (Luo et al., 2023) 1 3.36 0.32 0.9B 0.28 -
PixArt-LCM (Chen et al., 2024b) 1 4.26 0.25 0.6B 0.41 -
PCM (Wang et al., 2024) 1 3.16 0.40 0.9B 0.42 -
SD3.5-Turbo (Esser et al., 2024a) 1 2.48 0.45 8.0B 0.51 -
TiM (Wang et al., 2025b) 1 - - 0.8B 0.67 75.0

RCGM-0.6B (Ours) 2 6.50 0.26 0.6B 0.85 80.3
RCGM-1.6B (Ours) 2 5.71 0.25 1.6B 0.84 79.1

RCGM-0.6B (Ours) 1 7.30 0.23 0.6B 0.80 77.2
RCGM-1.6B (Ours) 1 6.75 0.22 1.6B 0.78 76.5

D.2 COMPARISON WITH UNIFIED MULTIMODAL MODELS

The development of Unified Multimodal Models (UMM), which are capable of both profound
comprehension (typically yielding textual outputs) and sophisticated generation (resulting in visual
outputs), represents a significant frontier in artificial intelligence. Such integrated systems hold the
potential to unlock synergistic capabilities, where understanding informs generation and vice versa,
leading to more intelligent and versatile applications (Google, 2025a;b; OpenAI, 2025).

Recent advancements in UMMs have showcased their considerable potential across a diverse range of
applications, including high-fidelity text-to-image generation and intricate image editing (Wu et al.,
2025a; Pan et al., 2025). These models have been lauded within the research community for their
powerful generative abilities (Chen et al., 2025a; Dong et al., 2024).

However, a primary obstacle to the widespread adoption of these models is their prohibitive com-
putational cost. This inefficiency stems from their reliance on iterative, diffusion-based generation
processes, which incur significant overhead and lead to slow inference times. To address this critical
efficiency bottleneck, we integrate our proposed method, RCGM, into SOTA UMMs.

We demonstrate this by fine-tuning two prominent open-source models: first, conducting full-
parameter tuning on OpenUni-L-512 (Wu et al., 2025c) for 60, 000 steps with a batch size of 128;
and second, applying parameter-efficient LoRA (Hu et al., 2022) tuning (with r = 64 and α = 64) to
Qwen-Image-20B Wu et al. (2025a) for 7, 000 steps with a batch size of 64. The experimental results
presented in Tab. 4 clearly demonstrate our method’s efficacy. Specifically, we observe the following
key outcomes:

(a) Significant reduction in computational cost: Our method dramatically reduces the NFE to just
1 or 2, a stark contrast to the 40 to 100 NFEs required by the original models. This represents a
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Table 4: System-level comparison of RCGM with unified multimodal models on generation tasks. Results
compare inference efficiency (NFE) and performance across three benchmarks. Best and second-best scores are
highlighted as bold and underline, respectively. † indicates results using LLM-rewritten prompts on GenEval.
All our experiments were conducted on 8× NVIDIA H800 GPUs.

Method NFE ↓ Image Generation

GenEval ↑ DPG-Bench ↑ WISE ↑
Show-o2-7B (Xie et al., 2025b) 50×2 0.76 86.14 0.39
OmniGen (Xiao et al., 2024) 50×2 0.70 81.16 -
OmniGen2 (Wu et al., 2025b) 50×2 0.80 / 0.86† 83.57 -
Show-o (Xie et al., 2024b) 50×2 0.68 67.27 0.35
Janus-Pro (Chen et al., 2025e) - 0.80 84.19 0.35
MetaQuery-XL (Pan et al., 2025) 30×2 0.78 / 0.80† 81.10 0.55
BLIP3-o-8B (Chen et al., 2025b) 30×2 + 50×2 0.84 81.60 0.62
UniWorld-V1 (Lin et al., 2025) 28×2 0.80 / 0.84† - 0.55
OpenUni-L-512 (Wu et al., 2025c) 20×2 0.85 81.54 0.52
Bagel (Deng et al., 2025) 50×2 0.82 / 0.88† 0.52
Qwen-Image-20B (Wu et al., 2025a) 50×2 0.87 88.32 0.62

OpenUni-L-512⊕CM (Song et al., 2023) (model collapse) 2 0.0 - -
OpenUni-L-512⊕CM (Song et al., 2023) (model collapse) 1 0.0 - -

Qwen-Image-20B⊕CM (Song et al., 2023) (model collapse) 2 0.0 - -
Qwen-Image-20B⊕CM (Song et al., 2023) (model collapse) 1 0.0 - -

Qwen-Image-20B⊕MeanFlow (Geng et al., 2025) (out of memory) 2 - - -
Qwen-Image-20B⊕MeanFlow (Geng et al., 2025) (out of memory) 1 - - -

OpenUni-L-512⊕RCGM (ours) 2 0.85 80.15 0.50
OpenUni-L-512⊕RCGM (ours) 1 0.80 76.40 0.45

Qwen-Image-20B⊕RCGM (ours) 8 0.87 87.39 0.58
Qwen-Image-20B⊕RCGM (ours) 2 0.82 84.09 0.50
Qwen-Image-20B⊕RCGM (ours) 1 0.52 59.50 0.30

reduction of over 95% in computational workload, thereby enabling faster and more efficient
image generation.

(b) Competitive performance with fewer steps: When applied to OpenUni-L-512, our method
with an NFE of 2 achieves a GenEval score of 0.85, matching the performance of the original
model which requires 40 steps. While there is a slight decrease in the DPG-Bench and WISE
scores, the performance remains highly competitive. Even with a single step (NFE=1), our
model maintains a strong GenEval score of 0.80.

(c) Effective application to larger models: With the more powerful Qwen-Image-20B, our method
at 2-NFE achieves a GenEval score of 0.82 and a DPG-Bench score of 84.09. Although these
scores are slightly lower than the original model’s 100-NFE process, they are still comparable to
other leading UMMs that require significantly more computational resources. This demonstrates
the scalability and effectiveness of our approach on larger, more capable models.

In summary, our proposed method provides a compelling solution to the efficiency challenges inherent
in diffusion-based UMMs. By substantially decreasing the required number of generation steps while
preserving a high level of performance, RCGM paves the way for more practical and accessible
applications of these powerful multimodal systems.

Discussion on open-source community efforts. To the best of our knowledge, Qwen-Image-
Lightning (ModelTC, 2025) represents the sole open-source initiative focused on training a few-step
variant of a large-scale UMM. This method is based on the Distribution Matching Distillation (DMD2)
framework (Yin et al., 2024a); however, it notably omits its generative adversarial network (GAN) loss
component. This crucial omission, however, directly leads to a significant and widely acknowledged
problem: generation pattern collapse. Specifically, Qwen-Image-Lightning is known to suffer from
generating highly similar, or even nearly identical, images across diverse input prompts, severely
limiting its generative diversity and overall practical utility.

D.3 QUANTITATIVE ANALYSIS ON QWEN-IMAGE-20B

Tab. 5 presents a comprehensive quantitative comparison of RCGM against SOTA acceleration
methods on the Qwen-Image-20B model. The experiments were conducted on 8 GPUs with a local
batch size of 4. Unless otherwise specified, models were trained for 3,000 steps with an AdamW
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Table 5: Quantitative comparison of RCGM against baselines on Qwen-Image-20B for text-to-image
generation. raw denotes full-parameter implementations for the generator and scoring networks, which incur
excessive GPU memory costs. Consequently, to enable baseline methods (VSD, SiD, and DMD) to run within
memory constraints, we implement their fake score networks using LoRA (r=64).

Method NFE ↓ Image Generation

GenEval ↑ DPG-Bench ↑ WISE ↑
VSD (Wang et al., 2023) (raw, out of memory) N/A - - -
DMD (Yin et al., 2024b) (raw, out of memory) N/A - - -
DMD2 (Yin et al., 2024a) (raw, out of memory) N/A - - -
SiD (Zhou et al., 2024) (raw, out of memory) N/A - - -
VSD (Wang et al., 2023) ⊕LoRA 1 0.67 84.44 0.22
VSD (Wang et al., 2023) ⊕LoRA 2 0.73 86.16 0.34
DMD (Yin et al., 2024b) ⊕LoRA 1 0.81 84.31 0.47
DMD (Yin et al., 2024b) ⊕LoRA 2 0.80 84.08 0.46
SiD (Zhou et al., 2024) ⊕LoRA 1 0.77 87.05 0.42
SiD (Zhou et al., 2024) ⊕LoRA 2 0.78 86.94 0.41

RCGM (N=1) 1 0.47 74.31 0.19
RCGM (N=1) 2 0.71 81.48 0.42

RCGM (N=2) 1 0.55 75.56 0.33
RCGM (N=2) 2 0.78 85.27 0.51
RCGM (N=2) 4 0.82 85.13 0.53
RCGM (N=2) 8 0.86 86.49 0.57
RCGM (N=2) 16 0.87 87.11 0.59
RCGM (N=2) 32 0.89 87.68 0.61

RCGM (N=2) ⊕Longer Training 1 0.58 78.57 0.35
RCGM (N=2) ⊕Longer Training 4 0.86 85.71 0.55
RCGM (N=2) ⊕Longer Training 16 0.88 87.10 0.60

RCGM (N=3) 1 0.57 76.85 0.35
RCGM (N=3) 2 0.80 86.48 0.53

RCGM (N=1) ⊕Adversarial Loss 1 0.76 83.41 0.42
RCGM (N=1) ⊕Adversarial Loss 2 0.81 84.75 0.47

RCGM (N=2) ⊕Adversarial Loss 1 0.83 83.82 0.49
RCGM (N=2) ⊕Adversarial Loss 2 0.85 85.46 0.53

RCGM (N=3) ⊕Adversarial Loss 1 0.85 85.12 0.52
RCGM (N=3) ⊕Adversarial Loss 2 0.87 86.37 0.53

learning rate of 1× 10−5. Our analysis highlights three key observations regarding scalability, order
capability, and compatibility with adversarial objectives.

Scalability to Full-Parameter Training on 20B Models. A significant challenge in accelerating
large-scale diffusion models is the excessive memory consumption and training instability associated
with Consistency Model (CM) based approaches. As shown in the top section of Tab. 5, baseline
methods such as VSD, DMD, and SiD fail to run in the “raw” full-parameter setting due to Out-Of-
Memory (OOM) errors, forcing them to rely on low-rank approximations (LoRA, r = 64) to fit within
memory constraints. In contrast, RCGM demonstrates superior memory efficiency and stability,
successfully enabling full-parameter training on the 20B parameter model. This result underscores
the robustness of our method, overcoming the well-known instability issues often plaguing CM-series
methods in high-parameter regimes.

Impact of Higher-Order Trajectory Approximation. We observe a clear performance correlation
with the approximation order N . While the first-order variant (N = 1) provides a baseline accel-
eration, increasing the order to N = 2 yields a substantial performance leap. Specifically, RCGM
(N = 2) significantly outperforms the first-order counterpart across all metrics. For instance, at
NFE=2, the second-order model achieves a GenEval score of 0.78 compared to 0.71 for N = 1.
Furthermore, the performance of the second-order model scales effectively with inference steps,
reaching a GenEval score of 0.89 at NFE=32. Extending training to 5,000 steps (Longer Training)
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further improves the one-step generation quality, raising the GenEval score from 0.55 to 0.58 for the
N = 2 configuration.

Orthogonality with Adversarial Objectives. Finally, our method is highly compatible with ad-
versarial training techniques. We integrate a DMD-like adversarial loss (specifically excluding the
regression loss component) to further refine the generation quality. As evidenced in the bottom
section of Tab. 5, the addition of the adversarial loss significantly boosts performance across all
orders, particularly in the one-step regime. For the N = 2 setting, adding the adversarial loss
increases the 1-step GenEval score from 0.55 to 0.83, surpassing the strongest LoRA-based baselines
(e.g., DMD-LoRA at 0.81). This demonstrates that RCGM provides a robust consistency backbone
that can be effectively combined with distribution-matching objectives for SOTA performance.

Figure 4: Visualization of image generation using a collapsed CM (Song et al., 2023) on Qwen-Image-20B
(2,000 training steps). Columns represent varying Numbers of Function Evaluations (NFEs) ranging from 0 to
20 (left to right), while rows correspond to three distinct prompts.

Figure 5: Visualization of image generation using a collapsed CM (Song et al., 2023) on Qwen-Image-20B
(4,000 training steps). The layout configuration (NFEs and prompts) is identical to Fig. 4.

E THEORETICAL ANALYSIS

E.1 MAIN RESULTS

E.1.1 A RECURSIVE LEARNING PERSPECTIVE OF CONSISTENCY MODELS

The consistency model training objective enforces self-consistency along the sampling trajectory.
Given the parameterization fx(F t,xt, t) :=

α(t)·F t−α̂(t)·xt

α(t)·γ̂(t)−α̂(t)·γ(t) , the objective is formulated as:

Ext,t [d (f
x(F t,xt, t), stopgrad(f

x(F t−∆t,xt−∆t, t−∆t)))] .

We focus on the specific case of flow matching (Lipman et al., 2022), where α(t) = t, γ(t) = 1− t,
α̂(t) = 1, and γ̂(t) = −1.

Under these conditions, the training loss LCM(θ) simplifies to:

LCM(θ) = d (t · F θ−(xt)− xt, (t−∆t) · F θ−(xt−∆t)− xt−∆t) . (11)

This objective minimizes the distance between the current model prediction and the target prediction
derived from the preceding time step.
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We can express the ℓ-2 loss explicitly:

LCM(θ) = ∥t · F θ−(xt)− xt − (t−∆t) · F θ−(xt−∆t) + xt−∆t∥22 . (12)

To analyze the training dynamics, we consider the limit ∆t→ 0 and apply a Taylor expansion, which
yields:

LCM(θ) =

∥∥∥∥t · F θ−(xt)− (t−∆t) · F θ−(xt−∆t)−
dxt

dt
·∆t

∥∥∥∥2
2

. (13)

Minimizing this loss corresponds to the following update rule:

t · F θ−(xt)← (t−∆t) · F θ−(xt−∆t) +
dxt

dt
·∆t . (14)

By induction, the model learns the integrated velocity field:

t · F θ−(xt)←
∫ t

0

dxτ

dτ
dτ = xt − x0 . (15)

Let us define the prediction function as f(xt, 0) := x0 − xt. Substituting this into (14), we obtain
the following recursive relationship:

f(xt, 0)← f(xt−∆t, 0)−
dxt

dt
·∆t . (16)

This result confirms that the consistency model training objective is equivalent to recursively learning
the velocity field of the underlying ODE.

E.2 ERROR BOUND ANALYSIS OF RECURSIVE LEARNING OBJECTIVE

Definition 1 (Discrete operator) . Let gt := dxt

dt denote the true temporal derivative, t = t0 >
t1 > · · · > tN > tN+1 = 0 be the time points, and ∆t = t1 − t0 be the time step. We define the
discrete operator

Aθ :=
1

∆t

(
fθ(xt, tN+1)−

N∑
i=1

fθ−(xti , ti+1)
)
, (17)

and the analogous operator with the ground-truth function f∗,

A∗ :=
1

∆t

(
f∗(xt, tN+1)−

N∑
i=1

f∗(xti , ti+1)
)
. (18)

Lemma 1 (Numerical integration error) . Let f ∈ C1([a, b]), then we have:∫ b

a

f(x)dx = f(a)(b− a) +
f ′(ξ)

2
(b− a)2 , for some ξ ∈ (a, b) (19)

Proof. By the Taylor’s theorem, we have:

f(x) = f(a) + f ′(ξ)(x− a) , for some ξ ∈ (a, x) (20)

Therefore, we have: ∫ b

a

f(x)dx =

∫ b

a

f(a)dx+

∫ b

a

f ′(ξ)(x− a)dx (21)

= f(a)(b− a) +
f ′(a)

2
(b− a)2 (22)

= f(a)(b− a) +
f ′(ξ)

2
(b− a)2 (23)
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Lemma 2 (Trunction error) . Let’s assume that the trajectories xt ∈ C2[0, 1] and

f⋆(xr, t) =

∫ t

r

dxt

dt
dt = xt − xr

For t = t0 > t1 > · · · > tN > tN+1 = 0, the following equality holds:∥∥dxt

dt
−A⋆

∥∥2
2
≤ C1 · (t0 − t1)

2 (24)

where C1 = supt
∥∥ 1
2
d2xt

dt2

∥∥2
2
.

Proof.

xtN+1
− xt0 =

N∑
i=0

(xti+1
− xti) =

N∑
i=0

∫ ti+1

ti

dxt

dt
dt =

N∑
i=0

f⋆(xti , ti+1) (25)

= f⋆(xt0 , t1) +

N∑
i=1

f⋆(xti , ti+1) =

∫ t1

t0

dxt

dt
dt+

N∑
i=1

∫ ti+1

ti

dxt

dt
dt (26)

=
dxt

dt
|t=t0(t1 − t0) +

1

2

d2xt

dt2
|t=ξ(t1 − t0)

2 (27)

+

N∑
i=1

∫ ti+1

ti

dxt

dt
dt , for some ξ ∈ (t1, t0) (28)

=
dxt

dt
|t=t0(t1 − t0) +

1

2

d2xt

dt2
|t=ξ(t1 − t0)

2 +

N∑
i=1

∫ ti+1

ti

dxt

dt
dt (29)

dxt

dt
|t=t0 =

1

t1 − t0

[
(xtN+1

− xt0)−
N∑
i=1

f⋆(xti , ti+1)
]
− 1

2

d2xt

dt2
|t=ξ(t1 − t0) (30)

=
1

t1 − t0

[
f⋆(xt0 , tN+1)−

N∑
i=1

f⋆(xti , ti+1)
]
− 1

2

d2xt

dt2
|t=ξ(t1 − t0) (31)

Therefore,

dxt

dt
|t=t0 −A⋆ = −1

2

d2xt

dt2
|t=ξ(t1 − t0)

Lemma 3 (Approximation error) . Define the approximation error as:

εti,tj = f∗(xti , tj)− fθ(xti , tj)

and assume that the approximation error is uniformly bounded by ε, i.e.,

sup
x,t

∥∥f∗(x, t)− fθ(x, t)
∥∥2
2
≤ ε2

Then we have: ∥∥A⋆ −Aθ

∥∥2
2
≤ (N + 1)2

(∆t)2
· ε2
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Proof. ∥∥A⋆ −Aθ

∥∥2
2

(32)

=
∥∥ 1

∆t

(
[f∗(xt, tN+1)− fθ(xt, tN+1)]−

N∑
i=1

[f∗(xti , ti+1)− fθ−(xti , ti+1)]
)∥∥2

2
(33)

=
1

(∆t)2
∥∥[f∗(xt, tN+1)− fθ(xt, tN+1)]−

N∑
i=1

[f∗(xti , ti+1)− fθ−(xti , ti+1)]
∥∥2
2

(34)

=
1

(∆t)2
∥∥εt0,tN+1

−
N∑
i=1

εti,ti+1

∥∥2
2

(35)

≤ N + 1

(∆t)2
(∥∥εt0,tN+1

∥∥2
2
+

N∑
i=1

∥∥εti,ti+1

∥∥2
2

)
(By Cauchy-Schwarz inequality)

≤ (N + 1)2

(∆t)2
· ε2 (36)

Theorem 1 (Error bound) . Let’s assume that the trajectory xt ∈ C2[0, 1],

f⋆(xr, t) =

∫ t

r

dxt

dt
dt = xt − xr

and the approximation error is uniformly bounded by ε, i.e.,

sup
x,t

∥∥f∗(x, t)− fθ(x, t)
∥∥2
2
≤ ε2

For t = t0 > t1 > · · · > tN > tN+1 = 0, the following inequality holds:

Ex0,z,{ti}N+1
i=0

[∥∥dxt

dt
−Aθ

∥∥2
2

]
≤ Ex0,z,{ti}N+1

i=0

[
2C1 · (t0 − t1)

2 +
2(N + 1)2

(t0 − t1)2
· ε2

]
(37)

where C1 = supt
∥∥ 1
2
d2xt

dt2

∥∥2
2
, and if t ∈ U [δ, 1], then the upper bound can attain the minimum

value when setting N + 1 = ⌊ 6

√
C1·δ·(1+δ+δ2)

6·ε2 ⌋.

Proof. By Lem. 2 and Lem. 3, we have:

Ex0,z,{ti}N+1
i=0

[∥∥dxt

dt
−Aθ

∥∥2
2

]
≤ Ex0,z,{ti}N+1

i=0

[
2
∥∥dxt

dt
−A⋆

∥∥2
2

]
+ Ex0,z,{ti}N+1

i=0

[
2
∥∥A⋆ −Aθ

∥∥2
2

]
≤ Ex0,z,{ti}N+1

i=0

[
2C1 · (t0 − t1)

2 +
2(N + 1)2

(t0 − t1)2
· ε2

]
(38)

If we set tk = t− k
N+1 · t, then t0 − t1 = t

N+1 . Therefore, the equation (38) becomes:

Ex0,z,{ti}N+1
i=0

[
2C1 · (t0 − t1)

2 +
2(N + 1)2

(t0 − t1)2
· ε2

]
(39)

= Et

[
2C1 ·

t2

(N + 1)2
+

2(N + 1)2

t2

(N+1)2

· ε2
]

(40)

= Et

[
2C1 ·

t2

(N + 1)2
+

2(N + 1)4

t2
· ε2

]
(41)
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Let’s consider t ∼ U(δ, 1), then we have:

E
[
t2
]
=

∫ 1

δ

t2 · 1

1− δ
dt =

1

3(1− δ)
· (1− δ3) =

1

3
(1 + δ + δ2) (42)

E
[
1

t2

]
=

∫ 1

δ

1

t2
· 1

1− δ
dt =

1

1− δ
· (−1 + 1

δ
) =

1

1− δ
· (1

δ
− 1) =

1

δ
(43)

Therefore, the equation (38) becomes:

Et

[
2C1 ·

t2

(N + 1)2
+

2(N + 1)4

t2
· ε2

]
(44)

= 2C1 ·
1 + δ + δ2

3(N + 1)2
+

2(N + 1)4

δ
· ε2 (45)

= C1 ·
1 + δ + δ2

3(N + 1)2
+ C1 ·

1 + δ + δ2

3(N + 1)2
+

2(N + 1)4

δ
· ε2 (46)

≥ 3 ·
(
C1 ·

1 + δ + δ2

3(N + 1)2
· C1 ·

1 + δ + δ2

3(N + 1)2
· 2(N + 1)4

δ
· ε2) 1

3 (47)

= 3 ·
(
C2

1 ·
2(1 + δ + δ2)2

9δ
· ε2) 1

3 (48)

The equality holds when C1 · 1+δ+δ2

3(N+1)2 = C1 · 1+δ+δ2

3(N+1)2 = 2(N+1)4

δ · ε2, i.e.

(N + 1)6 =
C1 · δ · (1 + δ + δ2)

6 · ε2
(49)

Remark 1 . Thm. 1 shows that the error bound of the recursive learning objective has a minimum
value, rather than negatively related to N .

Corollary 1 (Relationship between ε and N ) . Under the same assumptions as Thm. 1, if the
upper bound of the loss

L(θ) ≤ Ex0,z,{ti}N+1
i=0

[
2C1(t0 − t1)

2 +
2(N + 1)2

(t0 − t1)2
ε2
]

is minimized with respect to N , then the uniform approximation error ε and the number of steps
N satisfy the relation

ε ≈

√
C1 δ (1 + δ + δ2)

6 (N + 1)6
,

This shows that, for a given number of steps N , the uniform approximation error ε scales roughly
as ε ∼ (N + 1)−3.
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