

ANY-STEP GENERATION VIA N -TH ORDER RECURSIVE CONSISTENT VELOCITY FIELD ESTIMATION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Recent advances in few-step generative models (typically 1-8 steps), such as
012 consistency models, have yielded impressive performance. However, their broader
013 adoption is hindered by significant challenges, including substantial computational
014 overhead, the reliance on complex multi-component loss functions, and intricate
015 multi-stage training strategies that lack end-to-end simplicity. These limitations
016 impede their scalability and stability, especially when applied to large-scale models.
017 To address these issues, we introduce N -th order Recursive Consistent velocity
018 field estimation for Generative Modeling (RCGM), a novel framework that unifies
019 many existing approaches. Within this framework, we reveal that conventional
020 one-step methods, such as consistency and MeanFlow models, are special cases of
021 1st-order RCGM. This insight enables a natural extension to higher-order scenarios
022 ($N \geq 2$), which exhibit markedly improved training stability and achieve state-
023 of-the-art (SOTA) performance. For instance, on ImageNet 256×256 , RCGM
024 enables a 675M parameter diffusion transformer to achieve a 1.48 FID score in just
025 2 sampling steps. Crucially, RCGM facilitates the stable full-parameter training of
026 a large-scale (20B) unified multi-modal model, attaining a 0.86 GenEval score in
027 4 steps. In contrast, conventional 1st-order approaches, such as consistency and
028 MeanFlow models, typically suffer from training instability, model collapse, or
029 memory constraints under comparable settings. Code will be publicly available.

1 INTRODUCTION

030
031 Existing PF-ODE-based generative models (Song et al.,
032 2020b), encompassing diffusion models (Ho et al., 2020;
033 Song et al., 2020a), flow-matching models (Lipman et al.,
034 2022; Ma et al., 2024), and consistency models (Song
035 et al., 2023; Lu & Song, 2024), have demonstrated re-
036 markable success in synthesizing high-fidelity data across
037 diverse applications, including image and video genera-
038 tion (Google, 2025a; OpenAI, 2025; Xie et al., 2024a; Ho
039 et al., 2022; Chen et al., 2025c; Wu et al., 2025a).

040 Within this landscape, few-step generative models (Song et al., 2023; Frans et al., 2024; Geng et al.,
041 2025) are particularly prized for their ability to generate high-quality samples with significantly
042 reduced computational cost, a critical factor for practical deployment. However, the pursuit of this
043 efficiency has introduced a distinct set of formidable challenges that plague current SOTA methods:
044 (a) a prohibitive computational and memory burden during training, often necessitating expensive
045 Jacobian-vector products (JVP) (Geng et al., 2025; Lu & Song, 2024); (b) the need to combine multi-
046 ple losses and train auxiliary models, e.g., combining consistency loss with adversarial loss (Chen
047 et al., 2025c) or training an additional fake image generation model (Yin et al., 2024b;a; Sauer
048 et al., 2024a); (c) a fractured theoretical landscape, where highly related methods like consistency
049 models (Song et al., 2023), shortcut models (Frans et al., 2024), and MeanFlow (Geng et al., 2025)
050 have been developed in isolation, lacking a common theoretical foundation.

051 These challenges restrict their broader application, particularly in generalizing to large-scale models
052 with guaranteed stability and efficiency. For instance, our experiments show that existing one-step
053 models, such as consistency models, often suffer from training instability and high computational

Table 1: Comparison of different methods’
reliance on a 1st-order objective and JVP.
Our method is independent of both.

Method	Independent of	
	1st-Order	JVP
CM (Song et al., 2023)	✗	✓
sCM (Lu & Song, 2024)	✗	✗
MeanFlow (Geng et al., 2025)	✗	✗
RCGM (Ours)	✓	✓

Figure 1: **Visualization results of RCGM on Qwen-Image-20B.** The images shown were generated by the RCGM-tuned Qwen-Image-20B model using $\text{NFE}=8$ (GenEval score=0.87). Please zoom in to see finer details.

demands when scaled up, frequently resulting in model collapse or GPU memory exhaustion (see Tab. 4). We argue that this fragility originates from their implicit reliance on a 1st-order recursive training objective (cf. Sec. 2 and Sec. 3). This critical insight leads us to the central question:

Problem 1 . *Can we develop a unified and simple framework that: (a) encompasses existing few-step generative models as a special case; (b) enhances training stability and generalization to large-scale models by moving beyond the 1st-order limitation, thereby obviating the need for JVP or training auxiliary models?*

To address these challenges, we propose RCGM, a novel and principled framework that unifies and generalizes existing approaches. *Within our framework, we show that conventional one-step models (e.g., consistency models and MeanFlow) correspond to the special case of 1st-order RCGM.*

Notably, RCGM naturally supports higher-order formulations (i.e., $N \geq 2$). These higher-order variants utilize more comprehensive trajectory information from the PF-ODE, which contributes to substantially improved training stability. This stability enables successful training in demanding large-scale settings where 1st-order models often fail, ultimately achieving SOTA performance without resorting to complex workarounds. **In summary, our contributions are:**

- (a) We propose RCGM, a unified framework that contextualizes existing few-step generative models as a specific 1st-order case and generalizes them to arbitrary N -th order formulations.
- (b) We identify and empirically verify that higher-order RCGM (e.g., 2nd-order) can exhibit superior training stability and robustness, enabling effective scaling to larger and more complex model architectures (cf. Sec. 4).
- (c) Our method achieves SOTA performance across a range of standard benchmarks, outperforming existing methods in few-step generation tasks while maintaining computational efficiency.

As detailed in Fig. 1, Sec. 4 and App. D, our approach consistently matches or surpasses SOTA methods across various datasets, architectures, and resolutions, setting a new standard for efficient, high-fidelity generative modeling.

2 PRELIMINARIES

Let $p(\mathbf{x})$ be the data distribution for a given training set D . This distribution can also be conditional, denoted as $p(\mathbf{x}|\mathbf{c})$ for a given condition \mathbf{c} . Diffusion-based generative models aim to learn a transfor-

108 mation from a simple prior distribution $p(\mathbf{z})$, typically the standard Gaussian $\mathcal{N}(\mathbf{0}, \mathbf{I})$, to the complex
 109 target data distribution $p(\mathbf{x})$.
 110

111 This is often achieved by learning to reverse a forward noising process. The forward process
 112 gradually perturbs a clean data sample $\mathbf{x} \sim p(\mathbf{x})$ into a noisy intermediate sample \mathbf{x}_t using a
 113 predefined trajectory, such as $\mathbf{x}_t = \alpha(t)\mathbf{z} + \gamma(t)\mathbf{x}$, where $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. The time variable t spans
 114 the interval $[0, 1]$, with the perturbation effect intensifying as t increases. The scheduling functions
 115 $\alpha(t)$ and $\gamma(t)$ are continuously differentiable, i.e., $\alpha(t), \gamma(t) \in C^1[0, 1]$, and satisfy the boundary
 116 conditions: $\alpha(0) = 0, \gamma(0) = 1$ (yielding the data) and $\alpha(1) = 1, \gamma(1) = 0$ (yielding pure noise).
 117

118 More formally, diffusion models learn a function that guides the transformation of samples along
 119 the trajectory of the Probability Flow Ordinary Differential Equation (PF-ODE) (Song et al., 2020b),
 120 which connects the prior distribution $p(\mathbf{z})$ to the data distribution $p(\mathbf{x})$.
 121

122 In this paper, we define a general prediction function $\mathbf{f}(\mathbf{x}_t, r) := \mathbf{x}_r - \mathbf{x}_t$ that estimates the
 123 displacement from \mathbf{x}_t to a target \mathbf{x}_r , with further details in (6). This function aims to predict the target
 124 point \mathbf{x}_r from the current point \mathbf{x}_t along a specific PF-ODE trajectory. In the following sections, we
 125 will introduce several prominent learning paradigms for deep generative models.
 126

2.1 0TH-ORDER: DIFFUSION AND FLOW-MATCHING MODELS

127 **Diffusion and Flow-Matching Models** (Ho et al., 2020; Song et al., 2020b; Lipman et al., 2022;
 128 Sun et al., 2025). Recent work by Sun et al. (Sun et al., 2025) established a unified framework for
 129 diffusion and flow-matching models. This framework reveals that both paradigms aim to learn the
 130 same PF-ODE (1), but they differ in their underlying transport processes (i.e., their specific choices
 131 of $\alpha(t)$ and $\gamma(t)$) and training objectives.
 132

133 Specifically, a neural network \mathbf{F}_θ is trained by minimizing a general objective of the form:
 134 $\mathbb{E}_{\mathbf{x}_t, t} [d(\mathbf{F}_\theta(\mathbf{x}_t), \hat{\alpha}(t)\mathbf{z} + \hat{\gamma}(t)\mathbf{x})]$, where $d(\cdot, \cdot)$ denotes a distance metric. As derived in (Sun et al.,
 135 2025), the output of the trained network, $\mathbf{F}_t := \mathbf{F}_\theta(\mathbf{x}_t)$, can be used to construct the component
 136 functions: $\mathbf{f}^x(\mathbf{F}_t, \mathbf{x}_t, t) := \frac{\alpha(t) \cdot \mathbf{F}_t - \hat{\alpha}(t) \cdot \mathbf{x}_t}{\alpha(t) \cdot \hat{\gamma}(t) - \hat{\alpha}(t) \cdot \gamma(t)}$ and $\mathbf{f}^z(\mathbf{F}_t, \mathbf{x}_t, t) := \frac{\hat{\gamma}(t) \cdot \mathbf{x}_t - \gamma(t) \cdot \mathbf{F}_t}{\alpha(t) \cdot \hat{\gamma}(t) - \hat{\alpha}(t) \cdot \gamma(t)}$. These com-
 137 ponents, in turn, define the velocity field of the PF-ODE: $\frac{d\mathbf{x}_t}{dt} = \frac{d\alpha(t)}{dt} \cdot \mathbf{f}^z(\mathbf{F}_t, \mathbf{x}_t, t) + \frac{d\gamma(t)}{dt} \cdot$
 138 $\mathbf{f}^x(\mathbf{F}_t, \mathbf{x}_t, t)$. The sampling process then involves numerically integrating this velocity field to solve
 139 the PF-ODE. The integration proceeds backward in time, starting from a prior sample $\mathbf{x}_1 \sim p(\mathbf{z})$ at
 140 $t = 1$ and ending at $t = 0$ to produce a data sample from $p(\mathbf{x})$.
 141

142 Within our framework, we adopt a zeroth-order inductive learning perspective to interpret this process,
 143 a view supported by Fig. 2 (a). Specifically, for a sufficiently small step Δt , the prediction function's
 144 learning target becomes the product of the velocity field and the time step:
 145

$$\mathbf{f}(\mathbf{x}_t, t - \Delta t) \leftarrow \frac{d\mathbf{x}_t}{dt} \cdot \Delta t \quad \text{as} \quad \Delta t \rightarrow 0.$$

146 In essence, given the current state \mathbf{x}_t , the prediction function \mathbf{f} directly learns to predict the displace-
 147 ment required to approximate the next state, $\mathbf{x}_{t-\Delta t}$, on the PF-ODE path.
 148

2.2 1ST-ORDER: RECURSIVE CONSISTENCY MODELS

149 **Consistency Models** (Song et al., 2023; Lu & Song, 2024; Sun et al., 2025). Consistency models
 150 are designed to bypass the iterative nature of diffusion models. Their primary goal is to learn a
 151 function that maps any noisy state \mathbf{x}_t directly to the clean data endpoint \mathbf{x}_0 in a single step. This is
 152 achieved by estimating the endpoint of the PF-ODE trajectory originating from \mathbf{x}_t , using the function
 153 $\mathbf{x}_0 = \mathbf{f}^x(\mathbf{F}_t, \mathbf{x}_t, t)$.
 154

155 The training objective is specifically designed to instill a crucial "consistency" property. This
 156 property ensures coherence between the model's predictions for the clean data, even when originating
 157 from two temporally adjacent noisy states that are separated by a finite time interval $\Delta t > 0$:
 158 $\mathbb{E}_{\mathbf{x}_t, t} [d(\mathbf{f}^x(\mathbf{F}_t, \mathbf{x}_t, t), \text{stopgrad}(\mathbf{f}^x(\mathbf{F}_{t-\Delta t}, \mathbf{x}_{t-\Delta t}, t - \Delta t)))]$. A known limitation of discrete-
 159 time consistency models is their sensitivity to the choice of Δt , which often requires manually tuned
 160 annealing schedules for efficient training (Song & Dhariwal, 2023; Geng et al., 2024). This challenge
 161 was later addressed by continuous consistency models, which derive their training objective by taking
 162 the limit as $\Delta t \rightarrow 0$ (Lu & Song, 2024).
 163

We interpret this process through a **1st-order inductive learning** lens, a perspective supported by our visualizations in [Fig. 2](#) and theoretical analysis in [App. E.1.1](#). This view frames the learning objective as a recursive formulation:

$$\mathbf{f}(\mathbf{x}_t, 0) \leftarrow \frac{d\mathbf{x}_t}{dt} \cdot \Delta t + \mathbf{f}(\mathbf{x}_{t-\Delta t}, 0)$$

This recursive principle—approximating a long-range prediction by combining an infinitesimal step with another long-range prediction—is also reflected in follow-up works ([Frans et al., 2024](#); [Geng et al., 2025](#)). For instance, shortcut models ([Frans et al., 2024](#)) employ a similar self-recursive formulation and generalize it to predict between arbitrary time points t and $r \in [0, t]$: $\mathbf{f}(\mathbf{x}_t, r) \leftarrow \mathbf{f}(\mathbf{x}_s, s) + \mathbf{f}(\mathbf{x}_s, r)$. This is then combined with a flow-matching objective to train one-step generative models. More recently, MeanFlow ([Geng et al., 2025](#)) extended this idea by training a one-step model with the recursive objective $\mathbf{f}(\mathbf{x}_t, r) \leftarrow \frac{d\mathbf{x}_t}{dt} \cdot \Delta t + \mathbf{f}(\mathbf{x}_{t-\Delta t}, r)$ for any target time r .

In summary, while diffusion and flow-matching models are inherently multi-step frameworks, consistency models represent a paradigm shift towards few-step or one-step generation.

3 METHODOLOGY

We begin by deriving a recursive, N -th order velocity field estimator through the segmented integration of the Probability Flow ODE (PF-ODE) trajectory ([Sec. 3.1](#)). Building on this formulation, we introduce a unified training objective that enables any-step generation ([Sec. 3.2](#)). Finally, we discuss key practical considerations for implementing our method, RCGM ([Sec. 3.3](#)).

3.1 SEGMENTED INTEGRATION ALONG THE PF-ODE TRAJECTORY

Our methodology is grounded in the PF-ODE formulation, where a trajectory from a prior distribution to the data distribution is defined by a velocity field $\mathbf{v}(\mathbf{x}_\tau, \tau)$. For a diffusion process specified by $\mathbf{x}_t = \alpha(t)\mathbf{z} + \gamma(t)\mathbf{x}_0$, this velocity is given by ([Song et al., 2020b](#); [Sun et al., 2025](#)):

$$\mathbf{v}(\mathbf{x}_\tau, \tau) := \frac{\gamma'(\tau)}{\gamma(\tau)} \mathbf{x}_\tau - \left[\alpha(\tau)\alpha'(\tau) - \frac{\gamma'(\tau)}{\gamma(\tau)}\alpha(\tau)^2 \right] \nabla_{\mathbf{x}_\tau} \log p_\tau(\mathbf{x}_\tau). \quad (1)$$

The integral form of this ODE connects any two points \mathbf{x}_t and $\mathbf{x}_{t_{N+1}}$ on a trajectory. We proceed by partitioning the integration interval $[t, t_{N+1}]$ with N intermediate points, where $t = t_0 > t_1 > \dots > t_{N+1}$. This segmentation allows us to decompose the total displacement into a sum over the sub-intervals:

$$\mathbf{x}_{t_{N+1}} - \mathbf{x}_t = \sum_{i=0}^N \int_{t_i}^{t_{i+1}} \mathbf{v}(\mathbf{x}_\tau, \tau) d\tau = \int_{t_0}^{t_1} \mathbf{v}(\mathbf{x}_\tau, \tau) d\tau + \sum_{i=1}^N \int_{t_i}^{t_{i+1}} \mathbf{v}(\mathbf{x}_\tau, \tau) d\tau. \quad (2)$$

The core of our approach is to approximate the first integral segment. For a sufficiently small time step $\Delta t := t_1 - t_0$, a 1st-order Taylor approximation (i.e., a forward Euler step) is justified:

$$\int_{t_0}^{t_1} \mathbf{v}(\mathbf{x}_\tau, \tau) d\tau \approx \mathbf{v}(\mathbf{x}_{t_0}, t_0) \Delta t = \frac{d\mathbf{x}_t}{dt} \Delta t. \quad (3)$$

Substituting this approximation into the exact identity from (2) yields the relationship:

$$\mathbf{x}_{t_{N+1}} \approx \mathbf{x}_t + \frac{d\mathbf{x}_t}{dt} \Delta t + \sum_{i=1}^N \int_{t_i}^{t_{i+1}} \mathbf{v}(\mathbf{x}_\tau, \tau) d\tau. \quad (4)$$

By rearranging (4), we obtain our final estimator. We define the **recursive N -th order velocity field estimation** as the target derived from this multi-step formula:

$$\frac{d\mathbf{x}_t}{dt} \approx \frac{1}{\Delta t} \left[(\mathbf{x}_{t_{N+1}} - \mathbf{x}_t) - \sum_{i=1}^N \int_{t_i}^{t_{i+1}} \mathbf{v}(\mathbf{x}_\tau, \tau) d\tau \right]. \quad (5)$$

This formulation is termed **recursive** because the estimation of the velocity \mathbf{v} at time t depends on the integral of the same velocity field over future time steps. The " N -th order" designation refers to the N integral correction terms that refine the estimate beyond a simple one-step approximation, thereby providing a more accurate target for model training.

Figure 2: **A conceptual illustration of our proposed framework, RCGM, which generalizes existing generative models by formulating them within a unified higher-order structure. Trajectories map a **current state** to a **target learning state**.** (a) Standard diffusion (Ho et al., 2020) and flow-matching (Lipman et al., 2022) models correspond to the 0th-order case ($N = 0$) of our framework. (b-d) Prominent one-step models, including consistency models (Song et al., 2023), MeanFlow (Geng et al., 2025), and shortcut models (Frans et al., 2024), are special instances of the 1st-order case ($N = 1$). (e) RCGM extends this hierarchy to arbitrary orders ($N \geq 0$), enabling the use of higher-order information for potentially more robust training dynamics.

3.2 A UNIFIED TRAINING FRAMEWORK FOR ANY-STEP GENERATION

Our goal is to train an *any-step* generative model capable of predicting the state \mathbf{x}_r at any future time $r < t$ from the current state \mathbf{x}_t along a given PF-ODE trajectory. To this end, we define a *displacement function* $\mathbf{f}(\mathbf{x}_t, r)$ that maps the current state to the total displacement required to reach the target state:

$$\mathbf{f}(\mathbf{x}_t, r) := \mathbf{x}_r - \mathbf{x}_t = \int_t^r \mathbf{v}(\mathbf{x}_\tau, \tau) d\tau, \quad r \in [0, t]. \quad (6)$$

Using this definition, we can reformulate the recursive N -th order velocity estimator from (5) entirely in terms of displacements:

$$\frac{d\mathbf{x}_t}{dt} \approx \frac{1}{\Delta t} \left[\mathbf{f}(\mathbf{x}_t, t_{N+1}) - \sum_{i=1}^N \mathbf{f}(\mathbf{x}_{t_i}, t_{i+1}) \right]. \quad (7)$$

This identity forms the foundation of our training objective. It provides a multi-step target for the instantaneous velocity $d\mathbf{x}_t/dt$, which is known analytically from the PF-ODE formulation (cf. (1)).

We parameterize the displacement function with a parameterized model $\mathbf{f}_\theta(\mathbf{x}_t, r)$. To train \mathbf{f}_θ , we enforce the identity in (7). The terms $\mathbf{f}(\mathbf{x}_{t_i}, t_{i+1})$ for $i \geq 1$ represent future displacements and are treated as fixed targets during optimization. Following standard practice in consistency training (Song et al., 2023), we use a target model \mathbf{f}_{θ^-} (e.g., an exponential moving average of θ or a periodically updated copy) for these terms, applying a stop-gradient operator to prevent backpropagation through them. This yields the following learning objective:

$$\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{x}_0, \mathbf{z}, \{t_i\}_{i=0}^{N+1}} \left[d \left(\underbrace{\frac{d\mathbf{x}_t}{dt}}_{\text{True Velocity}}, \underbrace{\frac{1}{\Delta t} \left[\mathbf{f}_\theta(\mathbf{x}_t, t_{N+1}) - \sum_{i=1}^N \mathbf{f}_{\theta^-}(\mathbf{x}_{t_i}, t_{i+1}) \right]}_{\text{Model's Velocity Estimate}} \right) \right], \quad (8)$$

where $\mathbf{x}_t = \alpha(t)\mathbf{z} + \gamma(t)\mathbf{x}_0$ with $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, time points are sampled hierarchically (e.g., $t \sim \mathcal{U}[0, T]$, $t_1 \sim \mathcal{U}[0, t]$, etc.), and $d(\cdot, \cdot)$ is a suitable metric, such as the squared ℓ_2 -norm.

This unified formulation elegantly generalizes several established generative modeling paradigms:

- (a) **For $N = 0$,** the objective simplifies to matching $d\mathbf{x}_t/dt$ with $\mathbf{f}_\theta(\mathbf{x}_t, t_1)/\Delta t$. This is equivalent to the objectives used in score-based diffusion models (Song et al., 2020b) and flow matching (Lipman et al., 2022).
- (b) **For $N = 1$,** the objective corresponds to those of one-step consistency models (Song et al., 2023; Lu & Song, 2024) and shortcut-based methods (Frans et al., 2024), which use a single future segment to define the training target.

270 By extending this framework to higher orders ($N \geq 2$), our approach leverages multiple future steps
 271 to construct a more robust and stable training signal. As we demonstrate in our experiments (Sec. 4),
 272 this generalization improves model performance and convergence across diverse generation tasks.
 273

274 Notably, regardless of the setting of N , our training objective requires only a single model forward
 275 pass with gradient calculation and N forward passes without. This design avoids increased GPU
 276 memory costs during training, making it feasible for large-scale models¹. A detailed discussion on
 277 the setting of N is provided in Sec. 4.2.

278 3.3 PRACTICAL IMPLEMENTATION OF RCGM

280 In this section, we detail several key aspects of the practical implementation of our method, RCGM.
 281 We discuss the parameterization of our neural network under a linear transport path, the use of an
 282 enhanced target score function to improve performance, the strategy for conditioning the model on
 283 both input and target times, and the formulation of a practical loss function for stable and effective
 284 training.

285 **Linear transport and network parameterization.** We employ the linear transport path common
 286 in flow-matching literature (Lipman et al., 2022; Ma et al., 2024; Xie et al., 2024a), defined by
 287 coefficients $\alpha(t) = t$ and $\gamma(t) = 1 - t$. This transport corresponds to a constant velocity field,
 288 implying that the displacement between any two states \mathbf{x}_r and \mathbf{x}_t is directly proportional to the time
 289 difference $r - t$. This property motivates our parameterization of the predictive function $\mathbf{f}_\theta(\mathbf{x}_t, t, r)$,
 290 which estimates the displacement from \mathbf{x}_r to \mathbf{x}_t , as: $\mathbf{f}_\theta(\mathbf{x}_t, t, r) = \mathbf{F}_\theta(\mathbf{x}_t, t, r) \cdot (r - t)$, where \mathbf{F}_θ
 291 is a neural network designed to approximate the average displacement $(\mathbf{x}_r - \mathbf{x}_t)/(r - t)$.
 292

293 **Enhanced target score function.** The performance of continuous generative models can be sig-
 294 nificantly improved by incorporating guidance during the training or sampling process (Ho &
 295 Salimans, 2022; Dhariwal & Nichol, 2021; Karras et al., 2022). This is achieved by modifying
 296 the conditional target score function from $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)$ (defined in (1)) to an enhanced version:
 297 $\nabla_{\mathbf{x}_t} \log \left(p_t(\mathbf{x}_t | \mathbf{c}) (p_{t, \theta}(\mathbf{x}_t | \mathbf{c}) / p_{t, \theta}(\mathbf{x}_t))^\zeta \right)$, where $\zeta \in (0, 1)$ is the enhancement ratio. We follow the
 298 same implementation as previous studies (Frans et al., 2024; Sun et al., 2025).
 299

300 **Input time conditioning.** Our method learns a continuous-time model, $\mathbf{f}_\theta(\mathbf{x}_t, r)$, designed to
 301 predict the state \mathbf{x}_r at a target time r from an initial state \mathbf{x}_t along the probability flow ODE (PF-
 302 ODE) trajectory. To accurately map between arbitrary time points, the model must be effectively
 303 conditioned on both the input time t and the target time r . Following standard practice (Ho et al.,
 304 2020; Frans et al., 2024), we employ a time embedding technique where t and r are embedded into
 305 vector representations separately. These embeddings, along with the input \mathbf{x}_t , are then fed into the
 306 neural network \mathbf{F}_θ , redefining the model as $\mathbf{f}_\theta(\mathbf{x}_t, r) = \mathbf{F}_\theta(\mathbf{x}_t, t, r) \cdot (r - t)$.
 307

308 **Practical loss design.** The training objective in (8) necessitates a carefully designed loss function.
 309 While the ℓ_2 -norm is a standard choice for the metric $d(\cdot, \cdot)$ (Ho et al., 2020; Song et al., 2020a),
 310 directly optimizing the original objective is suboptimal. We observe that the magnitude of the model
 311 output, $\mathbf{f}_\theta(\mathbf{x}_t, r) \approx \mathbf{F}_\theta \cdot (r - t)$, scales linearly with the time interval $(r - t)$. This introduces an
 312 implicit, scale-dependent weighting that causes optimization instability, as larger time steps dominate
 313 the gradients. To rectify this bias and stabilize training, we employ a variance-reduction technique
 314 inspired by Lu & Song (2024). Specifically, by leveraging the gradient identity derived in Lu &
 315 Song (2024) (i.e., $\nabla_\theta \mathbb{E}[\mathbf{F}_\theta^\top \mathbf{y}] = \frac{1}{2} \nabla_\theta \mathbb{E}[\|\mathbf{F}_\theta - \mathbf{F}_{\theta-} + \mathbf{y}\|_2^2]$), we reformulate our objective into a
 316 regression form that decouples the gradient scale from the time interval. Substituting this into (8)
 317 yields our final training objective:

$$\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{x}, \mathbf{z}, \{t_i\}_{i=0}^{N+1}} \left[\left\| (\mathbf{F}_\theta(\mathbf{x}_t, t, t_{N+1}) - \mathbf{F}_{\theta-}(\mathbf{x}_t, t, t_{N+1}) + \xi(\mathbf{x}_t, \{t_i\}_{i=0}^{N+1})) \right\|_2^2 \right], \quad (9)$$

318 where the target item is $\xi(\mathbf{x}_t, \{t_i\}_{i=0}^{N+1}) := \frac{1}{\Delta t} \left[\mathbf{f}_{\theta-}(\mathbf{x}_t, t_{N+1}) - \sum_{i=1}^N \mathbf{f}_{\theta-}(\mathbf{x}_{t_i}, t_{i+1}) \right] - \frac{d\mathbf{x}_t}{dt}$.
 319

320 ¹This is a significant advantage over conventional few-step training methods that often rely on Jacobian-
 321 vector products (JVP), which can substantially increase GPU memory consumption (Geng et al., 2025; Lu &
 322 Song, 2024). Furthermore, the use of JVP can introduce complex technical challenges when integrating with
 323 widely-used architectural optimizations like Flash-Attention (Dao et al., 2022).

324 **4 EXPERIMENTS**

325

326 This section presents the experimental validation of our proposed methodology, denoted as RCGM.
 327 We begin by outlining the experimental setup, including datasets, network architectures, and imple-
 328 mentation details. We then present a comprehensive evaluation of RCGM’s performance. Theoret-
 329 ically, our approach converges to conventional flow-matching and diffusion models when $N = 0$.
 330 Consequently, to rigorously assess the unique contributions of RCGM, our empirical investigation
 331 focuses on the regime where $N \geq 1$.

332 **4.1 EXPERIMENTAL SETUP**

333

334 **Datasets.** Our primary evaluation is conducted on the ImageNet-1K dataset (Deng et al., 2009),
 335 utilizing resolutions of 256×256 and 512×512 . This choice aligns with established benchmarks
 336 in recent high-fidelity generative modeling literature (Karras et al., 2024; Song et al., 2023). We
 337 adopt the data preprocessing pipeline from ADM (Dhariwal & Nichol, 2021) to ensure consistency
 338 and comparability with prior work. All experiments are performed in the latent space of pretrained
 339 autoencoders, a standard practice for efficient training of large-scale models. Specifically:

340 (a) For 256×256 images, we leverage widely adopted autoencoders, including the SD-VAE (Rom-
 341 bach et al., 2022) and the VA-VAE (Yao et al., 2025).
 342 (b) For 512×512 images, in addition to the SD-VAE, we employ a DC-AE (Chen et al., 2024c)
 343 with a higher compression ratio ($f32c32$) to mitigate computational demands.

344 **Network architectures.** We build upon the success of transformer-based architectures for generative
 345 modeling. Our core model is a 675M-parameter Diffusion Transformer (DiT) (Peebles & Xie, 2023),
 346 a backbone widely employed in SOTA models such as SiT (Ma et al., 2024), Lightening-DiT (Yao
 347 et al., 2025), and DDT (Wang et al., 2025a).

348 **Implementation details.** Our models are implemented in PyTorch (Paszke, 2019) and trained using
 349 the AdamW optimizer (Loshchilov & Hutter, 2017) with $\beta_1 = 0.9$, $\beta_2 = 0.95$, a constant learning
 350 rate of 2×10^{-4} , and a batch size of 1024. For the time distribution during training, we follow
 351 the exact settings in Sun et al. (2025). To evaluate the quality of generated samples, we adhere to
 352 standard protocols established in the literature (Song et al., 2020b; Ho et al., 2020; Lipman et al.,
 353 2022; Brock et al., 2018). Our primary metric is the Fr’echet Inception Distance (FID) (Heusel et al.,
 354 2017), computed over a standard set of 50,000 generated samples (FID-50K) against the training set.

355 **4.2 ANALYSIS OF HIGHER-ORDER TRAINING**

356

357 It is widely known that training few-step models is challenging due to the instability of training (Song
 358 et al., 2023; Lu & Song, 2024), especially when using a large model and a large learning rate, etc.

359 This issue is more severe when training few-step models in real-world applications such as high-
 360 resolution text-to-image generation.

361 Using Exponential Moving Average (EMA) model in (8) is a key technique help stabilize training and
 362 improve performance, which also evidenced in previous 1st-order methods (Song et al., 2023). For
 363 those without using EMA model, they typically require a careful technical design to stabilize training,
 364 e.g., using JVP (Lu & Song, 2024) or careful hyperparameter design (Song & Dhariwal, 2023).

365 In this section, to investigate how the order N in RCGM affects the training stability and performance
 366 under different EMA decay rates κ , we conduct a series of ablation studies on ImageNet-1K 256×256
 367 using 675M diffusion transformer with SD-VAE.

368 **A large EMA decay rate κ is critical for 1st-order training stability.** We first investigate the
 369 effect of the EMA decay rate κ from (8) on the stability and performance of the conventional 1st-order
 370 ($N = 1$) model. As illustrated in Fig. 3a, training without EMA ($\kappa = 0$) is highly unstable, causing
 371 the FID score to fluctuate and fail to converge. A small decay rate ($\kappa = 0.9$) tempers this instability,
 372 leading to a smoother decrease in FID, yet the final performance remains suboptimal (FID of 31.70).
 373 Conversely, while large decay rates ($\kappa \in \{0.99, 0.999\}$) effectively stabilize training dynamics, they
 374 severely hinder convergence. This “over-stabilization” is particularly pronounced at $\kappa = 0.999$,

Figure 3: **Ablation studies of RCGM on ImageNet-1K 256×256.** These studies evaluate key factors of the proposed RCGM for training few-step models, i.e., the order of RCGM (N) and the EMA decay rate κ . The sampling is performed using one step (1-NFE).

where the model converges to a poor FID of 294.18. These results reveal a fundamental tension between training stability and model performance in the 1st-order setting.

Higher-order approximations resolve the stability-performance trade-off. We next examine whether higher-order approximations can alleviate the aforementioned tension. Fig. 3b shows the results for our second-order model ($N = 2$). Strikingly, the second-order model thrives under the large EMA decay rates that were detrimental in the 1st-order case. While the no-EMA ($\kappa = 0$) setting remains unstable and the low-EMA ($\kappa = 0.9$) setting achieves a modest FID of 14.94, the high-EMA regime is transformed. With $N = 2$, a large decay rate such as $\kappa = 0.99$ no longer cripples performance but instead yields a competitive FID of 29.13. This demonstrates that higher-order models possess substantially greater robustness to the choice of κ , enabling them to benefit from strong EMA stabilization without sacrificing generative quality.

Further experiments, shown in Fig. 3c, confirm that increasing the order N (with a fixed, high $\kappa = 0.999$) can yield additional gains. Performance steadily improves as N increases from 1 to 4, which achieves the lowest FID. However, this trend reverses for $N > 4$, likely due to the accumulation of approximation errors in the higher-order velocity estimates in (8).

In summary, 1st-order models face a difficult trade-off: a large κ is needed for stability but harms final performance. Higher-order methods effectively resolve this conflict, achieving both stable convergence and strong performance with large κ . Considering the balance between computational cost and performance, we adopt $N = 2$ and $\kappa = 0.999$ as our default configuration.

4.3 COMPARISON WITH SOTA FEW-STEP METHODS

As demonstrated in Tab. 2, our proposed RCGM, when paired with various autoencoders, consistently outperforms or remains highly competitive with SOTA few-step generative models. The following analysis details its advantages across different VAE architectures.

- (a) **Performance with SD-VAE (256 × 256 and 512 × 512):** When paired with a standard SD-VAE, our method exhibits exceptional performance. At 256 × 256 resolution, it achieves an FID of 1.92 with 2 NFEs, outperforming IMM’s best result while requiring 8 times fewer sampling steps. At 512 × 512 resolution, our model achieves an FID of 2.25 with 2 NFEs, which is highly competitive with specialized distillation models like sCD-L (2.04 FID) and sCD-M (2.26 FID), despite their significantly higher training costs (1434 and 1997 epochs vs. our 360).
- (b) **Performance with DC-AE (512 × 512):** When integrated with the DC-AE autoencoder, our model achieves a new SOTA FID score of **1.79** with only 2 NFEs. This result surpasses the leading consistency distillation model, sCD-XXL, which records an FID of 1.88 at 2 NFEs. Notably, our method achieves this superior image quality using a significantly more efficient model with only 675M parameters, compared to the 1.5B parameters of sCD-XXL.
- (c) **Performance with VA-VAE (256 × 256):** Using the VA-VAE architecture, our method sets another benchmark, achieving a remarkable FID of **1.48** in just 2 NFEs. This represents a substantial improvement over the best-performing distillation method, IMM, which only reaches an FID of 1.99 after a much more costly $8 \times 2 = 16$ NFEs.

432 **Table 2: System-level quality comparison for few-step generation task on class-conditional ImageNet-1K.**
 433 The **best** results of each resolution are highlighted.

434	512 × 512					256 × 256					
	435	Method	NFE ↓	FID ↓	#Params	#Epochs	Method	NFE ↓	FID ↓	#Params	#Epochs
			Diffusion & flow-matching Models								
436	ADM-G (Dhariwal & Nichol, 2021)	250×2	7.72	559M	388	-	ADM-G (Dhariwal & Nichol, 2021)	250×2	4.59	559M	396
437	U-ViT-H/4 (Bao et al., 2023)	50×2	4.05	501M	400	-	U-ViT-H/2 (Bao et al., 2023)	50×2	2.29	501M	400
438	DiT-XL/2 (Peebles & Xie, 2023)	250×2	3.04	675M	600	-	DiT-XL/2 (Peebles & Xie, 2023)	250×2	2.27	675M	1400
439	SiT-XL/2 (Ma et al., 2024)	250×2	2.62	675M	600	-	SiT-XL/2 (Ma et al., 2024)	250×2	2.06	675M	1400
440	MaskDiT (Zheng et al., 2023)	79×2	2.50	736M	-	-	MDT (Gao et al., 2023)	250×2	1.79	675M	1300
441	EDM2-S (Karras et al., 2024)	63	2.56	280M	1678	-	REPA-XL/2 (Yu et al., 2024)	250×2	1.96	675M	200
442	EDM2-L (Karras et al., 2024)	63	2.06	778M	1476	-	REPA-XL/2 (Yu et al., 2024)	250×2	1.42	675M	800
443	EDM2-XXL (Karras et al., 2024)	63	1.91	1.5B	734	-	LightDiT (Yao et al., 2025)	250×2	2.11	675M	64
444	DiT-XL⊕DC-AE	250×2	2.41	675M	400	-	LightDiT (Yao et al., 2025)	250×2	1.35	675M	800
445	GANs										
446	BigGAN (Brock et al., 2018)	1	8.43	160M	-	BigGAN (Brock et al., 2018)	1	6.95	112M	-	
447	StyleGAN (Sauer et al., 2022)	1×2	2.41	168M	-	GigaGAN (Kang et al., 2023)	1	3.45	569M	-	
448	Masked & autoregressive models										
449	MaskGIT (Chang et al., 2022)	12	7.32	227M	300	MaskGIT (Chang et al., 2022)	8	6.18	227M	300	
450	VAR-d36-s (Tian et al., 2024)	10×2	2.63	2.3B	350	VAR-d30-re (Tian et al., 2024)	10×2	1.73	2.0B	350	
451	1st-order consistency training & distillation										
452	sCT-M (Lu & Song, 2024)	1	5.84	498M	1837	Shortcut-XL/2 (Frans et al., 2024)	1	10.6	676M	250	
453		2	5.53	498M	1837		4	7.80	676M	250	
454	sCT-L (Lu & Song, 2024)	1	5.15	778M	1274	IMM-XL/2 (Zhou et al., 2025)	1×2	7.77	675M	3840	
455		2	4.65	778M	1274		2×2	5.33	675M	3840	
456	sCT-XXL (Lu & Song, 2024)	1	4.29	1.5B	762		4×2	3.66	675M	3840	
457		2	3.76	1.5B	762		8×2	2.77	675M	3840	
458	sCD-M (Lu & Song, 2024)	1	2.75	498M	1997	IMM ($\omega = 1.5$)	1×2	8.05	675M	3840	
459		2	2.26	498M	1997		2×2	3.99	675M	3840	
460	sCD-L (Lu & Song, 2024)	1	2.55	778M	1434		4×2	2.51	675M	3840	
461		2	2.04	778M	1434		8×2	1.99	675M	3840	
462	sCD-XXL (Lu & Song, 2024)	1	2.28	1.5B	921	MeanFlow-XL/2 (Geng et al., 2025)	1	3.43	676M	240	
463		2	1.88	1.5B	921		2	2.93	676M	240	
464	UCGM-XL (Sun et al., 2025)	1	2.63	675M	360	MeanFlow-XL/2 (longer training)	2	2.20	676M	1000	
465	RCGM (Ours)										
466	⊕SD-VAE (Rombach et al., 2022)	1	2.61	675M	360	⊕SD-VAE (Rombach et al., 2022)	1	2.13	675M	424	
467	⊕SD-VAE	2	2.25	675M	360	⊕SD-VAE	2	1.92	675M	424	
468	⊕DC-AE (Chen et al., 2024c)	1	2.45	675M	800	⊕VA-VAE (Yao et al., 2025)	1	2.25	675M	424	
469	⊕DC-AE	2	1.79	675M	800	⊕VA-VAE	2	1.48	675M	424	

459 *In summary, across multiple autoencoder architectures, our RCGM consistently delivers a superior
 460 trade-off between sample quality, sampling speed, and model parameter efficiency. It establishes
 461 new SOTA results while substantially reducing the computational overhead required for high-fidelity
 462 image generation.*

463 **Validating RCGM on real-world applications.** To assess its practical efficacy, we evaluate
 464 RCGM on two demanding real-world tasks: text-to-image generation (App. D.1) and the training
 465 of few-step unified multimodal models (App. D.2). Our results demonstrate that RCGM exhibits
 466 remarkable performance and versatility across these diverse settings, substantially outperforming
 467 existing methods in the computationally constrained, few-step sampling regime.

468 For instance, in text-to-image synthesis, RCGM attains a GenEval score of 0.85 with only NFE= 2.
 469 This marks a significant advance over the previous SOTA, SANA-Sprint (Chen et al., 2025c), which
 470 achieves a score of 0.77, thereby establishing a new benchmark for highly efficient generation.
 471

472 5 CONCLUSION AND LIMITATIONS

473 In this paper, we introduced RCGM, a unified framework for continuous generative modeling that
 474 bridges the gap between multi-step and few-step synthesis. Our key innovation is a novel N -th
 475 order flow matching objective that improves training stability and significantly boosts performance,
 476 especially in few-step regimes. Through extensive experiments on ImageNet-1K, we demonstrated
 477 that RCGM establishes a new state of the art across a spectrum of few-step generation settings.
 478

479 Despite its strong performance, RCGM shares a limitation with contemporary generative models:
 480 achieving high-fidelity synthesis in extreme few-step regimes (e.g., 1-NFE) remains an open challenge,
 481 particularly for high-resolution imagery. We conjecture that this is partly attributable to the absence
 482 of an adversarial objective, which has proven effective for enhancing perceptual quality in other
 483 generative paradigms. Consequently, a promising direction for future research is the integration of
 484 adversarial training into the RCGM framework to further push the boundaries of sample quality in
 485 this challenging setting. We leave this promising avenue for future work.

486 ETHICS STATEMENT
487488 This research adheres to the *ICLR Code of Ethics* and is committed to the principles of responsible and
489 transparent scientific inquiry. The study involves no human participants, personal or sensitive data,
490 or any activities requiring approval from an institutional ethics review board. All datasets used are
491 publicly accessible under appropriate licenses, with proper attribution given to their original sources.
492 To promote openness and reproducibility, we provide our implementation code and experimental
493 settings for verification and further development by the research community. We also declare that no
494 conflicts of interest or external funding have influenced the design, execution, or presentation of this
495 work.
496497 REPRODUCIBILITY STATEMENT
498499 Comprehensive details regarding the datasets, model architectures, optimization settings, and training
500 procedures are provided in [Sec. 4.1](#) of the main paper and in [App. D](#). These materials are designed to
501 facilitate the reliable and transparent reproduction of our results. Additionally, our source code will
502 be made publicly available upon acceptance of the paper.
503504 REFERENCES
505506 Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
507 words: A vit backbone for diffusion models. In *Proceedings of the IEEE/CVF conference on*
508 *computer vision and pattern recognition*, pp. 22669–22679, 2023.509 Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
510 image synthesis. *arXiv preprint arXiv:1809.11096*, 2018.512 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
513 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
514 *recognition*, pp. 11315–11325, 2022.515 Juhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi Zhou,
516 Saining Xie, Silvio Savarese, Le Xue, Caiming Xiong, and Ran Xu. Blip3-o: A Family of Fully
517 Open Unified Multimodal Models-Architecture, Training and Dataset. *arXiv.org*, abs/2505.09568,
518 2025a.520 Juhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
521 Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
522 models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025b.524 Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
525 Luo, Huchuan Lu, and Zhenguo Li. Pixart- σ : Weak-to-strong training of diffusion transformer for
526 4k text-to-image generation. *arXiv preprint arXiv:2403.04692*, 2024a.527 Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul, Ping Luo, Hang Zhao, and Zhenguo Li.
528 Pixart- $\{\delta\}$: Fast and controllable image generation with latent consistency models. *arXiv*
529 *preprint arXiv:2401.05252*, 2024b.531 Junsong Chen, Shuchen Xue, Yuyang Zhao, Jincheng Yu, Sayak Paul, Junyu Chen, Han Cai, Enze
532 Xie, and Song Han. Sana-sprint: One-step diffusion with continuous-time consistency distillation.
533 *arXiv preprint arXiv:2503.09641*, 2025c.534 Junying Chen, Zhenyang Cai, Pengcheng Chen, Shunian Chen, Ke Ji, Xidong Wang, Yunjin Yang,
535 and Benyou Wang. Sharegpt-4o-Image: Aligning Multimodal Models with GPT-4o-Level Image
536 Generation. *arXiv.org*, abs/2506.18095, 2025d.538 Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, and
539 Song Han. Deep compression autoencoder for efficient high-resolution diffusion models. *arXiv*
540 *preprint arXiv:2410.10733*, 2024c.

540 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
 541 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
 542 scaling. *arXiv preprint arXiv:2501.17811*, 2025e.

543

544 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
 545 efficient exact attention with io-awareness. *Advances in neural information processing systems*, 35:
 546 16344–16359, 2022.

547

548 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
 549 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv
 549 preprint arXiv:2505.14683*, 2025.

550

551 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 552 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 553 pp. 248–255. Ieee, 2009.

554

555 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
 555 in neural information processing systems*, 34:8780–8794, 2021.

556

557 Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian
 558 Sun, Hongyu Zhou, Haoran Wei, Xiangwen Kong, Xiangyu Zhang, Kaisheng Ma, and Li Yi.
 559 Dreamllm: Synergistic Multimodal Comprehension and Creation. In *The Twelfth International
 559 Conference on Learning Representations*, 2024.

560

561 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 562 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 563 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 564 2024a.

565

566 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 567 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 568 high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
 569 2024b.

570

571 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
 572 models. *arXiv preprint arXiv:2410.12557*, 2024.

573

574 Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer is a
 575 strong image synthesizer. In *Proceedings of the IEEE/CVF international conference on computer
 576 vision*, pp. 23164–23173, 2023.

577

578 Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
 579 made easy. *arXiv preprint arXiv:2406.14548*, 2024.

580

581 Google. Experiment with gemini 2.0 flash native image genera-
 582 tion, 2025a. URL <https://developers.googleblog.com/en/experiment-with-gemini-20-flash-native-image-generation/>.

583

584 Google. Gemini 2.5 flash image: High-consistency image generation and editing, 8 2025b. URL
 585 <https://aistudio.google.com/models/gemini-2-5-flash-image>. Official
 586 model page on Google AI Studio. Internal development code name: nano-banana.

587

588 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 589 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural
 590 information processing systems*, 30, 2017.

591

592 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
 593 2022.

594

595 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 596 neural information processing systems*, 33:6840–6851, 2020.

594 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
595 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–8646,
596 2022.

597 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
598 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

600 Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
601 Park. Scaling up gans for text-to-image synthesis. In *Proceedings of the IEEE/CVF conference on*
602 *computer vision and pattern recognition*, pp. 10124–10134, 2023.

603 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
604 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
605 2022.

606 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
607 and improving the training dynamics of diffusion models. In *Proceedings of the IEEE/CVF*
608 *Conference on Computer Vision and Pattern Recognition*, pp. 24174–24184, 2024.

609 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

610 Bin Lin, Zongjian Li, Xinhua Cheng, Yuwei Niu, Yang Ye, Xianyi He, Shenghai Yuan, Wangbo Yu,
611 Shaodong Wang, Yunyang Ge, et al. Uniworld: High-resolution semantic encoders for unified
612 visual understanding and generation. *arXiv preprint arXiv:2506.03147*, 2025.

613 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
614 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

615 Bingchen Liu, Ehsan Akhgari, Alexander Vishератин, Aleks Kamko, Linmiao Xu, Shivam Shrira, 616
616 Joao Souza, Suhail Doshi, and Daiqing Li. Playground v3: Improving text-to-image alignment
617 with deep-fusion large language models. *arXiv preprint arXiv:2409.10695*, 2024.

618 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
619 *arXiv:1711.05101*, 2017.

620 Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
621 *arXiv preprint arXiv:2410.11081*, 2024.

622 Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
623 Synthesizing high-resolution images with few-step inference. *arXiv preprint arXiv:2310.04378*,
624 2023.

625 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
626 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
627 transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer, 2024.

628 ModelTC. Qwen-image-lightning. [https://github.com/ModelTC/](https://github.com/ModelTC/Qwen-Image-Lightning)
629 [Qwen-Image-Lightning](https://github.com/ModelTC/Qwen-Image-Lightning), 2025.

630 OpenAI. Introducing 4o image generation, 2025. URL <https://openai.com/index/introducing-4o-image-generation/>.

631 Xichen Pan, Satya Narayan Shukla, Aashu Singh, Zhuokai Zhao, Shlok Kumar Mishra, Jialiang
632 Wang, Zhiyang Xu, Juhai Chen, Kunpeng Li, Felix Juefei-Xu, Ji Hou, and Saining Xie. Transfer
633 between Modalities with MetaQueries. *arXiv.org*, abs/2504.06256, 2025.

634 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint*
635 *arXiv:1912.01703*, 2019.

636 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
637 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

638 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
639 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
640 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

648 Qi Qin, Le Zhuo, Yi Xin, Ruoyi Du, Zhen Li, Bin Fu, Yiting Lu, Xinyue Li, Dongyang Liu, Xiangyang
 649 Zhu, Will Beddow, Erwann Millon, Wenhui Wang Victor Perez, Yu Qiao, Bo Zhang, Xiaohong
 650 Liu, Hongsheng Li, Chang Xu, and Peng Gao. Lumina-image 2.0: A unified and efficient image
 651 generative framework, 2025. URL <https://arxiv.org/pdf/2503.21758.pdf>.

652 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 653 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 654 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

655 Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
 656 datasets. In *ACM SIGGRAPH 2022 conference proceedings*, pp. 1–10, 2022.

657 Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rombach.
 658 Fast high-resolution image synthesis with latent adversarial diffusion distillation. In *SIGGRAPH
 659 Asia 2024 Conference Papers*, pp. 1–11, 2024a.

660 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
 661 distillation. In *European Conference on Computer Vision*, pp. 87–103. Springer, 2024b.

662 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 663 preprint arXiv:2010.02502*, 2020a.

664 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. *arXiv
 665 preprint arXiv:2310.14189*, 2023.

666 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 667 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 668 arXiv:2011.13456*, 2020b.

669 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. *arXiv preprint
 670 arXiv:2303.01469*, 2023.

671 Peng Sun, Yi Jiang, and Tao Lin. Unified continuous generative models. *arXiv preprint
 672 arXiv:2505.07447*, 2025.

673 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 674 Scalable image generation via next-scale prediction. *Advances in neural information processing
 675 systems*, 37:84839–84865, 2024.

676 Fu-Yun Wang, Zhaoyang Huang, Alexander William Bergman, Dazhong Shen, Peng Gao, Michael
 677 Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, et al. Phased consistency model.
 678 *arXiv preprint arXiv:2405.18407*, 2024.

679 Shuai Wang, Zhi Tian, Weilin Huang, and Limin Wang. Ddt: Decoupled diffusion transformer. *arXiv
 680 preprint arXiv:2504.05741*, 2025a.

681 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
 682 lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
 683 *Advances in neural information processing systems*, 36:8406–8441, 2023.

684 Zidong Wang, Yiyuan Zhang, Xiaoyu Yue, Xiangyu Yue, Yangguang Li, Wanli Ouyang, and Lei Bai.
 685 Transition models: Rethinking the generative learning objective. 2025b.

686 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng ming Yin, Shuai
 687 Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang,
 688 Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan
 689 Ni, Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuting Yu, Tingkun
 690 Wen, Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan
 691 Cai, and Zenan Liu. Qwen-image technical report, 2025a. URL <https://arxiv.org/abs/2508.02324>.

692 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 693 Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation.
 694 *arXiv preprint arXiv:2506.18871*, 2025b.

702 Size Wu, Zhonghua Wu, Zerui Gong, Qingyi Tao, Sheng Jin, Qinyue Li, Wei Li, and Chen Change
 703 Loy. Openuni: A simple baseline for unified multimodal understanding and generation. 2025c.
 704 URL <https://arxiv.org/abs/2505.23661>.

705 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Shuting
 706 Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. *arXiv preprint*
 707 *arXiv:2409.11340*, 2024.

708 Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li,
 709 Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffusion
 710 transformers. *arXiv preprint arXiv:2410.10629*, 2024a.

711 Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng Yu, Ligeng Zhu, Yujun Lin, Zhekai Zhang, Muyang
 712 Li, Junyu Chen, Han Cai, et al. Sana 1.5: Efficient scaling of training-time and inference-time
 713 compute in linear diffusion transformer. *arXiv preprint arXiv:2501.18427*, 2025a.

714 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 715 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 716 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024b.

717 Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-o2: Improved native unified multimodal
 718 models. *arXiv preprint arXiv:2506.15564*, 2025b.

719 Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization
 720 dilemma in latent diffusion models. *arXiv preprint arXiv:2501.01423*, 2025.

721 Junyan Ye, Dongzhi Jiang, Zihao Wang, Leqi Zhu, Zhenghao Hu, Zilong Huang, Jun He, Zhiyuan
 722 Yan, Jinghua Yu, Hongsheng Li, Conghui He, and Weijia Li. Echo-4o: Harnessing the Power of
 723 GPT-4o Synthetic Images for Improved Image Generation. *arXiv*, 2025.

724 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
 725 William T Freeman. Improved distribution matching distillation for fast image synthesis. *arXiv*
 726 *preprint arXiv:2405.14867*, 2024a.

727 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
 728 and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of*
 729 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6613–6623, 2024b.

730 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
 731 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
 732 than you think. *arXiv preprint arXiv:2410.06940*, 2024.

733 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
 734 Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
 735 parallel. *arXiv preprint arXiv:2304.11277*, 2023.

736 Hongkai Zheng, Weili Nie, Arash Vahdat, and Anima Anandkumar. Fast training of diffusion models
 737 with masked transformers. *arXiv preprint arXiv:2306.09305*, 2023.

738 Kaiwen Zheng, Yongxin Chen, Huayu Chen, Guande He, Ming-Yu Liu, Jun Zhu, and Qinsheng
 739 Zhang. Direct discriminative optimization: Your likelihood-based visual generative model is
 740 secretly a gan discriminator. *arXiv preprint arXiv:2503.01103*, 2025.

741 Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. *arXiv preprint*
 742 *arXiv:2503.07565*, 2025.

743 Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
 744 distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
 745 In *Forty-first International Conference on Machine Learning*, 2024.

746

747

748

749

750

751

752

753

754

755

756	CONTENTS	
757		
758	1 Introduction	1
759		
760	2 Preliminaries	2
761	2.1 0th-order: Diffusion and Flow-Matching Models	3
762	2.2 1st-order: Recursive Consistency Models	3
763	3 Methodology	4
764	3.1 Segmented Integration along the PF-ODE Trajectory	4
765	3.2 A Unified Training Framework for Any-Step Generation	5
766	3.3 Practical Implementation of RCGM	6
767		
768	4 Experiments	7
769	4.1 Experimental Setup	7
770	4.2 Analysis of Higher-Order Training	7
771	4.3 Comparison with SOTA Few-step Methods	8
772	5 Conclusion and Limitations	9
773		
774	A Utilization of Large Language Models (LLMs)	16
775		
776	B Implementation Details	16
777	B.1 Qualitative Analysis of RCGM Training Dynamics	16
778	C Related Work	17
779	C.1 Foundations: Multi-Step Integration of Instantaneous Fields	17
780	C.2 Interval-Based Consistency for Few-Step Generation	17
781	C.3 Adversarial Refinement for One-Step Synthesis	18
782		
783	D Detailed Experiment	18
784	D.1 Comparison with Text-to-image Models	18
785	D.2 Comparison with Unified Multimodal Models	19
786	D.3 Quantitative Analysis on Qwen-Image-20B	20
787		
788	E Theoretical Analysis	22
789	E.1 Main Results	22
790	E.1.1 A Recursive Learning Perspective of Consistency Models	22
791	E.2 Error Bound Analysis of Recursive Learning Objective	23
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A UTILIZATION OF LARGE LANGUAGE MODELS (LLMs)
811812 In this study, Large Language Models (LLMs) are employed at the sentence level to assist in linguistic
813 refinement. Their use was strictly confined to improving grammatical accuracy and overall readability
814 of the manuscript. All research concepts, methodological designs, experimental processes, and
815 analytical findings remain entirely original and have been solely contributed by the authors.
816817 B IMPLEMENTATION DETAILS
818819 **Algorithm 1** N -th Order RCGM Training Step820 **Require:** Data distribution $p(\mathbf{x})$, order $N \geq 0$, initial time step Δt (we set $\Delta t = -0.01$ in this
821 paper), EMA decay rate κ .822 **Require:** Initial parameters θ , stop gradient operator sg , EMA parameters θ^- .823 1: **Preparation Phase:**824 2: Sample data $\mathbf{x} \sim p(\mathbf{x})$, noise $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.825 3: Sample current time $t \sim \mathcal{U}(0, 1)$ and target time $t_{N+1} \sim \mathcal{U}(0, t)$.826 4: Construct perturbed state $\mathbf{x}_t = t\mathbf{z} + (1-t)\mathbf{x}$.827 5: Compute target velocity $\mathbf{v} = \mathbf{z} - \mathbf{x}$.828 6: Define time trajectory: set $t_0 = t$, $t_1 = t_0 + \Delta t$, and let $\{t_i\}_{i=1}^{N+1}$ be linearly spaced between t_1
829 and t_{N+1} .830 7: **Recursive Velocity Estimation:**831 8: Initialize accumulated displacement $\Delta = \mathbf{0}$.832 9: Estimate state at t_1 : $\mathbf{x}_{t_1} = \mathbf{x}_t + \mathbf{v}\Delta t$.833 10: **for** $i = 1$ **to** N **do**834 11: Estimate segment displacement: $\mathbf{d}_i = \mathbf{F}_{\theta^-}(\mathbf{x}_{t_i}, t_i, t_{i+1}) \cdot (t_{i+1} - t_i)$.835 12: Update state: $\mathbf{x}_{t_{i+1}} \leftarrow \mathbf{x}_{t_i} + \mathbf{d}_i$.836 13: Accumulate: $\Delta \leftarrow \Delta + \mathbf{d}_i$ **Note:** Δ approximates $\sum_{i=1}^N \int_{t_i}^{t_{i+1}} \mathbf{v}(\mathbf{x}_\tau, \tau) d\tau$ 837 14: **end for**838 15: **Loss Calculation:**839 16: Compute model output: $\mathbf{u} = \mathbf{F}_{\theta}(\mathbf{x}_t, t, t_{N+1})$.840 17: Update θ by minimizing objective:

841
$$\mathcal{L}(\theta) = \left\| \mathbf{u} - \text{sg}(\mathbf{u}) - \frac{1}{\Delta t} [\text{sg}(\mathbf{u}) \cdot (t - t_{N+1}) + \Delta] - \mathbf{v} \right\|_2^2$$

842
843

844 18: Update EMA parameters: $\theta^- \leftarrow \kappa\theta^- + (1 - \kappa)\theta$.845
846
847 Our sampling strategy is designed for simplicity and tuning independence. For one-step generation,
848 we rely on the direct prediction procedure in Sec. 2, which requires zero external hyperparameter
849 configuration. For few-step and multi-step generation, we adopt the UCGM sampler (Sun et al.,
850 2025), only using its standard settings without any custom adjustmentTT851
852 B.1 QUALITATIVE ANALYSIS OF RCGM TRAINING DYNAMICS
853854 We investigate the convergence properties of the proposed N -th Order RCGM by modeling the
855 training process as a dynamic interplay between a *Ground-Truth Anchor* and a *Recursive Bootstrap*
856 *Tail*. The student model aims to match a hybrid target displacement $\mathbf{D}_{\text{target}}$ constructed over the
857 interval $[t, t_{N+1}]$. Based on Alg. 1, this target can be conceptually decomposed as:

858
$$\mathbf{D}_{\text{target}} \approx \underbrace{\mathbf{v} \cdot \Delta t}_{\substack{\text{Anchor} \\ (\text{Low Bias, High Variance})}} + \underbrace{\sum_{i=1}^N \mathbf{F}_{\theta^-}(\mathbf{x}_{t_i}, t_i, t_{i+1}) \cdot (t_{i+1} - t_i)}_{\substack{\text{Recursive Tail} \\ (\text{High Bias, Low Variance})}} \quad (10)$$

859
860
861
862

863 Here, the **Anchor** is derived from the real data distribution (providing unbiased instantaneous
864 direction), while the **Tail** is generated by the EMA teacher θ^- (providing smooth but potentially

864 biased manifold approximations). The stability of this system depends critically on the interaction
 865 between the recursive order N and the EMA decay rate κ . We identify two distinct operating regimes:
 866

867 **Regime I: The Error Accumulation Regime ($N \geq 2$).** When the recursive order N is high, the
 868 target trajectory is dominated by the model’s own predictions (the Tail). In this regime, the primary
 869 challenge is **recursive variance amplification**. Since the estimation at step i depends on the state
 870 \mathbf{x}_{t_i} predicted at step $i - 1$, small perturbations in the teacher’s parameters θ^- are compounded
 871 exponentially through the recursive chain. This phenomenon is analogous to error propagation in
 872 numerical integration. If the teacher evolves too quickly (i.e., low κ), the target values become
 873 non-stationary and noisy, preventing the student from converging. Consequently, high-order training
 874 requires strong stabilization: we must employ a high EMA decay rate (e.g., $\kappa \approx 0.999$) to effectively
 875 “freeze” the teacher, minimizing the temporal variance of the target and ensuring that the recursive
 876 tail provides a consistent guidance signal.

877 **Regime II: The Bias Correction Regime ($N = 1$).** When $N = 1$, the recursive tail is short, and
 878 the dominant error source shifts from variance to **geometric bias**. A single-step linear approximation
 879 inevitably undershoots the curvature of the true data manifold. If the teacher is too stable (i.e., $\kappa \approx 1$),
 880 the model risks converging to a spurious fixed point where the student simply mimics the teacher’s
 881 biased linear prediction, ignoring the curvature information. Crucially, the **Anchor** term $\mathbf{v} \cdot \Delta t$
 882 contains the necessary first-order derivative information to correct this bias. To effectively incorporate
 883 this correction, the system requires “plasticity”: the teacher must update rapidly to reflect the rectified
 884 trajectory suggested by the Anchor. Thus, low-order training necessitates a lower EMA decay rate
 885 (e.g., $\kappa \approx 0.90$). This increases the system’s responsiveness, allowing the Anchor to actively correct
 886 the Tail’s geometric errors and preventing the solidification of incorrect linear assumptions.

887 **Synthesis.** Our analysis reveals a fundamental trade-off between **stability** and **plasticity**. High N
 888 enables better long-range approximation but introduces instability, necessitating a rigid teacher (High
 889 κ). Low N is stable but geometrically biased, necessitating an adaptive teacher (Low κ) to drive
 890 correction. This informs our hyperparameter selection strategy: κ should be positively correlated
 891 with the recursive order N .

893 C RELATED WORK

894 The landscape of continuous-time generative models has evolved from multi-step integration towards
 895 high-fidelity, few-step synthesis. Our work builds upon this trajectory by addressing the limitations
 896 of existing paradigms. We contextualize our contributions by surveying the two dominant research
 897 thrusts that enable rapid generation: interval-based consistency and adversarial refinement.

901 C.1 FOUNDATIONS: MULTI-STEP INTEGRATION OF INSTANTANEOUS FIELDS

902 The dominant paradigm in continuous generative modeling, including Denoising Diffusion Models
 903 (Ho et al., 2020; Song et al., 2020b) and Flow-Matching (Lipman et al., 2022), is the learning
 904 of an *instantaneous* velocity field. These models train a neural network to approximate the local
 905 dynamics $\frac{d\mathbf{x}_t}{dt}$ of a Probability Flow Ordinary Differential Equation (PF-ODE). To generate a sample,
 906 one must numerically integrate this field, typically requiring hundreds or thousands of steps to ensure
 907 fidelity. The core limitation of this approach is its sensitivity to coarse discretization; when using few
 908 steps, large truncation errors accumulate, particularly for trajectories with high curvature, leading to
 909 a significant degradation in sample quality (Karras et al., 2022). This challenge has catalyzed the
 910 development of methods designed for the few-step regime.

912 C.2 INTERVAL-BASED CONSISTENCY FOR FEW-STEP GENERATION

913 A major research thrust aims to overcome this limitation by enforcing consistency over finite time
 914 intervals, effectively teaching the model about the integrated structure of the ODE path. Consistency
 915 Models (CMs) (Song et al., 2023) pioneered this approach by enforcing a *relative* constraint: the
 916 model’s prediction of the trajectory’s endpoint (\mathbf{x}_0) should be consistent across different starting
 917 points ($\mathbf{x}_t, \mathbf{x}_{t-\Delta t}$) on the same path. This concept was extended by methods like MeanFlow (Geng

918 et al., 2025), which directly model their proposed average velocity to predict other points beyond the
 919 endpoint along the PF-ODE.
 920

921 However, a critical implementation challenge emerged: the need to compute time derivatives to en-
 922 force these interval-based objectives. Early methods relied on Jacobian-Vector Products (JVP) (Geng
 923 et al., 2025; Lu & Song, 2024), which introduced a severe scalability bottleneck. JVP is computa-
 924 tionally intensive and, more importantly, incompatible with essential modern training optimizations
 925 like FlashAttention (Dao et al., 2022) and FSDP-based distributed training (Zhao et al., 2023),
 926 hindering its application to billion-parameter models. Consequently, the field has pivoted to using
 927 finite-difference estimators as a scalable and hardware-friendly alternative (Sun et al., 2025). These
 928 estimators, which rely only on forward passes, ensure compatibility with contemporary large-scale
 929 training infrastructures.
 930

930 C.3 ADVERSARIAL REFINEMENT FOR ONE-STEP SYNTHESIS

931
 932 A parallel and complementary approach achieves high-fidelity, one-step generation by incorporating
 933 external, adversarial signals. This is motivated by the fact that relative consistency constraints do
 934 not explicitly guarantee that the final output lies on the true data manifold. Adversarial objectives
 935 provide an *absolute* anchor to the data distribution.

936 Methods in this family, such as distillation techniques like DMD/DMD2 (Yin et al., 2024b;a) and other
 937 GAN-based refiners (Sauer et al., 2024b;a; Zheng et al., 2025), employ an auxiliary discriminator
 938 to sharpen model outputs. This adversarial pressure can be powerful enough to enable a distilled
 939 "student" model to surpass the performance of its "teacher." However, this reliance is a double-edged
 940 sword. It often introduces training instability and increases computational overhead due to the
 941 auxiliary network. Critically, these frameworks typically depend on a frozen, pre-trained teacher to
 942 generate a large dataset of target samples. For ultra-large models, the cost of generating this dataset
 943 can be prohibitive, in some cases exceeding the cost of training the student model itself (Yin et al.,
 944 2024a). This trade-off between sample fidelity and training complexity remains a key challenge.
 945

946 D DETAILED EXPERIMENT

947 D.1 COMPARISON WITH TEXT-TO-IMAGE MODELS

948
 949 To validate the real-world applicability of our approach, we benchmarked RCGM on the text-to-image
 950 synthesis task, presenting detailed results in Tab. 3. For this evaluation, we fine-tuned the SANA-0.6B
 951 and SANA-1.6B backbones for 30,000 steps, using batch sizes of 128 and 64, respectively. The
 952 experimental results clearly demonstrate that RCGM achieves SOTA performance while operating
 953 with an extremely low NFE. **We conduct all experiments on publicly available datasets (Chen et al.,**
 954 2025d; Ye et al., 2025) **and models (Chen et al., 2025c; Xie et al., 2024a) to ensure reproducibility**
 955 **and transparency.**

956 (a) **SOTA quality at 2-NFE:** With the addition of a second inference step, RCGM's generative
 957 quality is further enhanced, reaching a GenEval score of 0.85 for the 0.6B model and 0.84 for
 958 the 1.6B version. This level of performance surpasses not only the leading few-step models but
 959 also powerful multi-step architectures such as SANA-1.5 (0.81) and Playground v3 (0.76). This
 960 top-tier output is delivered with a highly competitive throughput of 6.50 samples/s and a latency
 961 of just 0.26s.
 962 (b) **Superiority in the 1-NFE setting:** When constrained to a single inference step—a challenging
 963 setting for generative models—RCGM markedly outperforms its peers. Our 0.6B variant
 964 achieves a GenEval score of 0.80, placing it ahead of strong contenders like SANA-Sprint-1.6B
 965 (0.76) and FLUX-Schnell (0.69). Crucially, this high-quality output is paired with unmatched
 966 efficiency; at 7.30 samples/s, RCGM-0.6B stands as the fastest model in this category.

967 The success of RCGM is especially compelling given its fundamental simplicity. Powerful baselines
 968 like SANA-Sprint employ a sophisticated hybrid loss, integrating sCM (Lu & Song, 2024) with
 969 LADD (Sauer et al., 2024a)—an adversarial technique requiring a dedicated discriminator. Our
 970 approach, however, relies solely on the straightforward objective in (8). The fact that this minimalist
 971 framework yields SOTA results demonstrates that RCGM offers a more elegant and direct solution to
 972 the enduring conflict between sampling speed and visual fidelity.

972 Table 3: **System-level benchmark of our RCGM against text-to-image models.** Throughput (batch=10) and
 973 latency (batch=1) were measured on a single A100 (BF16). The **best** and second-best results among few-step
 974 models are highlighted. [†]Our evaluation.

975 976 977 Method	NFE ↓	978 Throughput ↑ (samples/s)	979 Latency (s) ↓	980 #Params	981 GenEval ↑	982 DPG-Bench ↑
Multi-step models						
SDXL (Podell et al., 2023)	50×2	0.15	6.5	2.6B	0.55	74.7
PixArt- Σ (Chen et al., 2024a)	20×2	0.40	2.7	0.6B	0.54	80.5
SD3-Medium (Esser et al., 2024b)	28×2	0.28	4.4	2.0B	0.62	84.1
FLUX-Dev (Labs, 2024)	50×2	0.04	23.0	12.0B	0.67	84.0
Playground v3 (Liu et al., 2024)	-	0.06	15.0	24B	0.76	87.0
SANA-0.6B (Xie et al., 2024a)	20×2	1.7	0.9	0.6B	0.64	83.6
SANA-1.6B (Xie et al., 2024a)	20×2	1.0	1.2	1.6B	0.66	84.8
SANA-1.5 (Xie et al., 2025a)	20×2	0.26	4.2	4.8B	0.81	84.7
Lumina-Image-2.0 (Qin et al., 2025)	18×2	-	-	2.6B	0.73	87.2
Few-step models						
SDXL-DMD2 (Yin et al., 2024a)	2	2.89	0.40	0.9B	0.58	-
FLUX-Schnell (Labs, 2024)	2	0.92	1.15	12.0B	0.71	-
SANA-Sprint-0.6B (Chen et al., 2025c)	2	6.46	0.25	0.6B	0.76	81.5 [†]
SANA-Sprint-1.6B (Chen et al., 2025c)	2	5.68	0.24	1.6B	0.77	82.1 [†]
SDXL-LCM (Lue et al., 2023)	2	2.89	0.40	0.9B	0.44	-
PixArt-LCM (Chen et al., 2024b)	2	3.52	0.31	0.6B	0.42	-
PCM (Wang et al., 2024)	2	2.62	0.56	0.9B	0.55	-
SD3.5-Turbo (Esser et al., 2024a)	2	1.61	0.68	8.0B	0.53	-
PixArt-DMD (Chen et al., 2024a)	1	4.26	0.25	0.6B	0.45	-
SDXL-DMD2 (Yin et al., 2024a)	1	3.36	0.32	0.9B	0.59	-
FLUX-Schnell (Labs, 2024)	1	1.58	0.68	12.0B	0.69	-
SANA-Sprint-0.6B (Chen et al., 2025c)	1	7.22	0.21	0.6B	0.72	78.6 [†]
SANA-Sprint-1.6B (Chen et al., 2025c)	1	6.71	0.21	1.6B	0.76	80.1 [†]
SDXL-LCM (Lue et al., 2023)	1	3.36	0.32	0.9B	0.28	-
PixArt-LCM (Chen et al., 2024b)	1	4.26	0.25	0.6B	0.41	-
PCM (Wang et al., 2024)	1	3.16	0.40	0.9B	0.42	-
SD3.5-Turbo (Esser et al., 2024a)	1	2.48	0.45	8.0B	0.51	-
TiM (Wang et al., 2025b)	1	-	-	0.8B	0.67	75.0
RCGM-0.6B (Ours)	2	6.50	0.26	0.6B	0.85	80.3
RCGM-1.6B (Ours)	2	5.71	0.25	1.6B	0.84	79.1
RCGM-0.6B (Ours)	1	7.30	0.23	0.6B	0.80	77.2
RCGM-1.6B (Ours)	1	6.75	0.22	1.6B	0.78	76.5

1003 1004 D.2 COMPARISON WITH UNIFIED MULTIMODAL MODELS

1005 The development of Unified Multimodal Models (UMM), which are capable of both profound
 1006 comprehension (typically yielding textual outputs) and sophisticated generation (resulting in visual
 1007 outputs), represents a significant frontier in artificial intelligence. Such integrated systems hold the
 1008 potential to unlock synergistic capabilities, where understanding informs generation and vice versa,
 1009 leading to more intelligent and versatile applications (Google, 2025a;b; OpenAI, 2025).

1010 Recent advancements in UMMs have showcased their considerable potential across a diverse range of
 1011 applications, including high-fidelity text-to-image generation and intricate image editing (Wu et al.,
 1012 2025a; Pan et al., 2025). These models have been lauded within the research community for their
 1013 powerful generative abilities (Chen et al., 2025a; Dong et al., 2024).

1014 However, a primary obstacle to the widespread adoption of these models is their prohibitive com-
 1015 putational cost. This inefficiency stems from their reliance on iterative, diffusion-based generation
 1016 processes, which incur significant overhead and lead to slow inference times. To address this critical
 1017 efficiency bottleneck, we integrate our proposed method, RCGM, into SOTA UMMs.

1018 We demonstrate this by fine-tuning two prominent open-source models: first, conducting full-
 1019 parameter tuning on OpenUni-L-512 (Wu et al., 2025c) for 60,000 steps with a batch size of 128;
 1020 and second, applying parameter-efficient LoRA (Hu et al., 2022) tuning (with $r = 64$ and $\alpha = 64$) to
 1021 Qwen-Image-20B Wu et al. (2025a) for 7,000 steps with a batch size of 64. The experimental results
 1022 presented in Tab. 4 clearly demonstrate our method’s efficacy. Specifically, we observe the following
 1023 key outcomes:

1024 (a) **Significant reduction in computational cost:** Our method dramatically reduces the NFE to just
 1025 1 or 2, a stark contrast to the 40 to 100 NFEs required by the original models. This represents a

Table 4: **System-level comparison of RCGM with unified multimodal models on generation tasks.** Results compare inference efficiency (NFE) and performance across three benchmarks. Best and second-best scores are highlighted as **bold** and underline, respectively. [†] indicates results using LLM-rewritten prompts on GenEval. All our experiments were conducted on 8× NVIDIA H800 GPUs.

Method	NFE ↓	Image Generation		
		GenEval ↑	DPG-Bench ↑	WISE ↑
Show-o2-7B (Xie et al., 2025b)	50×2	0.76	86.14	0.39
OmniGen (Xiao et al., 2024)	50×2	0.70	81.16	-
OmniGen2 (Wu et al., 2025b)	50×2	0.80 / 0.86 [†]	83.57	-
Show-o (Xie et al., 2024b)	50×2	0.68	67.27	0.35
Janus-Pro (Chen et al., 2025e)	-	0.80	84.19	0.35
MetaQuery-XL (Pan et al., 2025)	30×2	0.78 / 0.80 [†]	81.10	0.55
BLIP3-o-8B (Chen et al., 2025b)	30×2 + 50×2	0.84	81.60	0.62
UniWorld-V1 (Lin et al., 2025)	28×2	0.80 / 0.84 [†]	-	0.55
OpenUni-L-512 (Wu et al., 2025c)	20×2	0.85	81.54	0.52
Bagel (Deng et al., 2025)	50×2	0.82 / 0.88 [†]	-	0.52
Qwen-Image-20B (Wu et al., 2025a)	50×2	0.87	<u>88.32</u>	0.62
OpenUni-L-512⊕CM (Song et al., 2023) (model collapse)	2	0.0	-	-
OpenUni-L-512⊕CM (Song et al., 2023) (model collapse)	1	0.0	-	-
Qwen-Image-20B⊕CM (Song et al., 2023) (model collapse)	2	0.0	-	-
Qwen-Image-20B⊕CM (Song et al., 2023) (model collapse)	1	0.0	-	-
Qwen-Image-20B⊕MeanFlow (Geng et al., 2025) (out of memory)	2	-	-	-
Qwen-Image-20B⊕MeanFlow (Geng et al., 2025) (out of memory)	1	-	-	-
OpenUni-L-512⊕RCGM (ours)	2	0.85	80.15	0.50
OpenUni-L-512⊕RCGM (ours)	1	0.80	76.40	0.45
Qwen-Image-20B⊕RCGM (ours)	8	0.87	<u>87.39</u>	<u>0.58</u>
Qwen-Image-20B⊕RCGM (ours)	2	0.82	84.09	0.50
Qwen-Image-20B⊕RCGM (ours)	1	0.52	59.50	0.30

reduction of over 95% in computational workload, thereby enabling faster and more efficient image generation.

- (b) **Competitive performance with fewer steps:** When applied to *OpenUni-L-512*, our method with an NFE of 2 achieves a GenEval score of 0.85, matching the performance of the original model which requires 40 steps. While there is a slight decrease in the DPG-Bench and WISE scores, the performance remains highly competitive. Even with a single step (NFE=1), our model maintains a strong GenEval score of 0.80.
- (c) **Effective application to larger models:** With the more powerful *Qwen-Image-20B*, our method at 2-NFE achieves a GenEval score of 0.82 and a DPG-Bench score of 84.09. Although these scores are slightly lower than the original model’s 100-NFE process, they are still comparable to other leading UMMs that require significantly more computational resources. This demonstrates the scalability and effectiveness of our approach on larger, more capable models.

In summary, our proposed method provides a compelling solution to the efficiency challenges inherent in diffusion-based UMMs. By substantially decreasing the required number of generation steps while preserving a high level of performance, RCGM paves the way for more practical and accessible applications of these powerful multimodal systems.

Discussion on open-source community efforts. To the best of our knowledge, Qwen-Image-Lightning (ModelTC, 2025) represents the sole open-source initiative focused on training a few-step variant of a large-scale UMM. This method is based on the Distribution Matching Distillation (DMD2) framework (Yin et al., 2024a); however, it notably omits its generative adversarial network (GAN) loss component. This crucial omission, however, directly leads to a significant and widely acknowledged problem: **generation pattern collapse**. Specifically, Qwen-Image-Lightning is known to suffer from generating highly similar, or even nearly identical, images across diverse input prompts, severely limiting its generative diversity and overall practical utility.

D.3 QUANTITATIVE ANALYSIS ON QWEN-IMAGE-20B

Tab. 5 presents a comprehensive quantitative comparison of RCGM against SOTA acceleration methods on the Qwen-Image-20B model. The experiments were conducted on 8 GPUs with a local batch size of 4. Unless otherwise specified, models were trained for 3,000 steps with an AdamW

1080
1081 **Table 5: Quantitative comparison of RCGM against baselines on Qwen-Image-20B for text-to-image**
1082 **generation.** *raw* denotes full-parameter implementations for the generator and scoring networks, which incur
1083 excessive GPU memory costs. Consequently, to enable baseline methods (VSD, SiD, and DMD) to run within
1084 memory constraints, we implement their fake score networks using LoRA ($r=64$).

Method	NFE \downarrow	Image Generation		
		GenEval \uparrow	DPG-Bench \uparrow	WISE \uparrow
VSD (Wang et al., 2023) (<i>raw</i> , out of memory)	N/A	-	-	-
DMD (Yin et al., 2024b) (<i>raw</i> , out of memory)	N/A	-	-	-
DMD2 (Yin et al., 2024a) (<i>raw</i> , out of memory)	N/A	-	-	-
SiD (Zhou et al., 2024) (<i>raw</i> , out of memory)	N/A	-	-	-
VSD (Wang et al., 2023) \oplus LoRA	1	0.67	84.44	0.22
VSD (Wang et al., 2023) \oplus LoRA	2	0.73	86.16	0.34
DMD (Yin et al., 2024b) \oplus LoRA	1	0.81	84.31	0.47
DMD (Yin et al., 2024b) \oplus LoRA	2	0.80	84.08	0.46
SiD (Zhou et al., 2024) \oplus LoRA	1	0.77	87.05	0.42
SiD (Zhou et al., 2024) \oplus LoRA	2	0.78	86.94	0.41
RCGM ($N=1$)	1	0.47	74.31	0.19
RCGM ($N=1$)	2	0.71	81.48	0.42
RCGM ($N=2$)	1	0.55	75.56	0.33
RCGM ($N=2$)	2	0.78	85.27	0.51
RCGM ($N=2$)	4	0.82	85.13	0.53
RCGM ($N=2$)	8	0.86	86.49	0.57
RCGM ($N=2$)	16	0.87	87.11	0.59
RCGM ($N=2$)	32	0.89	87.68	0.61
RCGM ($N=2$) \oplus Longer Training	1	0.58	78.57	0.35
RCGM ($N=2$) \oplus Longer Training	4	0.86	85.71	0.55
RCGM ($N=2$) \oplus Longer Training	16	0.88	87.10	0.60
RCGM ($N=3$)	1	0.57	76.85	0.35
RCGM ($N=3$)	2	0.80	86.48	0.53
RCGM ($N=1$) \oplus Adversarial Loss	1	0.76	83.41	0.42
RCGM ($N=1$) \oplus Adversarial Loss	2	0.81	84.75	0.47
RCGM ($N=2$) \oplus Adversarial Loss	1	0.83	83.82	0.49
RCGM ($N=2$) \oplus Adversarial Loss	2	0.85	85.46	0.53
RCGM ($N=3$) \oplus Adversarial Loss	1	0.85	85.12	0.52
RCGM ($N=3$) \oplus Adversarial Loss	2	0.87	86.37	0.53

1114
1115
1116
1117 learning rate of 1×10^{-5} . Our analysis highlights three key observations regarding scalability, order
1118 capability, and compatibility with adversarial objectives.

1119 **Scalability to Full-Parameter Training on 20B Models.** A significant challenge in accelerating
1120 large-scale diffusion models is the excessive memory consumption and training instability associated
1121 with Consistency Model (CM) based approaches. As shown in the top section of Tab. 5, baseline
1122 methods such as VSD, DMD, and SiD fail to run in the “raw” full-parameter setting due to Out-Of-
1123 Memory (OOM) errors, forcing them to rely on low-rank approximations (LoRA, $r = 64$) to fit within
1124 memory constraints. In contrast, RCGM demonstrates superior memory efficiency and stability,
1125 successfully enabling **full-parameter training** on the 20B parameter model. This result underscores
1126 the robustness of our method, overcoming the well-known instability issues often plaguing CM-series
1127 methods in high-parameter regimes.

1128 **Impact of Higher-Order Trajectory Approximation.** We observe a clear performance correlation
1129 with the approximation order N . While the first-order variant ($N = 1$) provides a baseline acceleration,
1130 increasing the order to $N = 2$ yields a substantial performance leap. Specifically, RCGM
1131 ($N = 2$) significantly outperforms the first-order counterpart across all metrics. For instance, at
1132 NFE=2, the second-order model achieves a GenEval score of 0.78 compared to 0.71 for $N = 1$.
1133 Furthermore, the performance of the second-order model scales effectively with inference steps,
1134 reaching a GenEval score of 0.89 at NFE=32. Extending training to 5,000 steps (*Longer Training*)

1134 further improves the one-step generation quality, raising the GenEval score from 0.55 to 0.58 for the
 1135 $N = 2$ configuration.

1136 **Orthogonality with Adversarial Objectives.** Finally, our method is highly compatible with ad-
 1137 versarial training techniques. We integrate a DMD-like adversarial loss (specifically excluding the
 1138 regression loss component) to further refine the generation quality. As evidenced in the bottom
 1139 section of Tab. 5, the addition of the adversarial loss significantly boosts performance across all
 1140 orders, particularly in the one-step regime. For the $N = 2$ setting, adding the adversarial loss
 1141 increases the 1-step GenEval score from 0.55 to 0.83, surpassing the strongest LoRA-based baselines
 1142 (e.g., DMD-LoRA at 0.81). This demonstrates that RCGM provides a robust consistency backbone
 1143 that can be effectively combined with distribution-matching objectives for SOTA performance.

1155 **Figure 4: Visualization of image generation using a collapsed CM (Song et al., 2023) on Qwen-Image-20B**
 1156 **(2,000 training steps).** Columns represent varying Numbers of Function Evaluations (NFEs) ranging from 0 to
 1157 20 (left to right), while rows correspond to three distinct prompts.

1158 **Figure 5: Visualization of image generation using a collapsed CM (Song et al., 2023) on Qwen-Image-20B**
 1159 **(4,000 training steps).** The layout configuration (NFEs and prompts) is identical to Fig. 4.

1160 E THEORETICAL ANALYSIS

1161 E.1 MAIN RESULTS

1162 E.1.1 A RECURSIVE LEARNING PERSPECTIVE OF CONSISTENCY MODELS

1163 The consistency model training objective enforces self-consistency along the sampling trajectory.
 1164 Given the parameterization $\mathbf{f}^{\mathbf{x}}(\mathbf{F}_t, \mathbf{x}_t, t) := \frac{\alpha(t) \cdot \mathbf{F}_t - \hat{\alpha}(t) \cdot \mathbf{x}_t}{\alpha(t) \cdot \hat{\gamma}(t) - \hat{\alpha}(t) \cdot \gamma(t)}$, the objective is formulated as:

$$1165 \mathbb{E}_{\mathbf{x}_t, t} [d(\mathbf{f}^{\mathbf{x}}(\mathbf{F}_t, \mathbf{x}_t, t), \text{stopgrad}(\mathbf{f}^{\mathbf{x}}(\mathbf{F}_{t-\Delta t}, \mathbf{x}_{t-\Delta t}, t - \Delta t)))].$$

1166 We focus on the specific case of flow matching (Lipman et al., 2022), where $\alpha(t) = t$, $\gamma(t) = 1 - t$,
 1167 $\hat{\alpha}(t) = 1$, and $\hat{\gamma}(t) = -1$.

1168 Under these conditions, the training loss $\mathcal{L}_{\text{CM}}(\boldsymbol{\theta})$ simplifies to:

$$1169 \mathcal{L}_{\text{CM}}(\boldsymbol{\theta}) = d(t \cdot \mathbf{F}_{\boldsymbol{\theta}^-}(\mathbf{x}_t) - \mathbf{x}_t, (t - \Delta t) \cdot \mathbf{F}_{\boldsymbol{\theta}^-}(\mathbf{x}_{t-\Delta t}) - \mathbf{x}_{t-\Delta t}). \quad (11)$$

1170 This objective minimizes the distance between the current model prediction and the target prediction
 1171 derived from the preceding time step.

1188 We can express the ℓ -2 loss explicitly:
 1189

$$\mathcal{L}_{\text{CM}}(\boldsymbol{\theta}) = \|t \cdot \mathbf{F}_{\boldsymbol{\theta}^-}(\mathbf{x}_t) - \mathbf{x}_t - (t - \Delta t) \cdot \mathbf{F}_{\boldsymbol{\theta}^-}(\mathbf{x}_{t-\Delta t}) + \mathbf{x}_{t-\Delta t}\|_2^2. \quad (12)$$

1190 To analyze the training dynamics, we consider the limit $\Delta t \rightarrow 0$ and apply a Taylor expansion, which
 1191 yields:
 1192

$$\mathcal{L}_{\text{CM}}(\boldsymbol{\theta}) = \left\| t \cdot \mathbf{F}_{\boldsymbol{\theta}^-}(\mathbf{x}_t) - (t - \Delta t) \cdot \mathbf{F}_{\boldsymbol{\theta}^-}(\mathbf{x}_{t-\Delta t}) - \frac{d\mathbf{x}_t}{dt} \cdot \Delta t \right\|_2^2. \quad (13)$$

1193 Minimizing this loss corresponds to the following update rule:
 1194

$$t \cdot \mathbf{F}_{\boldsymbol{\theta}^-}(\mathbf{x}_t) \leftarrow (t - \Delta t) \cdot \mathbf{F}_{\boldsymbol{\theta}^-}(\mathbf{x}_{t-\Delta t}) + \frac{d\mathbf{x}_t}{dt} \cdot \Delta t. \quad (14)$$

1195 By induction, the model learns the integrated velocity field:
 1196

$$t \cdot \mathbf{F}_{\boldsymbol{\theta}^-}(\mathbf{x}_t) \leftarrow \int_0^t \frac{d\mathbf{x}_\tau}{d\tau} d\tau = \mathbf{x}_t - \mathbf{x}_0. \quad (15)$$

1197 Let us define the prediction function as $\mathbf{f}(\mathbf{x}_t, 0) := \mathbf{x}_0 - \mathbf{x}_t$. Substituting this into (14), we obtain
 1198 the following recursive relationship:
 1199

$$\mathbf{f}(\mathbf{x}_t, 0) \leftarrow \mathbf{f}(\mathbf{x}_{t-\Delta t}, 0) - \frac{d\mathbf{x}_t}{dt} \cdot \Delta t. \quad (16)$$

1200 This result confirms that the consistency model training objective is equivalent to recursively learning
 1201 the velocity field of the underlying ODE.
 1202

E.2 ERROR BOUND ANALYSIS OF RECURSIVE LEARNING OBJECTIVE

1203 **Definition 1 (Discrete operator).** Let $g_t := \frac{dx_t}{dt}$ denote the true temporal derivative, $t = t_0 >$
 1204 $t_1 > \dots > t_N > t_{N+1} = 0$ be the time points, and $\Delta t = t_1 - t_0$ be the time step. We define the
 1205 discrete operator

$$A_\theta := \frac{1}{\Delta t} \left(f_\theta(x_t, t_{N+1}) - \sum_{i=1}^N f_{\theta^-}(x_{t_i}, t_{i+1}) \right), \quad (17)$$

1206 and the analogous operator with the ground-truth function f^* ,

$$A^* := \frac{1}{\Delta t} \left(f^*(x_t, t_{N+1}) - \sum_{i=1}^N f^*(x_{t_i}, t_{i+1}) \right). \quad (18)$$

1207 **Lemma 1 (Numerical integration error).** Let $f \in C^1([a, b])$, then we have:

$$\int_a^b f(x) dx = f(a)(b - a) + \frac{f'(\xi)}{2} (b - a)^2, \quad \text{for some } \xi \in (a, b) \quad (19)$$

1208 *Proof.* By the Taylor's theorem, we have:

$$f(x) = f(a) + f'(\xi)(x - a), \quad \text{for some } \xi \in (a, x) \quad (20)$$

1209 Therefore, we have:

$$\int_a^b f(x) dx = \int_a^b f(a) dx + \int_a^b f'(\xi)(x - a) dx \quad (21)$$

$$= f(a)(b - a) + \frac{f'(a)}{2} (b - a)^2 \quad (22)$$

$$= f(a)(b - a) + \frac{f'(\xi)}{2} (b - a)^2 \quad (23)$$

1210

□

1242
1243**Lemma 2 (Trunction error).** Let's assume that the trajectories $\mathbf{x}_t \in C^2[0, 1]$ and1244
1245
1246

$$f^*(x_r, t) = \int_r^t \frac{d\mathbf{x}_t}{dt} dt = \mathbf{x}_t - \mathbf{x}_r$$

1247

For $t = t_0 > t_1 > \dots > t_N > t_{N+1} = 0$, the following equality holds:1248
1249
1250

$$\left\| \frac{d\mathbf{x}_t}{dt} - A^* \right\|_2^2 \leq C_1 \cdot (t_0 - t_1)^2 \quad (24)$$

1251
1252

$$\text{where } C_1 = \sup_t \left\| \frac{1}{2} \frac{d^2 \mathbf{x}_t}{dt^2} \right\|_2^2.$$

1253
12541255
1256

Proof.

1257

$$\mathbf{x}_{t_{N+1}} - \mathbf{x}_{t_0} = \sum_{i=0}^N (\mathbf{x}_{t_{i+1}} - \mathbf{x}_{t_i}) = \sum_{i=0}^N \int_{t_i}^{t_{i+1}} \frac{d\mathbf{x}_t}{dt} dt = \sum_{i=0}^N f^*(\mathbf{x}_{t_i}, t_{i+1}) \quad (25)$$

1260

$$= f^*(x_{t_0}, t_1) + \sum_{i=1}^N f^*(\mathbf{x}_{t_i}, t_{i+1}) = \int_{t_0}^{t_1} \frac{d\mathbf{x}_t}{dt} dt + \sum_{i=1}^N \int_{t_i}^{t_{i+1}} \frac{d\mathbf{x}_t}{dt} dt \quad (26)$$

1263

$$= \frac{d\mathbf{x}_t}{dt} \Big|_{t=t_0} (t_1 - t_0) + \frac{1}{2} \frac{d^2 \mathbf{x}_t}{dt^2} \Big|_{t=\xi} (t_1 - t_0)^2 \quad (27)$$

1264
1265

$$+ \sum_{i=1}^N \int_{t_i}^{t_{i+1}} \frac{d\mathbf{x}_t}{dt} dt, \quad \text{for some } \xi \in (t_1, t_0) \quad (28)$$

1266
1267

$$= \frac{d\mathbf{x}_t}{dt} \Big|_{t=t_0} (t_1 - t_0) + \frac{1}{2} \frac{d^2 \mathbf{x}_t}{dt^2} \Big|_{t=\xi} (t_1 - t_0)^2 + \sum_{i=1}^N \int_{t_i}^{t_{i+1}} \frac{d\mathbf{x}_t}{dt} dt \quad (29)$$

1268

$$\frac{d\mathbf{x}_t}{dt} \Big|_{t=t_0} = \frac{1}{t_1 - t_0} \left[(\mathbf{x}_{t_{N+1}} - \mathbf{x}_{t_0}) - \sum_{i=1}^N f^*(\mathbf{x}_{t_i}, t_{i+1}) \right] - \frac{1}{2} \frac{d^2 \mathbf{x}_t}{dt^2} \Big|_{t=\xi} (t_1 - t_0) \quad (30)$$

1274

$$= \frac{1}{t_1 - t_0} \left[f^*(\mathbf{x}_{t_0}, t_{N+1}) - \sum_{i=1}^N f^*(\mathbf{x}_{t_i}, t_{i+1}) \right] - \frac{1}{2} \frac{d^2 \mathbf{x}_t}{dt^2} \Big|_{t=\xi} (t_1 - t_0) \quad (31)$$

1275

Therefore,

1276

$$\frac{d\mathbf{x}_t}{dt} \Big|_{t=t_0} - A^* = -\frac{1}{2} \frac{d^2 \mathbf{x}_t}{dt^2} \Big|_{t=\xi} (t_1 - t_0)$$

1277

□

1278

1279

1280

1281

1282

1283

1284

1285

1286

Lemma 3 (Approximation error). Define the approximation error as:

1287

$$\varepsilon_{t_i, t_j} = f^*(x_{t_i}, t_j) - f_\theta(x_{t_i}, t_j)$$

1288

and assume that the approximation error is uniformly bounded by ε , i.e.,

1289

1290

1291

1292

1293

1294

1295

$$\sup_{x, t} \|f^*(x, t) - f_\theta(x, t)\|_2^2 \leq \varepsilon^2$$

Then we have:

$$\|A^* - A_\theta\|_2^2 \leq \frac{(N+1)^2}{(\Delta t)^2} \cdot \varepsilon^2$$

1296 *Proof.*

1297

1298
$$\|A^* - A_\theta\|_2^2 \quad (32)$$

1299

1300
$$= \left\| \frac{1}{\Delta t} \left([f^*(x_t, t_{N+1}) - f_\theta(x_t, t_{N+1})] - \sum_{i=1}^N [f^*(x_{t_i}, t_{i+1}) - f_{\theta^-}(x_{t_i}, t_{i+1})] \right) \right\|_2^2 \quad (33)$$

1301

1302
$$= \frac{1}{(\Delta t)^2} \left\| [f^*(x_t, t_{N+1}) - f_\theta(x_t, t_{N+1})] - \sum_{i=1}^N [f^*(x_{t_i}, t_{i+1}) - f_{\theta^-}(x_{t_i}, t_{i+1})] \right\|_2^2 \quad (34)$$

1303

1304
$$= \frac{1}{(\Delta t)^2} \left\| \varepsilon_{t_0, t_{N+1}} - \sum_{i=1}^N \varepsilon_{t_i, t_{i+1}} \right\|_2^2 \quad (35)$$

1305

1306
$$\leq \frac{N+1}{(\Delta t)^2} \left(\left\| \varepsilon_{t_0, t_{N+1}} \right\|_2^2 + \sum_{i=1}^N \left\| \varepsilon_{t_i, t_{i+1}} \right\|_2^2 \right) \quad (\text{By Cauchy-Schwarz inequality})$$

1307

1308
$$\leq \frac{(N+1)^2}{(\Delta t)^2} \cdot \varepsilon^2 \quad (36)$$

1309

1310

1311

1312

1313

1314

1315

1316

1317 **Theorem 1 (Error bound).** Let's assume that the trajectory $\mathbf{x}_t \in C^2[0, 1]$,

1318

1319

1320
$$f^*(x_r, t) = \int_r^t \frac{d\mathbf{x}_t}{dt} dt = \mathbf{x}_t - \mathbf{x}_r$$

1321

1322

1323

1324

1325 and the approximation error is uniformly bounded by ε , i.e.,

1326

1327

1328
$$\sup_{x, t} \|f^*(x, t) - f_\theta(x, t)\|_2^2 \leq \varepsilon^2$$

1329

1330

1331

1332 For $t = t_0 > t_1 > \dots > t_N > t_{N+1} = 0$, the following inequality holds:

1333

1334

1335

1336

1337

1338

1339

1340

1341
$$\mathbb{E}_{\mathbf{x}_0, \mathbf{z}, \{t_i\}_{i=0}^{N+1}} \left[\left\| \frac{d\mathbf{x}_t}{dt} - A_\theta \right\|_2^2 \right] \leq \mathbb{E}_{\mathbf{x}_0, \mathbf{z}, \{t_i\}_{i=0}^{N+1}} \left[2C_1 \cdot (t_0 - t_1)^2 + \frac{2(N+1)^2}{(t_0 - t_1)^2} \cdot \varepsilon^2 \right] \quad (37)$$

1342

1343

1344

1345

1346

1347

1348

1349

1350 where $C_1 = \sup_t \left\| \frac{1}{2} \frac{d^2 \mathbf{x}_t}{dt^2} \right\|_2^2$, and if $t \in \mathcal{U}[\delta, 1]$, then the upper bound can attain the minimum value when setting $N+1 = \lfloor \sqrt{\frac{C_1 \cdot \delta \cdot (1+\delta+\delta^2)}{6 \cdot \varepsilon^2}} \rfloor$.

1351 *Proof.* By [Lem. 2](#) and [Lem. 3](#), we have:

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

<div data-bbox="1

1350 Let's consider $t \sim U(\delta, 1)$, then we have:
 1351

$$1352 \mathbb{E}[t^2] = \int_{\delta}^1 t^2 \cdot \frac{1}{1-\delta} dt = \frac{1}{3(1-\delta)} \cdot (1-\delta^3) = \frac{1}{3}(1+\delta+\delta^2) \quad (42)$$

$$1353 \mathbb{E}\left[\frac{1}{t^2}\right] = \int_{\delta}^1 \frac{1}{t^2} \cdot \frac{1}{1-\delta} dt = \frac{1}{1-\delta} \cdot \left(-1 + \frac{1}{\delta}\right) = \frac{1}{1-\delta} \cdot \left(\frac{1}{\delta} - 1\right) = \frac{1}{\delta} \quad (43)$$

1354
 1355
 1356
 1357 Therefore, the equation (38) becomes:

$$1358 \mathbb{E}_t \left[2C_1 \cdot \frac{t^2}{(N+1)^2} + \frac{2(N+1)^4}{t^2} \cdot \varepsilon^2 \right] \quad (44)$$

$$1359 = 2C_1 \cdot \frac{1+\delta+\delta^2}{3(N+1)^2} + \frac{2(N+1)^4}{\delta} \cdot \varepsilon^2 \quad (45)$$

$$1360 = C_1 \cdot \frac{1+\delta+\delta^2}{3(N+1)^2} + C_1 \cdot \frac{1+\delta+\delta^2}{3(N+1)^2} + \frac{2(N+1)^4}{\delta} \cdot \varepsilon^2 \quad (46)$$

$$1361 \geq 3 \cdot \left(C_1 \cdot \frac{1+\delta+\delta^2}{3(N+1)^2} \cdot C_1 \cdot \frac{1+\delta+\delta^2}{3(N+1)^2} \cdot \frac{2(N+1)^4}{\delta} \cdot \varepsilon^2 \right)^{\frac{1}{3}} \quad (47)$$

$$1362 = 3 \cdot \left(C_1^2 \cdot \frac{2(1+\delta+\delta^2)^2}{9\delta} \cdot \varepsilon^2 \right)^{\frac{1}{3}} \quad (48)$$

1363
 1364
 1365
 1366
 1367
 1368
 1369 The equality holds when $C_1 \cdot \frac{1+\delta+\delta^2}{3(N+1)^2} = C_1 \cdot \frac{1+\delta+\delta^2}{3(N+1)^2} = \frac{2(N+1)^4}{\delta} \cdot \varepsilon^2$, i.e.

$$1370 (N+1)^6 = \frac{C_1 \cdot \delta \cdot (1+\delta+\delta^2)}{6 \cdot \varepsilon^2} \quad (49)$$

□

1376
 1377 **Remark 1 .** *Thm. 1 shows that the error bound of the recursive learning objective has a minimum
 1378 value, rather than negatively related to N .*

1379
 1380 **Corollary 1 (Relationship between ε and N) .** *Under the same assumptions as Thm. 1, if the
 1381 upper bound of the loss*

$$1382 \mathcal{L}(\theta) \leq \mathbb{E}_{\mathbf{x}_0, \mathbf{z}, \{t_i\}_{i=0}^{N+1}} \left[2C_1(t_0 - t_1)^2 + \frac{2(N+1)^2}{(t_0 - t_1)^2} \varepsilon^2 \right]$$

1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1385 is minimized with respect to N , then the uniform approximation error ε and the number of steps
 1386 N satisfy the relation

$$\varepsilon \approx \sqrt{\frac{C_1 \delta (1+\delta+\delta^2)}{6(N+1)^6}},$$

1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1390 This shows that, for a given number of steps N , the uniform approximation error ε scales roughly
 1391 as $\varepsilon \sim (N+1)^{-3}$.