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Abstract

We consider the classical problem of decision-
making using panel data, in which a decision-
maker gets noisy, repeated measurements of
multiple units (or agents). We consider a setup
where there is a pre-intervention period, when
the principal observes the outcomes of each unit,
after which the principal uses these observations
to assign a treatment to each unit. Unlike this
classical setting, we permit the units generating
the panel data to be strategic, i.e. units may
modify their pre-intervention outcomes in order
to receive a more desirable intervention. The
principal’s goal is to design a strategyproof
intervention policy, i.e. a policy that assigns
units to their correct interventions despite
their potential strategizing. We first identify a
necessary and sufficient condition under which
a strategyproof intervention policy exists, and
provide a strategyproof mechanism with a simple
closed form when one does exist. When there are
two interventions, we establish that there always
exists a strategyproof mechanism, and provide
an algorithm for learning such a mechanism.
For three or more interventions, we provide an
algorithm for learning a strategyproof mechanism
if there exists a sufficiently large gap in the prin-
cipal’s rewards between different interventions.
Finally, we empirically evaluate our model using
real-world panel data collected from product
sales over 18 months. We find that our methods
compare favorably to baselines which do not take
strategic interactions into consideration, even in
the presence of model misspecification.
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1. Introduction
In panel data (or longitudinal data) settings, one observes
repeated, noisy, measurements of a collection of units over
a period of time, during which the units undergo different
interventions. For example, units can be individuals, com-
panies, or geographic locations, and interventions can repre-
sent discounts, health therapies, or tax regulations. This is a
ubiquitous way to collect data, and, as a result, the analysis
of panel data has a long history in econometrics and statis-
tics. A common goal in the literature is to analyze how a
principal (e.g., business platform, regulatory agency) can do
“counterfactual inference”, i.e., estimate what will happen to
a unit if it undergoes a variety of possible interventions. The
ultimate goal of such counterfactual inference is to enable
data-driven decision-making, where one does not just esti-
mate statistical parameters of interest, but actually uses data
to make better decisions. In medical domains, for example,
the goal typically is not just estimating health outcomes for
patients under different health therapies, but also a policy
that selects appropriate therapies for new patients. How-
ever, the leap from counterfactual inference to data-driven
decision-making comes with additional challenges: namely,
when units know that they will be assigned disparate inter-
ventions based on their reported data, they have incentives
to strategize with their reports. Such strategic interactions
in panel data settings are observed in practice. For exam-
ple, Caro et al. (2010) observe that Zara store managers
strategically misreported store inventory information to
higher-ups in order to maximize sales at their local branch.

A running example we will use throughout this paper is
that of an e-commerce platform that wishes to give one of
several possible discounts to a new user to maximize some
future metric of interest, say, engagement levels. Suppose
the company uses historical data to build a model that
estimates the “counterfactual” trajectory of engagement
levels of a new user under different discount policies, based
on their observed trajectory of engagement levels thus far. If
a user knew this were the case, then there is a clear incentive
for them to strategically modify their engagement levels
to receive a larger discount. Such strategic manipulations
in response to data-driven decision-making have been
observed in other domains such as lending (Homonoff et al.,
2021) and search engine optimization (Davis, 2006). In
this paper, we focus on strategyproof intervention policies,
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i.e., policies that assign the correct treatment to the units
despite them strategically altering their data. Concretely,
we answer two questions:

Q1: Is it possible to design intervention policies that are
robust to strategic modifications by units to receive a more
favorable intervention? We call such policies strategyproof.

Q2: Can we leverage the structure typically present in panel
data to derive computationally-efficient algorithms for learn-
ing strategyproof intervention policies?

1.1. Main contributions

The first contribution of our work is a general framework for
assigning interventions in the presence of strategic units in
the panel data setting, which we describe in Section 2. We
build off of the synthetic interventions framework (Agarwal
et al., 2020a), which itself is a generalization of the canoni-
cal framework of synthetic controls (Abadie and Gardeaza-
bal, 2003; Abadie et al., 2010). In particular, we study the
setting in which there is a “pre-intervention” period when
all units are under control (i.e. no intervention), and then
a “post-intervention” period when each unit undergoes ex-
actly one of many possible interventions (including control).
Unlike previous work, we allow each unit to strategically
modify their pre-intervention outcomes within an “effort
budget” of size δ in order to receive a more desirable inter-
vention. Each unit has a “correct”/ground-truth intervention
that they should be assigned to, based on their unmodified,
true pre-intervention outcomes. We call this “correct” in-
tervention the unit’s type. The goal of the principal is to
deploy a (publicly known) policy π that is strategyproof,
i.e., assigns the “correct” intervention to all units, despite
the fact that they may have strategically modified their pre-
intervention outcomes.

Given that units know the principal’s policy π and they
are allowed to best-respond with altered pre-intervention
outcomes that belong anywhere within a δ-ball of their true
pre-intervention outcomes, it may seem like Q1 has a neg-
ative answer. However, in Section 3, we derive a necessary
and sufficient condition for a strategyproof intervention
policy to exist. On a technical level, in order to obtain this
full characterization, we translate our problem from the
primal space (i.e., the principal’s policy space to the dual
one (i.e., the space of the units’ actions), and derive prop-
erties that units of the same type must share. We show that
our necessary and sufficient condition for a strategyproof
intervention policy to exist is satisfied when there are two
interventions (Theorem 3.4), but it is in general not satisfied
for more than two (Theorem 3.5). Importantly, we also
show that assigning three or more interventions in a panel
data setting with strategic agents can be interpreted as an
instance of multiclass strategic classification. As such, our

impossibility result for strategyproof intervention policies
translates to a novel impossibility result for strategyproof
classification with three or more classes. To the best of our
knowledge, we are the first to both draw this connection
and discuss multiclass strategic classification altogether.1

Addressing Q2, we utilize the underlying low-rank structure
inherent in many panel data settings to provide an algorithm
for learning a strategyproof intervention policy from his-
torical data when there is a single treatment and control
(Algorithm 1). The analysis of Algorithm 1 relies on two
steps: First, we show that its performance when making
decisions on strategic units is equivalent to the performance
of another algorithm which acts on non-strategic units. Sec-
ond, we show that the loss of this equivalent algorithm is
upper-bounded by the estimation error of the relationship be-
tween pre-intervention outcomes and rewards on historical
data (Theorem 4.2). We also provide analogous guarantees
for an extension to the setting with an arbitrary number of
treatments (Algorithm 2)—under an additional assumption
on the difference in rewards between the best and next-
best intervention for each unit type (Corollary 4.3). We
complement our theoretical results with experiments based
on panel data from product sales at several stores over the
course of 18 months. We find that the intervention policy
of Algorithm 1 outperforms a baseline policy that does not
take strategic interactions into account—even when the al-
gorithm’s estimate of the unit effort budget δ is misspecified.
See Appendix A for an overview of related work.

2. Strategic interactions in panel data settings
Notation Subscripts are used to index the unit and
time-step, superscripts are reserved for interventions. We
use i to index units, t time-steps, and d interventions. For
x ∈ N, we use the shorthand [[x]] := {1, 2, . . . , x} and
[[x]]0 := {0, 1, . . . , x− 1}. Finally, all proofs can be found
in the Appendix.

Decision making in panel data settings Consider a setting
in which the principal observes the outcomes of m units for
T time-steps, where y(d)i,t ∈ R is the outcome of unit i at time
t under intervention d. We assume that unit outcomes are
generated via a latent factor model, a popular assumption in
the panel data setting (e.g., references in Appendix A).

Assumption 2.1 (Latent Factor Model). The outcome for
unit i at time t under treatment d ∈ [[k]]0 is y(d)i,t = ⟨u(d)

t ,vi⟩,
where u

(d)
t ∈ Rs is a latent factor which depends only on

time t and intervention d, and vi ∈ Rs is a latent factor
which only depends on unit i. We assume |y(d)i,t | ≤ 1.2

1Our setting and results are incomparable to (Meir et al., 2012),
who consider agents which strategize with their reported labels,
rather than their features.

2Most work in panel data with latent factor models assumes
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Note that Assumption 2.1 does not require the principal to
know u

(d)
t or vi. We assume that the latent dimension s is

known to the principal for ease of analysis, although several
principled heuristics exist for estimating s in practice from
data (see, e.g. Section 2.2.1 in (Agarwal et al., 2020a) for
details).

Consider a pre-intervention period of T0 time-steps, for
which each unit is under the same intervention, i.e., under
control. After the pre-intervention period, the principal
assigns an intervention di ∈ [[k]]0 to each unit i ∈ [[m]].
W.l.o.g. we denote control by d = 0. Once assigned inter-
vention di, unit i remains under di for the remaining T −T0

time-steps. We use yi,pre := [y
(0)
i,1 , . . . , y

(0)
i,T0

]⊤ ∈ RT0 to re-
fer to the set of unit i’s pre-treatment observed outcomes un-
der control, and y

(d)
i,post := [y

(d)
i,T0+1, . . . , y

(d)
i,T ]

⊤ ∈ RT−T0

to refer to the set of unit i’s post-intervention potential out-
comes under intervention d. We denote the set of possible
pre-treatment outcomes by Ypre.

Definition 2.2 (Intervention Policy). An intervention policy
π : Ypre → [[k]]0 is a mapping from pre-treatment outcomes
to interventions.

For a given unit i, we denote the intervention assigned to
them by intervention policy π as dπi .Given an intervention
policy π, units may have an incentive to strategically mod-
ify their pre-treatment outcomes in order to receive a more
desirable intervention. In our e-commerce example, this
would correspond to users strategically modifying their en-
gagement levels for the pre-intervention period (e.g., by arti-
ficially reducing their time spent on the platform), to “trick”
the online marketplace into assigning them a higher discount
than the one which would maximize the marketplace’s rev-
enue in the post-intervention period. In particular, we study
a game between a principal and a population of units. The
principal moves first by commiting to an intervention policy.
Each unit then best-responds to the given intervention policy
by strategically modifying their pre-intervention outcomes
as follows:
Definition 2.3 (Strategic Responses to Intervention Policies).
Assume that interventions are ordered in increasing unit
preference (i.e., units prefer d to d′ for d > d′). Given an
intervention policy π : Ypre → [[k]]0, unit i best-responds
to π by modifying their pre-treatment outcomes as

ỹi,pre ∈ arg max
ŷi,pre∈Ypre

π(ŷi,pre) s.t. ∥ŷi,pre − yi,pre∥2 ≤ δ,

where δ ∈ R>0 is the unit effort budget and is known to the
principal. We assume that if a unit is indifferent between
two modifications, they chose the one which requires the
smallest effort investment.

y
(d)
i,t is a noisy measurement of the product of latent factors. We

consider such settings in Section 4, but present the simpler setup
here for ease of exposition.

By Definition 2.3, the goal of each unit is to obtain the
most desirable intervention possible when interventions
are assigned according to π, subject to the constraint that
their modification is bounded in ℓ2 norm by δ. Such budget
assumptions are common in the literature on algorithmic
decision making in the presence of strategic agents (e.g.,
(Chen et al., 2020; Kleinberg and Raghavan, 2020; Harris
et al., 2021b)), and are useful for modeling “hard constraints”
in a unit’s ability to manipulate. For example, in some
settings the manipulation of pre-treatment outcomes may
have some associated monetary cost, and units may have a
fixed budget which they cannot exceed. In other settings the
manipulation of pre-treatment outcomes may take time, and
the δ-ball represents the set of all possible pre-treatment
outcomes a unit could achieve in the amount of time in the
pre-treatment period. Given Definition 2.3, the goal of the
principal is to design an intervention policy to maximize
their reward in the presence of such strategic manipulations.
Definition 2.4. (Principal Reward) The principal’s reward
for unit i under intervention d is a weighted sum of unit
i’s outcomes in the post-treatment time period. Specifically,
r
(d)
i =

∑T
t=T0+1 ωt · y(d)i,t , where ωt ∈ R for t > T0 are

known to the principal.

We say that unit i is of type d if assigning them intervention
d maximizes the principal’s reward.
Definition 2.5 (Unit Type). Unit i is of type d if d ∈
argmaxd′∈[[k]]0 r

(d′)
i .

While in general the principal’s reward for a unit i may be a
function of all of unit i’s outcomes (not just those in the post-
intervention period), we only consider intervention policies
which intervene after a fixed pre-treatment time period (for
which all units are under control), in line with the synthetic
interventions and synthetic controls literature. Linear
rewards can capture many settings; e.g. in e-commerce, the
online marketplace may wish to maximize the total amount
of user engagement on the platform in the post-intervention
period (this corresponds to ωt = 1 for t > T0). As we show,
the principal’s reward for a given unit may be rewritten as
a function of that unit’s pre-treatment outcomes when an
additional linear span assumption is satisfied.
Assumption 2.6 (Linear Span Inclusion). We assume∑T

t=T0+1 ωt · u(d)
t ∈ span{u(0)

1 , . . . ,u
(0)
T0

}.

Assumption 2.6 can be viewed as a form of “causal trans-
portability” over time which allows the principal to learn
something about outcomes in the post-intervention time
period from the pre-intervention time period. Such assump-
tions are fairly common in the literature on learning from
panel data (e.g. Assumption 8 in (Agarwal et al., 2020a)).
Lemma 2.7 (Reward Reformulation). Under Assump-
tion 2.6, r(d)i may be rewritten as r

(d)
i = ⟨β(d),yi,pre⟩,

for some β(d) ∈ RT0 .
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Observe that any strategic modification by a unit in the pre-
intervention period does not change their latent factor v (or
therefore, their post-intervention outcomes). Given knowl-
edge of a unit’s latent factor, it would be trivial for the prin-
cipal to assign them the correct intervention. However, this
knowledge is usually not available; instead it must be esti-
mated from the unit’s (strategically modified) pre-treatment
behavior. Therefore, we are interested in characterizing
and learning intervention policies which assign the correct
intervention to each unit in the presence of strategic manipu-
lations. Borrowing language from the game theory literature,
we refer to such intervention policies as strategyproof.

Definition 2.8 (Strategyproof Intervention Policy). An
intervention policy π is strategyproof if π(ỹi,pre) =

argmaxd∈[[k]]0 r
(d)
i for every unit i, where ỹi,pre ∈ RT0

are unit i’s strategically-modified pre-treatment outcomes
according to Definition 2.3.

In Section 4, we focus on the problem of learning strat-
egyproof intervention policies from historical data which
has not been strategically modified, as is the case when,
e.g., interventions are assigned according to a randomized
control trial (since in such settings, units do not have an
incentive to strategize).

3. Characterizing strategyproof intervention
policies

To define the necessary and sufficient condition under which
a strategyproof intervention policy exists, we need to first
introduce the notion of a best-response ball.

Definition 3.1 (Best-Response Ball). The best-response ball
of a set of units U is the set of all pre-intervention outcomes
Ỹpre(U) such that ỹpre ∈ Ỹpre(U) if ∥ỹpre − yi,pre∥2 ≤
δ for any unit i ∈ U , where yi,pre ∈ Ypre denotes the
unmodified pre-intervention outcomes associated with unit i.

The best-response ball for an individual unit is its set of
feasible modifications according to Definition 2.3. The
best-response ball for a set of units is the union of the balls
of all units contained within the set. Equipped with this
definition, we are now ready to introduce our sufficient and
necessary condition, which we call separation of types.
Condition 3.2 (Separation of Types). For a given problem
instance, let U (d) denote the set of all units of type d
(recall Definition 2.5). Separation of types is satisfied if

∀d ∈ [[k]]0, ̸ ∃ i ∈ U (d) s.t. Ỹpre(i) ⊆
d−1⋃
d′=0

Ỹpre(U (d′)).

In other words, separation of types is satisfied if for all in-
terventions d ∈ [[k]]0, there does not exist any unit i of type
d whose best-response ball Ỹpre(i) is a complete subset of
the best-response balls of units with types less than d.

Figure 1: Left: The optimal policy in the non-strategic
setting assigns the control (intervention 0) to the units left
of the blue line and intervention 1 to the units to the right.
Right (Theorem 3.4): When units are strategic, the optimal
decision boundary is shifted by δ in the direction of the
decision boundary.

Theorem 3.3. Separation of types (Condition 3.2) is both
necessary and sufficient for a strategyproof intervention
policy (as defined in Definition 2.8) to exist.

Necessity follows from leveraging Definition 3.1 to show
that if Condition 3.2 does not hold, there will always be
at least one unit who can strategize to receive a better
intervention. We show sufficiency by giving a strategyproof
intervention policy if Condition 3.2 holds. We will revisit
the computational complexity of evaluating this policy
later in the section. The significance of Theorem 3.3
is not obvious a priori, as it is not immediately clear
if/when Condition 3.2 holds in our panel data setting. We
begin to address this question by showing that Condition 3.2
always holds in the important special case when there is
only a single treatment and control.
Theorem 3.4. If d ∈ {0, 1}, separation of types (Condi-
tion 3.2) always holds under Assumption 2.1 and Assump-
tion 2.6. Moreover, the following closed-form intervention
policy is strategyproof: Assign intervention di to unit i,
where

di =

{
1 if ⟨β(1) − β(0), ỹi,pre⟩ − δ∥β(1) − β(0)∥2 > 0

0 otherwise
(1)

See Figure 1 (left) for an example of such an intervention
policy. Intuitively, the idea of Theorem 3.4 is to shift the true
decision boundary in such a way to account for potential
manipulations. While this shift prevents units from “gaming”
the policy to receive the intervention when it is not in the
principal’s best interest, it may require some units who
should receive the intervention to strategize in order to do
so. Perhaps somewhat surprisingly, this line of reasoning
does not carry over to the setting where there are more than
two treatments.

Theorem 3.5. There exists an instance with three interven-
tions such that Condition 3.2 is not satisfied.

See Figure 2 (right) for a visualization of one such
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Figure 2: A setting with three interventions for which no
strategyproof intervention policy exists.

Algorithm 1 Learning Strategyproof Interventions with One
Treatment
Input: Trajectories {(yi,pre,y

(0)
i,post)}i∈N (0) ,

{(yi,pre,y
(1)
i,post)}i∈N (1)

Compute r
(di)
i =

∑T
t=T0+1 ωt · y(di)

i,t for i ∈ [[n]].

For d ∈ {0, 1}, use {(yi,pre, r
(d)
i )}i∈N (d) to estimate β(d)

as β̂
(d)

.
For i = n+ 1, . . . , n+m :
Assign intervention

dAi =

{
1 if ⟨β̂

(1)
− β̂

(0)
, ỹi,pre⟩ − δ∥β̂

(1)
− β̂

(0)
∥2 > 0

0 otherwise.

setting. At a high level, Condition 3.2 cannot hold
since the decision boundaries ⟨β(2) − β(0), ỹi,pre⟩ = 0

and ⟨β(1) − β(0), ỹi,pre⟩ = 0 must both be shifted by
δ in order to prevent some units from strategizing to
receive intervention 2. However, this prevents other
units who should receive intervention 2 from receiving
it, since the amount that they would need to modify their
pre-intervention outcomes under these shifts is strictly
greater than δ. We conclude this section by providing a
strategyproof intervention policy for an arbitrary number
of interventions whenever separation of types is satisfied.

Theorem 3.6. When Condition 3.2 is satisfied, the follow-
ing intervention policy is strategyproof and can be evalu-
ated in time polynomial in T0 and k under Assumption 2.1
and Assumption 2.6: Assign intervention di to unit i, where
di = min{d ∈ [[k]]0 : ỹi,pre ∈ Ỹpre(U (d))}.

Proof sketch. The form of the above intervention policy
follows from the proof of sufficiency in Theorem 3.3.
We show that membership to the set Ỹpre(U (d)) can be
checked by solving a (convex) quadratic program (QP) with
polynomial size, which implies that di can be computed
by solving at most k such QPs.

4. Learning strategyproof intervention policies
We now shift our focus from characterizing strategyproof
intervention policies to learning them from historical data.

While Theorem 3.6 provides a characterization of a strate-
gyproof intervention policy when one exists, deploying such
an intervention policy requires knowledge of the underlying
relationships between pre-treatment outcomes and principal
rewards, which may not be known a priori. Additionally, it
may be unreasonable to assume that the latent factor model
holds exactly, due to measurement error or randomness in
the outcomes of each unit.With this in mind, we overload
the notation of y(d)i,t and consider the following relaxation
of Assumption 2.1 throughout the sequel.
Assumption 4.1 (Latent Factor Model; revisited). Suppose
the outcome for unit i at time t under treatment d ∈ [[k]]0
takes the following factorized form:

E[y(d)
i,t ] = ⟨u(d)

t ,vi⟩ and y
(d)
i,t = E[y(d)

i,t ] + εi,t,

where u
(d)
t ∈ Rs and vi ∈ Rs are defined as in Assump-

tion 2.1, and εi,t is zero-mean sub-Gaussian random noise
with variance at most σ2. We assume that |E[y(d)i,t ]| ≤ 1.

Note that under Assumption 4.1, the reward reformulation
(Lemma 2.7) now holds in expectation. Inspired by the
linear form of the strategyproof intervention policy of The-
orem 3.4 for two interventions, we begin by deriving per-
formance guarantees for a “plug-in” version of this inter-
vention policy. Our algorithm proceeds as follows: Given
historical trajectories of the form {(yi,pre,y

(d)
i,post)}i∈N (d)

for each d ∈ {0, 1}, we can calculate the principal re-
ward for assigning intervention di to unit i as r

(di)
i :=∑T

t=T0+1 ωt ·y(di)
i,t for i ∈ [[n]], where N (d) denotes the set

of historical (non-strategic) units who received intervention
d. Given the (yi,pre, r

(d)
i ) pairs as training data, Algorithm 1

uses an error-in-variables regression method (e.g., principal
component regression (Jolliffe, 1982b; Bair et al., 2006))
to estimate β(0),β(1). The last step is to use the estimated
linear coefficients to construct a “plug-in” estimator of in-
tervention policy (1) to use when assigning interventions to
the m (strategic) out-of-sample units.

Theorem 4.2. Suppose d ∈ {0, 1}, dAi is the intervention
assigned to unit i by Algorithm 1, d∗i is the optimal inter-

vention to assign to unit i, and r̂
(d)
i := ⟨β̂

(d)
,yi,pre⟩ is the

estimated principal reward under intervention d. Then

1

m

∑
i∈[[m]]

(
E[r(d

A
n+i)

n+i ]− E[r(d
∗
n+i)

n+i ]

)2

≤ 4

m
max

d∈{0,1}

∑
i∈[[m]]

(
r̂
(d)
n+i − E[r(d)n+i]

)2
(2)

Theorem 4.2 shows that the difference in performance of Al-
gorithm 1 and a strategyproof intervention policy that makes
no mistakes can be bounded by the difference between the
actual and estimated rewards under each intervention. There-
fore, if β̂

(0)
, β̂

(1)
are good estimates β(0),β(1), Algorithm 1
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will perform well. In Appendix E, we give end-to-end perfor-
mance guarantees for Algorithm 2 when the principal uses
principal component regression (Jolliffe, 1982a) for estima-
tion. Since we are dealing with strategically manipulated
data, we are unable to apply prior results for learning from
panel data in a black-box way. Our key insight which en-
ables us to obtain performance guarantees for Algorithm 1 is
that its performance is matched by another intervention pol-
icy which makes decisions on units which are not strategic
(intervention policy 8 in the Appendix). Given this observa-
tion, the bound follows readily from algebraic manipulation.

Next we show that analogous performance guarantees
can be obtained for the extension of Algorithm 1 to the
setting where there are more than two interventions, when
there is a sufficiently large gap in the principal’s expected
rewards for each unit type. This property is natural in many
settings of interest; in our e-commerce running example,
it corresponds to the principal deriving very different
rewards from offering a discount that is not optimal for
each group.We now present performance guarantees
for Algorithm 2, which is an extension of Algorithm 1 to
settings with more than two interventions.
Corollary 4.3 (Informal; detailed version in Corollary E.4).
For α > 0, suppose the principal’s expected rewards satisfy
a sufficiently large reward gap g(α) (Assumption E.3).
Then,

1

m

∑
i∈[[m]]

(
E[r(d

A
n+i)

n+i ]− E[r(d
∗
n+i)

n+i ]

)2

≤ k2

m
max
d∈[[k]]0

∑
i∈[[m]]

(
r̂
(d)
n+i − E[r(d)n+i]

)2

with probability at least 1− α, where dAn+i is the interven-
tion assigned to unit n + i by Algorithm 2, and d∗n+i and
r̂
(d)
n+i are defined as in Theorem 4.2.

Intuitively, a gap assumption is not needed in the single
treatment regime since a unit will only modify their pre-
treatment behavior in order to receive the (single) treatment.
This is in contrast to the multi-treatment setting, where a
unit’s best response may be in one of several directions
depending on which treatment(s) they are capable of
receiving under a particular intervention policy. Obtaining
performance guarantees for learning algorithms which do
not require a gap assumption appears challenging for the
general case, as the unit best response is not guaranteed to

converge smoothly as {β̂
(d)

}k−1
d=0 approaches {β(d)}k−1

d=0 .

5. Experiments
Setup Our initial dataset consists of weekly sales data from
three products at nine different stores over the course of
18 months. We consider two interventions: discount
(the product is on sale) and no discount (the product

Table 1: Normalized ∆ revenue and standard deviation over
10 runs for various estimates of δ (denoted by δ̂). δ̂ = 0
corresponds to the naive policy which does not consider
strategic interactions.

δ̂/δ Normalized ∆ Revenue Std

0 (Naive Policy) 0.237 0.110
0.2 0.527 0.126
0.5 0.831 0.033
1 (Algorithm 1) 0.989 0.011
2 0.943 0.014
5 0.846 0.024

is not on sale). We define a unit to be a (store, product)
pair which was under no discount for five consecutive
weeks, followed by either discount or no discount
for three consecutive weeks. Using these (unit, intervention,
outcome) tuples, we run a synthetic interventions (Agarwal
et al., 2020a) procedure to generate counterfactual outcomes
for all units under both discount and no discount,
and use the resulting trajectories as the ground-truth rewards
for each unit under both interventions. In order to train
our model, we randomly assign interventions to 50% of
the units (135 trajectories), and we use the remaining 50%
to test the performance. Under such a setting, strategic
behavior may arise when, for example, a local store
manager wishes to maximize the number of products sold
at their specific location, while the owner of the store chain
ultimately wants to maximize revenue. In this case, the
local store manager could conceivably have an incentive
to strategically misreport their weekly revenue during the
pre-treatment time period so that their products are given
a discount and their sales increase.

Results See Table 1 for a summary of our results. For an
intervention policy π, we are interested in the increase in
revenue from assigning interventions according to π, as op-
posed to the alternative. We normalize w.r.t. the optimal im-
provement in revenue, i.e. the best possible improvement if
the principal were able to observe both counterfactual trajec-
tories before assigning an intervention. Denote the interven-
tion assigned by policy π to unit n+ i as dπn+i and the inter-
vention not assigned by π to unit n+ i as ¬dπn+i. Formally,

Normalized ∆ Revenue :=

∑
i∈[[m]]

(
r
(dπn+i)

n+i − r
(¬dπn+i)

n+i

)
∑

i∈[[m]]

(
r
(d∗n+i)

n+i − r
(¬d∗n+i)

n+i

) .
Note that Normalized ∆ Revenue is at most 1. We
find that Algorithm 1 is able to achieve near-optimal
improvement in revenue, in contrast to the relatively poor
performance of the naive policy which does not consider
incentives. We also examine the performance of Algo-
rithm 1 when the principal’s estimate of δ is misspecified
as δ̂ (i.e. the principal’s estimate of the agent’s effort budget
is incorrect; the naive policy is denoted by δ̂ = 0), and find
that it degrades gracefully as a function of δ̂/δ.
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A. Related work
Strategic responses to algorithmic decision making A growing line of work at the intersection of computer science and
economics aims to model the effects of using algorithmic assessment tools in high-stakes decision-making settings (e.g.,
(Hardt et al., 2016; Dong et al., 2018; Chen et al., 2020; Kleinberg and Raghavan, 2020; Shavit et al., 2020; Munro, 2020;
Ahmadi et al., 2021; Bechavod et al., 2021; 2022; Ghalme et al., 2021; Harris et al., 2021a;b; 2022; Jagadeesan et al., 2021;
Levanon and Rosenfeld, 2021)). Hardt et al. (2016) introduce the problem of strategic classification, in which a “jury”
(principal) deploys a classifier, and a “contestant” (agent), best-responds by strategically modifying their observable features.
Subsequent work has studied online learning settings (Dong et al., 2018; Chen et al., 2020; Ahmadi et al., 2021), repeated
interactions (Harris et al., 2021b), social learning settings (Bechavod et al., 2022), and settings in which the model being
used to make decisions is (partially) unknown to the strategic agents (Ghalme et al., 2021; Harris et al., 2021a; Bechavod
et al., 2022). Perhaps the line of work most relevant to ours is that of (Shavit et al., 2020; Munro, 2020; Bechavod et al.,
2021; Harris et al., 2022), which aims to identify causal relationships between observable features and outcomes in the
presence of strategic responses to various linear models. In contrast, we study a panel data setting in which the principal
must assign one of several interventions to strategic units based on longitudinal data which may not have any underlying
linear structure. In Appendix B, we discuss the connections between our panel data setting and that of multiclass strategic
classification. In particular, intervening on strategic units which exhibit a latent factor model structure may be viewed
as a particular instance of multiclass classification where agents strategically modify their observable features. We are
the first to study such a multiclass strategic classification setting, to the best of our knowledge, and we find that new ideas
are required to handle the multiclass nature of the decision-making problem at hand.

Panel data methods in econometrics As stated earlier, this is a setting where one gets repeated measurements of multiple
heterogeneous units over time. Prominent frameworks for causal estimation in such settings include difference-in-differences
(Ashenfelter and Card, 1984; Bertrand et al., 2004; Angrist and Pischke, 2009) and synthetic controls (Abadie and
Gardeazabal, 2003; Abadie et al., 2010; Hsiao et al., 2012; Doudchenko and Imbens, 2016; Athey et al., 2021; Li and
Bell, 2017; Xu, 2017; Amjad et al., 2018; 2019; Li, 2018; Arkhangelsky et al., 2020; Bai and Ng, 2020; Ben-Michael et al.,
2020; Chan and Kwok, 2020; Chernozhukov et al., 2020; Fernández-Val et al., 2020; Agarwal et al., 2021b; 2020b). In
these frameworks, there is a notion of a “pre-intervention” period where all the units are under control (i.e, no intervention),
after which a subset of units receive one of many possible interventions. The goal of these works is to estimate what
would have happened to a unit that undergoes an intervention (i.e., a “treated” unit) if it had remained under control (i.e.,
no intervention), in the potential presence of unobserved confounding. That is, they estimate the counterfactual if a treated
unit remains under control for all T time-steps. A critical aspect that enables the methods above is the structure between
units and time under control. One elegant encoding of this structure is through a latent factor model (also known as an
interactive fixed effect model), (Chamberlain, 1984; Liang and Zeger, 1986; Arellano and Honore, 2000; Bai, 2003; 2009;
Pesaran, 2006; Moon and Weidner, 2015; 2017). In such models, it is posited that there exist low-dimensional latent unit
and time factors that capture unit- and time-specific heterogeneity, respectively, in the potential outcomes. Since the goal
in these works is to estimate outcomes under control, no structure is imposed on the potential outcomes under intervention.
In (Agarwal et al., 2020a; 2021a), the authors extend this latent factor model to incorporate latent factorization across
interventions as well, which allows for identification and estimation of counterfactual mean outcomes under intervention
rather than just under control. In essence, we extend these previous works to allow for the pre-intervention outcomes to
be strategically manipulated by units to receive a more favorable intervention. What we find noteworthy is that the latent
factor model typically assumed in these settings leads to strategyproof estimators that have a simple closed form.

B. Implications for multiclass strategic classification
We now highlight an impossibility result for multiclass strategic classification, which readily follows from Theorem 3.5
and may be of independent interest.

Background on strategic classification When subjugated to algorithmic decision making, decision subjects (agents)
have an incentive to strategically modify their input to the algorithm in order to receive a more desirable prediction. In
the context of machine learning models, such settings have been formalized in the literature under the name of strategic
classification (see, e.g., (Hardt et al., 2016; Dong et al., 2018; Chen et al., 2020)). In the (binary) strategic classification
setting, the principal commits to an assessment rule (usually a linear model), which maps from observable features to
binary predictions. Using knowledge of the assessment rule, strategic agents may modify their observable features in order
to maximize their chances of receiving a desirable classification, subject to some constraint on the amount of modification
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Protocol: multiclass strategic classification

1. Using historical data collected from n non-strategic agents, the principal learns and publicly commits to an
assessment policy π : Y → [[k]]0

2. m new agents arrive and strategically modify their observable features from yi to ỹi according to Assumption B.2,
for i ∈ {n+ 1, . . . , n+m}

3. Principal observes ỹi and assigns prediction di = π(ỹi) to agent i

4. Principal receives reward r
(di)
i = 1{di = d∗i }

Figure 3: Summary of the multiclass strategic classification setting we consider.

which is possible (e.g., a best-response analogous to our Definition 2.3). Given an agent’s modified features, the principal
uses their assessment rule to make a prediction about the agent. After the prediction is made, the principal receives some
feedback about how accurate the assessment rule’s prediction was. Under such a setting, the goal of the principal is to
deploy an assessment rule with high accuracy on strategic agents.

Using ideas similar to those used in Theorem 3.5, we show that an impossibility result holds for the multiclass generalization
of the (binary) strategic classification setting, where each strategic agent now belongs to one of k ≥ 3 classes (as opposed to
the binary setting, where k = 2). We consider a setting in which a principal interacts with m strategic agents. Each agent
i has a set of initial observable features3 yi ∈ Y . These features are privately observable by the agents and they are not
revealed to the principal. Instead, the agents report potentially altered features ỹi ∈ Y to the principal. Given observed
features ỹi, the principal makes a prediction di from some set of possible classes [[k]]0. We assume that each agent has some
true label d∗i , and the principal receives reward 1 if di = d∗i and reward 0 otherwise. In contrast to the principal’s reward, we
assume that each agent’s reward rAi (d) is a function of the prediction alone, i.e., rAi (d) = rA(d),∀i ∈ [[m]], and is known to
the principal.

The principal’s policy π : Y → [[k]]0 is a mapping from observable features to predictions. In particular, given a set of
training data consisting of {(yi, di)}ni=1 pairs from n non-strategic agents, the goal of the principal is to deploy a policy
which minimizes the out-of-sample error on m strategic units.

Definition B.1 (Out-of-sample error). The out-of-sample error of a policy π is defined as the empirical probability that π
makes an incorrect prediction on the m test agents. Formally,

1

m

n+m∑
i=n+1

1{di ̸= d∗i }

Given a principal policy π, it is natural for an agent to modify their observable features in a way which maximizes their
reward. Specifically, we assume that agent i strategically modifies their observable features based on the principal’s policy,
subject to a constraint on the amount of modification which is possible. In addition to being a common assumption in the
literature (similar assumptions are made in, e.g., (Chen et al., 2020; Kleinberg and Raghavan, 2020; Harris et al., 2021b)),
this budget constraint on the amount an agent can modify their features reflects the fact that agents have inherent constraints
on the amount of time and resources they can spend on modification.

Assumption B.2 (Agent Best Response). We assume that agent i best-responds to the principal’s policy π in order to
maximize their expected reward, subject to the constraint that their modified observable features ỹi are within an ℓ2 ball
of radius δ of their initial observable features yi. Formally, we assume that agent i solves the following optimization to
determine their modified observable features:

ỹi ∈ arg max
ŷi∈Y

rA(π(ŷi))

s.t. ∥ŷi − yi∥2 ≤ δ
3Our notation is different than the standard one adopted in the strategic classification literature in order to match our notation from the

rest of the paper.
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Furthermore, we assume that if an agent is indifferent between modifying their observable features and not modifying, they
choose not to modify. See Figure 3 for a summary of the setting we consider. We are now ready to present our main result
for multiclass strategic classification, which follows straightforwardly from Theorem 3.5.

Corollary B.3. Suppose Y = R2, k = 3, and rA(2) > rA(1) = rA(0). For the following labeling over Y , there exists
a distribution over agents such that no policy can achieve perfect classification if agents strategically modify according
to Assumption B.2.

d∗i =


0 if ⟨β10,yi⟩ < 0 and ⟨β20,yi⟩ < 0

1 if ⟨β21,yi⟩ < 0 and ⟨β10,yi⟩ ≥ 0

2 if ⟨β21,yi⟩ ≥ 0 and ⟨β20,yi⟩ ≥ 0

where β20 = [1 0.5]⊤, β21 = [−1 0.5]⊤, and β10 = [2 0]⊤.

C. Proofs from Section 2
Lemma C.1 (Reward Reformulation). If

∑T
t=T0+1 ωt · u(d)

t ∈ span({u(0)
1 , . . . ,u

(0)
T0

}), then r
(d)
i can be written as

r
(d)
i = ⟨β(d),yi,pre⟩, for some β(d) ∈ RT0 .

Proof. From Assumption 2.1 and Definition 2.4,

r
(d)
i =

〈
T∑

t=T0+1

ωt · u(d)
t ,vi

〉
.

Applying
∑T

t=T0+1 ωt · u(d)
t ∈ span({u(0)

1 , . . . ,u
(0)
T0

}),

r
(d)
i =

〈
T0∑
t=1

β
(d)
t · u(0)

t ,vi

〉

for some β(d) = [β
(d)
1 , . . . , β

(d)
T0

]⊤ ∈ RT0 .

D. Proofs from Section 3
Theorem D.1. Separation of types (Condition 3.2) is both necessary and sufficient for a strategyproof intervention policy
(as defined in Definition 2.8) to exist.

The following two lemmas cover the necessity and sufficiency cases and immediately imply Theorem 3.3. Intuitively,
separation of types is necessary because if it does not hold, then there are units with lower type that can always pretend to be
of higher type, thus leading the principal to intervene wrongly on some subset of the population.

Lemma D.2 (Necessity). Suppose separation of types (Condition 3.2) does not hold. Then there exists no mapping
π : Ypre → [[k]]0 which can intervene perfectly on all unit types.

Proof. Assume that separation of types (Condition 3.2) is violated for some unit i of type d. Since Ypre(i) ⊆⋃d−1
d′=0 Ypre(U (d′)), any valid modified pre-treatment behavior of unit i can also be obtained by some other unit

i′ ∈
⋃d−1

d′=0 U (d′) by Definition 3.1. Therefore, no policy which assigns interventions according to a unit’s observed
pre-treatment outcomes can perfectly intervene on both U (d) and {U (d′)}d−1

d′=1.

Next we show that separation of types is sufficient for a strategyproof intervention policy to exist, by providing a strategyproof
intervention policy whenever separation of types holds. Recall that strategyproofness is defined with respect to whether the
intervention assigned to a unit matches its type and not with respect to whether modification of the pre-treatment outcomes
takes place.

Lemma D.3 (Sufficiency). Suppose separation of types (Condition 3.2) holds. Then the following intervention policy
is strategyproof:
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Assign intervention di to unit i, where

di = min{d ∈ [[k]]0 : ỹi,pre ∈ Ypre(U (d))} (3)

Proof. No unit of type d′ < d can receive intervention d by construction, since their pre-treatment outcomes will be in
Ypre(U (d′)) by definition. Therefore, it suffices to show that any unit of type d can receive intervention d.

Consider a unit i of type d. Since Condition 3.2 holds, we know that there exists a vector of pre-treatment outcomes
ỹpre ∈ Ypre(i) such that ỹpre ̸∈

⋃d−1
d′=0 Ypre(U (d′)). Since Ypre(i) ⊆ Ypre(U (d)), unit i can receive intervention d by

strategically modifying their pre-treatment outcomes to ỹpre.

Theorem D.4. If d ∈ {0, 1}, separation of types (Condition 3.2) always holds under the latent factor model with linear
rewards. Moreover, the following closed-form intervention policy is strategyproof: Assign intervention di to unit i, where

di =

{
1 if ⟨β(1) − β(0), ỹi,pre⟩ − δ∥β(1) − β(0)∥2 > 0

0 o.w.
(4)

We call the hyperplane ⟨β(1) − β(0), ỹi,pre⟩ − δ∥β(1) − β(0)∥2 = 0 the decision boundary for interventions 0 and 1.

Proof. If d ∈ {0, 1},we can simplify Condition 3.2 to

̸ ∃ i ∈ U (1) s.t. Ypre(i) ⊆ Ypre(U (0)).

By the reward reformulation (Lemma 2.7), U (0) and U (1) are separated by a single hyperplane: ⟨β(1) − β(0), ỹpre⟩ = 0.
Therefore, by the definition of best-response ball (Definition 3.1), this simplified version of separation of types must
always hold, and a strategyproof intervention policy may be obtained by shifting the hyperplane ⟨β(1) − β(0), ỹpre⟩ = 0

by δ (the unit effort budget) in the direction of β(0) − β(1). Note that such an intervention policy is strategyproof since
there exists at least one valid modification of pre-treatment outcomes for all units of type 1 to receive treatment (namely,
ỹpre = ypre + δ · (β(1) − β(0))/∥β(1) − β(0)∥2), and there exists no valid modification of pre-treatment outcomes for any
unit of type 0 to receive treatment (due to Definition 2.3).

Theorem D.5. There exists an instance with three interventions such that Condition 3.2 is not satisfied.

Proof. Suppose d ∈ {0, 1, 2}, T0 = 2, and units prefer intervention 2 over interventions 1 and 0, of which they are
indifferent between. Suppose that

β(0) = [−1 0.5]⊤, β(1) = [1 0.5]⊤, β(2) = [0 1]⊤, and yi,pre = vi.

Consider the following set of unit types: Let

U (0) = {v : ⟨β(2) − β(0),v⟩ = −α, v[1] < 0}, U (1) = {v : ⟨β(2) − β(1),v⟩ = −α, v[1] > 0},

and v(2) = [0 ζ]⊤, where α, ζ > 0. Such a setting is possible, e.g. when u
(0)
1 = [1 0]⊤, u

(0)
2 = [0 1]⊤,∑T

t=T0+1 u
(0)
t = [−1 0.5]⊤,

∑T
t=T0+1 u

(1)
t = [1 0.5]⊤,

∑T
t=T0+1 u

(2)
t = [0 1]⊤, and ωT0+1 = ωT0+2 = · · · = ωT = 1.

Observe that a necessary condition for correctly intervening on units in U (0) is that the intervention policy should not
assign intervention d = 2 to any units with pre-treatment outcomes ypre such that ∥ypre − v∥2 ≤ δ, where v ∈ U (0). This
is because such v’s could best respond and get intervention 2 instead of their type, which is 0. An analogous necessary
condition holds for units in U (1). By Definition 3.1, any intervention policy which correctly intervenes on unit vi if
vi ∈ U (0) or vi ∈ U (1) must not assign intervention d = 2 if ỹi,pre is such that

⟨β(2) − β(1), ỹi,pre⟩ ∈ [−α− δ∥β(2) − β(1)∥2,−α+ δ∥β(2) − β(1)∥2]

or ⟨β(2) − β(0), ỹi,pre⟩ ∈ [−α− δ∥β(2) − β(0)∥2,−α+ δ∥β(2) − β(0)∥2].
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Algorithm 2 Learning Strategyproof Interventions under the Expected Reward Gap Assumption

Input: Trajectories {{(yi,pre,y
(d)
i,post)}i∈N (d)}k−1

d=0

Compute r
(di)
i =

∑T
t=T0+1 ωt · y(di)

i,t for i ∈ [[n]].

For d ∈ [[k]], use {(yi,pre, r
(d)
i )}i∈N (d) to estimate β(d) as β̂

(d)
.

For i = n+ 1, . . . , n+m :
Assign intervention dBi = d to unit i if

⟨β̂
(d)

− β̂
(d′)

, ỹi,pre⟩ − δ∥β̂
(d)

− β̂
(d′)

∥2 > 0 ∀d′ < d

and ⟨β̂
(d)

− β̂
(d′)

, ỹi,pre⟩+ δ∥β̂
(d)

− β̂
(d′)

∥2 ≥ 0 ∀d′ > d

However, if this condition is satisfied, it will be impossible to correctly intervene on unit vi if vi = v(2) and α, ζ are small
enough. To see this, note that in order for both

⟨β(2) − β(1), ỹi,pre⟩ > δ∥β(2) − β(1)∥2 − α

and ⟨β(2) − β(0), ỹi,pre⟩ > δ∥β(2) − β(0)∥2 − α

to hold,
δ∥β(2) − β(1)∥2 − α < (β(2) − β(1))[2](ζ + δ)

and δ∥β(2) − β(0)∥2 − α < (β(2) − β(0))[2](ζ + δ).

This implies that intervening perfectly on all units is not possible unless 1
2ζ + α > δ(

√
1.25− 0.5), which does not hold

for sufficiently small α, ζ. In other words, the condition on α, ζ implies that if the pre-intervention outcomes of units of
different types are sufficiently close, intervening perfectly on these units is generally not possible.

Theorem D.6. When Condition 3.2 is satisfied, the following intervention policy is strategyproof and can be evaluated in
polynomial time: Assign intervention di to unit i, where

di = min{d ∈ [[k]]0 : ỹi,pre ∈ Ỹpre(U (d))} (5)

It suffices to show that ỹi,pre ∈ Ỹpre(U (d)) may be checked in polynomial time.

Proposition D.7. In the latent factor model with linear rewards for the principal (Assumptions 2.1 and 2.4),
ỹpre ∈ Ypre(U (d)) if and only if OPT (d) ≤ δ, where OPT (d) is the solution to the following optimization:

OPT (d) := min
ŷpre

∥ŷpre − ỹpre∥2

s.t. ⟨β(d) − β(d′), ŷpre⟩ ≥ 0 for all d′ ∈ [[k]]0.
(6)

Proof. Observe that by using the reward reformulation (Lemma 2.7), the definition of a best-response ball (Definition 3.1)
may be rewritten as

ỹpre ∈ Ypre(U) if ∥ỹpre − ypre∥2 ≤ δ

for any ypre ∈ Ypre such that ⟨β(d) − β(d′),ypre⟩ ≥ 0 for all d′ ∈ [[k]]0.

Therefore, ỹpre ∈ Ypre(U) if and only if OPT (d) is at most δ.

E. Proofs from Section 4
Theorem E.1. Suppose d ∈ {0, 1}. Algorithm 1 achieves out-of-sample performance

1

m

n+m∑
i=n+1

(
E[r(d

A
i )

i ]− E[r(d
∗
i )

i ]
)2

≤ 4

m
max

d∈{0,1}

n+m∑
i=n+1

(
r̂
(d)
i − E[r(d)i ]

)2
(7)
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where dAi is the intervention assigned to unit i by Algorithm 1, d∗i is the optimal intervention to assign to unit i, and

r̂
(d)
i := ⟨β̂

(d)
,yi,pre⟩ is the estimated principal reward under intervention d.

The proof of Theorem 4.2 relies on the following proposition, which shows that the interventions assigned by the intervention
policy of Algorithm 1 on strategic units match the interventions assigned according to the following intervention policy on
units which are always truthful. We say that a unit is truthful if they do not modify their pre-intervention outcomes.

Lemma E.2. Consider the following intervention policy:

dBi =

{
1 if r̂

(1)
i − r̂

(0)
i > 0

0 otherwise,
(8)

where β̂
(0)

, β̂
(1)

are defined as in Algorithm 1. (Recall that r̂(d)i := ⟨β̂
(d)

,yi,pre⟩.) The intervention policy of Algorithm 1
assigns the same interventions to strategic units that intervention policy (8) assigns to truthful units.

Proof. The proof proceeds on a case-by-case basis. Fix a (strategic) unit i ∈ {n+ 1, . . . , n+m}.

Case 1: Suppose intervention policy (8) assigns intervention dBi = 1 to unit i. Since dBi = 1, ⟨β̂
(1)

− β̂
(0)

,yi,pre⟩ > 0. If
Algorithm 1 assigns intervention 1 to unit i without any modification to their pre-treatment outcome, then the claim holds
trivially. One valid modification is:

ỹi,pre = yi,pre + δ
β̂
(1)

− β̂
(0)∥∥∥∥β̂(1)

− β̂
(0)
∥∥∥∥
2

.

Supposing unit i modifies to ỹi,pre,

⟨β̂
(1)

− β̂
(0)

, ỹi,pre⟩ = ⟨β̂
(1)

− β̂
(0)

,yi,pre⟩+ δ

〈
β̂
(1)

− β̂
(0)

,
β̂
(1)

− β̂
(0)∥∥∥∥β̂(1)

− β̂
(0)
∥∥∥∥
2

〉
> δ∥β̂

(1)
− β̂

(0)
∥2.

Therefore, unit i can receive intervention dAi = 1 under the intervention policy of Algorithm 1.

Case 2: Suppose intervention policy (8) assigns intervention dBi = 0 to unit i, i.e., ⟨β̂
(1)

− β̂
(0)

,ypre⟩ ≤ 0. To receive

intervention dAi = 1 by the policy of Algorithm 1, it needs to be the case that ⟨β̂
(1)

− β̂
(0)

, ỹi,pre⟩ − δ∥β̂
(1)

− β̂
(0)

∥2 > 0.

However according to Definition 2.3, the most a unit can manipulate their pre-treatment outcomes by is δ, so

⟨β̂
(1)

− β̂
(0)

, ỹi,pre⟩ ≤

〈
β̂
(1)

− β̂
(0)

,yi,pre +
δ(β̂

(1)
− β̂

(0)
)

∥β̂
(1)

− β̂
(0)

∥2

〉
≤ δ∥β̂

(1)
− β̂

(0)
∥2,

where for the last inequality we have used the fact that ⟨β̂
(1)

− β̂
(0)

,ypre⟩ ≤ 0. Therefore, no valid strategic modification
to unit i’s pre-treatment outcomes exists for which the intervention policy of Algorithm 1 assigns intervention dAi = 1 to
unit i.

Since the performance of the intervention policy of Algorithm 1 on strategic units matches that of intervention policy (8) on
truthful units, we can analyze the performance of intervention policy (8) on truthful units without any loss of generality. The
analysis of the performance of intervention policy (8) on truthful units completes the proof of Theorem 4.2. If dAi = d∗i ,
then E[r(di)

i ]− E[r(d
∗
i )

i ] = 0. If dAi ̸= d∗i , we know that

E[r(d
∗
i )

i ]− |r̂(d
∗
i )

i − E[r(d
∗
i )

i ]| ≤ r̂
(d∗

i )
i ≤ r̂

(dA
i )

i ≤ E[r(d
A
i )

i ] + |r̂(d
A
i )

i − E[r(d
A
i )

i ]|.
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Therefore,
1

m

n+m∑
i=n+1

(
E[r(d

A
i )

i ]− E[r(d
∗
i )

i ]
)2

≤ 1

m

n+m∑
i=n+1

(
|r̂(d

A
i )

i − E[r(d
A
i )

i ]|+ |r̂(d
∗
i )

i − E[r(d
∗
i )

i ]|
)2

≤ 1

m

n+m∑
i=n+1

(
1∑

d=0

|r̂(d)i − E[r(d)i ]|

)2

=
1

m

n+m∑
i=n+1

(
1∑

d=0

(r̂
(d)
i − E[r(d)i ])2

+

k−1∑
d=0

1∑
d′=0,d′ ̸=d

|r̂(d)i − E[r(d)i ]||r̂(d
′)

i − E[r(d
′)

i ]|


≤ 4

m
max
d∈[[k]]0

n+m∑
i=n+1

(
r̂
(d)
i − E[r(d)i ]

)2
Assumption E.3 (Expected Reward Gap). Suppose that for each unit type d, β(d), β̂

(d)
∈ [−β̄, β̄]T0 for β̄ ∈ R+ and there

is a gap in the principal’s expected reward between assigning units their type and assigning them any other intervention.
Formally, for some α > 0 (specified in Corollary E.4) for each unit type d ∈ [[k]]0: ∀v ∈ V(d), E[r(d)v ]− E[r(d

′)
v ] > γ(d,d′)

for all d′ < d, where

γ(d,d′) := (
√
T0 + δ)(∥β(d) − β̂

(d)
∥2 + ∥β(d′) − β̂

(d′)
∥2) + δ∥β(d) − β(d′)∥2 + 6σβ̄

√
2T0 log(1/α),

and δ, σ are defined as in Definition 2.3 and Assumption 4.1 respectively.

The gap in Assumption E.3 depends on three terms: one which goes to zero as {β̂
(d)

}k−1
d=0 → {β(d)}k−1

d=0 , one which is
proportional to the maximum amount of modification possible in the pre-treatment period, and one which is proportional to
the amount of measurement noise. Note that under Assumption E.3, separation of types (Condition 3.2) holds by design (in
expectation). Intuitively, such a gap between unit rewards allows the principal to incentivize truthful unit behavior, as it is
possible to design an intervention policy such that no unit has an incentive to modify their pre-intervention outcomes. When
units are truthful, linear intervention policies are optimal due to Lemma 2.7.

Corollary E.4. Suppose the principal’s expected rewards satisfy the gap assumption (Assumption E.3). Then, for any
α > 0, with probability at least 1− α, Algorithm 2 achieves out-of-sample performance

1

m

n+m∑
i=n+1

(
E[r(d

A
i )

i ]− E[r(d
∗
i )

i ]
)2

≤ k2

m
max
d∈[[k]]0

n+m∑
i=n+1

(
r̂
(d)
i − E[r(d)i ]

)2
,

where dAi is the intervention assigned to unit i by Algorithm 2, d∗i is the optimal intervention to assign to (strategic) unit

i, and r̂
(d)
i := ⟨β̂

(d)
,yi,pre⟩ is the estimated principal reward under intervention d.

The proof of Corollary E.4 proceeds analogously to that of Theorem 4.2. We begin by showing that the interventions
assigned by the intervention policy of Algorithm 2 on strategic units match the interventions assigned according to the
intervention policy in the following lemma. However, unlike in the proof of Theorem 4.2, we also show that behaving
truthfully in the pre-intervention period is a (weakly) dominant strategy for each unit under Assumption E.3.

Lemma E.5. Consider the setting of Corollary E.4 and the following intervention policy:

Assign intervention dBi = d to unit i if

r̂
(d)
i − r̂

(d′)
i > 0 for all d′ < d and r̂

(d)
i − r̂

(d′)
i ≥ 0 for all d′ > d, (9)

where {β̂
(d)

}d∈[[k]]0 are defined as in Algorithm 2. For any α > 0, the intervention policy of Algorithm 2 assigns the same
interventions to strategic units that intervention policy (9) assigns to truthful units with probability at least 1− α.
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Proof. Suppose that the intervention policy of Algorithm 2 would assign intervention dAi = d to unit i if they were truthful.
Unit i cannot obtain any intervention d′ > d under the intervention policy of Algorithm 2, due to an argument analogous to
Case 2 in the proof of Lemma E.2.

Next we show that if ỹi,pre = yi,pre, the intervention policy of Algorithm 2 also assigns intervention d to unit i. Consider
d′ < d.

⟨β̂
(d)

− β̂
(d′)

, ỹi,pre⟩ − δ∥β̂
(d)

− β̂
(d′)

∥2 ≥ E[r(d)i ]− E[r(d
′)

i ]− 6σβ̄
√
2T0 log(1/α)

− (
√

T0 + δ)(∥β(d) − β̂
(d)

∥2 + ∥β(d′) − β̂
(d′)

∥2)

− δ∥β(d) − β(d′)∥2,

with probability at least 1−α, which follows from algebraic manipulation and a Hoeffding bound. Since the expected reward

gap is sufficiently large, ⟨β̂
(d)

− β̂
(d′)

, ỹi,pre⟩ − δ∥β̂
(d)

− β̂
(d′)

∥2 > 0 with probability at least 1− α if ỹi,pre = yi,pre.
Therefore, unit i can receive intervention d under the intervention policy of Algorithm 2 by behaving truthfully with
probability at least 1− α.

If dAi = d∗i , then E[r(di)
i ]− E[r(d

∗
i )

i ] = 0. If dAi ̸= d∗i , we know that

E[r(d
∗
i )

i ]− |r̂(d
∗
i )

i − E[r(d
∗
i )

i ]| ≤ r̂
(d∗

i )
i ≤ r̂

(dA
i )

i ≤ E[r(d
A
i )

i ] + |r̂(d
A
i )

i − E[r(d
A
i )

i ]|.

Therefore,
1

m

n+m∑
i=n+1

(
E[r(d

A
i )

i ]− E[r(d
∗
i )

i ]
)2

≤ 1

m

n+m∑
i=n+1

(
|r̂(d

A
i )

i − E[r(d
A
i )

i ]|+ |r̂(d
∗
i )

i − E[r(d
∗
i )

i ]|
)2

≤ 1

m

n+m∑
i=n+1

(
k−1∑
d=0

|r̂(d)i − E[r(d)i ]|

)2

=
1

m

n+m∑
i=n+1

(
k−1∑
d=0

(r̂
(d)
i − E[r(d)i ])2

+

k−1∑
d=0

k−1∑
d′=0,d′ ̸=d

|r̂(d)i − E[r(d)i ]||r̂(d
′)

i − E[r(d
′)

i ]|


≤ k2

m
max
d∈[[k]]0

n+m∑
i=n+1

(
r̂
(d)
i − E[r(d)i ]

)2
E.1. Application of PCR to obtain end-to-end guarantees

In order to leverage the out-of-sample guarantees for PCR, we make the following two assumptions on {E[Y (d)
pre ]}k−1

d=0 and
E[Y ′

pre] (as defined in Appendix F).

Assumption E.6 (Subspace Inclusion). The rowspace of E[Y ′
pre] is contained within that of E[Y (d)

pre ], for all d ∈ [[k]]0.

Assumption E.6 can be thought of as a sufficient condition for “causal transportability” from the n training units to the m

out-of-sample units. Next we impose a condition on the singular values of E[Y (0)
pre ] and E[Y (1)

pre ], although this assumption is
not strictly necessary for the PCR results of Agarwal et al. (2021b) to apply, as more general results may be obtained in
terms of a signal to noise ratio, albeit at the cost of generally worse rates.

Assumption E.7 (Balanced Spectra). For all d ∈ [[k]]0, the s non-zero singular values {s(d)l }rl=1 of E[Y (d)
pre ] satisfy

s
(d)
l = Θ(

√
n(d)T0/s) for l ∈ [[s]]. The s non-zero singular values {s′l}sl=1 of E[Y ′

pre] satisfy s′l = Θ(
√
mT0/s) for l ∈ [[s]].

We are now ready to state our formal result for the convergence rates of Algorithm 2 using PCR. An analogous bound may
be obtained for Algorithm 1.
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Corollary E.8. Consider β(d) ∈ rowspan(E[Y (d)
pre ]) for d ∈ [[k]]0 and the procedure of Algorithm 2, where {β̂

(d)
}k−1
d=0 are

given by PCR with p = s. Let ∥β(d)∥2 = Ω(1) and ∥β(d)∥1 = O(
√
T0) for all d ∈ [[k]]0. If Assumptions 4.1 (latent factor

model), E.3 (expected reward gap), E.6 (subspace inclusion), E.7 (balanced spectra) hold, then with probability at least
1−O(α+

∑k−1
d=0((n

(d) ∧m)T0)
−10),

1

m

n+m∑
i=n+1

(
E[r(d

A
i )

i ]− E[r(d
∗
i )

i ]
)2

≤ k2 max
d∈[[k]]0

Cnoises
3 log((n(d) ∧m)T0)

·

((
1 ∨ T0

m

n(d) ∧ T0
+

n(d) ∨ T0

(n(d) ∧ T0)2
+

1

m

)
∥β(d)∥21 +

( √
n(d)

n(d) ∧ T0

)
∥β(d)∥1

)

The proof of Corollary E.8 follows from applying Theorem F.1 to Corollary E.4.

F. Further Background on Principal Component Regression
Principal component regression We first describe the basics of PCR, using the notation of our setting. Let

Y (d)
pre := [y⊤

i,pre : i ∈ N (d)] ∈ Rn(d)×T0

and
Y ′
pre := [y⊤

n+i,pre : i ∈ [[m]]] ∈ Rm×T0 .

Denote the singular value decomposition of Y (d)
pre as

Y (d)
pre =

n(d)∧T0∑
l=1

s
(d)
l û

(d)
l (v̂

(d)
l )⊤,

where s
(d)
l ∈ R is the l-th singular value, û(d)

l ∈ Rn(d)

is the l-th left singular vector, and v̂
(d)
l ∈ RT0 is the l-th right

singular vector. Denote the vector of observed principal rewards under intervention d as

r(d) := [r
(d)
i : i ∈ N (d)]⊤ ∈ Rn(d)

.

For a given hyperparameter p ≤ n(d) ∧ T0, we can use PCR to estimate β(d) as

β̂
(d)

:=

(
p∑

l=1

1

s
(d)
l

v̂
(d)
l (û

(d)
l )⊤

)
r(d).

In order to perform out-of-sample prediction, PCR first de-noises Y ′
pre by computing

Ŷ ′
pre =

p∑
l=1

slûlv̂
⊤
l , where Y ′

pre =

m∧T0∑
l=1

slûlv̂
⊤
l .

Principal rewards are then estimated as r̂(d) := Ŷ ′
preβ̂

(d)
.

We now restate the out-of-sample prediction results for PCR of Agarwal et al. (2021b), using the notation of our setting.
See Table 2 for a summary of the key similarities/differences in our notation. Let snr(d) denote the “signal-to-noise” ratio of
E[Y (d)

pre ], defined as

snr(d) :=
s
(d)
s√

n(d) +
√
T0

,

where s
(d)
s is the smallest non-zero singular value of Y (d)

pre . Similarly, we can define the signal-to-noise ratio of E[Y ′
pre] as

snrtest :=
ss√

m+
√
T0

,

where ss is the smallest non-zero singular value of E[Y ′
pre].
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Table 2: A summary of the main notational differences between our setting and that of Agarwal et al. (2021b).

Notation of Agarwal et al. (2021b) Our Notation
Cnoise Cnoise

n n(d)

m m
r s
r′ s
ρ 1
p T0

β∗ β(d)

b T − T0

X E[Y (d)
pre ]

X ′ E[Y ′
pre]

Z Ypred
Z′ Y ′

pre

y E[r(d)]

Theorem F.1 (Agarwal et al. (2021b)). Let Assumption 2.1 and Assumption E.6 hold. Consider β(d) ∈ rowspan(E[Y (d)
pre ])

and PCR with p = r. Let (i) snr(d) ≥ Cnoise, (ii) ∥β(d)∥2 = Ω(1), (iii) ∥β(d)∥1 = O(
√
T0). Then with probability at least

1−O(1/((n(d) ∧m)T0)
10),

MSEtest :=
1

m

n+m∑
i=n+1

(
r̂
(d)
i − E[r(d)i ]

)2
≤ Cnoise log((n

(d) ∧m)T0)

·

(
s(1 ∨ T0

m )∥β(d)∥21
(snr(d))2

+
s(n(d) ∨ T0)∥β(d)∥21

(snr(d))4
+

s∥β(d)∥21
snr2test ∧m

+

√
n(d)∥β(d)∥1
(snr(d))2

)
,

where r̂
(d)
i := ⟨β̂

(d)
,yi,pre⟩ and Cnoise depends only on constants related to noise terms. Furthermore,

E[MSEtest] ≤

Cnoises log((n
(d) ∧m)T0)

(
1 ∨ T0

m

(snr(d))2
+

n(d) ∨ T0

(snr(d))4
+

1

snr2test ∧m

)
∥β(d)∥21 +

C(T − T0)
2

((n(d) ∧m)T0)10

for some C > 0.

Corollary F.2 (Agarwal et al. (2021b)). Let the setup of Theorem F.1 hold. Further, let Assumption E.7 hold. Then with
probability at least 1−O(1/((n(d) ∧m)T0)

10),

MSEtest ≤ Cnoises
3 log((n(d) ∧m)T0)

·

((
1 ∨ T0

m

n(d) ∧ T0
+

n(d) ∨ T0

(n(d) ∧ T0)2
+

1

m

)
∥β(d)∥21 +

( √
n(d)

n(d) ∧ T0

)
∥β(d)∥1

)
.

Further,
E[MSEtest] ≤ Cnoises

3 log((n(d) ∧m)T0)

·

(
1 ∨ T0

m

n(d) ∧ T0
+

n(d) ∨ T0

(n(d) ∧ T0)2
+

1

m

)
∥β(d)∥21 +

C(T − T0)
2

((n(d) ∧m)T0)10

G. Experiments
The dataset we use can be found at https://raw.githubusercontent.com/susanli2016/
Machine-Learning-with-Python/master/data/Sales_Product_Price_by_Store.csv.

We ran experiments on a 2020 MacBook Air with 16 GB of RAM.

https://raw.githubusercontent.com/susanli2016/Machine-Learning-with-Python/master/data/Sales_Product_Price_by_Store.csv
https://raw.githubusercontent.com/susanli2016/Machine-Learning-with-Python/master/data/Sales_Product_Price_by_Store.csv
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Figure 4: Visualization of the setting in Example H.1. If θ(1) and θ(2) are perfectly known to the principal, unit n+ 1 will
modify their pre-intervention outcome to receive intervention 1 (left of θ(1)). However if the principal’s estimate of θ(2) is
sufficiently inaccurate, unit n+ 1 may be able to modify their pre-intervention outcome to receive intervention 2 (right of
θ(2)).

H. Example from Section 4
To build intuition as to why such a gap may be necessary, consider the following example.

Example H.1. Consider the one-dimensional setting in Figure 4, where the unit can manipulate by δ in either direction.
Specifically, let Ypre ∈ R, d ∈ {0, 1, 2}, and let the optimal intervention policy4 be:

d∗i =


1 if ỹi,pre ≤ θ(1)

2 if ỹi,pre ≥ θ(2)

0 o.w.
(10)

for some θ(1) ∈ R, θ(2) ∈ R, and θ(1) < θ(2). Suppose the principal deploys the following “plug-in” estimate of
intervention policy (10):

dPi =


1 if ỹi,pre ≤ θ̂(1)

2 if ỹi,pre ≥ θ̂(2)

0 o.w.

for θ̂(1) ∈ R and θ̂(2) ∈ R. Moreover, suppose that the principal has perfect knowledge of θ(1) (i.e., θ̂(1) = θ(1)) and after
observing data from n non-strategic units, |θ̂(2)(n) − θ(2)| = c/n for some c > 0. Now consider a strategic unit n + 1
with yn+1,pre = y such that y − θ(1) < δ and θ(2) − y = δ + α, for some α > 0. If the principal had perfect knowledge of
θ(2), unit n+ 1’s best-response would be to modify their pre-treatment outcome to θ(1) and receive intervention 1. However,
given the expression for θ̂(2), we can write the best-response of unit n+ 1 as

ỹn+1,pre =

{
θ(1) if θ̂(2) = θ(2) + c

n

θ̂(2) = y + δ + α− c
n if θ̂(2) = θ(2) − c

n

as long as the number of non-strategic units n < c
α . Therefore under this setting, if the (n+1)-st unit has pre-intervention out-

come y, then their best-response may be highly discontinuous as long as n < c
α (recall that α can be chosen to be arbitrarily

small), despite the fact that θ(1) is perfectly known to the principal and θ̂(2) converges to θ(2) at the “fast” rate of O(1/n).

4We do not specify the principal’s reward function so as to simplify the exposition.
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