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ABSTRACT

Contrastive learning between different views of the data achieves outstanding suc-
cess in the field of self-supervised representation learning and the learned repre-
sentations are useful in various downstream tasks. Since all supervision informa-
tion for one view comes from the other view, contrastive learning tends to obtain
the minimal sufficient representation which contains the shared information and
eliminates the non-shared information between views. Considering the diversity
of the downstream tasks, it can not be guaranteed that all task-relevant informa-
tion is shared between views. Therefore, we assume the task-relevant information
that is not shared between views can not be ignored and theoretically prove that
the minimal sufficient representation in contrastive learning is not sufficient for
the downstream tasks, which causes performance degradation. This reveals a new
problem that the contrastive learning models have the risk of over-fitting to the
shared information between views. To alleviate this problem, we propose to in-
crease the mutual information between the representation and input as regulariza-
tion to approximately introduce more task-relevant information since we can not
utilize any downstream task information during training. Extensive experiments
verify the rationality of our analysis and the effectiveness of our method. It signif-
icantly improves the performance of several classic contrastive learning models in
downstream tasks.

1 INTRODUCTION

Recently, contrastive learning (Chen et al., 2020; Grill et al., 2020a) between different views of
the data achieves outstanding success in the field of self-supervised representation learning. The
learned representations are broadly useful for various downstream tasks in practice, such as clas-
sification and instance segmentation (He et al., 2020). In contrastive learning, the representation
that contains all shared information between views is defined as sufficient representation, while the
representation that contains only the shared and eliminates the non-shared information is defined
as minimal sufficient representation (Tian et al., 2020b; Tsai et al., 2021). Contrastive learning
maximizes the mutual information between the representations of different views, thereby obtaining
the sufficient representation. Furthermore, since all supervision information for one view comes
from the other view (Federici et al., 2020), the non-shared information is often ignored, so that the
minimal sufficient representation is approximately obtained.

Tian et al. (2020b) find that the optimal views for contrastive learning depend on the downstream
tasks. In other words, even if the given views are optimal for some downstream tasks, they may
not be suitable for other tasks because some task-relevant information is not shared between them.
This is intuitive since the downstream tasks are changeable and so as the required information. In
this work, we assume that the non-shared task-relevant information can not be ignored, and the-
oretically prove that the minimal sufficient representation contains less task-relevant information
than other sufficient representations and has an non-ignorable gap with the optimal representation,
which causes performance degradation. Concretely, we consider two types of the downstream task,
i.e., classification and regression tasks, and prove that the lowest achievable error of the minimal
sufficient representation is higher than other sufficient representations.

According to our analysis, when some task-relevant information is not shared between views, the
learned representations in contrastive learning are not sufficient for downstream tasks. We therefore
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find a new problem that the contrastive learning models have the risk of over-fitting to the shared
information between views. To this end, we need to introduce more non-shared task-relevant in-
formation to the representations. Since we can not utilize any downstream task information when
training the contrastive learning models, it is impossible to achieve this directly. As an alternative,
we propose an objective term which increases the mutual information between the representa-
tion and input to approximately introduce more task-relevant information. We provide extensive
empirical experiments to verify the rationality of our analysis and the effectiveness of our method.
Concretely, our method can effectively introduce more non-shared task-relevant information and
prevent the contrastive learning models from over-fitting to the shared information between views,
thereby improve performance. As an exploration, our method can also prevent the models from
over-fitting to the label information and get better transfer performance in supervised learning.

2 THEORETICAL ANALYSIS AND MODEL

In this section, we first introduce the contrastive learning framework and theoretically analyze the
disadvantages of minimal sufficient representation in contrastive learning, and then propose our
method to approximately introduce more task-related information to the representations.

2.1 CONTRASTIVE LEARNING

Contrastive learning (Hjelm et al., 2018; Chen et al., 2020) is a general framework for unsupervised
representation learning which maximizes the mutual information between the representations of two
random variables v1 and v2 with the joint distribution p(v1,v2)

max
f1,f2

I(z1, z2) (1)

where zi = fi(vi), i = 1, 2 are also random variables and fi, i = 1, 2 are encoding functions. In
practice, v1 and v2 are two views of the data x, such as local patches and the whole image (Hjelm
et al., 2018), different augmentations of the same image (Wu et al., 2018; Bachman et al., 2019;
He et al., 2020; Chen et al., 2020), different image channels (Tian et al., 2020a), or video and text
pairs (Sun et al., 2019; Miech et al., 2020). When v1 and v2 have the same marginal distributions
(p(v1) = p(v2)), the function f1 and f2 can be the same (f1 = f2).

In contrastive learning, the variable v2 provides supervision information for v1 and plays the same
role as the label y in the supervised learning, and vice versa (Federici et al., 2020). Similar to the
information bottleneck theory (Tishby & Zaslavsky, 2015; Achille & Soatto, 2018) in the supervised
learning, we can define the sufficient representation and minimal sufficient representation of v1 (or
v2) for v2 (or v1) in contrastive learning (Tian et al., 2020b; Tsai et al., 2021).

Definition 1. (Sufficient Representation in Contrastive Learning) The representation zsuf1 of v1 is
sufficient for v2 if and only if I(zsuf1 ,v2) = I(v1,v2).

The sufficient representation zsuf1 of v1 keeps all the information in v1 about v2. In other words,
zsuf1 contains all the shared information between v1 and v2, i.e., I(v1,v2|zsuf1 ) = 0. Symmetri-
cally, the sufficient representation zsuf2 of v2 for v1 satisfies I(v1, z

suf
2 ) = I(v1,v2).

Definition 2. (Minimal Sufficient Representation in Contrastive Learning) The sufficient represen-
tation zmin1 of v1 is minimal if and only if I(zmin1 ,v1) ≤ I(zsuf1 ,v1), ∀zsuf1 that is sufficient.

Among all sufficient representations, the minimal sufficient representation zmin1 contains the least
information about v1. Further, it is usually assumed that zmin1 only contains the shared information
between v1 and v2 and eliminates other non-shared information, i.e., I(zmin1 ,v1|v2) = 0. Note
that for a specific input instance, the representation can extract the patterns corresponding to its
information from this input to obtain the feature of the instance.

Applying the Data Processing Inequality (Cover & Thomas, 2006) to the Markov chain v1 → v2 →
z2 and z2 → v1 → z1, we have

I(v1,v2) ≥ I(v1, z2) ≥ I(z1, z2) (2)
i.e., I(v1,v2) is the upper bound of I(z1, z2). Considering that I(v1,v2) remains unchanged during
the optimization process, contrastive learning optimizes the functions f1 and f2 so that I(z1, z2)
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Figure 1: Information diagrams of different representations in contrastive learning. We consider the
situation where the non-shared task-relevant information I(v1, T |v2) cannot be ignored. Contrastive
learning makes the representations extracting the shared information between views to obtain the
sufficient representation which tends to be minimal. The minimal sufficient representation contains
less task-relevant information from the input than other sufficient representations.

approximates I(v1,v2). When these functions have enough capacity and are well learned based on
sufficient data, we can assume I(z1, z2) = I(v1,v2), which means the learned representations in
contrastive learning are sufficient and tend to be minimal since all supervision information comes
from the other view. Therefore, the shared information controls the properties of the representations.

The learned representations in contrastive learning are typically used in various downstream tasks,
so we introduce a random variable T to represent the information required for a downstream task
which can be classification, regression or clustering task. Tian et al. (2020b) find that the optimal
views for contrastive learning depend on the downstream tasks under the assumption of minimal
sufficient representation. This discovery is intuitive since various downstream tasks need different
information that is unknown during training and it is difficult for the given views to share all the
information required for these tasks. For example, when one view is a video stream and the other
view is an audio stream, the shared information is sufficient for identity recognition task, but not for
object tracking task. Some task-relevant information may not lie in the shared information between
views, i.e., I(v1, T |v2) can not be ignored. Eliminating non-shared information has the risk of
damaging the performance in the downstream tasks of the learned representations.

2.2 DISADVANTAGES OF MINIMAL SUFFICIENT REPRESENTATION

The minimal sufficient representation intuitively is not a good choice for downstream tasks, because
it completely eliminates the non-shared information between views which may be important for
some downstream tasks. We formalize this problem and theoretically prove that in contrastive learn-
ing, the minimal sufficient representation is expected to perform worse in downstream tasks than
other sufficient representations. All proofs for the below theorems are provided in Appendix A.

Considering the symmetry between v1 and v2, without loss of generality, we take v2 as the super-
vision signal for v1 and take v1 as the input of a task. It is generally believed that the more task-
relevant information contained in the presentations, the better performance can be obtained (Feder
& Merhav, 1994; Cover & Thomas, 2006). Therefore, we examine the task-relevant information
contained in the representations.
Theorem 1. (Task-Relevant Information in Representations) In contrastive learning, for a down-
stream task T , the minimal sufficient representation zmin1 contains less task-relevant information
from the input v1 than other sufficient representation zsuf1 , and I(zmin1 , T ) has a gap of I(v1, T |v2)
with the upper bound I(v1, T ). Formally, we have

I(v1, T ) = I(zmin1 , T ) + I(v1, T |v2) ≥ I(zsuf1 , T ) = I(zmin1 , T ) + I(zsuf1 , T |v2) ≥ I(zmin1 , T ) (3)

Theorem 1 indicates that zsuf1 may have better performance in task T than zmin1 because it contains
more task-relevant information. When non-shared task-relevant information I(v1, T |v2) is signifi-
cant, zmin1 has poor performance because it loses a lot of useful information. See Figure 1 for the
demonstration using information diagrams. To make this observation more concrete, we examine
two types of the downstream task: classification tasks and regression tasks, and provide theoretical
analysis on the generalization error of the representations.
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When the downstream task is a classification task and T is a categorical variable, we consider the
Bayes error rate (Fukunaga, 2013) which is the lowest achievable error for any classifier learned from
the representations. Concretely, let Pe be the Bayes error rate of arbitrary learned representation z1
and T̂ be the prediction for T based on z1, we have Pe = 1 − Ep(z1)[maxt∈T p(T̂ = t|z1)] and
0 ≤ Pe ≤ 1−1/|T | where |T | is the cardinality of T . According to the value range of Pe, we define
a threshold function Γ(x) = min{max{x, 0}, 1− 1/|T |} to prevent overflow.
Theorem 2. (Bayes Error Rate of Representations) For arbitrary learned representation z1, its
Bayes error rate Pe = Γ(P̄e) with

P̄e ≤ 1− exp[−(H(T )− I(z1, T |v2)− I(z1,v2, T ))] (4)

Specifically, for sufficient representation zsuf1 , its Bayes error rate P sufe = Γ(P̄ sufe ) with

P̄ sufe ≤ 1− exp[−(H(T )− I(zsuf1 , T |v2)− I(v1,v2, T ))] (5)

for minimal sufficient representation zmin1 , its Bayes error rate Pmine = Γ(P̄mine ) with

P̄mine ≤ 1− exp[−(H(T )− I(v1,v2, T ))] (6)

Since I(zsuf1 , T |v2) ≥ 0, Theorem 2 indicates for classification task T , the upper bound of Pmine

is larger than P sufe . In other words, zmin1 is expected to obtain a higher classification error rate in
the task T than zsuf1 . According to the Equation (5), considering that H(T ) and I(v1,v2, T ) are
not related to the representations, increasing I(zsuf1 , T |v2) can reduce the Bayes error rate in task
T . When I(zsuf1 , T |v2) = I(v1, T |v2), zsuf1 contains all the useful information for task T in v1.

When the downstream task is a regression task and T is a continuous variable, let T̃ be the prediction
for T based on arbitrary learned representation z1, we consider the smallest achievable expected
squared prediction error Re = minT̃ E[(T − T̃ (z1))2] = E[ε2] with ε(T, z1) = T − E[T |z1].
Theorem 3. (Minimum Expected Squared Prediction Error of Representations) For arbitrary
learned representation z1, when the conditional distribution p(ε|z1) is uniform, Laplacian or Gaus-
sian distribution, the minimum expected squared prediction error Re satisfies

Re = α · exp[2 · (H(T )− I(z1, T |v2)− I(z1,v2, T ))] (7)

Specifically, for sufficient representation zsuf1 , its minimum expected prediction error Rsufe satisfies

Rsufe = α · exp[2 · (H(T )− I(zsuf1 , T |v2)− I(v1,v2, T ))] (8)

for minimal sufficient representation zmin1 , its minimum expected prediction error Rmine satisfies

Rmine = α · exp[2 · (H(T )− I(v1,v2, T ))] (9)

where the constant coefficient α depends on the conditional distribution p(ε|z1).

The assumption about estimation error ε in Theorem 3 is reasonable because ε is analogous to the
‘noise’ with the mean of 0 which is generally assumed to come from simple distributions (e.g.,
Gaussian distribution) in statistical learning theory. Similar to the classification tasks, Theorem 3
indicates that for regression tasks, zsuf1 can achieve lower expected squared prediction error than
zmin1 and increasing I(zsuf1 , T |v2) can improve the performance in downstream regression tasks.

Theorem 2 and Theorem 3 analyze the disadvantages of the minimal sufficient representation zmin1
in classification tasks and regression tasks respectively. The essential reason is that zmin1 has less
task-relevant information than other sufficient representation zsuf1 and has a non-ignorable gap
I(v1, T |v2) with the optimal representation, as shown in Theorem 1.

2.3 EXTRACTING NON-SHARED TASK-RELEVANT INFORMATION

According to the above theoretical analysis, in contrastive learning, the minimal sufficient repre-
sentation is not sufficient for downstream tasks due to the lack of some non-shared task-relevant
information. Moreover, contrastive learning tends to learn the minimal sufficient representation,

4



Under review as a conference paper at ICLR 2022

v1 v2

z1
suf

T

Sufficient Representation

Increasing I(z1, v1)

v1
v2

z1
suf

T

Sufficient Representation

More Task-relevant Information

Representation z1

Shared Task-relevant Information in Representation I(z1,v2,T)

Non-shared Task-relevant Information in Representation I(z1,T|v2)

Figure 2: Demonstration of our motivation using information diagrams. Based on the sufficient
representation learned by the contrastive learning models, increasing I(z1,v1) approximately intro-
duces more non-shared task-relevant information.

thereby having the risk of over-fitting to the shared information between views. To this end, we
propose to extract more non-shared task-relevant information in v1, i.e., increasing I(z1, T |v2).
However, we can not utilize any downstream task information during training, so it is impossible
to increase I(z1, T |v2) directly. We consider increasing I(z1,v1) as an alternative because the in-
creased information from v1 in z1 may be relevant to some downstream tasks, and this motivation
is demonstrated in Figure 2. In addition, increasing I(z1,v1) also helps to extract the shared in-
formation between views at the beginning of the optimization process. Concretely, considering the
symmetry between v1 and v2, our optimization objective is

max
f1,f2

I(z1, z2) + λ1I(z1,v1) + λ2I(z2,v2) (10)

which consists of the original optimization objective (1) in contrastive learning and the regularization
terms we proposed. The coefficients λ1 and λ2 are used to control the amount of increasing I(z1,v1)
and I(z2,v2) respectively. For optimizing I(z1, z2), we adopt the commonly used implementations
in contrastive learning models (Chen et al., 2020; Grill et al., 2020b; Zbontar et al., 2021) which
are usually the lower bound estimate of mutual information. For optimizing I(zi,vi), i = 1, 2, we
consider two different implementations.

Implementation I Since I(z,v) = H(v)−H(v|z) andH(v) is not related with z, we can equiv-
alently decrease the conditional entropy H(v|z) = −Ep(z,v)[ln p(v|z)]. Concretely, we use the
representation z to reconstruct the original input v, as done in auto-encoder models (Vincent et al.,
2010). Decreasing the entropy of reconstruction encourages the representation z to contain more
information about the original input v. However, the conditional distribution p(v|z) is intractable in
practice, so we use the distribution q(v|z) as an approximation, and have

Ep(z,v)[ln p(v|z)]− Ep(z,v)[ln q(v|z)] = Ep(z)[DKL(p(v|z)‖q(v|z))] ≥ 0 (11)

where DKL(·‖·) represents the Kullback–Leibler divergence. Therefore, Ep(z,v)[ln q(v|z)] is the
lower bound of Ep(z,v)[ln p(v|z)], and we can increase Ep(z,v)[ln q(v|z)] as an alternative objec-
tive. According to the type of input v (e.g., images, text or audio), q(v|z) can be any appropriate
distribution with known probability density function, such as Bernoulli distribution, Gaussian distri-
bution or Laplace distribution, and its parameters are the functions of z. For example, when q(v|z) is
the Gaussian distribution N (v;µ(z), σ2I) with given variance σ2 and deterministic mean function
µ(·) which is usually parameterized by neural networks, we have

Ep(z,v)[ln q(v|z)] ∝ −Ep(z,v)[‖v − µ(z)‖22] + c (12)

where c is a constant to representation z. The final optimization objective becomes

max
f1,f2,µ

I(z1, z2)− λ1Ep(z1,v1)[‖v1 − µ1(z1)‖22]− λ2Ep(z2,v2)[‖v2 − µ2(z2)‖22] (13)

Implementation II Although the above implementation is effective in practice, it needs to recon-
struct the input which is challenging for high-dimensional input and increases the amount of model
parameters. To this end, we propose another representation-level implementation as an optional al-
ternative. We investigate various lower bound estimates of mutual information, such as the bound
of Barber and Agakov (Barber & Agakov, 2003), the bound of Nguyen, Wainwright and Jordan
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(Nguyen et al., 2010), MINE (Belghazi et al., 2018) and InfoNCE (Poole et al., 2019). We choose
the InfoNCE lower bound and the detailed discussion is provided in Appendix D. Concretely, the
InfoNCE lower bound is

ÎNCE(z,v) = E

[
1

N

N∑
k=1

ln
p(zk|vk)

1
N

∑N
l=1 p(z

l|vk)

]
(14)

where (zk,vk), k = 1, · · · , N are N copies of (z,v) and the expectation is over Πkp(z
k,vk). In

the first implementation, we map the input v to the representation z through a deterministic function
f with z = f(v) and approximate the distribution p(v|z) of the reconstructed input. Differently,
here we need to define p(z|v) to calculate the InfoNCE lower bound which means the representation
z is no longer a deterministic output of input v, so we use the reparameterization trick (Kingma &
Welling, 2014) during training. For example, when we define p(z|v) as the Gaussian distribution
N (z; f(v), σ2I) with given variance σ2 and the function f is the same as in the first implementation,
we have z = f(v) + εσ, ε ∼ N (0, I) and ÎNCE is equivalent to

ĨNCE(z,v) = E

[
− 1

N

N∑
k=1

ln

N∑
l=1

exp(−ρ‖zl − f(vk)‖22)

]
(15)

where ρ is a scale factor. The final optimization objective becomes
max
f1,f2

I(z1, z2) + λ1ĨNCE(z1,v1) + λ2ĨNCE(z2,v2) (16)

Since the regularization term (15) is calculated at the representation-level, when we use the convo-
lutional neural networks (e.g., ResNet (He et al., 2016)) to parameterize f , it can be applied to the
output activation of multiple internal blocks.

It is worth noting that increasing I(z,v) is not conflict with the information bottleneck theory
(Tishby & Zaslavsky, 2015). This theory tells us to compress the information from the input v
in the representation z under the condition that the representation z is sufficient for the task T .
However, according to our analysis, the learned representations in contrastive learning are not suffi-
cient for the downstream tasks. Therefore, we need to make the information in the representations
more sufficient for the downstream tasks and it is not time to compress it. On the other hand, we can
not introduce too much information from the input v either, which may contain too much noise to
increase the data demand. Here we use the coefficients λ1 and λ2 to control this.

3 RELATED WORK

Contrastive learning (Hjelm et al., 2018; He et al., 2020; Chen et al., 2020) is a successful unsu-
pervised representation learning framework and the learned representations are useful in various
downstream tasks (He et al., 2020). In contrastive learning, the views are constructed by exploiting
the internal structures of unlabeled data and typically share the information in which we are inter-
ested. Recently, Tian et al. (2020b) find that the optimal views for contrastive learning depend on
the downstream tasks under the assumption of minimal sufficient representation. In other words, the
optimal views for the downstream task T1 may not be suitable for the task T2. The reason may be
that some information relevant to T2 is not shared between the views. In this work, we formalize
this conjecture and provide theoretical analysis. According to our analysis, we find a new problem
that contrastive learning may over-fit to the shared information between views, and thus propose to
increase the mutual information between representation and input to alleviate this problem.

Conversely, some recent works (Federici et al., 2020; Tsai et al., 2021) propose to learn the minimal
sufficient representation. They assume that either view alone is approximately redundant to the
other view for the downstream tasks, i.e., almost all the information relevant to downstream tasks
is shared between views. However, redundancy only makes sense for the fixed known task and the
downstream tasks in contrastive learning are changeable and unknown, so this is an overly idealistic
assumption and conflicts with the discovery in (Tian et al., 2020b).

In this work, we consider two implementations to increase the mutual information between the
representation and input. Our first implementation refers to the auto-encoder models (Vincent et al.,
2010; Kingma & Welling, 2014) which reconstruct the input to make the representation containing
the key information about the data. Our second implementation relies on the high-dimensional
mutual information estimate (Belghazi et al., 2018; Poole et al., 2019).
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4 EXPERIMENTS

In this section, we first verify the effectiveness of increasing I(z,v) on various datasets, and then
provide some analytical experiments. We choose two classic contrastive learning models as our
baselines: SimCLR (Chen et al., 2020) and BYOL (Grill et al., 2020a). We denote our first im-
plementation (13) as ”RC” for ”ReConstruction” and the second implementation (16) as ”LBE” for
”Lower Bound Estimate”. For all experiments, we use random cropping, flip and random color dis-
tortion as the data augmentation, just as suggested by Chen et al. (2020). For ”LBE”, we set σ = 0.1
and ρ = 0.05, and apply it to the output activation of the last three blocks in ResNet.

4.1 EFFECTIVENESS OF INCREASING I(z,v)

We consider different types of downstream task, including classification tasks and instance segmen-
tation tasks. Due to limited space, we provide the results of classification tasks below and the results
of instance segmentation tasks in Appendix B.1.

Experimental setup. We train the models on CIFAR10 (Krizhevsky et al., 2009) and STL-10
(Coates et al., 2011), and evaluate the learned representations on the source dataset and six transfer
datasets: DTD (Cimpoi et al., 2014), MNIST (LeCun et al., 1998), FashionMNIST (Xiao et al.,
2017), CUBirds (Wah et al., 2011), VGG Flower (Nilsback & Zisserman, 2008) and Traffic Signs
(Houben et al., 2013). We follow the linear evaluation protocol where a linear classifier is trained
on top of the frozen backbone. For contrastive learning, we use a ResNet18 backbone and the
models are trained for 200 epochs with batch size 256 using Adam optimizer with learning rate
3e-4. For linear evaluation, the linear classifier is trained for 100 epochs with batch size 128 using
SGD optimizer with learning rate 1e-2 and momentum 0.9. We drop the learning rate by a factor of
10 on epoch 60 and 80. We set λ1 = λ2 = 1 for SimCLR and λ1 = λ2 = 0.1 for BYOL.

Table 1: Downstream classification accuracy (%) on the source dataset (CIFAR10 or STL-10) and
six transfer datasets.

Model CIFAR10 DTD MNIST FaMNIST CUBirds VGGFlower TrafficSigns

SimCLR 85.76 29.52 97.03 88.36 8.87 42.81 92.41
SimCLR+RC (ours) 85.78 33.67 97.99 90.31 10.89 54.16 95.84
SimCLR+LBE (ours) 85.45 34.52 97.94 89.26 10.60 54.10 94.96
BYOL 85.64 31.22 97.15 88.92 8.84 40.90 92.17
BYOL+RC (ours) 85.80 34.73 98.07 89.61 9.68 48.75 94.19
BYOL+LBE (ours) 85.28 33.99 97.76 88.99 9.96 54.10 95.09
Model STL-10 DTD MNIST FaMNIST CUBirds VGGFlower TrafficSigns

SimCLR 78.74 39.41 95.00 87.31 8.34 49.41 80.25
SimCLR+RC (ours) 79.21 41.81 97.48 89.98 10.03 60.46 94.73
SimCLR+LBE (ours) 80.17 42.07 97.04 88.68 10.11 58.51 87.77
BYOL 80.83 40.05 94.45 87.23 8.54 49.41 77.54
BYOL+RC (ours) 81.11 42.02 96.96 88.92 9.63 55.71 88.57
BYOL+LBE (ours) 80.85 42.55 95.75 87.88 10.55 59.39 84.62

Results. Table 1 shows the results on CIFAR10 and STL-10, and the best result in each block
is in bold. Increasing I(z,v) can introduce non-shared information and improve the classification
accuracy, especially on transfer datasets. This means the shared information between views is not
sufficient for some tasks, e.g., classification on DTD, VGG Flower and Traffic Signs where increas-
ing I(z,v) achieves significant improvement. In other words, increasing I(z,v) can prevent the
models from over-fitting to the shared information between views. Note that the introduced infor-
mation is not guaranteed to be significantly effective for all tasks, e.g., classification on MNIST,
FashionMNIST or CIFAR10 where increasing I(z,v) achieves slight improvement.

4.2 ANALYTICAL EXPERIMENTS

Next, we provide some analytical experiments to further understand our hypotheses, theoretical
analysis and model. All experiments use the same training schedule as in the Section 4.1.
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Table 2: Downstream classification accuracy (%) on CIFAR10 and six transfer datasets. † represents
adding Gaussian noise to the representations.

Model CIFAR10 DTD MNIST FaMNIST CUBirds VGGFlower TrafficSigns

SimCLR 85.76 29.52 97.03 88.36 8.87 42.81 92.41
SimCLR+IP 85.86 30.15 96.71 88.18 8.66 43.22 92.13
SimCLR† 85.81 31.70 97.08 88.85 8.77 44.41 92.41
SimCLR+MIB 86.20 31.17 97.00 88.62 9.01 43.88 93.01

Performance of eliminating non-shared information. Some recent works (Federici et al., 2020;
Tsai et al., 2021) propose to eliminate the non-shared information between views to get the min-
imal sufficient representation. To this end, Federici et al. (2020) minimize the regularization
term LMIB = 1

2 (DKL(p(z1|v1)‖p(z2|v2)) +DKL(p(z2|v2)‖p(z1|v1))), and when p(z1|v1) and
p(z2|v2) are modeled by N (zi; fi(vi), σ

2I), i = 1, 2 with given variance σ2, it can be rewritten
as LMIB = Ep(v1,v2)

[
‖f1(v1)− f2(v2)‖22

]
. Identically, Tsai et al. (2021) minimize the inverse

predictive loss LIP = Ep(v1,v2)

[
‖f1(v1)− f2(v2)‖22

]
. The detailed derivation are provided in Ap-

pendix C. We evaluate the effect of these two regularization terms on the classification tasks and
choose their coefficient with best accuracy on the source dataset. The results are shown in Table 2
and the best result in each block is in bold. Although these two regularization terms have the same
form, Federici et al. (2020) uses stochastic encoders which is equivalent to adding Gaussian noise,
so we report the results of SimCLR with Gaussian noise, marked by †. As we can see, eliminating
the non-shared information can not change the accuracy in downstream classification tasks much.
This means that the sufficient representation learned in contrastive learning tends to be minimal and
we don’t need to further remove the non-shared information.
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Figure 3: The classification accuracy on the source dataset (CIFAR10 or STL-10) and the averaged
accuracy on six transfer datasets with varying hyper-parameter λ.

Changing the amount of increasing I(z,v). The hyper-parameters λ1 and λ2 control the amount
of increasing I(z1,v1) and I(z2,v2) respectively. Therefore, we set λ1 = λ2 = λ and evaluate
the performance of different λ from {0.001, 0.01, 0.1, 1, 10}. We choose SimCLR as the baseline
and the results are shown in Figure 3. We report the accuracy on the source dataset (CIFAR10 or
STL-10) and the averaged accuracy on six transfer datasets. Oversized λ (e.g., 10) damages the
optimization of the contrastive loss, resulting in a decrease in performance. But for other reasonable
λ, increasing I(z,v) consistently improves the performance in downstream classification tasks. We
can observe a non-monotonous reverse-U trend of accuracy with the change of λ, which means
excessively increasing I(z,v) may introduce noise beside useful information.
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Figure 4: The classification accuracy on the source dataset (CIFAR10 or STL-10) and the averaged
accuracy on six transfer datasets with varying epochs.
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Training with more epochs. In the above experiments, we train all models for 200 epochs. Here
we further show the behavior of the contrastive learning models and increasing I(z,v) when training
with more epochs. We choose SimCLR as the baseline and train all models for 100, 200, 300, 400,
500 and 600 epochs. The results are shown in Figure 4. With more training epochs, the learned
representations are more approximate to the minimal sufficient representation and mainly contain
the shared information between views and ignore the non-shared information. For the classification
tasks on the transfer datasets, the shared information between views is not sufficient. Concretely, the
accuracy on the transfer datasets decreases with more epochs and the learned representations over-fit
to the shared information between views. Increasing I(z,v) can introduce non-shared information
and obtain the significant improvement. For the classification tasks on the source datasets, the
shared information between views is sufficient on CIFAR10 but not on STL-10. Concretely, the
accuracy on CIFAR10 increases with more epochs and increasing I(z,v) can not make a difference.
But the accuracy on STL-10 decreases with more epochs, and increasing I(z,v) can significantly
improve the accuracy and does not decrease with more epochs. In fact, we use the unlabeled split
for contrastive training on STL-10, so it is intuitive that the shared information between views is not
sufficient for the classification task on the train and test split.

Table 3: Downstream classification accuracy (%) on the source dataset and six transfer datasets.
Model CIFAR10 DTD MNIST FaMNIST CUBirds VGGFlower TrafficSigns

Supervised 93.25 34.10 98.52 90.09 8.37 46.14 93.05
Supervised+RC (ours) 93.09 32.77 98.61 89.77 8.84 49.05 93.28
Supervised+LBE (ours) 93.18 34.79 98.68 90.40 9.72 53.15 94.47
Model CIFAR100 DTD MNIST FaMNIST CUBirds VGGFlower TrafficSigns

Supervised 71.92 36.06 98.48 88.97 11.51 64.21 96.54
Supervised+RC (ours) 72.02 34.79 98.59 89.35 10.94 65.34 96.67
Supervised+LBE (ours) 71.89 36.33 98.37 89.42 11.89 65.64 96.91

Increasing I(z,x) in supervised learning. According to the information bottleneck theory
(Tishby & Zaslavsky, 2015), a model extracts the approximate minimal sufficient statistics of the
input x with respect to the label y in supervised learning. In other words, the representation z only
contains the information related to the label and eliminates other irrelevant information which is
considered as noise. However, label-irrelevant information may be useful for other tasks, so we
evaluate the effect of increasing I(z,x) in supervised learning. We train the ResNet18 backbone
using cross-entropy classification loss on CIFAR10 and CIFAR100, and choose λ1 = λ2 = λ from
{0.001, 0.01, 0.1, 1}. The training and evaluate schedule is the same as in Section 4.1. The re-
sults are shown in Table 3 and the best result in each block is in bold. As we can see, increasing
I(z,x) improves the performance on the transfer datasets and achieves comparable results on the
source dataset, which means it can effectively alleviate the over-fitting on the label information. This
discovery helps to obtain more general representations in the field of supervised pre-training.

5 CONCLUSIONS AND FUTURE WORKS

In this work, we explore the relationship between the learned representations and downstream tasks
in contrastive learning. Although some recent works propose to learn the minimal sufficient repre-
sentation, we theoretically and empirically verify that the minimal sufficient representation is not
sufficient for downstream tasks because it loses non-shared task-relevant information. We find that
contrastive learning tend to obtain the minimal sufficient representation, which means it may over-
fit to the shared information between views. To this end, we propose the regularization term which
increases the mutual information between the representation and input to approximately introduce
more non-shared task-relevant information when the downstream tasks are unknown. Extensive ex-
periments show that our method can effectively prevent the contrastive learning models from over-
fitting to the shared information between views. For the future works, we suggest two directions.
1) We can consider the situation where the downstream tasks or even some downstream supervision
information are given. Then we can design task-customized views and regularization terms which
can directly introduce more task-relevant information. 2) In contrastive learning, one view plays the
same role as the label in supervised learning for the other view, so we can extend our analysis and
method to the supervised learning for further exploration.
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A PROOFS OF THEOREMS

In this section, we provide the proofs of the theorems in the main text. Since the random variable
z1 = f1(v1) is the representation of random variable v1 where f1 is an encoding function, we have
Assumption 1. Random variable z1 is conditionally independent from any other variable s in the
system once random variable v1 is observed, i.e., I(z1, s|v1) = 0,∀s.

This assumption is also adopted in Federici et al. (2020). When f1 is a deterministic function, this
assumption strictly holds. And when f1 is a random function, the information in z1 consists of the
information from v1 and the information introduced by the randomness of function f1 which can be
considered irrelevant to other variables in the system, so this assumption still holds. We first present
two lemmas for subsequent proofs.

Lemma 1. Let zsuf1 and zmin1 are a sufficient representation and the minimal sufficienr representa-
tion of view v1 for v2 in contrative learning respectively, we have

I(zmin1 ,v2, T ) = I(zsuf1 ,v2, T ) = I(v1,v2, T ) (17)

I(zmin1 , T |v2) = 0 (18)

Proof. 1) From the Definition 1 and the Assumption 1, we have

I(v1,v2, T )− I(zsuf1 ,v2, T )

= [I(v1,v2)− I(v1,v2|T )]− [I(zsuf1 ,v2)− I(zsuf1 ,v2|T )]

= I(zsuf1 ,v2|T )− I(v1,v2|T )

= [H(v2|T )−H(v2|zsuf1 , T )]− [H(v2|T )−H(v2|v1, T )]

= H(v2|v1, T )−H(v2|zsuf1 , T )

= [I(zsuf1 ,v2|v1, T ) +H(v2|v1, z
suf
1 , T )]− [I(v1,v2|zsuf1 , T ) +H(v2|v1, z

suf
1 , T )]

= I(zsuf1 ,v2|v1, T )− I(v1,v2|zsuf1 , T )

= I(zsuf1 ,v2|v1, T ) = 0

Therefore, we have
I(zsuf1 ,v2, T ) = I(v1,v2, T )

The above proof process only uses the sufficiency of zsuf1 for v2, so we have

I(zmin1 ,v2, T ) = I(v1,v2, T )

2) From the Definition 2 and the Assumption 1, we have

I(zmin1 ,v1|v2) = 0 I(zmin1 , T |v1) = 0

Applying these two equations, we have

I(zmin1 , T |v2) = I(zmin1 , T |v1,v2) + I(zmin1 , T,v1|v2)

= I(zmin1 , T,v1|v2)

= I(zmin1 ,v1|v2)− I(zmin1 ,v1|T,v2) = 0

We consider the conditional entropy of the task variable T given the representation z1.
Lemma 2. For arbitrary learned representation z1, the conditional entropy H(T |z1) of the task
variable T given z1 satisfies

H(T |z1) = H(T )− I(z1, T |v2)− I(z1,v2, T ) (19)

Specifically, for the sufficient representation zsuf1 , the conditional entropy H(T |zsuf1 ) satisfies

H(T |zsuf1 ) = H(T )− I(zsuf1 , T |v2)− I(v1,v2, T ) (20)

for the minimal sufficient representation zmin1 , the conditional entropy H(T |zmin1 ) satisfies

H(T |zmin1 ) = H(T )− I(v1,v2, T ) (21)
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Proof. We have

H(T |z1) = H(T )− I(T, z1)

= H(T )− [I(T, z1,v2) + I(T, z1|v2)]

= H(T )− I(z1, T |v2)− I(z1,v2, T )

Applying the Equation (17), the conditional entropy H(T |zsuf1 ) satisfies

H(T |zsuf1 ) = H(T )− I(zsuf1 , T |v2)− I(zsuf1 ,v2, T )

= H(T )− I(zsuf1 , T |v2)− I(v1,v2, T )

Further, applying the Equation (18), the conditional entropy H(T |zmin1 ) satisfies

H(T |zmin1 ) = H(T )− I(zmin1 , T |v2)− I(v1,v2, T )

= H(T )− I(v1,v2, T )

Finally, we formally give the proofs of Theorem 1, 2 and 3.

The proof of Theorem 1.

Proof. We decompose the Theorem 1 into three equations and prove them in turn.

1) I(v1, T ) = I(zmin1 , T ) + I(v1, T |v2).

I(v1, T ) = I(v1, T,v2) + I(v1, T |v2)

= I(zmin1 , T,v2) + I(v1, T |v2)

= I(zmin1 , T )− I(zmin1 , T |v2) + I(v1, T |v2)

= I(zmin1 , T ) + I(v1, T |v2)

2) I(zsuf1 , T ) = I(zmin1 , T ) + I(zsuf1 , T |v2).

I(zsuf1 , T ) = I(zsuf1 , T,v2) + I(zsuf1 , T |v2)

= I(zmin1 , T,v2) + I(zsuf1 , T |v2)

= I(zmin1 , T )− I(zmin1 , T |v2) + I(zsuf1 , T |v2)

= I(zmin1 , T ) + I(zsuf1 , T |v2)

3) I(v1, T |v2) ≥ I(zsuf1 , T |v2) ≥ 0.

Applying the Data Processing Inequality (Cover & Thomas, 2006) to the Markov chain T → v1 →
zsuf1 , we have I(v1, T ) ≥ I(zsuf1 , T ), so

I(v1, T |v2) = I(v1, T )− I(v1, T,v2)

= I(v1, T )− I(zsuf1 , T,v2)

≥ I(zsuf1 , T )− I(zsuf1 , T,v2)

≥ I(zsuf1 , T |v2) ≥ 0

Combining these three equations, we can get the Theorem 1.

The proof of Theorem 2.

Proof. According to Feder & Merhav (1994), the relationship between the Bayes error rate Pe and
the conditional entropy H(T |z1) is

− ln(1− Pe) ≤ H(T |z1)
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which is equivalent to
Pe ≤ 1− exp[−H(T |z1)]

Applying the Lemma 2, for arbitrary learned representation z1, its Bayes error rate Pe satisfies

Pe ≤ 1− exp[−(H(T )− I(z1, T |v2)− I(z1,v2, T ))]

for the sufficient representation zsuf1 , its Bayes error rate P sufe satisfies

P sufe ≤ 1− exp[−(H(T )− I(zsuf1 , T |v2)− I(v1,v2, T ))]

for the minimal sufficient representation zmin1 , its Bayes error rate Pmine satisfies

Pmine ≤ 1− exp[−(H(T )− I(v1,v2, T ))]

Note that 0 ≤ Pe ≤ 1−1/|T |, so we use the threshold function Γ(x) = min{max{x, 0}, 1−1/|T |}
to prevent overflow.

The proof of Theorem 3.

Proof. According to Frénay et al. (2013), when the conditional distribution p(ε|z1) of estimation er-
ror ε is uniform, Laplace and Gaussian distribution, the minimum expected squared prediction error
Re becomes 1

12 exp[2H(T |z1)], 1
2e2 exp[2H(T |z1)] and 1

2πe exp[2H(T |z1)] respectively. There-
fore, we unify them as

Re = α · exp[2H(T |z1)]

where α is a constant coefficient which depends on the conditional distribution p(ε|z1). Applying
the Lemma 2, for arbitrary learned representation z1, we have

Re = α · exp[2 · (H(T )− I(z1, T |v2)− I(z1,v2, T ))]

for the sufficient representation zsuf1 , we have

Rsufe = α · exp[2 · (H(T )− I(zsuf1 , T |v2)− I(v1,v2, T ))]

for the minimal sufficient representation zmin1 , we have

Rmine = α · exp[2 · (H(T )− I(v1,v2, T ))]

B MORE EXPERIMENTS

In this section, we provide more experiments to support our work.

Table 4: Instance segmentation results on Cityscapes validation set, averaged over 5 random seeds.
Model APmk APmk50 person rider car truck bus train mcycle bicycle

Non Pre-training 27.8 53.7 29.7 23.3 50.6 19.5 45.9 21.6 14.8 17.0
SimCLR 28.5 55.5 28.9 22.5 49.9 22.0 47.5 22.9 16.6 17.6
SimCLR+RC (ours) 29.4 57.2 28.2 22.8 49.4 24.5 49.4 25.4 17.9 17.7
BYOL 28.3 55.1 29.0 23.0 49.7 25.5 44.6 22.5 15.7 16.7
BYOL+LBE (ours) 29.2 55.5 28.6 22.6 49.3 26.2 47.8 25.8 16.8 16.7

B.1 INSTANCE SEGMENTATION ON CITYSCAPES

Experimental setup. We train the models on TinyImageNet (Le & Yang, 2015), and fine-tune
on Cityscapes (Cordts et al., 2016) for instance segmentation tasks. Cityscapes dataset has fine
annotations for 2975 train, 500 val and 1525 test images. The instance segmentation task involves 8
object categories with different numbers of fine training instances:

Category person rider car truck bus train mcycle bicycle

Instance Number 17.9k 1.8k 26.9k 0.5k 0.4k 0.2k 0.7k 3.7k
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For fine-tuning, we use Mask R-CNN (He et al., 2017) models with the ResNet-FPN-50 (Lin et al.,
2017) backbone and fine-tune all layers end-to-end. We apply the default schedule from Detectron2
(Wu et al., 2019), except for using 36k iterations. For contrastive learning models, We train the
models for 400 epochs with batch size 512 using LARS optimizer (You et al., 2017) and a cosine
decay learning rate schedule. We set λ1 = λ2 = 0.1 for SimCLR and λ1 = λ2 = 0.001 for BYOL.
The performance is measured by mask AP (averaged precision over IoU thresholds) and AP50 (mask
AP at an IoU of 0.5).

Results. Since the test labels are not public, we report the results on Cityscapes validation set in
Table 4 and the best result in each block is in bold. The results without pre-training are also provided
for clear comparison. We report the best result between RC and LBE. On average, pre-training
on TinyImageNet improves the performance of instance segmentation, and increasing I(z,v) can
achieve further improvements. A main challenge of Cityscapes is training models in the low-data
regime, especially for truck, bus, train and mcycle categories. Pre-training effectively alleviates
this problem and our method has better performance. On the other hand, pre-training damages the
performance on the categories (e.g., person, car and rider) which have sufficient training instances,
and the reason may be that there is no similar categories to them in TinyImageNet and pre-training
introduces harmful inductive bias.

Table 5: Downstream classification accuracy (%) on the source dataset (CIFAR10 or STL-10) and
six transfer datasets.

Model CIFAR10 DTD MNIST FaMNIST CUBirds VGGFlower TrafficSigns

BarTwins 86.85 28.56 95.39 86.19 7.49 35.91 88.50
BarTwins+RC (ours) 86.91 28.97 96.60 86.72 7.90 38.94 90.92
BarTwins+LBE (ours) 86.38 29.54 96.72 86.88 8.47 41.44 92.76
Model STL-10 DTD MNIST FaMNIST CUBirds VGGFlower TrafficSigns

BarTwins 80.59 36.86 94.27 86.63 7.47 44.89 73.73
BarTwins+RC (ours) 82.21 36.97 94.45 86.71 7.89 46.31 78.94
BarTwins+LBE (ours) 81.13 37.32 96.33 87.13 8.08 49.82 82.08

B.2 MORE RESULTS IN CLASSIFICATION TASKS

In the main text, we verify the effectiveness of increasing I(z,v) on two classic contrastive learning
models: SimCLR (Chen et al., 2020) and BYOL (Grill et al., 2020a). SimCLR perfectly matches
the contrastive learning framework, maximizing the lower bound estimate of the mutual information
I(z1, z2). BYOL avoids the dependence on the large amount of negative samples, and adopts the
asymmetric structure and prediction loss. They both satisfy the characteristic that the views provide
supervision information to each other, so they all tend to learn the minimal sufficient representation.
We further verify the effect of increasing I(z,v) on Barlow Twins (Zbontar et al., 2021) which
also satisfies this characteristic but uses a very different loss. It makes the cross-correlation matrix
between the representations of different views as close to the identity matrix as possible. We use the
same settings as in Experiment 4.1 and set λ1 = λ2 = 1. For STL-10, we use the unlabeled split
for contrastive learning and the train and test split for linear evaluation.

The results are shown in Table 5 and the best result in each block is in bold. Increasing I(z,v) can
improve the accuracy in downstream classification tasks of the learned representations in Barlow
Twins, which indicates that our analysis results are applicable to various contrastive losses. In fact,
our analysis mainly relies on the characteristic that the views provide supervision information to
each other and all supervision information for one view comes from the other view.

B.3 RECONSTRUCTED SAMPLES

In order to show the effect of our reconstruction module more clearly, we provide the reconstructed
images after training. As an example, we use SimCLR contrastive loss and take CIFAR10 as the
training dataset. All experimental settings are the same as in Section 4.1. The classification accuracy
is shown in Table 1, and the original and reconstructed images are shown in Figure 5. As we can
see, the reconstructed images retain the shape or outline information in the original images, so as
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Figure 5: Demonstration of the effect of our reconstruction module. We provide the original images
and the reconstructed images for comparison. We use SimCLR contrastive loss and take CIFAR10
as the training dataset.

the obtained representations. Since we use the mean square error loss to optimize the reconstruc-
tion module, the reconstructed images are blurry and this phenomenon is also observed in vanilla
variational auto-encoder (Kingma & Welling, 2014).

C DERIVATION OF LMIB AND LIP

Federici et al. (2020) and Tsai et al. (2021) propose to eliminate the non-shared information be-
tween views to get the minimal sufficient representation. To this end, they propose their respective
regularization term. Here we derive the specific form used in the Section 4.2.

In Federici et al. (2020), the regularization term is

LMIB = DSKL(p(z1|v1)‖p(z2|v2))

=
1

2
(DKL(p(z1|v1)‖p(z2|v2)) +DKL(p(z2|v2)‖p(z1|v1)))

According to the description in their paper and the official code 1, they model the two stochastic
encoders p(z1|v1) and p(z2|v2) as

p(z1|v1) = N (z1;µ1, diag(σ2
1))

p(z2|v2) = N (z2;µ2, diag(σ2
2))

where µ1(v1),σ2
1(v1),µ2(v2) and σ2

2(v2) are all functions of the input (v1 or v2), diag(e) creates
a matrix in which the diagonal elements consist of vector e and all off-diagonal elements are zeros.

1https://github.com/mfederici/Multi-View-Information-Bottleneck
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The regularization term has the closed form

LMIB =
1

4

d∑
i=1

[
σi21
σi22

+
σi22
σi21

+
(µi1 − µi2)2

σi22
+

(µi2 − µi1)2

σi21
− 2

]
where d is the dimension of z1 and z2. We want to minimize LMIB , and when σ2

1 = σ2
2 , the term

σi21 /σ
i2
2 + σi22 /σ

i2
1 takes the minimum value 2, so the regularization term becomes

LMIB =
1

2

d∑
i=1

(µi1 − µi2)2

σi21
(22)

In practice, minimizing LMIB makes the variance σ2
1 and σ2

2 very large, and the sampled represen-
tations change drastically and have very poor performance in downstream tasks. If the upper bound
of the variance σ2

1 and σ2
2 is fixed, such as using the sigmoid activation function to limit it to (0, 1),

they will converge to the maximum value as the training progresses. Therefore, we might as well fix
the variance and model the two stochastic encoders p(z1|v1) and p(z2|v2) as

p(z1|v1) = N (z1; f1(v1), σ2I)

p(z2|v2) = N (z2; f2(v2), σ2I)

where I is the identity matrix, σ2 is the given variance, fi, i = 1, 2 are deterministic encoders. This
also guarantees a fair comparison with our second implementation. According to the Equation (22),
the regularization term is equivalent to

LMIB = ‖f1(v1)− f2(v2)‖22
We calculate the expectation of the regularization term on the data distribution p(v1,v2) and get

LMIB = Ep(v1,v2)[‖f1(v1)− f2(v2)‖22]

In Tsai et al. (2021), the author define the inverse predictive loss

LIP = Ep(v1,v2)[‖z1 − z2‖22] = Ep(v1,v2)[‖f1(v1)− f2(v2)‖22]

D CHOICE OF MUTUAL INFORMATION LOWER BOUND ESTIMATE

In our second implementation, we need to use a mutual information lower bound estimate to calcu-
late I(z,v) where v is the original input (e.g., images) and z is the representation (feature vector).
We consider three candidate estimates:

1) The bound of Nguyen, Wainwright and Jordan (Nguyen et al., 2010)

ÎNWJ(z,v) = Ep(z,v)[h(z,v)]− Ep(z)p(v)[eh(z,v)−1] (23)

2) MINE (Belghazi et al., 2018)

ÎMINE(z,v) = Ep(z,v)[h(z,v)]− ln(Ep(z)p(v)[eh(z,v)]) (24)

3) InfoNCE (Poole et al., 2019)

ÎNCE(z,v) = E

[
1

N

N∑
k=1

ln
p(zk|vk)

1
N

∑N
l=1 p(z

l|vk)

]
(25)

where (zk,vk), k = 1, · · · , N are N copies of (z,v) and the expectation is over Πkp(z
k,vk). As

we can see, when we calculate the bound ÎNWJ and ÎMINE , we need to calculate the critic h(z,v)
between the representation z and original input v. If we use a neural network to model the critic
h(z,v), we have to take the original input and the representation together as the input of the neural
network. Since the distribution of the original input v and the representation z is quite different, it
is very difficult. Therefore, we use the InfoNCE lower bound estimate.
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