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Abstract

Pretrained multilingual language models can001
help bridge the digital language divide, en-002
abling high-quality NLP models for lower-003
resourced languages. Studies of multilingual004
models have so far focused on performance,005
consistency, and cross-lingual generalization.006
However, with their wide-spread application007
in the wild and downstream societal impact,008
it is important to put multilingual models un-009
der the same scrutiny as monolingual mod-010
els. This work investigates the group fairness011
of multilingual models, asking whether these012
models are equally fair across languages. To013
this end, we create a new four-way multilin-014
gual dataset of parallel cloze test examples015
(MozArt), equipped with demographic infor-016
mation (balanced with regard to gender and017
native tongue) about the test participants. We018
evaluate three multilingual models on MozArt019
– mBERT, XLM-R, and mT5 – and show that020
across the four target languages, the three mod-021
els exhibit different levels of group disparity,022
e.g., exhibiting near-equal risk for Spanish, but023
high levels of disparity for German.024

1 Introduction025

Fill-in-the-gap cloze tests (Taylor, 1953) ask hu-026

man language learners to predict what words were027

removed from a text. Today, language models are028

trained to do the same Devlin et al. (2019). This029

has the advantage that we can now use fill-in-the-030

gap cloze tests to directly compare the linguistic031

preferences of humans and language models, e.g.,032

to investigate task-independent sociolectal biases033

(group disparities) in language models (Zhang et al.,034

2021). This paper presents a novel four-way paral-035

lel cloze dataset for English, French, German, and036

Spanish that enables apples-to-apples comparison037

across languages of group disparities in multilin-038

gual language models.039

Language models induced from historical data040

are prone to implicit biases (Zhao et al., 2017;041

EN ES DE FR
WordPiece 19.7 22.0 23.6 23.1
SentencePiece 22.3 22.9 24.9 25.3
#Sentences per language: 100
#Annotations per sentence: 6
#Annotators: 240
Demographics: id_u, id_s, gender, age,
first language, fluent languages, nationality,
current country of residence,
country of birth, time taken

Table 1: MozArt details: average number of tokens
per sentence are reported using WordPiece and Sen-
tecePiece. In demographics, id_u refers to user id
(anonymised) and id_s to sentence id.

Chang et al., 2019; Mehrabi et al., 2021), e.g., as a 042

result of the over-representation of male-dominated 043

text sources such as Wikipedia and newswire (Hovy 044

and Søgaard, 2015). This may lead to language 045

models that are unfair to groups of users in the 046

sense that they work better for some groups rather 047

than others (Zhang et al., 2021). Multilingual lan- 048

guage models can be said to be unfair to their 049

training languages in similar ways (Choudhury and 050

Deshpande, 2021; Anonymous, 2022; Wang et al., 051

2021), but this work goes beyond previous work 052

in evaluating whether multilingual language mod- 053

els are equally fair to demographic groups across 054

languages. 055

To this end, we create MozArt, a multilingual 056

dataset of fill-in-the-gap sentences covering four 057

languages (English, French, German and Spanish). 058

The sentences reflect diastratic variation within 059

each language and can be used to compare bi- 060

ases in pretrained language models (PLMs) across 061

languages. We study the influence of four demo- 062

graphic groups, i.e., the cross-product of our anno- 063

tators’ gender – male (M) or female (F)1 – and first 064

1None of our annotators identified as non-binary.
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language – native (N) or non-native (NN) 2 –. Ta-065

ble 1 presents a summary of dataset characteristics.066

2 Dataset067

We introduce MozArt, a dataset of parallel data068

in four languages (English, French, German069

and Spanish) with annotators’ demographics.070

We sampled 100 sentence quadruples from the071

corpus provided for the WMT 2006 Shared Task.3072

This data was originally taken from the publicly073

available Europarl corpus (Koehn, 2005) and074

enhanced with word-alignments. We manually075

verify that sentences make sense out of context076

and use the data to generate comparable cloze077

examples such as:4078

079
en [MASK] that deplete the ozone layer
es [MASK] que agotan la capa de ozono
de [MASK], die zum Abbau der Ozonschicht führen
fr [MASK] appauvrissant la couche d’ozone

080

081

The masked words are aligned (by one-to-one align-082

ments) and either nouns, verbs, adjectives or ad-083

verbs.5 We mask one word in each sentence and084

verify that one-to-one alignments exist in all lan-085

guages. Following (Kleijn et al., 2019a), we avoid086

masking words that are too predictable, e.g., aux-087

iliary verbs or constituents of multi-word expres-088

sions, or masking words that are unpredictable, e.g.,089

proper names and technical terms.090

Annotators were recruited using Prolific.6 We091

applied eligibility criteria to balance our annota-092

tors across demographics. Participants were asked093

to report (on a voluntary basis) their demographic094

information regarding gender and languages spo-095

ken. Each eligible participant was presented with096

10 cloze examples. We collected answers from097

240 annotators, 60 per language batch, divided in098

four balanced demographic groups (gender × na-099

tive language). We made sure that each sentence100

had at least six annotations. Annotation guidelines101

for each language were given in that language, to102

avoid bias and ensure a minimum of language un-103

2See Schmitz (2016); Faez (2011) for discussion of the
native/non-native speaker dichotomy. Participants were asked
’What is your first language?’ and ’Which of the following
languages are you fluent in?’. We use native (N) for people
whose first language coincides with the example sentences,
and non-native (NN) otherwise, without any sociocultural im-
plications.

3https://www.statmt.org/wmt06/shared-task/
4For brevity, we only present noun phrases, not the full

sentences.
5Using spaCy’s POS tagger (Honnibal and Montani, 2017).
6prolific.co

derstanding for non-native speakers. We manually 104

filtered out spammers to ensure data quality. 105

The dataset is made publicly available at 106

github.com/anonymized under a CC-BY- 107

4.0 license. We include all the demographic at- 108

tributes of our annotators as per agreement with the 109

annotators. The full list of protected attributes is 110

found in Table 1. We hope MozArt will become a 111

useful resource for the community, also for evalu- 112

ating the fairness of language models across other 113

attributes than gender and native language. 114

3 Experimental Setup 115

Models We evaluate three PLMs: mBERT (De- 116

vlin et al., 2019), XLM-RoBERTa/XLM-R (Con- 117

neau et al., 2020), and mT5 (Xue et al., 2021).7 118

All three models were trained with a masked lan- 119

guage modeling objective. mBERT differs from 120

XLM-R and mT5 in including a next sentence pre- 121

diction objective (Devlin et al., 2019). mT5 differs 122

from mBERT and XLM-R in allowing for consec- 123

utive spans of input tokens to be masked (Raffel 124

et al., 2020). Since mT5 is trained to reconstruct 125

the masked-out tokens, we constrain the generation 126

to generate single words. This enables correlation 127

of mT5’s output with our group preferences. t-SNE 128

plots are included in Appendix B to show how lan- 129

guages are distributed in the PLM vector spaces. 130

Metrics We use several metrics to compare how 131

the PLMs align with group preferences across lan- 132

guages. These include top-k precision P@k with 133

k={1, 5}, mean reciprocal rank (MRR), and two 134

classical univariate rank correlations: Spearman’s ρ 135

(Spearman, 1987) and Kendall’s τ (Kendall, 1938). 136

Given a set of |S| cloze sentences and a group 137

of annotators, for each sentence s, we denote 138

the list of answers, ranked by their frequency, as 139

Ws = [w1, w2, ...], and the list of model’s predic- 140

tions as Cs = [c1, c2, ...], ranked by their model 141

likelihood. Then, we report P@k = 1[ci ∈ Ws] 142

with i ∈ [1, k], where 1[·] is the indicator function. 143

Precision is reported together with its standard de- 144

viation, to account for the group-wise disparity in 145

both dimensions (social groups and language): 146

σgd =

√∑G
i=1(P@ki − P@k)2

G
(1) 147

7We use the base models available from https://
huggingface.co/models. We report results using un-
cased mBERT, since it performed better on our data than its
cased sibling.
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where P@k is the mean value of all observa-148

tions, and G the total number of groups across the149

dimension fixed each time i.e., G = 4 across social150

groups (MN, FN, MNN, FNN) and G = 4 across151

languages (EN, ES, DE, FR). We also compute the152

mean-reciprocal rank (MRR) of the elements of153

Ws with respect to the top-n (n = 5) elements of154

Cs (Cn
s ):155

MRR =
1

|S|

|S|∑
s=1

1

Rank
Cn

s
i

(2)156

Finally, we compute Spearman’s ρ (Spearman,157

1987) and Kendall’s τ (Kendall, 1938) between Ws158

and C5
s . These metrics are generally more robust159

to outliers.160

4 Results161

Following previous work on examining fairness of162

document classification (Huang et al., 2020; Dixon163

et al., 2018; Park et al., 2018; Garg et al., 2019),164

we focus on group-level performance differences165

(group disparity). We measure the group dispar-166

ity as the variance in PLM’s performance (P@k)167

across demographics (gender and native language).168

Table 2 shows better precision for native speak-169

ers in German and French (MN, FN) for P@1. In170

terms of group disparity, male non-natives (MNN)171

is the demographic exhibiting the highest dispar-172

ity across languages in mBERT, while it is female173

natives (FN) in XLM-R. Language-wise, we see174

the largest group disparity with German in both175

models. Here, we see 3.5–4.4 between-group dif-176

ferences, compared to, e.g., 0.3–1.8 between-group177

differences for English. See Appendix A for results178

with P@5.179

XLM-R consistently exhibits better overall per-180

formance on average, but higher between-group181

and between-language differences.182

Figure 1 complements results from Table 2 with183

MRR scores and compares them to mT5. We ob-184

serve a common trend that the models often under-185

perform on non-native male speakers in all lan-186

guages except for Spanish: Performance is (al-187

ways) below the average, and they are the worst-188

off group (↓) in most of the cases. At the same189

time, predictions with mBERT and XLM-R seem190

to be biased towards native speakers because an-191

swers from MN and FN generally rank highest.192

Despite none of the models perform equally across193

groups, XLM-R shows a lower divergence across194

languages: Between-group differences are more195

P@1
EN ES DE FR P@1(σgd)

mBERT 13.3 12.7 11.3 10.7 12.0 (1.0)
MN XLM-R 16.7 13.3 20.7 16.7 16.9 (2.6)

mBERT 13.3 12.0 15.3 8.0 12.2 (2.7)
FN XLM-R 16.0 15.3 24.0 17.3 18.2 (3.5)

mBERT 12.7 12.4 11.4 3.6 10.0 (3.8)
MNN XLM-R 15.3 13.5 15.0 11.4 13.8 (1.5)

mBERT 13.3 10.0 5.6 6.9 9.0 (3.0)
FNN XLM-R 20.0 14.7 13.1 12.7 15.1 (3.0)

mBERT 13.2 (0.3) 11.8 (1.1) 10.8 (3.5) 7.3 (2.5)
P@1(σgd) XLM-R 17.0 (1.8) 14.2 (0.8) 18.2 (4.4) 14.5 (2.6)

Table 2: Results on P@1 score across groups and lan-
guages, average performance in each language (P@1)
as well as standard deviation for group disparity (σgd).
Cells with a colored background are language-wise
above the average. For each model, worst group perfor-
mance in terms of group disparity (highest variance) is
highlighted in red.
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mBERT
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↓

↓ ↑

↓

Figure 1: Average MRR (in percentage) per group in
each language. Horizontal lines denote the average per
language. Best-off (↑) and worst-off (↓) subgroups for
each language are marked.

than 50% smaller than with mBERT and mT5 when 196

looking at the average MRR per language. 197

Table 3 gathers group level Spearman’s ρ and av- 198

erage correlation per language. XLM-R predictions 199

are more uniformly correlated across languages 200

compared to mBERT, whose lexical preferences 201

are better aligned in English and Spanish setups, 202

and mT5, whose predictions correlate poorly with 203

human cloze test answers. However, in line with 204

previous results, the model exhibits bias towards 205

male native speakers and MNN outlines as the worst 206

performing group across languages, with a coef- 207

ficient always below the average. Looking into 208

the dimension of languages, German is the least 209

aligned with human’s answers in all models. See 210

Appendix A for details on Kendall’s τ . 211

5 Related Work 212

Multilingual PLMs have been analyzed in many 213

ways: Researchers have, for example, looked at 214

performance differences across languages (Singh 215
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mBERT
ρ EN ES DE FR
MN 0.33 (p=0.00) 0.23 (p=0.01) -0.14 (p=0.09) 0.10 (p=0.21)
FN 0.27 (p=0.00) 0.07 (p=0.42) -0.01 (p=0.89) 0.14 (p=0.08)
MNN 0.30 (p=0.00) 0.16 (p=0.03) -0.10 (p=0.23) 0.08 (p=0.32)
FNN 0.37 (p=0.00) 0.16 (p=0.06) 0.03 (p=0.69) 0.08 (p=0.30)
Avg. 0.32 (p=0.00) 0.16 (p=0.00) -0.05 (p=0.21) 0.10 (p=0.01)

XLM-R
ρ EN ES DE FR
MN 0.45 (p=0.00) 0.46 (p=0.00) 0.35 (p=0.00) 0.48 (p=0.00)
FN 0.30 (p=0.00) 0.35 (p=0.00) 0.45 (p=0.00) 0.33 (p=0.00)
MNN 0.30 (p=0.00) 0.38 (p=0.00) 0.22 (p=0.01) 0.32 (p=0.00)
FNN 0.40 (p=0.00) 0.48 (p=0.00) 0.11 (p=0.16) 0.36 (p=0.00)
Avg. 0.36 (p=0.00) 0.41 (p=0.00) 0.28 (p=0.00) 0.37 (p=0.00)

mT5
ρ EN ES DE FR
MN 0.01 (p=0.89) 0.14 (p=0.08) 0.14 (p=0.08) 0.25 (p=0.00)
FN -0.12 (p=0.13) 0.13 (p=0.12) 0.00 (p=0.99) 0.14 (p=0.08)
MNN -0.10 (p=0.22) 0.12 (p=0.11) 0.03 (p=0.74) 0.11 (p=0.18)
FNN -0.07 (p=0.41) 0.28 (p=0.00) 0.04 (p=0.58) 0.11 (p=0.16)
Avg. -0.07 (p=0.07) 0.17 (p=0.00) 0.05 (p=0.23) 0.15 (p=0.00)

Table 3: Correlation between groups of annotators (MN,
FN, MNN, FNN) and models’ predictions, classified
by language. The degree of correlation is measured
with Spearman’s ρ coefficient (ρ ∈ [−1, 1]). Cells high-
lighted in red fail to reject the null hypothesis, meaning
that their difference is statistically significant (p>0.05).
Groups with coloured background show a stronger cor-
relation compared to the average in each language.

et al., 2019), looked at their organization of lan-216

guage types (Rama et al., 2020), used similarity217

analysis to probe their representations (Kudugunta218

et al., 2019), and investigated how learned self-219

attention in the Transformer blocks affects different220

languages (Ravishankar et al., 2021).221

Previous work on fairness of multilingual models222

has, to the best of our knowledge, focused exclu-223

sively on task-specific models, rather than PLMs:224

Huang et al. (2020) evaluate the fairness of multilin-225

gual hate speech detection models, and several re-226

searchers have explored gender bias in multilingual227

models (Zhao et al., 2020; González et al., 2020).228

Dayanik and Padó (2021) consider the effects of229

adversarial debiasing in multilingual models.230

Cloze tests were previously used in Zhang et al.231

(2021) to evaluate the fairness of English (monolin-232

gual) language models. In psycholinguistics, cloze233

tests have been performed with different age groups234

(Hintz et al., 2020) and native language (Stringer235

and Iverson, 2020), but these datasets have, to the236

best of our knowledge, not been used to evaluate237

language models.238

6 Conclusion 239

In this paper, we present MozArt, a new multilin- 240

gual dataset of parallel cloze examples with anno- 241

tations from balanced demographics. This dataset 242

is, to the best of our knowledge, the first to enable 243

apples-to-apples comparison of group disparity of 244

multilingual PLMs across languages. The dataset 245

includes several demographic attributes, but we 246

present preliminary experiments with gender and 247

native language. We show that mBERT and XLM- 248

R are not equally fair across languages. For exam- 249

ple, group disparities are much higher for German 250

(and French) than for English and Spanish. This 251

shows the importance of evaluating fairness across 252

languages instead of stipulating from results for a 253

single language. We further show that both PLMs 254

align best with the cloze test answers of female 255

native speakers. We followed best practices for mit- 256

igating the dangers of crowdsourcing (Karpinska 257

et al., 2021; Kleijn et al., 2019b) (see §2) and hope 258

MozArt will be widely adopted and, over time, gen- 259

erate more results for other PLMs and demographic 260

attributes. 261

Ethics Statement 262

The dataset released contains publicly available 263

content from the proceedings of the European Par- 264

liament. Our work is based on sensitive informa- 265

tion provided by the participants that took on our 266

study in Prolific. The protected attributes collected 267

are self-reported on a voluntary basis, and partic- 268

ipants gave their consent to share them. In addi- 269

tion to the specific attributes analyzed in our study, 270

which served as prescreening filters, Prolific also 271

provides baseline data for all studies with the con- 272

sent of participants to share it with researchers. For 273

these base attributes, there might be gaps in the 274

data because it is optional for participants to pro- 275

vide this information. These attributes are filled 276

as null in the dataset. We performed a pilot study 277

to determine the amount of time a task would take 278

on average. The participants were paid based on 279

time worked, and were given the option to opt out 280

at any time of the study. Participants who revoked 281

consent at any stage are not included in our study 282

nor in the data released. 283
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P@5
EN ES DE FR P@5(σgd)

mBERT 30.7 26.7 22.0 24.0 25.9 (3.3)
MN XLM-R 39.3 30.7 34.7 32.7 34.4 (3.2)

mBERT 32.0 18.7 24.7 22.0 24.4 (4.9)
FN XLM-R 30.7 25.3 38.0 35.3 32.3 (4.8)

mBERT 34.0 25.9 12.1 15.0 21.8 (8.7)
MNN XLM-R 30.7 29.4 22.1 25.4 26.9 (3.4)

mBERT 32.7 25.3 16.3 16.3 22.7 (6.9)
FNN XLM-R 36.7 34.0 19.4 26.9 29.3 (6.7)

mBERT 32.3 (1.2) 24.2 (3.1) 18.8 (4.9) 19.3 (3.8)
P@5(σgd) XLM-R 34.3 (3.8) 29.8 (3.1) 28.5 (7.9) 30.3 (4.1)

Table 4: Results on P@5 score across groups and lan-
guages, average performance in each language (P@5)
as well as standard deviation for group disparity (σgd).
Cells with a colored background are language-wise
above the average. For each model, worst group perfor-
mance in terms of group disparity (highest variance) is
highlighted in red.
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A Additional results 461

In this section, we provide additional analysis re- 462

sults of the PLM’s performance on MozArt. We 463

report precision at 5 (P@5), which corresponds to 464

the number of relevant answers among the top 5 465

candidates. It provides a more flexible metric for 466

measuring model alignments with open-ended text 467

answers, but fails to take into account the exact 468

position within the top-k. Considering the top- 469

5, the bias towards native speakers is diminished 470

specially in English and Spanish, despite being 471

MNN and FNN the worst groups –in terms of group 472

disparity– in mBERT and XLM-R respectively. At 473

the same time, the group disparities are exacerbated 474

as shown in Table 4. 475

Table 5 complements results on correlation of the 476

alignment of group responses. It shows Kendall’s 477

τ coefficient. Conclusions remain almost the same 478

as studied with Spearman’s coefficient, albeit non- 479

native subgroups in Spanish are more correlated in 480

mBERT. 481

B t-SNE 482

To give a brief overview of the semantic multilin- 483

guality encoded in the pretrained models, we run 484
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mBERT
τ EN ES DE FR
MN 0.27 (p=0.00) 0.19 (p=0.00) -0.09 (p=0.15) 0.09 (p=0.16)
FN 0.23 (p=0.00) 0.07 (p=0.24) 0.01 (p=0.89) 0.13 (p=0.04)
MNN 0.25 (p=0.00) 0.15 (p=0.01) -0.06 (p=0.32) 0.07 (p=0.28)
FNN 0.29 (p=0.00) 0.14 (p=0.01) 0.03 (p=0.57) 0.06 (p=0.27)
Avg. 0.26 (p=0.00) 0.14 (p=0.00) -0.03 (p=0.41) 0.09 (p=0.01)

XLM-R
τ EN ES DE FR
MN 0.40 (p=0.00) 0.43 (p=0.00) 0.32 (p=0.00) 0.45 (p=0.00)
FN 0.26 (p=0.00) 0.33 (p=0.00) 0.43 (p=0.00) 0.31 (p=0.00)
MNN 0.26 (p=0.00) 0.35 (p=0.00) 0.20 (p=0.01) 0.29 (p=0.00)
FNN 0.35 (p=0.00) 0.45 (p=0.00) 0.10 (p=0.15) 0.34 (p=0.00)
Avg. 0.32 (p=0.00) 0.39 (p=0.00) 0.25 (p=0.00) 0.34 (p=0.00)

mT5
τ EN ES DE FR
MN 0.02 (p=0.79) 0.13 (p=0.06) 0.13 (p=0.06) 0.21 (p=0.00)
FN -0.09 (p=0.16) 0.11 (p=0.11) 0.00 (p=0.98) 0.12 (p=0.08)
MNN -0.08 (p=0.21) 0.10 (p=0.10) 0.03 (p=0.69) 0.10 (p=0.17)
FNN -0.04 (p=0.51) 0.25 (p=0.00) 0.03 (p=0.61) 0.10 (p=0.15)
Avg. -0.07 (p=0.07) 0.15 (p=0.00) 0.05 (p=0.18) 0.13 (p=0.00)

Table 5: Correlation between groups of annotators (MN,
FN, MNN, FNN) and models’ predictions, classified
by language. The degree of correlation is measured
with Kendall’s τ coefficient (τ ∈ [−1, 1]). Cells high-
lighted in red fail to reject the null hypothesis, meaning
that their difference is statistically significant (p>0.05).
Groups with coloured background show a stronger cor-
relation compared to the average in each language.

several representations with t-SNE. Figure 2 and485

Figure 3 represent the top-1000 predictions in a486

t-SNE plot for mBERT and XLM-R respectively.487

The same sentence is queried to the model in four488

languages and, accordingly, to annotators:489

490
en We want to [MASK] innovation .
es Queremos [MASK] la innovación .
de Wir wollen zur Innovation [MASK] .
fr Nous voulons [MASK] l’innovation .

491

Highest scored predictions are highlighted with492

a (⋆). Annotator’s answers that fell into the top-493

1000 predictions are denoted with a black edge. In494

line with results in (Choenni and Shutova, 2020),495

we appreciate in both models that languages are496

projected in separate sub-spaces instead of yielding497

a neutral representation, even though they share a498

common space (vocabulary).499

Similarly, Singh et al. (2019) shown a trend500

towards dissimilarity between representations for501

semantically similar inputs in different languages,502

in deeper layers of an uncased mBERT. Serve503

Figure 4 as an example, where the same word504

’gases’ was answered in different languages but is505

represented in different subspaces. Figure 5 shows506

a similar behaviour in XLM-R. The sentences507

queried are:508

40 20 0 20 40

40

20

0

20

40 en
es
de
fr

dim1

dim
2

Figure 2: t-SNE representation from the last layer of
mBERT for the top-1000 predictions for the parallel
sentences in the list above (’We want to [MASK] in-
novation .’ in English). Highest scored prediction is
starred; annotator’s answers are denoted by a dot with
black edge. Legend shows language-color mapping.

509
en [MASK] that deplete the ozone layer
es [MASK] que agotan la capa de ozono
de [MASK], die zum Abbau der

Ozonschicht führen
fr [MASK] appauvrissant la couche d’ozone

510
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Figure 3: t-SNE representation from the last layer of
XLM-R for the top-1000 predictions for the parallel
sentences in the list above (’We want to [MASK] in-
novation .’ in English). Highest scored prediction is
starred; annotator’s answers are denoted by a dot with
black edge. Legend shows language-color mapping.
























































gaz gases

gases

Figure 4: t-SNE representation from the last layer of
mBERT for the top-1000 predictions for the parallel
sentences in the list above (’[MASK] that deplete the
ozone layer’ in English). The word ’gases’ is pointed
out in each language (en: gases, es: gases, fr:gaz), as it
was a recurrent answer from different annotators. High-
est scored prediction is starred; annotator’s answers
are denoted by a dot with black edge. Legend shows
language-color mapping.






































gaz

gases gases

Figure 5: t-SNE representation from the last layer of
XLM-R for the top-1000 predictions for the parallel
sentences in the list above (’[MASK] that deplete the
ozone layer’ in English). The word ’gases’ is pointed
out in each language (en: gases, es: gases, fr:gaz), as it
was a recurrent answer from different annotators. High-
est scored prediction is starred; annotator’s answers
are denoted by a dot with black edge. Legend shows
language-color mapping.
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