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Abstract

Bidirectional attention—composed of the neural
network architecture of self-attention with posi-
tional encodings, together with the masked lan-
guage model (mlm) objective—has emerged as
a key component of modern large language models
(llms). Despite its empirical success, few studies
have examined its statistical underpinnings: What
statistical model is bidirectional attention implic-
itly fitting? What sets it apart from its non-attention
predecessors? We explore these questions in this pa-
per. The key observation is that fitting a single-layer
single-head bidirectional attention, upon reparame-
terization, is equivalent to fitting a continuous bag
of words (cbow) model with mixture-of-experts
(moe) weights. Further, bidirectional attention with
multiple heads and multiple layers is equivalent to
stacked moes and a mixture of moes, respectively.
This statistical viewpoint reveals the distinct use of
moe in bidirectional attention, which aligns with its
practical effectiveness in handling heterogeneous
data. It also suggests an immediate extension to cat-
egorical tabular data, if we view each word location
in a sentence as a tabular feature. Across empiri-
cal studies, we find that this extension outperforms
existing tabular extensions of transformers in out-
of-distribution (ood) generalization. Finally, this
statistical perspective of bidirectional attention en-
ables us to theoretically characterize when linear
word analogies are present in its word embeddings.
These analyses show that bidirectional attention can
require much stronger assumptions to exhibit linear
word analogies than its non-attention predecessors.

∗Correspondence to: {kwib,yixinw}@umich.edu;
Software that replicates the empirical studies is at
https://github.com/yixinw-lab/attention-uai.

1 INTRODUCTION

Bidirectional attention has recently emerged as a corner-
stone in the construction of large language models (llms).
It is composed of the self-attention mechanism with posi-
tional encodings, and is trained with the masked language
model (mlm) objective. First introduced by Vaswani et al.
[2017], the attention-based architecture represents a depar-
ture from the traditional recurrent or convolutional neural
networks in language modeling. This architecture has since
become the backbone of many large language models, in-
cluding BERT [Devlin et al., 2018], RoBERTa [Liu et al.,
2019], and GPT-2 [Radford et al., 2019]; all of them have
achieved exceptional performance in natural language pro-
cessing benchmarks.

At the heart of bidirectional attention lies the self-attention
mechanism; it creates a holistic representation of a sentence
by capturing pairwise relationships between tokens in each
sentence. Equally important to bidirectional attention are po-
sitional encodings, supplying word ordering information that
allows bidirectional attention to move beyond bag-of-words.
Finally, bidirectional attention employs the mlm objective.
It is a self-supervised learning objective for unlabelled text
data, optimizing the model’s predictive accuracy on ran-
domly masked words within each sentence.

Despite the empirical success of attention-based language
models, few works have examined their statistical underpin-
nings: What statistical models are these attention-based mod-
els implicitly fitting? What sets these models apart from their
non-attention predecessors like continuous bag of words
(cbow) [Mikolov et al., 2013]? How does the use of the self-
attention mechanism contribute to their empirical success?
We explore these questions in this work.

Main idea. We theoretically study bidirectional attention,
i.e., the self-attention module that is accompanied by posi-
tional encodings and is trained using mlm. The key observa-
tion is that fitting a single-head and single-layer bidirectional
attention, upon reparametrization, is equivalent to fitting
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cbow word with mixture-of-experts (moe) weights [Jacobs
et al., 1991]. Moreover, bidirectional attention with multiple
heads and multiple layers are equivalent to stacked moes
and mixture of moes, respectively. These analyses reveal the
distinct use of moe in bidirectional attention as compared
with its non-attention predecessor; they partially explain its
practical effectiveness in capturing heterogeneous patterns
in natural language [Devlin et al., 2018, Liu et al., 2019].

This statistical interpretation of bidirectional attention sug-
gests an immediate extension of bidirectional attention to
(categorical) tabular data: one can view each word location
in a sentence as a tabular feature, and each word as the
value that the feature takes. Across empirical studies, we
find that this tabular extension of attention improves out-of-
distribution (ood) generalization, compared with existing
tabular data algorithms or tabular extensions of attention.
Moreover, this tabular extension of attention facilitates the
integration of heterogeneous datasets with partially over-
lapping features: the learned feature encodings (akin to the
positional encodings in the original attention module) bring
all features into the same embedding space.

Finally, this connection between bidirectional attention and
cbow+moe empowers us to theoretically characterize when
linear word analogies (e.g. king−man+woman ≈ queen)
can be present in its word embeddings. We draw on a clas-
sical finding in Levy and Goldberg [2014]: the similarity
between two tokens from word2vec embeddings is equal
to their pointwise mutual information [Church and Hanks,
1990], provided that the embeddings have sufficient dimen-
sionality and the models were trained using the skip-gram
with negative sampling (sgns) objective. This result en-
ables us to analyze the embeddings of bidirectional attention,
given their connections to cbow. Adopting the paraphras-
ing argument of Allen and Hospedales [2019] for sgns,
we characterize the conditions under which both cbow
and attention-based embeddings exhibit linear word analo-
gies. We show that bidirectional attention can require much
stronger assumptions to exhibit linear word analogies than
its non-attention predecessors. These results partially ex-
plain the empirical observations that bidirectional attention
may not always achieve meaningful improvements over clas-
sical word embeddings in capturing abstract and complex
relationships [Ushio et al., 2021].

Contributions. We prove that bidirectional attention, upon
reparametrization, is equivalent to cbow with moe weights.
Moreover, bidirectional attention with multiple heads and
multiple layers is equivalent to stacked MoEs and mixture of
MoEs, respectively. This statistical interpretation with moe
partially explains the power of bidirectional attention in han-
dling heterogeneous data. Further, it suggests an immediate
extension of bidirectional attention to categorical tabular
data. Across empirical studies, it outperforms existing tab-
ular algorithms or tabular extensions of attention in ood
generalization. Finally, we leverage this statistical perspec-

tive of attention to characterize the presence of linear word
analogies in word embeddings. We show that bidirectional
attention can require much stronger assumptions to exhibit
linear word analogies than its non-attention predecessors.
These results align with the empirical observations that bidi-
rectional attention can sometimes perform worse in complex
analogy tasks than classical word embeddings.

Related work. Our work draws on three themes around
attention-based models.

The first is a body of work on the theoretical foundations
of attention-based models. Elhage et al. [2021] analyzed
how the different components of decoder-only attention-
based architectures relate to each other. Edelman et al. [2022]
provided a rigorous justification of the ability of attention-
based architectures to represent sparse functions. Tsai et al.
[2019] viewed attention through the perspective of kernels.
Peng et al. [2020] established a connection between the
use of multiple heads in transformers and moe. Li et al.
[2023] showed that the embedding and self-attention layers
in a transformer architecture are capable of capturing topic
structures. Bai et al. [2023], Bietti et al. [2023], Xie et al.
[2022], Han et al. [2023] provided theoretical analyses about
the in-context learning ability of attention-based models. In
contrast to these works, we provide a statistical interpretation
of the bidirectional attention objective, showing that fitting
a single-layer single-head attention-based architectures is
equivalent to fitting a cbow model with moe weights; this
statistical interpretation provides a theoretical basis for the
empirical effectiveness of bidirectional attention in handling
heterogeneous data [Devlin et al., 2018, Liu et al., 2019].

The second theme is the extension of attention-based models
to tabular data. One prominent work along this line is Tab-
Transformer [Huang et al., 2020], which utilizes a concatena-
tion of token embeddings and unique feature identifiers—in
lieu of positional encodings—to learn contextual embed-
dings for categorical features with self-attention. Different
from TabTransformer, we view each word location in a sen-
tence as a tabular feature; our extension thus represents each
feature in tabular data via an encoding akin to the posi-
tional encodings. Other tabular extensions of self-attention
include FTTransformer (tokenizing each feature, applying
transformer layers, and using the [CLS] token for predic-
tion) [Gorishniy et al., 2021], AutoInt (mapping all features
into the same space and applying self-attention to model
between-feature interactions) [Song et al., 2019] and Tab-
Net (utilizing sequential attention for feature selection in
different learning steps) [Arik and Pfister, 2020]. Compared
with these existing approaches, our approach is more robust
to covariate shifts across empirical studies; it also facili-
tates the integration of heterogeneous datasets with partially
overlapping features.

The third theme relates to linear word analogy structures
in word embeddings. Neural word embeddings such as



word2vec [Mikolov et al., 2013] and GloVe [Pennington
et al., 2014] have been empirically shown to exhibit linear
structures, often manifested through analogies. Concretely,
given an analogy “a is to b as c is to d", we often find
wb + wc − wa ≈ wd, where wi denotes the embedding
of word i ∈ {a, b, c, d}. Many works provide theoretical jus-
tifications for this phenomenon. Arora et al. [2016] offered a
latent variable argument, assuming that texts are generated
from random walks of discourse vectors and word vectors
are spatially isotropic. Ethayarajh et al. [2018] introduced
the co-occurrence shifted PMI concept which characterizes
when linear analogy holds in sgns and GloVe. Allen and
Hospedales [2019] adopted the paraphrasing framework of
Gittens et al. [2017] and used word transformation to con-
nect linear analogy in sgns with paraphrases. In contrast
to these existing works, our work moves beyond sgns and
GloVe; we characterize when linear word analogies may be
present in cbow and attention-based embeddings.

2 BIDIRECTIONAL ATTENTION AS A
MIXTURE OF CONTINUOUS WORD
EXPERTS

In this section, we first review bidirectional attention, a lan-
guage model composed of the self-attention architecture,
positional encodings, and the use of mlm training objective.
En route, we derive an explicit form of the mlm objective
for a single-layer single-head attention-based architecture
in Section 2.1. We then formally establish the equivalence
between fitting bidirectional attention and fitting the cbow
model with moe weights in Section 2.2, with extensions to
multi-head and multi-layer attention-based architectures.

2.1 BIDIRECTIONAL ATTENTION:
SELF-ATTENTION, POSITIONAL
ENCODINGS, AND THE mlm OBJECTIVE

We begin with describing the structure of bidirectional
attention—self-attention, positional encodings, and the
mlm objective—in the context of language modeling. (Ap-
pendix A contains a summary of the notations used in this
section.)

Building blocks of bidirectional attention. Consider a cor-
pus that consists of sentences of length S, with a vocabulary
size of |V |. The self-attention mechanism takes sentences
and outputs their sentence embeddings, by transforming the
token embeddings and positional encodings of each token in
the sentence. We denote C ∈ R(|V |+1)×p as the matrix such
that each row c⊤i corresponds to the token embedding of the
i-th token in the vocabulary. The (|V |+ 1)-th token is the
[MASK] token, representing a token in the training corpus
that is masked. Further denote P ∈ RS×pas the positional
encoding matrix.

To learn these token embeddings and positional encodings,
bidirectional direction employs an mlm objective: it ran-
domly masks a random subset of the tokens in the training
corpus; then it aims to predict these masked tokens from the
sentence embeddings, which are produced by transforming
the token embeddings and positional encodings through the
attention mechanisms. To operationalize the mlm objective,
we use X ∈ {0, 1}S×(|V |+1) to denote the one-hot encoding
matrix of the S tokens (including the masked tokens) in each
sentence. For notational simplicity, we consider a simple
masking strategy: each sentence produces S prediction tasks
in the mlm objective, each of which involves masking ex-
actly one of the S positions in the sentence and predicting
the token in that position. (Results in this section can be
easily generalized to general masking strategies.)

Predicting masked tokens with self-attention. We next
describe how the self-attention mechanism (with positional
encodings) produces predictions of masked tokens. For ease
of exposition, we focus on a single-head single-layer atten-
tion module. It takes in X , the one-hot encoding matrix of
the S tokens in a sentence (including the masked tokens); it
then outputs a probability vector ŷ ∈ ∆|V | as a prediction of
the masked token, indicating the probability of the masked
token being each of the |V | words in the vocabulary.

The self-attention architecture transforms X into the predic-
tion ŷ following steps:

1. Token embeddings with positional encodings: Produce
a matrix consisting of the token embeddings of all the
tokens in the masked sentence: X = XC ∈ RS×p. Then
add positional encodings to the matrix: X ′ = X + P .

2. Sentence embeddings with attention weight matrices:
Employing value mapping WV ∈ Rd×p, query mapping
WQ ∈ Rdw×p, and key mapping WK ∈ Rdw×p, we ob-
tain the sentence embeddingXattn ∈ RS×d after applying
the attention weights:

Xattn = softmax
(
X ′(WQ)⊤WK(X ′)⊤√

dw

)
X ′(WV )⊤,

where the softmax is taken row-wise.
3. Intermediate representations with residual connec-

tions: Obtain an intermediate representation with coef-
ficient matrix WO ∈ Rd×p and a residual connection:
Z = XattnWO ∈ RS×p; then Z ′ = X ′ + Z ∈ RS×p.

4. Final predictions with linear layer and residual con-
nections. For each position i ∈ [S] of the sentence, apply
a linear layer LIN1(Z

′
i) = W ′Z ′

i ∈ Rp with a weight
matrix W ′ ∈ Rp×p; then another residual connection
Z ′′ = Z ′ + LIN1(Z

′) ∈ RS×p; finally another linear
layer and softmax operation

ŷ = softmax(LIN2(Z
′′
i )),

where LIN2(Z
′′
i ) = W ′′Z ′′

i ∈ R|V | with weight matrix
W ′′ ∈ R|V |×p.



Given the self-attention transformations from input sen-
tences X to masked token predictions ŷ, bidirectional at-
tention learns the token embeddings, positional encodings,
and weight matrices by optimizing the cross entropy loss of
ŷ in predicting the masked tokens. This loss objective is also
known as the mlm objective.

The loss objective of bidirectional attention. We next
derive an explicit form for the loss objective of bidirectional
attention. This derivation will pave the road for the statistical
interpretations of bidirectional attention.

In more detail, we consider an input-output pair (X, y) for
the masked token prediction task, where X is the one-hot
encoding matrix of all the tokens in the sentence, and y ∈
{0, 1}|V | is the one-hot encoding of the token being masked.
We denote m ∈ [S] and b ∈ [|V |] as the masked position
and masked token, respectively. Lemma 1 below derives an
explicit form of the mlm objective Lmlm(m, b).

Lemma 1 (The loss objective of bidirectional attention).
Upon reparametrization, the mlm objective for predicting
token b in the mth position is given by

Lmlm(m, b) = −
∑S

j=1 θ(j,m)χ(j,m, b)∑S
j=1 θ(j,m)

+ log

 |V |∑
k=1

exp

(∑S
j=1 θ(j,m)χ(j,m, k)∑S

j=1 θ(j,m)

) ,

where

θ(j,m) ≜ exp

(
e⊤j (XC + P )WKQ(c|V |+1 + P⊤em)

√
dw

)
,

χ(j,m, k) ≜
(
WLOV (XC + P )⊤ej + g +Dem

)
k
,

and g ∈ R|V |, D ∈ R|V |×S , WLOV ∈ R|V |×p, WKQ ∈
Rp×p; ej ∈ {0, 1}S denotes a zero vector with 1 on the j-th
entry. (The proof is in Appendix C.)

Lemma 1 performs a reparametrization over the weight
matrices WV ,WQ,WK ,WO, arriving at an explicit form
of the mlm objective with only two weight matrices
WKQ,WLOV . Lemma 1 also reveals two key components
of the mlm objective: θ(j,m), the attention weight of to-
ken m on token j, and χ(j,m, ·), the similarity between
token m and token j. These quantities will play a key role
in facilitating the statistical interpretation of bidirectional
attention.

2.2 BIDIRECTIONAL ATTENTION AS A
MIXTURE OF CONTINUOUS WORD EXPERTS

Building on the derivations in Lemma 1, we next establish
the equivalence between the loss objective of bidirectional
attention and that of the continuous bag of words (cbow)

model with mixture-of-experts (moe) weights. This equiv-
alence will enable us to interpret bidirectional attention as
fitting a statistical model of cbow+moe.

The continuous bag of words model (cbow). We begin
with reviewing the cbow formulation of word2vec [Mikolov
et al., 2013]. cbow aims to predict the center token based
on the surrounding tokens (a.k.a. context tokens). It has
two parameter matrices, representing the center and context
embeddings respectively.

In more detail, we consider an input-output pair (X, y) as
in Section 2.1, where m ∈ [S] and b ∈ [|V |] represent
the masked position and masked token. We note that, while
masking is never employed in cbow, introducing masking
into cbow does not change its objective. The reason is that
the context of a token in cbow does not include the token
itself. Thus, with window size w, the loss objective for pre-
dicting the token in the mth position of cbow (a.k.a. the
negative log-likelihood) is

Lcbow(m, b) = log

 |V |∑
k=1

exp

 S∑
j=1

ωj,m,wξ(j, k)∑S
j=1 ωj,m,w


−

S∑
j=1

ωj,m,wξ(j, b)∑S
j=1 ωj,m,w

,

where ωj,m,w = 1(1 ≤ |j −m| ≤ w),

ξ(j, k) =
(
WLOV (XC)⊤ej

)
k
,

if we denote the center and context matrices byWLOV andC
to match the notations of bidirectional attention.

Weight and similarity matrices in cbow and bidirec-
tional attention. The cbow model appears related to bidi-
rectional attention: it admits natural notions of (attention)
weight and (token) similarity as in bidirectional attention.
Specifically, the weight of the token in position j ∈ [S] is
determined by the distance between j and m and the number
of integers between m− w and m+ w (inclusive) that are
within the range [1, S]. The similarity of token α ∈ [|V |] in
the center and token β ∈ [|V |] in the context is (WLOV

α )⊤cβ ,
regardless of their positions in the sentence.

To compare cbow and bidirectional attention, we next in-
spect the weight matrices in the mlm objective of bidirec-
tional attention. Specifically, the weight of the token in posi-
tion j in Lmlm is given by1

exp
(
e⊤j (XC + P )WKQ(c|V |+1 + P⊤em)/

√
dw
)∑S

j=1 exp
(
e⊤j (XC + P )WKQ(c|V |+1 + P⊤em)/

√
dw
) .

1The weight and similarity matrices can take other parametric
forms; e.g. Sonkar et al. [2020] uses a different weight function that
depends on the center token b in their attention word embedding
(awe) model.



Unlike that of cbow, this weight matrix of bidirectional
attention depends on all tokens in the masked sentence
and their corresponding positions. Yet, it does not de-
pend on the center (masked) token b. Further, the term
inside the exp(·) can be decomposed into four compo-
nents: (1) e⊤j XCWKQc|V |+1/

√
dw, which depends only

on the token in position j; (2) e⊤j XCWKQP⊤em/
√
dw,

which depends on both position j and position m; (3)
e⊤j PWKQc|V |+1/

√
dw, which depends only on position

j; and (4) e⊤j PWKQP⊤em/
√
dw, which depends on both

position j and position m.

The similarity matrix of bidirectional attention also ap-
pears related to that of cbow. In bidirectional attention,
the similarity of token α in the center (in position m)
and token β in the context (in position j) is given by
(WLOV

α )⊤cβ + (WLOV
α )⊤P⊤ej + gα + (Dα)

⊤em, which
also contains four components as above. Moreover, the first
component coincides with the similarity matrix of cbow.

Bidirectional attention as a mixture of continuous word
experts. Following these observations that bidirectional
attention appears closely related to cbow, we conclude this
section with Theorem 2: it proves that the mlm objective
of bidirectional attention in Lemma 1 is equivalent to the
cbow objective with moe weights, where the token in each
position serves as an expert.

Theorem 2 (Bidirectional attention as a mixture of con-
tinuous word experts). The mlm objective of bidirectional
attention is equivalent to the cross-entropy loss between
the token being masked y and the prediction probabilities
softmax(F (X)) from a mixture-of-experts (moe) predictor:

F (X) =
∑
j∈[S]

πj(X)fj(X),

where the jth expert fj(X) relies on the embedding of the
token in position j,

fj(X) = WLOV (XC + P )⊤ej + g +Dem,

and its weight (namely the contribution of expert j to the
prediction) is πj(X) =

(
softmax(h(X))

)
j

with

hj(X) = e⊤j (XC + P )WKQ(c|V |+1 + P⊤em)/
√
dw.

Theorem 2 is an immediate consequence of Lemma 1. It
formally establishes the equivalence between bidirectional
attention and cbow+moe, enabling a statistical interpre-
tation of bidirectional attention. In particular, Theorem 2
reveals the distinct use of moe in bidirectional attention,
which is a machine learning technique that excels at han-
dling heterogeneous data. It thus can partially explain the
empirical effectiveness of attention-based models in cap-
turing heterogeneous patterns in complex natural language
data [Devlin et al., 2018, Liu et al., 2019].

Extensions to multi-head and multi-layer bidirectional
attention. We finally extend Theorem 2 to multi-head and
multi-layer bidirectional attention. For bidirectional atten-
tion with multiple attention heads, its mlm objective can
be shown to be equivalent to a stacked moe of cbow. For
example, for bidirectional attention with two attention heads,
its mlm objective is equivalent to cross entropy loss with
the following stacked moe predictor:

F (X) =
∑
j∈[S]

π1
j (X)f1

j (X) +
∑
j∈[S]

π2
j (X)f2

j (X),

where the jth expert of the ith head is

f i
j(X) = WLOVi(XC + P )⊤ej +

g

2
+

Dem
2

,

whose moe weight is πi
j(X) =

(
softmax(hi(X))

)
j

with

hi
j(X) = e⊤j (XC + P )WKQi(c|V |+1 + P⊤em)/

√
dw.

Following similar derivations, one can show that bidirec-
tional attention with multiple attention layers is equivalent
to a mixture of moes.

3 BIDIRECTIONAL ATTENTION FOR
TABULAR DATA

The equivalence between mlm with self-attention and cbow
with moe weights (Theorem 2) suggests an immediate ex-
tension to categorical tabular data. We develop this tabular
extension in this section. Across empirical studies, we find
that this tabular extension of attention achieves significant
improvement in ood generalization over existing methods,
including existing algorithms for tabular data (e.g. random
forest, gradient boosting) and existing tabular generalizations
of attention modules (e.g. TabTransformer, FTTransformer).

3.1 TABULAR EXTENSION OF BIDIRECTIONAL
ATTENTION

To extend bidirectional attention to tabular data, we con-
sider a classification problem with categorical features. For
simplicity, we assume the response variable Yi is ordinal
with C classes. Further assume each of the K-dimensional
features Xi is also ordinal with C classes. The training data
contains pairs of features and responses (Xi, Yi). The goal
is to predict the response for some test X .

Extending bidirectional attention to this tabular setting re-
quires that we handle tabular features with bidirectional
attention. To this end, we leverage the observations in Theo-
rem 2 that bidirectional attention can be viewed as prediction
with moe, where the token in each position of the sentence
(endowed with positional encodings) serves as an expert.
This moe perspective of bidirectional attention immediately



suggests that we consider each tabular feature as an expert
in tabular data, since each position in a sentence can be
viewed as a tabular feature for predicting masked tokens.
One can thus consider using tabular feature encodings in the
place of positional encodings for analyzing tabular data with
bidirectional attention.

To operationalize this tabular extension of bidirectional atten-
tion, we first introduce “word" embeddings w1, · · · , wC ∈
Rd for each class and w0 for the [MASK] token. We then
introduce “position" encodings p1, · · · , pK+1 ∈ Rd, one for
each feature. Finally, we consider the concatenation of fea-
tures and covariates (Xi, Yi) of each data point as a sentence
in bidirectional attention. These mappings enable us to learn
the embeddings and encodings using the mlm objective.
At test time, given a test X , one can use the bidirectional
attention model to predict the most probable class for the
input (Xi, [MASK]).

We note that this use of mlm objective for tabular data im-
plicitly models the joint distribution p(X,Y ), as opposed to
the conditional distribution p(Y |X) that standard supervised
algorithms commonly model. As a consequence, tabular ex-
tensions of bidirectional attention can potentially achieve
better ood generalization, as we demonstrate empirically
next.

Finally, this tabular extension of bidirectional attention can
be applied beyond supervised classification. It readily ex-
tends to unsupervised settings (if we ignore the Yi’s) and
semi-supervised settings (if we consider both the labeled and
unlabeled data and set the Yi’s for the unlabeled data to be
[MASK]). This approach is also applicable to handling mul-
tiple datasets with only partially overlapping features: the
learned feature encodings will allow us to bring all features
into the same embedding space. These learned encodings
can also reveal the relationships between different tabular
features across different data sets.

3.2 EMPIRICAL STUDIES OF TABULAR
BIDIRECTIONAL ATTENTION

In this section, we empirically study the tabular extension
of bidirectional attention using simulated and real datasets.
Across empirical studies, we find that this approach outper-
forms in ood generalization for tabular data, as is compared
with both existing tabular data algorithms and existing tabu-
lar extensions of attention modules.

3.2.1 Simulated data

Begin with evaluating tabular bidirectional attention on sim-
ulated. We focus on the common ood generalization set-
ting of covariate shift; it refers to prediction tasks where
p(Xtrain) ̸= p(Xtest) and p(Ytrain|Xtrain) = p(Ytest|Xtest).

Data generation. We describe the key components of data

generation process; we refer the readers to Appendix D for
full details. We set the number of features K to be 5, the
number of classes C to be 10, and the training and test set
size to be 2,000 each. Twenty data sets are generated for
each combination of hyperparameters.

Competing methods and evaluation metrics. We fit the
proposed tabular extension of bidirectional attention model
to each training set, together with a few competing methods,
namely logistic regression (LR), random forests (RF), gra-
dient boosting (GB) and multilayer perceptron (MLP). See
Appendix E for implementation details.

Results. Table 1 summarizes the test accuracy and mean
squared error of all methods. We find that the proposed
tabular extension of bidirectional attention outperforms or
competitively compares to all competing methods. Moreover,
its performance gain is more apparent when corr = 0.9 (very
correlated training features) as compared to when corr =
0.1; the former corresponds to a more challenging case of
covariate shift.

3.2.2 UCI’s auto-mpg data

We next study the tabular extension of bidirectional attention
on a real dataset, namely the auto-mpg data from the UCI
data set. This data set contains the following information
from 398 different car models: mpg, cylinders, displacement,
horsepower, weight, acceleration, model year, origin, and
car name.

Data processing. To simulate covariate shift, we follow
the approach of Sugiyama and Storkey [2006]: we assigns
cars from origin 1 to the training set, and origins 2 and 3 to
the test set. In addition, we only consider cars with 4, 6 or 8
cylinders and remove data points with missing values. Lastly,
similar to the synthetic data experiments, we convert each
column into three quantile-based categories. The final data
set has 385 data points, where 245 belong to the training set
and 140 belong to the test set.

Competing methods and evaluation metrics. We use the
same competing methods and evaluation metrics as in Sec-
tion 3.2.1. Additionally, we compare with other existing tab-
ular extensions of attention modules, including CategoryEm-
bedding (CE) [Joseph, 2021], FTTransformer (FT) [Gorish-
niy et al., 2021], TabTransformer (TT) [Huang et al., 2020],
AutoInt (AI) [Song et al., 2019], and TabNet (TN) [Arik and
Pfister, 2020].2

Results. Table 2 summarizes the test accuracy and mean
squared error of all methods. We find that the proposed
tabular extension of bidirectional attention outperforms all
competing methods. This performance gain is likely due to

2We use pytorch_tabular’s [Joseph, 2021] implementation
with the default parameters. The batch and epoch sizes are set to
be 128 and 200, respectively.



Table 1: The proposed tabular extension of bidirectional attention (ATN) achieves better or competitive accuracy and MSE
than competing methods, across all parameter settings. The parameter tuples indicate different choices of (nc, noise, corr).

Param. \ Acc. LR RF GB MLP ATN
(1, 0, 0.1) 0.388 0.409 0.413 0.323 0.404
(1, 0, 0.9) 0.313 0.298 0.350 0.237 0.389
(1, 0.5, 0.1) 0.345 0.361 0.366 0.292 0.359
(1, 0.5, 0.9) 0.270 0.253 0.299 0.202 0.306
(1, 1.5, 0.1) 0.250 0.243 0.253 0.204 0.252
(1, 1.5, 0.9) 0.169 0.158 0.172 0.142 0.170
(5, 0, 0.1) 0.250 0.207 0.244 0.306 0.419
(5, 0, 0.9) 0.162 0.150 0.156 0.169 0.392
(5, 0.5, 0.1) 0.227 0.173 0.214 0.252 0.318
(5, 0.5, 0.9) 0.154 0.133 0.153 0.151 0.269
(5, 1.5, 0.1) 0.167 0.099 0.157 0.165 0.171
(5, 1.5, 0.9) 0.125 0.108 0.114 0.118 0.133

Param. \ MSE LR RF GB MLP ATN
(1, 0, 0.1) 3.015 2.694 2.730 4.059 2.941
(1, 0, 0.9) 5.163 9.331 4.855 7.911 3.078
(1, 0.5, 0.1) 3.416 3.201 3.123 4.704 3.281
(1, 0.5, 0.9) 5.955 10.106 6.070 8.123 4.465
(1, 1.5, 0.1) 5.725 5.685 5.415 7.199 5.594
(1, 1.5, 0.9) 8.942 12.340 9.837 9.874 7.339
(5, 0, 0.1) 5.333 8.498 5.967 2.814 1.521
(5, 0, 0.9) 5.674 10.101 8.858 7.842 1.633
(5, 0.5, 0.1) 6.021 10.236 6.844 4.056 2.605
(5, 0.5, 0.9) 6.118 10.427 8.283 7.884 2.355
(5, 1.5, 0.1) 9.159 16.154 9.538 8.313 8.316
(5, 1.5, 0.9) 8.410 10.409 10.110 9.966 6.501

its focus on modeling the joint distribution of the covariates
and response variable; it is in contrast to the practice of
modeling only the conditional distribution of the response
variable given the covariates in supervised learning.

4 LINEAR WORD ANALOGIES IN
ATTENTION-BASED EMBEDDINGS

In this section, we explore the presence of linear word analo-
gies in the embeddings of bidirectional attention and its
non-attention predecessors. En route, we leverage the close
connections between cbow and bidirectional attention in
Theorem 2 to facilitate the theoretical analysis. This explo-
ration is motivated by a curious empirical observation: While
bidirectional attention (e.g. BERT) often significantly out-
performs its non-attention predecessors in natural language
processing benchmarks, it does not seem to outperform its
predecessors in word analogy tasks. In particular, it can
sometimes perform worse in word analogy tasks than clas-
sical word embedding algorithms like word2vec [Mikolov
et al., 2013] and GloVe [Pennington et al., 2014].

Thanks to these empirical observations, we characterize un-
der which conditions bidirectional attention and cbow can
exhibit linear word analogies in their embeddings. We find
that bidirectional attention requires much stronger condi-
tions to exhibit linear word analogies than its non-attention
predecessors. These results partially explain the limited em-
pirical gain in using bidirectional attention for word analogy
tasks.

4.1 A CURIOUS EMPIRICAL STUDY: DO
ATTENTION-BASED TOKEN EMBEDDINGS
EXHIBIT LINEAR WORD ANALOGIES?

We begin with a curious empirical study about the presence
of linear word analogies in attention-based and non-attention-
based token embeddings. Linear structure in neural word

embeddings such as word2vec [Mikolov et al., 2013] and
GloVe [Pennington et al., 2014] is a well-known empiri-
cal phenomenon. However, most studies focused on embed-
dings trained via sgns [Ethayarajh et al., 2018, Allen and
Hospedales, 2019]. This phenomenon is less studied in more
recent language modeling approaches, e.g. cbow and bidi-
rectional attention, with few exceptions [Ushio et al., 2021].

To this end, we first perform an empirical study about
whether linear relationships are observed in embeddings
from word2vec trained with the cbow objective and BERT
[Devlin et al., 2018], a large language model based on bidi-
rectional attention. Following existing studies, we use the
analogy identification task as a proxy for identifying the pres-
ence of linear relationships, using the analogy data set first
introduced in Pennington et al. [2014]. We refer the readers
to Appendix F for dataset and implementation details.

Evaluation metrics. For each model, we are interested in
(1) the overall and per-category accuracies, where accuracy
is defined as the proportion of correct answers; and (2) the
overall and per-category average cosine similarity between
xb + xc − xa and the correct answer. We note that (2) is
a better metric than (1) due to the difference in vocabulary
sizes across models.

Results. The accuracy and average cosine similarity for
each model is displayed in Table 3. We observe that all three
models generally result in word embeddings that exhibit
certain linear word analogies. However, the bidirectional
attention model BERT can often perform worse than its non-
attention predecessor GloVe in this task, despite it being a
much more powerful language model in common natural
language benchmarks.

What factors have limited BERT’s (and bidirectional atten-
tion’s) ability to exhibit linear word analogies? What about
cbow and GloVe? Below we study these questions theoreti-
cally, leveraging the close connection between cbow and
bidirectional attention in Theorem 2. In particular, we char-
acterize the conditions under which cbow and bidirectional



Table 2: The proposed tabular extension of attention (ATN) achieves superior performance as compared to all baselines.
(Lower MSE and higher accuracy is better.)

LR RF GB MLP CE FT TT AI TN ATN (ours)
Accuracy 0.657 0.721 0.657 0.700 0.764 0.707 0.707 0.364 0.600 0.793

MSE 0.343 0.279 0.343 0.300 0.236 0.293 0.293 0.636 0.486 0.207

attention may exhibit linear word analogies respectively. We
find that the conditions required by bidirectional attention is
much stronger, which partially explains the empirical obser-
vations above.

4.2 LINEAR WORD ANALOGIES IN CBOW AND
BIDIRECTIONAL ATTENTION EMBEDDINGS

We begin with theoretically characterize under which condi-
tions can cbow embeddings exhibit linear word analogies.
Starting with Allen and Hospedales’s [2019] argument for
sgns, we extend the argument to both cbow and attention-
based token embeddings, thanks to the equivalence we es-
tablished in Theorem 2.

To perform this theoretical analysis, we follow existing anal-
yses about sgns: Levy and Goldberg [2014] showed that
for a sufficiently large embedding dimension, embeddings
from sgns satisfy w⊤

i cj = log
(

p(wi,cj)
p(wi)p(cj)

)
− log k =

PMI(wi, cj)− log k, where k is the number of negative sam-
ples for each positive sample; WLOV , C ∈ R|V |×p are the
center and context embedding matrix, respectively. For each
i ∈ [|V |], w⊤

i (c⊤i ) is the i-th row of WLOV (C), which
represents the center (context) embedding of word i.

Using this result, Allen and Hospedales [2019] consid-
ered embeddings which factorize the unshifted PMI ma-
trix, namely w⊤

i cj = PMI(wi, cj), compactly written as
W⊤C = PMI. Through the ideas of paraphrases and word
transformations, they explained why linear relationships ex-
ist for analogies on sgns word embeddings.

Here we perform similar analyses for cbow and bidirec-
tional attention; the goal is to characterize the conditions
under which cbow and bidirectional attention can exhibit
linear word analogies respectively. Below we sketch the main
results we obtain, leaving full details to Appendix G.

Linear word analogies in cbow embeddings. We first
characterize the inner product of center and contextual em-
beddings of cbow.

Proposition 3. Embeddings from fitting cbow without nega-
tive sampling must satisfyw⊤

i cj ≈ log
(

p(wi,cj)
p(cj)

)
+log |V |.

This result suggests that cbow approximately factorizes
M , a |V | × |V | matrix such that Mi,j = log

(
p(wi,cj)
p(cj)

)
+

log |V |. Following this result, we next argue that the cbow

embeddings approximately form a linear relationship, up to
some error terms.

Proposition 4. Given any wa, wa∗ , wb, wb∗ ∈ E , we have

wb∗ = wa∗ − wa + wb + C†(ρW,W∗ +∆W,W∗ + δW,W∗)

= wa∗ − wa + wb + C†(ξW,W∗ +∆W,W∗),

where E is the set of all words in the vocabulary, W =
{wb, wa∗}, ∆W,W∗ = σW − σW∗ and W∗ = {wb∗ , wa}.
The quantities ρW,W∗ ,∆W,W∗ , δW,W∗ , ξW,W∗ are all
statistics that characterize the relationships between the two
word sets W,W∗. We refer the reader to Appendix G for
their precise definitions and complete details of the results.

Proposition 4 reveals that we have linear word analogies
wb∗ ≈ wa∗ − wa + wb when W paraphrases W∗ in the
sense of Allen and Hospedales [2019] (i.e. ρW,W∗ ≈ 0), and
σW , σW∗ and δW,W∗ are small. The latter conditions hold
true only when all wi ∈ W (wi ∈ W∗) are approximately
conditionally independent given cj , and p(W) ≈ p(W∗). If
we consider alternative definitions of paraphrase—which
we detail in Appendix G, then the linear analogy error may
only depend on the approximate conditional independence
of wi’s given cj .

Finally, we characterize the conditions under which, if token
embeddings of cbow exhibit linear word analogies, then its
contextual embedding will also exhibit this structure.

Proposition 5. Let W = {r, s} and W∗ = {t, u}. Assume
p(W) ≈ p(W∗) and wi ∈ W (wi ∈ W∗) are approximately
marginally independent. Further, assume that W has full
row rank. If wr + ws ≈ wt + wu, then cr + cs ≈ ct + cu.

Linear word analogies for bidirectional attention. We
next extend these cbow arguments to bidirectional atten-
tion, leveraging the close connection established in Theo-
rem 2. We will show that the same linear word analogies may
emerge in bidirectional attention, but under much stronger
assumptions.

Proposition 6. Token embeddings from bidirectional atten-
tion must satisfy

w⊤
i cj ≈

|V |
∑

(i,j) γ
i
j −

(∑
(1,j) γ

1
j + · · ·+

∑
(|V |,j) γ

|V |
j

)
S
(∑

(1,j)(γ
1
j )

2 + · · ·+
∑

(|V |,j)(γ
|V |
j )2

) ,

where for a center-context pair (d, j) in the masked sen-
tence (a1, · · · , aS), we define γd

j = τj/
∑S

s=1 τas
, and

τj = exp
(
c⊤j W

KQc|V |+1/
√
dw
)
.



Table 3: Classical word embedding methods can achieve similar or higher performance than attention-based model in
word analogy tasks: GloVe achieve higher or the same average cosine similarity than BERT on both syntactic and semantic
analogies; GloVe also outperforms BERT in accuracy for semantic analogies. (Higher is better.)

Accuracy BERT GloVe CBOW
Semantic 0.641 0.759 0.234
Syntactic 0.754 0.692 0.667
Overall 0.727 0.708 0.563

Cosine similarity BERT GloVe CBOW
Semantic 0.500 0.600 0.504
Syntactic 0.610 0.610 0.582
Overall 0.584 0.607 0.564

Proposition 6 shows that bidirectional attention approxi-
mately factorizes a |V | × |V | matrix whose (i, j)-th en-
try is given by the equation above. Unlike in cbow, the
token embedding for each word i is ci (the context em-
bedding), and not wi (the center embedding). In the case
where τj is approximately the same for every j ∈ [|V |+ 1],
the problem approximately reduces to a vanilla cbow:
we always have γd

j ≈ 1/S, whence Proposition 6 yields

w⊤
i cj ≈

p(wi,cj)
p(cj)

· |V | − 1 ≈ log
(

p(wi,cj)
p(cj)

)
+ log |V |.

Following a similar argument as Proposition 4, we argue
that the bidirectional attention embedding can also exhibit
linear word analogies, up to some error.

Proposition 7. Given any wa, wa∗ , wb, wb∗ ∈ E , we have

wb∗ = wa∗ − wa + wb + C̃†(ρ̄W,W∗ +∆
W,W∗

+ δ̄W,W∗)

= wa∗ − wa + wb + C̃†(ξ̄W,W∗ +∆
W,W∗

),

where ∆
W,W∗

= σW − σW∗ , W = {wb, wa∗}, and
W∗ = {wb∗ , wa}. The quantities ρ̄W,W∗ , ∆WW∗ , δ̄W,W∗

characterize the relationships between W,W∗ based on
p̄(wi, cj) ≜

∑
(i,j) γ

i
j/E; see details in Appendix G.

Under additional conditions, similar linear word analogy
relationships may also emerge for the contextual embeddings
of bidirectional attention.

Proposition 8. Let W = {r, s} and W∗ = {t, u}. Assume
p̄(W) ≈ p̄(W∗) and wi ∈ W (wi ∈ W∗) are approximately
marginally independent. Further assume thatW has full row
rank and p̄(wi, cj) ≈ p̄(wj , ci). If wr+ws ≈ wt+wu, then
c̃r + c̃s ≈ c̃t + c̃u.

While we leave the full details of these results to Appendix G,
Propositions 7 and 8 suggest that bidirectional attention
requires much stronger conditions to exhibit linear rela-
tionships than cbow. Specifically, it requires the quantity
p̄(wi, cj) =

∑
(i,j) γ

i
j/E to be approximately symmetric.

Even when this condition holds, linear word analogy would
only hold for some transformed embeddings c̃i’s, as op-
posed to the token embeddings ci’s. Only under an addi-

tional assumption that ζj :=
∑

(1,j)(γ
1
j )

2+···+
∑

(|V |,j)(γ
|V |
j )2∑

(1,j) γ
1
j+···+

∑
(|V |,j) γ

|V |
j

is approximately the same for each j (e.g., when τj is ap-
proximately the same for every j), we will approximately
have linear word analogies for the token embeddings ci’s.

Finally, we note that all these results can be easily extended to
incorporate positional encodings by considering each (word,
position) pair as a unit. In these cases, analogies will be
drawn between (word, position) pairs.

5 DISCUSSION

In this paper, we prove that a single-head single-layer bidi-
rectional attention is equivalent to a continuous bag of words
(cbow) model with mixture-of-experts (moe) weights, upon
reparameterization. This statistical perspective reveals the
distinct use of moe in bidirectional attention, supporting the
empirical observations that bidirectional attention excels in
capturing heterogeneous patterns. This connection further
suggests immediate extensions of attention to tabular data,
leading to improved out-of-distribution (ood) generaliza-
tions when compared to existing approaches. It also allows
us to characterize the conditions under which embeddings
from bidirectional attention and cbow exhibit linear word
analogies. These analyses show that bidirectional attention
requires much stronger assumptions than its non-attention
predecessors to exhibit linear word analogies.

One limitation of this work is that the linear word analogy
argument in Section 4 ignores residual connections. In addi-
tion, we only consider bidirectional attention architectures
that use linear layers, as opposed to feed-forward layers used
in Devlin et al. [2018]. Beyond addressing these limitations,
exploring the statistical properties of bidirectional attention
is an interesting avenue for future work. It will also be useful
to provide theoretical justifications for the observed robust-
ness of bidirectional attention to covariate shifts, and to
understand the fundamental differences between static and
contextual word embeddings in their abilities to form linear
analogies.
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