
Under review as a conference paper at ICLR 2024

CONVFORMER: REVISITING TOKEN MIXERS FOR SE-
QUENTIAL USER MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequential user modeling is essential for building recommender systems, aiming
to predict users’ subsequent preferences based on their historical behavior. De-
spite the widespread success of the Transformer architecture in various domains,
we observe that its self-attentive token mixer is outperformed by simpler strategies
in the realm of sequential user modeling. This observation motivates our study,
which aims to revisit and optimize the design of token mixers for this specific field.
We start by examining the core building blocks of the self-attentive token mixer,
identifying three empirically-validated criteria essential for designing effective to-
ken mixers in sequential user models. To validate the utility of these criteria, we
develop ConvFormer, a streamlined modification to the Transformer architecture
that satisfies the proposed criteria simultaneously. We also present an acceleration
technique to handle the computational cost of processing long sequences. Ex-
perimental results on four public datasets reveal that even a simple model, when
designed in accordance with the proposed criteria, can surpass various complex
and delicate solutions, validating the efficacy of the proposed criteria.

1 INTRODUCTION

Recommender system serves as a cornerstone for various online services such as e-commerce (Smith
& Linden, 2017), advertising (Zhou et al., 2018), and movie & TV (Gomez-Uribe & Hunt, 2016).
In parallel to other tasks such as collaborative filtering (He et al., 2017) and click-through rate
prediction (Lian et al., 2018), sequential user modeling, which is typically formulated as a next-
item-prediction problem, is a foundational task in crafting effective recommendation engines. The
challenge lies in accurately capturing and understanding the evolving patterns of user preferences
from sequential behavioral data (Kang & McAuley, 2018) for next item prediction.

Advances in deep learning have spurred the development of sequential user models based on neu-
ral networks, represented by recurrent neural networks (RNN) (Hidasi & Karatzoglou, 2018; Ren
et al., 2019), convolutional neural networks (CNN) (Tang & Wang, 2018; Yuan et al., 2019), graph
neural networks (GNN) (Zhuo et al., 2022), and Transformers (Kang & McAuley, 2018; Sun et al.,
2019). Transformer-style models, in particular, have been particularly transformative in diverse
fields with domain-specific adoptions, exemplified by Swin Transformer (Liu et al., 2021) for im-
ages and AlphaFold-v2 (Jumper et al., 2021) for protein structures. In contrast, current progress in
sequential user modeling stays in some direct applications of Transformer structure (Sun et al., 2019)
with minimal domain-specific adjustments. This has led to instances where simpler approaches,
such as MLP-like and CNN-like modules, outperform the more complex self-attentive token mixers
in Transformers (Zhou et al., 2022). Such observations spur our reevaluation of Transformer-like
structures, especially self-attentive token mixers, in the realm of sequential user modeling.

The success of self-attentive token mixers is often ascribed to the scalability and flexibility of the
item-to-item token mixing paradigm. Yet, this paradigm’s lack of sensitivity to the order of items –
treating them as if order permutations are equivalent – limits its efficacy in scenarios where tempo-
ral order is crucial, such as in tracking evolving user preferences. This is corroborated by empirical
evidence suggesting that simpler, order-sensitive alternatives, such as MLP layers (Li et al., 2022),
learnable filters, pure FFT (Lee-Thorp et al., 2022) and even arbitrary projections (Tay et al., 2020),
can yield superior or competitive results, which challenges the indispensability of the item-to-item
paradigm in sequential user models and motivate us to mine the core features that support Trans-

1

Under review as a conference paper at ICLR 2024

former’s efficacy. By deconstructing various aspects of self-attentive token mixer, we identify two
factors favouring its performance: a large receptive field and a lightweight architecture; in contrast,
the item-to-item interaction model may be a detriment rather than an asset.

In light of these insights, we propose three criteria for devising token-mixers in sequential user
models: order sensitivity, a large receptive field, and a lightweight architecture. To validate these
criteria, we introduce ConvFormer, we propose ConvFormer, a simple yet effective adaptation of
the Transformer framework that satisfies all proposed criteria. The core of ConvFormer is replacing
the self-attentive token mixer with a depth-wise convolution (DWC) layer and enlarging the recep-
tive field aggressively. Adhering to the proposed criteria, even a straightforward model surpasses
various delicate models and achieves state-of-the-art performance, thereby attesting to the validity
of our proposed criteria. However, the expanded receptive field poses computational challenges
for long input sequence, for which which we develop ConvFormer-F, an efficient variant utilizing
Fourier convolution to achieve significant speedup with minimal accuracy drop.

To summarize our main contributions:

• We provide a context-specific examination of the self-attentive token mixer and identify three key
criteria for designing effective token mixers in sequential user models.

• We propose ConvFormer, a simple yet effective update to the standard Transformer, built upon the
proposed criteria. Additionally, we introduce an accelerated version using Fourier convolution to
efficiently handle extra-long user behavior sequences.

• Through extensive experimentation, we demonstrate ConvFormer’s superior performance over ex-
isting models, achieving state-of-the-art results. The overall performance comparison and ablation
studies serve to validate the efficacy of the proposed criteria.

2 PROBLEM STATEMENT

Consider a set of users U and items I, for a given user u ∈ U , we define the behavior sequence
as Su = {i1,u, · · · , iL,u}, where L denotes the sequence length, each il,u represents an item with
which the user has interacted chronologically. The goal of sequential user modeling is to model
p(iL+1|Su), the likelihood of the next item that the user may interact given behavior sequence.

We consider the case of item retrieval as recommendations, which models user representations based
on their behavior sequences Su. Such user representation subsequently serves as a query to retrieve
the next likely item through a simple matching function, such as the dot product. An exemplar to
build user representations is the self-attentive recommender (SAR) (Kang & McAuley, 2018). Let
R ∈ RL×D be the embedding of Su with hidden dimension D, SAR employs a self-attentive token
mixer (Vaswani et al., 2017) to model contextual information in R as follow:

A = SA(R) = Softmax

((
RW(Q)

)(
RW(K)

)⊤
/
√
D

)
, (1)

where A ∈ RL×L is the item-to-item attention matrix. The tokens within the input embedding
sequence are then mixed as S = A(RW(V)). S is further refined through a feed-forward network
(FFN). The combination of self-attention and FFN forms the building block of SAR, which can be
stacked for multiple layers for deep fusion. The final representation of the last item in Su serves as
the user representation, serving as the basis for subsequent item retrieval.

3 EXAMINING SELF-ATTENTIVE TOKEN MIXER IN USER MODELING

This section aims to dissect the self-attentive token mixer to identify its critical components for ef-
fective sequential user modeling. We specifically scrutinize three aspects: the item-to-item attentive
paradigm, the receptive field, and the overall lightweight architecture1.

1We use the experimental settings in Section 5.1, e.g., setting the embedding size to 64, the maximum
sequence length to 50. Experiments are repeated 5 times with different seeds. We only modify the token mixer
matrix A in (1), maintaining learning objectives and tricks identical to SASRec.

2

Under review as a conference paper at ICLR 2024

3 5 10 15 20 25 30 35 40 45 50
Intersections

 (a) Yelp dataset

0.36

0.37

0.38

M
R

R

layers=1
layers=2

3 5 10 15 20 25 30 35 40 45 50
Intersections

 (b) Beauty dataset

0.27

0.28

M
R

R

layers=1
layers=2

Figure 1: Impact of SAR’s receptive field size.
Error bar denotes 95% confidence interval.

NDCG@5 MRR
(a) Yelp dataset

0.34

0.36

0.38

0.40

0.42

0.44
SAR-N
SAR-N+

SAR

NDCG@5 MRR
(b) Beauty dataset

0.24

0.26

0.28

0.30
SAR-N
SAR-N+

SAR

Figure 2: Impact of SAR’s lightweight architec-
ture. Error bar denotes 95% confidence interval.

3.1 IS THE ITEM-TO-ITEM TOKEN-MIXER SUITABLE FOR SEQUENTIAL USER MODELING?

The central element in SAR is the item-to-item token mixer A in (1). To assess its role in sequential
user modeling, we replace it with alternative token mixers, resulting in the following variants2.

• SAR-O (SAR with Order-sensitive weights) utilizes a trainable parameter matrix A(O) ∈ RL×L

that is independent of the input sequence. Unlike SAR which relies solely on position embedding
for order information, SAR-O is directly sensitive to the order of the input items. The order
sensitivity of token mixer is manifested as: for any l-th item, changing the order of other items
l′ ̸= l alters the output representation of the l-th item.

• SAR-P (SAR with Personalized weights) modifies SAR-O by using an MLP to dynamically gener-
ate attention scores based on the input R to this block, wherein A(P)[l] = MLP(R[l]). It enables
the customization of A(P) based on the input while maintaining order sensitivity.

• SAR-R (SAR with Random and order-sensitive weights) is similar to SAR-O but its attention
matrix A(R) ∈ RL×L is randomly initialized, fixed, and non-trainable.

Table 1: Performance of SAR and variants.
”*” indicates the variants outperforming SAR
with p-value< 0.01 on the two samples t-test.

Dataset Model H@5 H@10 N@5 N@10 MRR

Sports

SAR 0.3442 0.4647 0.2472 0.2861 0.2504
SAR-O 0.3474∗ 0.4682∗ 0.2497∗ 0.2887∗ 0.2526
SAR-P 0.3478∗ 0.4686∗ 0.2503∗ 0.2891∗ 0.2531∗
SAR-R 0.3438 0.4646 0.2470 0.2860 0.2503

Yelp

SAR 0.5684 0.7446 0.4018 0.4590 0.3841
SAR-O 0.5713 0.7472 0.4048 0.4618∗ 0.3870∗

SAR-P 0.5731∗ 0.7473 0.4061∗ 0.4626∗ 0.3878∗
SAR-R 0.5692 0.7455 0.4033 0.4604 0.3858

These simple yet order-sensitive alternatives ex-
hibit little performance drop as per Table 1. No-
tably, SAR-R competes closely with the original
SAR despite its non-trainable matrix, which fur-
ther emphasizes the importance of order sensitiv-
ity in sequential user modeling, since SAR-R’s pri-
mary distinction from SAR is its order sensitiv-
ity nature. Furthermore, dynamic weights con-
tribute marginally (SAR-P versus SAR-O), sug-
gesting that the dynamic and adaptive weights in
the item-to-item token mixing paradigm are not in-
dispensable for SAR’s superiority.

Recent studies questioning the necessity of self-
attention across different applications (Lee-Thorp
et al., 2022; Tolstikhin et al., 2021) support our findings, suggesting that the item-to-item atten-
tive paradigm might be limiting the efficacy of Transformer-style sequential user models by not
adequately considering the inherent order of items. Therefore, incorporating architectures that ex-
plicitly recognize item order could potentially enhance performance. We extend the analysis to
additional datasets and provide further statistical validation in Table A6.

3.2 IS THE LARGE RECEPTIVE FIELD ESSENTIAL FOR SEQUENTIAL USER MODELING?

Another distinctive feature of SAR is its large receptive field. It allows each element in a user
sequence to interact directly with others within a single self-attention layer, facilitating the efficient
capture of long-term user behavior patterns. We hypothesize that this large receptive field is a key
contributor to SAR’s performance. To test this hypothesis, we modify SAR’s attention matrix to
consider only the interactions between each item and its K nearest neighbors. This is achieved by

2We provide graphical illustrations and detailed implementations of these SAR variants in Appendix C.2.

3

Under review as a conference paper at ICLR 2024

using a window mask Γ(K), defined such that Γij = 1 if |i − j| ≤ K and −inf otherwise for
0 ≤ i, j ≤ L. The attention matrix A in (1) is multiplied with Γ(K) before calculating Softmax.

Our experiments reveal a positive correlation between the receptive field size and SAR’s perfor-
mance, as shown in Figure 1. For instance, increasing K from 3 to 45 leads to a significant improve-
ment in MRR: a 4.5% increase on the Yelp dataset and 2.43% on the Beauty dataset. These results
underscore the importance of a large receptive field for SAR’s performance.

3.3 IS THE LIGHTWEIGHT ARCHITECTURE ESSENTIAL?

Given that a larger receptive field potentially increases model complexity, maintaining a lightweight
overall architecture is critical to reduce the risk of over-parameterization. This balance is essential
not just as a technical nuance but as a key factor in unlocking the advantages of a large receptive
field. For example, SAR exemplifies this principle by sharing query, key, and value mapping param-
eters W(∗) across all time steps in (1). To empirically validate the importance of such lightweight
structure, we introduce two SAR variants:

• SAR with non-shared parameters (SAR-N), where the query, key and value mapping parameters
(i.e., W(∗) in (1)) are unique at different time steps.

• SAR with more non-shared parameters (SAR-N+), where all items in the input sequence are con-
catenated to generate query, key, and value vectors though an MLP module.

Both variants above sacrifice the lightweight of vanilla SAR for order-sensitivity and high capacity.
According to Figure 2, they exhibit a performance decline compared to the standard SAR model.
Specifically, SAR-N+ shows a relative MRR decrease of 3.11% on Yelp and 8.91% on Beauty,
while SAR-N experiences a relative MRR drop of 4.65% on Yelp and 8.27% on Beauty. These
results highlight the critical role of a lightweight architecture in mitigating the risks posed by large
receptive fields, thus ensuring the continued efficacy of SAR models.

4 PROPOSED METHOD

4.1 THREE CRITERIA FOR SEQUENTIAL USER MODELING

DWC Layer

Add & Norm

Add & Norm

FFN as CWC Layer

LighTCN block

LL DWC layer

LL CWC layer

...

...

Nx

Input sequence representation

Output sequence representation

Figure 3: The core structure of ConvFormer.

The empirical studies in Section 3 suggest that a
large perception field and a lightweight architec-
ture are key factors contributing to the superior
performance of SAR. However, the item-to-item
paradigm is identified as a limitation due to its in-
sensitivity to item order. Based on these insights,
we propose three design principles for constructing
effective token mixers in sequential user modeling:

1. The token-mixer should be sensitive to the order
of items, to capture sequential patterns such as
evolving preference from user behaviors;

2. The token-mixer should encompass a large re-
ceptive field, to capture and exploit long-term
patterns in user behavior sequences;

3. The token-mixer should maintain a lightweight
architecture, to mitigate the risk of overfitting
that may result from a large receptive field.

Prevailing sequential user models satisfy some of these criteria, but fall short in meeting them si-
multaneously. SAR-based models encompass large receptive field and lightweight architecture, but
overlook the order sensitivity (Criterion 1); RNN-based models are order sensitive but typically lack
a large receptive field (Criterion 2). CNN-based methods, such as Caser (Tang & Wang, 2018),
employ narrow receptive field and conventional convolution operators, overlooking the potential of
using large receptive field and light convolution operators (Criteria 2 and 3). These gaps highlight
the need for a new architecture that aligns with our proposed criteria for performance improvement.

4

Under review as a conference paper at ICLR 2024

4.2 THE CONVFORMER ARCHITECTURE

In light of these, we develop ConvFormer, a simple yet effective update to the standard SAR model.
The primary technical contribution is to replace the item-to-item mechanism with a novel LighTCN
layer, which involves a large receptive field and ensures item order sensitivity while maintaining a
lightweight overall architecture, thereby satisfying all three proposed criteria simultaneously. Fig-
ure 3 presents the core building block of ConvFormer, and the workflow is described below.

4.2.1 EMBEDDING LAYER

ConvFormer starts with an embedding layer, which converts high-dimensional, one-hot item indices
into a dense, lower-dimensional representation. This process involves an item embedding lookup
table E(I) ∈ RI×D and a learnable position encoding matrix E(P) ∈ RL×D. Specifically, a user’s
historical behaviors is represented as

Ê = [E
(I)
i1

+E
(P)
1 ,E

(I)
i2

+E
(P)
2 , ...,E

(I)
iL

+E
(P)
L], (2)

where E
(I)
ij

is the item embedding of the j-th item in Su. If the sequence length is less than L, pad
zeros on the left side. To avoid overfitting and ensure a stable training process, following Kang &
McAuley (2018) and Zhou et al. (2022), we refine (2) with dropout and layer normalization:

Ê = Dropout(LayerNorm(E(I) +E(P))). (3)

4.2.2 LIGHT TEMPORAL CONVOLUTION NEURAL (LIGHTCN) LAYER

The user embedding is derived by stacking multiple LighTCN layers following the embedding layer.
Each LighTCN layer consists of a depth-wise convolution (DWC) layer and a channel-wise convolu-
tion (CWC) layer. The DWC layer operates on each channel of the input independently, considering
each dimension of the embedding vector as a separate channel. Specifically, for a given layer, let
R ∈ RL×D be the representation of input sequence (for the first layer, R = Ê), C ∈ RK×D be the
convolution kernel with size K, we conduct depth-wise convolution along the temporal axis:

DWC(R)l,d = Pad(

K∑
k=1

Rl+k−1,d ∗Ck,d), d = 1, . . . ,D, (4)

where the output is left-padded to ensure DWC(R) ∈ RL×D. Following Kang & McAuley (2018);
Zhou et al. (2022), we incorporate skip connections, layer normalization, and dropout operations:

R̂ = LayerNorm(R+Dropout(DWC(R)). (5)

While the DWC layer captures linear temporal characteristics on each individual channel, it ignores
non-linear interactions and channel-wise dependencies. Thus, we integrate a CWC layer, analogous
to the Feed-Forward Network (FFN) layer in Transformers (Vaswani et al., 2017). This layer em-
ploys a 1× 1 convolution defined as f(x) = xW+b and a ReLU activation function. At each time
step, the CWC layer operates as follows:

CWC(R̂l) = FFN(R̂l) = f(ReLU(f(R̂l)), l = 1, 2, . . . ,L, (6)

which is similarly refined by the skip connection, dropout and layer normalization technologies:

R̃ = LayerNorm(R̂+Dropout(CWC(R̂)). (7)

4.2.3 DOT-PRODUCT SCORER

ConvFormer utilizes a dot-product scorer for next-item prediction. Let ec be the embedding of an
item c within the item embedding matrixE(I), R̄ be the output from the final LighTCN layer. Ad-
hering to the two-tower retrieval paradigm (Kang & McAuley, 2018; Zhou et al., 2022), the output
representation at the last step, R̄, is employed as the user’s representation. We then estimate the like-
lihood of a user interacting with item c at the L + 1 step as p(iL+1 = c|i1:L) = sigmoid(e⊤c R̄[L]).

5

Under review as a conference paper at ICLR 2024

The training process involves updating the learnable weights of the model to minimize a ranking
loss function, which is identical to Kang & McAuley (2018) as follow:

L = −
∑
u∈U

L∑
l=1

log(p(il+1|i1:l))− log(1− p(i−l+1|i1:l)), (8)

where each ground-truth item il+1 is paired with a negative item i−l+1 that is randomly sampled. The
training sequences are generated in an autoregressive manner, which mirrors the function of causal
mask in Transformer models to prevent the model from using future information in predicting.

4.3 ACCELERATED APPROXIMATION ALGORITHM

One potential concern with LighTCN is the computational cost associated with a large receptive
field, particularly when dealing with lengthy behavior sequences. As the receptive field extends to
encompass the entire sequence length, the complexity can escalate to O(L2), on par with the com-
plexity of SASRec. As a strategic component to handle such complexity, we introduce the Fourier
convolution technique (Mathieu et al., 2014) and construct an accelerated version of ConvFormer,
denoted as ConvFormer-F. The rationale comes from the convolution theorem (Oppenheim et al.,
2001): the convolution in the temporal domain is equivalent to a Hadamard product in the Fourier
domain, which yields a more efficient computation of the DWC layer:

DWC(R) = F−1 (F(R)⊙F(C)) (9)

where ⊙ indicates the Hadamard point-wise product, C is right-padded with zeros to match the
length of R. The Fast Fourier Transform F (Oppenheim et al., 2001) reduces the computational
complexity from approximate O(L2) to O(L log(L)), making it advantageous for processing ex-
tremely lengthy sequences. We offer a detailed computational workflow and a comparative analysis
of accuracy and speed in Appendix B. Overall, Fourier convolution can effectively handle the com-
plexity of ConvFormer in handling lengthy user behavior sequences without loss of accuracy.

5 EXPERIMENTS

To demonstrate the efficacy of both the proposed criteria and ConvFormer, which is a simple yet
inspiring model built upon these criteria, the five aspects as follows deserve empirical investigation.

• Performance: Does ConvFormer work? We compare ConvFormer against state-of-the-art base-
lines, with the 1-vs-99 performance in Table 2 and the full-sort performance in Appendix A.1.

• Gains: Why does it work? We deconstruct various aspects of ConvFormer in Section 5.3 to
identify the sources of its accuracy gain and back up the efficacy of the proposed three criteria.
We provide additional comparisons and rigorous statistical tests in Appendix A.4 and A.5.

• Generality: Does it work in other datasets and tasks? We investigate the performance on a large
industrial dataset in Appendix A.2, and a general CTR prediction task in Appendix A.3.

• Speed: Does ConvFormer-F reduces running time while preserving accuracy? We compare actual
running time of SASRec, ConvFormer and ConvFormer-F in various settings in Appendix B.

5.1 EXPERIMENTAL SETUP

Dataset. We select four public sequential user modeling datasets adhering to Zhou et al. (2022).
We organize each user’s interactions chronologically, using the latest item for testing, the second
to last item for validation, and the remaining items for training. Users or items with less than five
interactions are excluded. The processed datasets’ statistics are summarized in Table A3.

Evaluation Protocol. We employ three ranking metrics for evaluation: Top-k hit ratio (H@k),
Top-k normalized discounted cumulative gain (N@k), and mean reciprocal rank (MRR). As for the
negative item candidates, we experiment on both types of settings: (1) ranking the positive item
against 99 randomly selected non-interacted items for each user; and (2) the full-sort test set where
the positive item is ranked alongside all non-interacted items.

6

Under review as a conference paper at ICLR 2024

Table 2: Performance comparison on four datasets. The bold and underlined fonts indicate the
best and second-best performance, respectively. “*” and ”**” mark the metrics where ConvFormer
outperforms the best baselines with p-value < 0.05 and 0.001, respectively, in the one-sample t-test.

Dataset Metric PopRec FM AutoInt GRU4Rec Caser HGN CLEA SASRec BERT4Rec SRGNN GCSAN FMLP-Rec ConvFormer

Beauty

H@1 0.0678 0.0405 0.0447 0.1337 0.1337 0.1683 0.1325 0.1870 0.1531 0.1729 0.1973 0.2011 0.2019
H@5 0.2105 0.1461 0.1705 0.3125 0.3032 0.3544 0.3305 0.3741 0.3640 0.3518 0.3678 0.4025 0.4119∗∗
N@5 0.1391 0.0934 0.1063 0.2268 0.2219 0.2656 0.2353 0.2848 0.2622 0.2660 0.2864 0.3070 0.3125∗∗
H@10 0.3386 0.2311 0.2872 0.4106 0.3942 0.4503 0.4426 0.4696 0.4739 0.4484 0.4542 0.4998 0.5105∗∗
N@10 0.1803 0.1207 0.1440 0.2584 0.2512 0.2965 0.2715 0.3156 0.2975 0.2971 0.3143 0.3385 0.3443∗∗
MRR 0.1558 0.1096 0.1226 0.2308 0.2263 0.2669 0.2376 0.2852 0.2614 0.2686 0.2882 0.3051 0.3093∗

Sports

H@1 0.0763 0.0489 0.0644 0.1160 0.1135 0.1428 0.1114 0.1455 0.1255 0.1419 0.1669 0.1646 0.1671
H@5 0.2293 0.1603 0.1982 0.3055 0.2866 0.3349 0.3041 0.3466 0.3375 0.3367 0.3588 0.3803 0.3891∗∗
N@5 0.1538 0.1048 0.1316 0.2126 0.2020 0.2420 0.2096 0.2497 0.2341 0.2418 0.2658 0.2760 0.2819∗∗
H@10 0.3423 0.2491 0.2967 0.4299 0.4014 0.4551 0.4274 0.4622 0.4722 0.4545 0.4737 0.5059 0.5116∗∗
N@10 0.1902 0.1334 0.1633 0.2527 0.2390 0.2806 0.2493 0.2869 0.2775 0.2799 0.3029 0.3165 0.3215∗∗
MRR 0.1660 0.1202 0.1435 0.2191 0.2100 0.2469 0.2156 0.2520 0.2378 0.2461 0.2691 0.2763 0.2808∗∗

Toys

H@1 0.0585 0.0257 0.0448 0.0997 0.1114 0.1504 0.1104 0.1878 0.1262 0.1600 0.1996 0.1935 0.2007
H@5 0.1977 0.0978 0.1471 0.2795 0.2614 0.3276 0.3055 0.3682 0.3344 0.3389 0.3613 0.4063 0.4033
N@5 0.1286 0.0614 0.0960 0.1919 0.1885 0.2423 0.2102 0.2820 0.2327 0.2528 0.2836 0.3046 0.3069∗
H@10 0.3008 0.1715 0.2369 0.3896 0.3540 0.4211 0.4207 0.4663 0.4493 0.4413 0.4509 0.5062 0.5100
N@10 0.1618 0.0850 0.1248 0.2274 0.2183 0.2724 0.2473 0.3136 0.2698 0.2857 0.3125 0.3368 0.3384∗
MRR 0.1430 0.0819 0.1131 0.1973 0.1967 0.2454 0.2138 0.2842 0.2338 0.2566 0.2871 0.3012 0.3048∗

Yelp

H@1 0.0801 0.0624 0.0731 0.2053 0.2188 0.2428 0.2102 0.2375 0.2405 0.2176 0.2493 0.2727 0.2816∗∗
H@5 0.2415 0.2036 0.2249 0.5437 0.5111 0.5768 0.5707 0.5745 0.5976 0.5442 0.5725 0.6191 0.6347∗∗
N@5 0.1622 0.1333 0.1501 0.3784 0.3696 0.4162 0.3955 0.4113 0.4252 0.3860 0.4162 0.4527 0.4653∗∗
H@10 0.3609 0.3153 0.3367 0.7265 0.6661 0.7411 0.7473 0.7373 0.7597 0.7096 0.7371 0.7720 0.7863∗∗
N@10 0.2007 0.1692 0.1860 0.4375 0.4198 0.4695 0.4527 0.4642 0.4778 0.4395 0.4696 0.5024 0.5146∗∗
MRR 0.1740 0.1470 0.1616 0.3630 0.3595 0.3988 0.3751 0.3927 0.4026 0.3711 0.4006 0.4299 0.4406∗∗

Baseline Models. The collection of baselines includes3: (1) PopRec, FM (Rendle, 2010), and
AutoInt (Song et al., 2019) are non-sequential models; (2) GRU4Rec (Hidasi & Karatzoglou, 2018),
Caser (Tang & Wang, 2018), HGN (Huang et al., 2020), CLEA (Qin et al., 2021), and SRGNN (Wu
et al., 2019) are representative sequential baselines which do not involve Transformer architectures;
(3) SASRec (Kang & McAuley, 2018), BERT4Rec (Sun et al., 2019), GCSAN (Xu et al., 2019)
and FMLP-Rec (Zhou et al., 2022) are baselines that (partially) rely on Transformer architectures.

5.2 OVERALL PERFORMANCE

The results using the 1-vs-99 test protocol are reported in Table 2. To summarize our observations:

• Sequential models outperform non-sequential methods such as PopRec, FM and AutoInt, which
underscores the importance of item ordering information. SAR-based models like SASRec and
GCSAN achieve better performance over RNN-based (e.g., GRU4Rec), CNN-based (e.g., Caser)
and GNN-based models (e.g., SRGNN), which can be attributed to their lightweight architecture
and large receptive field, aligning with criteria (2) and (3) from Section 4.1. Furthermore, FMLP-
Rec outperforms other baseline methods, which could be attributed to the unique sensitivity of its
filter layer to item order, substantiating the efficacy of the criterion (1).

• ConvFormer significantly outperforms most baseline models across four datasets, with most dif-
ferences being statistically significant. In addition, the all-convolution architecture of ConvFormer
is both computationally efficient and parallelizable, making it efficient for training and inference,
as discussed in Appendix B. Thus, ConvFormer proves to be an effective and efficient solution to
sequential user modeling. The superiority of ConvFormer demonstrates that adhering to the crite-
ria proposed, even a very simple model can outperform many sophisticated solutions and achieve
leading performance, thereby validating the efficacy of the proposed criteria.

5.3 ABLATION STUDIES

We have showcased the effectiveness of the three criteria through the superior performance of Con-
vFormer. In this section, we conduct ablation studies to further assess the role of each criterion.

3We respect existing benchmark results, following the settings, datasets and baselines (Zhou et al., 2022).

7

Under review as a conference paper at ICLR 2024

3 5 10 15 20 25 30 35 40 45 50
K
 (a)

0.44

0.45

0.46

0.47

N
D

C
G

@
5

Circular
Reflect
Zero

3 5 10 15 20 25 30 35 40 45 50
K
 (b)

0.42

0.43

0.44

M
R

R

Circular
Reflect
Zero

3 5 10 15 20 25 30 35 40 45 50
K
 (c)

0.270

0.275

0.280

N
D

C
G

@
5

Circular
Reflect
Zero

3 5 10 15 20 25 30 35 40 45 50
K
 (d)

0.2700

0.2725

0.2750

0.2775

0.2800

0.2825

M
R

R

Circular
Reflect
Zero

Figure 4: Impact of Convformer’s receptive field size K on model performance over Yelp (a-b) and
Sports (c-d) datasets. Error bar denotes 95% confidence interval.

5.3.1 LARGE RECEPTIVE FIELD

To demonstrate the necessity of a large receptive field, we vary the kernel size K to visualize its
impact in Figure 4. Results show that an increase in kernel size leads to improved performance, as
evidenced by the rise in MRR from 0.414 at K = 3 to approximately 0.441 at K = 50 on Yelp.

We also investigate the role of padding methods in the convolution operator, with are denoted by
Circular, Reflect, and Zero in Figure 4. Specifically, in scenarios with strong behavior periodicity
(such as Yelp), circular padding, which preserves the periodic property, performs significantly better
than other padding methods. However, in scenarios with weak periodicity in user behaviors (such
as Amazon Sports), the performance difference between padding methods is minimal.

Notably, the term large receptive field is relative to conventional selection of K such as 3x3 and
7x7, and does not specifically refer to the full receptive field with K = L. Performance gains from
enlarging the receptive field have a ceiling; exceeding it offers minimal improvement and introduces
challenges like optimization difficulty, increased inference time, and overfitting risk.

5.3.2 LIGHTWEIGHT CONVOLUTION

K=30 K=40 K=50
(a) Yelp dataset

0.35

0.40

0.45

0.50

K=30 K=40 K=50
(b) Beauty dataset

0.20

0.25

0.30

0.35
Conv -V
Conv-S

Conv-V
Conv-S

Conv-L Conv-L

Figure 5: Impact of lightweight convolution.

To support the efficacy of lightweight architec-
ture, we replace the LighTCN operator (denoted
by Conv-L) of ConvFormer with two variants: the
vanilla convolution operator (denoted by Conv-V)
and the separable convolution operator (Howard
et al., 2017) (denoted by Conv-S). Notably, both
Conv-V and Conv-S meet criteria (1) and (2), but
violate criterion (3).

According to Figure 5, the Conv-L operator (used
in our standard ConvFormer) largely outperforms
the vanilla convolution operator due to its suppres-
sion of over-parameterization. Specifically, when K=30, it improves the MRR by a relative 23.24%
on Yelp and 28.71% on Beauty. The Conv-S operator also performs better than the vanilla convolu-
tion operator, but worse than Conv-L. Its inferiority is attributed to the extra inter-channel interaction
compared to Conv-L. This redundancy increases the risk of over-parameterization, as the subsequent
FFN modules are specifically designed for inter-channel interactions.

5.3.3 ATTENTION VS. CONVOLUTION

To support the claim that self-attentive modules can be a limitation due to the insensitivity of item
order, we replace the LighTCN module with advanced attentive mechanisms. We select to compare
ConvFormer with Fastformer (Wu et al., 2021) and PoolingFormer (Zhang et al., 2021), as these
two models beat a series of efficient Transformer variants such as LinFormer (Wang et al., 2020)
and LongFormer (Beltagy et al., 2020). Notably, both additional baselines satisfy criteria (2) and
(3), with large receptive fields and lightweight architectures, but fail to meet criterion (1), i.e., they
are developed based on attentive paradigms that is insensitive to item order.

8

Under review as a conference paper at ICLR 2024

Table 3: Comparison with lightweight atten-
tive methods. ”*” marks methods outperform-
ing the best baseline with p-value < 0.01.

Dataset Model H@5 H@10 N@5 N@10 MRR

Beauty
FastFormer 0.3395 0.4454 0.2438 0.2780 0.2449
PoolingFormer 0.3932 0.4925 0.2981 0.3302 0.2971
ConvFormer 0.4119∗0.5105∗0.3125∗0.3443∗0.3093∗

Yelp
FastFormer 0.5451 0.7355 0.3727 0.4344 0.3557
PoolingFormer 0.6087 0.7663 0.4378 0.4890 0.4144
ConvFormer 0.6347∗0.7863∗0.4653∗0.5146∗0.4406∗

According to Table 3, emerging Transformer
variants with large receptive fields and more
lightweight architectures could achieve perfor-
mance gains in sequential user modeling. For ex-
ample, PoolingFormer improves MRR by approx-
imately 4.2% over SASRec. However, the gap
between these methods and ConvFormer remains
significant, which suggests that the item-to-item
paradigm is a bottleneck for sequential user mod-
eling due to the lack of order sensitivity.

6 RELATED WORKS

Sequential user modeling. The fundamental aspect of sequential user modeling is the handling
of user behavior sequences. Consequently, sequential neural architectures like RNN (Hidasi et al.,
2016) and CNN (Tang & Wang, 2018; Yuan et al., 2019; 2020) are naturally applicable, often aug-
mented with advanced features such as target-aware attention and memory networks (Zhou et al.,
2019; Lian et al., 2021; Wu et al., 2017; Huang et al., 2018). Some scholars posit that a mere se-
quence of items is insufficient to capture the complexity of user behavior, advocating for the use of
Graph Neural Networks (GNNs) to enrich the representational capacity (Wu et al., 2019; Xu et al.,
2019; Qiu et al., 2019; Yuan et al., 2020). Currently, the Transformer architecture (Vaswani et al.,
2017) has permeated this domain, exemplified by SAR-based approaches (Kang & McAuley, 2018;
Sun et al., 2019; Chen et al., 2019; He et al., 2021). However, much of the existing work applies
the Transformer indiscriminately, neglecting the unique characteristics of the recommendation field
compared to other fields like natural language processing. Recent studies (Li et al., 2022; 2023;
Zhou et al., 2022) have indicated that the self-attentive token mixer in Transformer may not be
the most effective choice for sequential user modeling, with alternative architectures like all-MLP
modules showing promise. These observations serve as the impetus for our investigation into the
fundamental criteria for designing token mixers in the context of sequential user modeling.

Transformer applications and alternatives. The Transformer architecture, popularized by De-
vlin et al. (2019), has garnered widespread success in diverse fields, e.g., ViT and Swin-Transformer
in vision (Liu et al., 2021; Dosovitskiy et al., 2021) and AlphaFold-v2 in AI4Science (Jumper et al.,
2021). These successful applications commonly follow a trajectory of initial direct implementa-
tion, subsequently refined by domain-specific adaptations. In parallel, ongoing research aims to
explore alternatives to Transformer, particularly the self-attentive token mixer (Lee-Thorp et al.,
2022). For example, Tay et al. (2020) replaced the self-attention matrix with a parameterized matrix
and achieved performance gains, even positing that a randomly initialized matrix serves as a com-
petitive substitute. Similarly, Tolstikhin et al. (2021) replaces the self-attention layer with multilayer
perception, showing advantages over the traditional Transformer in various data-rich domains (Li
et al., 2022; 2023). These insights encourage the development of domain-specific token mixers,
capitalizing on unique data and task characteristics to optimize performance.

7 CONCLUSIONS

In this study, we re-evaluate Transformer-like architectures for sequential user modeling and identify
three critical criteria for effective token mixers. Guided by these criteria, we develop ConvFormer, a
streamlined modification of the Transformer, augmented with an acceleration technique for compu-
tational efficiency. Our findings demonstrate that even a simplified model, when designed in accor-
dance with these criteria, can outperform various complex and delicate solutions, thereby validating
the efficacy of the proposed criteria.

Limitations. We construct the proposed criteria using the standard two-tower architecture for item
retrieval in sequential user modeling. ConvFormer primarily serves as a proof-of-concept, leaving
ample scope for future research to explore a broader range of sequential models and tasks to assess
the general applicability of our proposed criteria.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. Behavior sequence transformer for
e-commerce recommendation in alibaba. In Proceedings of the 1st International Workshop on
Deep Learning Practice for High-Dimensional Sparse Data, pp. 1–4, 2019.

Qiwei Chen, Changhua Pei, Shanshan Lv, Chao Li, Junfeng Ge, and Wenwu Ou. End-to-end user
behavior retrieval in click-through rateprediction model. arXiv preprint arXiv:2108.04468, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), NAACL, pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR. OpenReview.net, 2021.

Carlos A. Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms, business
value, and innovation. ACM Trans. Manage. Inf. Syst., 6(4), dec 2016. ISSN 2158-656X. doi:
10.1145/2843948. URL https://doi.org/10.1145/2843948.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collab-
orative filtering. In WWW, pp. 173–182, 2017.

Zhankui He, Handong Zhao, Zhe Lin, Zhaowen Wang, Ajinkya Kale, and Julian J. McAuley.
Locker: Locally constrained self-attentive sequential recommendation. In CIKM, pp. 3088–3092.
ACM, 2021.

Balazs Hidasi and Alexandros Karatzoglou. Recurrent neural networks with top-k gains for session-
based recommendations. In CIKM, pp. 843–852, 2018.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based rec-
ommendations with recurrent neural networks. In Yoshua Bengio and Yann LeCun (eds.), ICLR,
2016.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR, abs/1704.04861, 2017.

Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y. Chang. Improving
sequential recommendation with knowledge-enhanced memory networks. In Kevyn Collins-
Thompson, Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz (eds.), SIGIR, pp.
505–514. ACM, 2018.

Kexin Huang, Ye Du, Li Li, Jun Shen, and Geng Sun. Pairwise-based hierarchical gating networks
for sequential recommendation. In KSEM, volume 12275, pp. 64–75, 2020.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, et al. Highly accurate protein structure prediction with
alphafold. Nature, 596(7873):583–589, 2021.

Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. In ICDM, pp.
197–206, 2018.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with
fourier transforms. In NAACL, pp. 4296–4313, 2022.

Muyang Li, Xiangyu Zhao, Chuan Lyu, Minghao Zhao, Runze Wu, and Ruocheng Guo. Mlp4rec:
A pure MLP architecture for sequential recommendations. In IJCAI, pp. 2138–2144. ijcai.org,
2022.

10

https://doi.org/10.1145/2843948

Under review as a conference paper at ICLR 2024

Muyang Li, Zijian Zhang, Xiangyu Zhao, Wanyu Wang, Minghao Zhao, Runze Wu, and Ruocheng
Guo. Automlp: Automated MLP for sequential recommendations. In WWW, pp. 1190–1198.
ACM, 2023.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun.
xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In
KDD, pp. 1754–1763, 2018.

Jianxun Lian, Iyad Batal, Zheng Liu, Akshay Soni, Eun Yong Kang, Yajun Wang, and Xing Xie.
Multi-interest-aware user modeling for large-scale sequential recommendations. arXiv preprint
arXiv:2102.09211, 2021.

Hu Liu, Jing Lu, Xiwei Zhao, Sulong Xu, Hao Peng, Yutong Liu, Zehua Zhang, Jian Li, Junsheng
Jin, Yongjun Bao, et al. Kalman filtering attention for user behavior modeling in ctr prediction.
NeurIPS, 33:9228–9238, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, pp. 10012–
10022, 2021.

Michaël Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through
ffts. In ICLR (Poster), 2014.

Alan V Oppenheim, John R Buck, and Ronald W Schafer. Discrete-time signal processing. Vol. 2.
Upper Saddle River, NJ: Prentice Hall, 2001.

Qi Pi, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, Xiaoqiang Zhu, and Kun Gai.
Search-based user interest modeling with lifelong sequential behavior data for click-through rate
prediction. In CIKM, pp. 2685–2692, 2020.

Harry Pratt, Bryan Williams, Frans Coenen, and Yalin Zheng. Fcnn: Fourier convolutional neural
networks. In PKDD, pp. 786–798. Springer, 2017.

Yuqi Qin, Pengfei Wang, and Chenliang Li. The world is binary: Contrastive learning for denoising
next basket recommendation. In SIGIR, pp. 859–868, 2021.

Ruihong Qiu, Jingjing Li, Zi Huang, and Hongzhi YIn. Rethinking the item order in session-based
recommendation with graph neural networks. In CIKM, pp. 579–588, 2019.

Pengjie Ren, Zhumin Chen, Jing Li, Zhaochun Ren, Jun Ma, and Maarten de Rijke. Repeatnet: A
repeat aware neural recommendation machine for session-based recommendation. In AAAI, pp.
4806–4813, 2019.

Steffen Rendle. Factorization machines. In ICDM, pp. 995–1000, 2010.

Brent Smith and Greg Linden. Two decades of recommender systems at amazon.com. IEEE Internet
Computing, 21(3):12–18, 2017. doi: 10.1109/MIC.2017.72.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In CIKM, pp.
1161–1170, 2019.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequen-
tial recommendation with bidirectional encoder representations from transformer. In CIKM, pp.
1441–1450, 2019.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
embedding. In WSDM, pp. 565–573, 2018.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention in transformer models. CoRR, abs/2005.00743, 2020.

11

Under review as a conference paper at ICLR 2024

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In NeurIPS, pp. 24261–
24272, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. Recurrent recom-
mender networks. In WSDM, pp. 495–503, 2017.

Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, and Xing Xie. Fastformer: Additive attention
can be all you need. arXiv preprint arXiv:2108.09084, 2021.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based recom-
mendation with graph neural networks. In AAAI, volume 33, pp. 346–353, 2019.

Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua
Fang, and Xiaofang Zhou. Graph contextualized self-attention network for session-based recom-
mendation. In IJCAI, pp. 3940–3946, 2019.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In CVPR, pp. 10819–10829,
2022.

Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose, and Xiangnan He. A
simple convolutional generative network for next item recommendation. In WSDM, pp. 582–590,
2019.

Fajie Yuan, Xiangnan He, Alexandros Karatzoglou, and Liguang Zhang. Parameter-efficient transfer
from sequential behaviors for user modeling and recommendation. In SIGIR, pp. 1469–1478,
2020.

Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li, Jiancheng Lv, Nan Duan, and Weizhu Chen.
Poolingformer: Long document modeling with pooling attention. In ICML, pp. 12437–12446,
2021.

Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin,
Han Li, and Kun Gai. Deep interest network for click-through rate prediction. In SIGKDD, pp.
1059–1068, 2018.

Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai.
Deep interest evolution network for click-through rate prediction. In AAAI, volume 33, pp. 5941–
5948, 2019.

Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. Filter-enhanced MLP is all you need for
sequential recommendation. In WWW, pp. 2388–2399, 2022.

Jianhuan Zhuo, Jianxun Lian, Lanling Xu, Ming Gong, Linjun Shou, Daxin Jiang, Xing Xie, and
Yinliang Yue. Tiger: Transferable interest graph embedding for domain-level zero-shot recom-
mendation. In CIKM, pp. 2806–2816, 2022.

12

Under review as a conference paper at ICLR 2024

A ADDITIONAL EXPERIMENT RESULTS

A.1 PERFORMANCE ON THE FULL-SORT SETTING

We report the full-sort overall performance in Table A1. The results and main observations are
consistent with those on the 1-vs-99 test set in Table 2. For instance, SAR-based models such as
SASRec outperform conventional RNN-based models like GRU4Rec and CNN-based models like
Caser; ConvFormer demonstrates the best performance among all the methods. The improvements
of ConvFormer are more noticeable on the full-sort test set than on the 1-vs-99 test set due to the
full-sort setting being more challenging and providing greater opportunities for improvement.

A.2 PERFORMANCE ON LARGE-SCALE INDUSTRIAL DATASET

We have reported the performance on the public datasets in the main text. However, since these
datasets have limited scale, as per Table A3. There is a possibility that the superiority of ConvFormer
is due to Transformer’s overfitting on these datasets rather than the inefficacy of Transformer’s item-
to-item paradigm for sequential user modeling. To address this concern, it is crucial to evaluate
ConvFormer against competitive baselines, especially Transformer (SASRec), using large-scale in-
dustrial datasets.

The results of our experiments on the full-sort test data from this industrial dataset are presented in
Table A4 and Table A2. Notably, we observed that GRU4Rec outperforms SASRec on the industrial
dataset, which suggests that the evolving of user preference is significant in real-world scenarios,
thus highlighting the importance of our criterion (1) regarding order-sensitivity. Moreover, our Con-
vFormer model achieved a significantly better performance compared to other baselines in particular
SASRec. This finding confirms the superiority of ConvFormer and the efficacy of the three criteria
we proposed, in large-scale real-world applications.

Safeguards. The desensitized and encrypted dataset contains no Personal Identifiable Information
(PII). Adequate data protection was carried out during experiment to prevent the risk of data copy
leakage. The dataset does not represent any business situation, only used for academic research.

A.3 PERFORMANCE ON THE GENERAL TASK

In the main text, we have demonstrated the superior performance of ConvFormer in the next-item
prediction task using a two-tower retrieval framework. In this section, we aim to highlight the
versatility of ConvFormer, specifically the LighTCN layer, as a plug-and-play component that can
benefit other general tasks.

We specifically investigate the click-through rate (CTR) estimation task, which involves estimating
the CTR and identifying the items that are most likely to be clicked. The CTR estimation task
differs from the next-item prediction task in three key aspects: (1) the architecture employed, where
CTR estimation typically utilizes a one-tower architecture compared to the two-tower architecture
used in next-item prediction; (2) the loss function employed, with CTR estimation using a point-
wise loss function as opposed to the pair-wise loss function used in next-item prediction; and (3) the
inclusion of user profiles, where CTR estimation involves considering user profiles, unlike next-item
prediction which does not require them. Given the significant differences between CTR prediction
and next-item prediction tasks, and considering the wide applications of CTR prediction in practical
production scenarios, we choose to include CTR prediction as an additional task to evaluate the
performance of ConvFormer.

In CTR estimation frameworks, sequential user models serve as interest extractors, and the resulting
user representations are concatenated with user profiles and item properties to estimate the CTR. We
implement the interest extractors using the LighTCN layer, as well as comparable methods employed
in other baseline models. The performance on the Movie-lens dataset is presented in Table A5. To
summarize the main observations:

• Replacing the GRU-based interest extractor in DIEN with alternative counterparts shows promise
in improving performance in CTR estimation tasks. The relative performance of different models
in CTR estimation tasks aligns with their relative performance in next-item prediction tasks.

13

Under review as a conference paper at ICLR 2024

Table A1: Full-sort performance of different methods on four datasets. The best and second perfor-
mance methods are marked in bold and underlined fonts, respectively.

Datasets Metric GRU4Rec Caser SASRec FMLP-Rec ConvFormer

Beauty

H@5 0.0164 0.0205 0.0387 0.0398 0.0413
N@5 0.0099 0.0131 0.0249 0.0258 0.0270
H@10 0.0283 0.0347 0.0605 0.0632 0.0675
N@10 0.0137 0.0176 0.0318 0.0333 0.0354
H@20 0.0479 0.0556 0.0902 0.0958 0.0993
N@20 0.0187 0.0229 0.0394 0.0415 0.0433

Sports

H@5 0.0129 0.0116 0.0233 0.0218 0.0244
N@5 0.0086 0.0072 0.0154 0.0144 0.0157
H@10 0.0204 0.0194 0.0350 0.0344 0.0387
N@10 0.0110 0.0097 0.0192 0.0185 0.0203
H@20 0.0333 0.0314 0.0507 0.0537 0.0587
N@20 0.0142 0.0126 0.0231 0.0233 0.0253

Toys

H@5 0.0097 0.0166 0.0463 0.0456 0.0502
N@5 0.0059 0.0107 0.0306 0.0317 0.0344
H@10 0.0176 0.0270 0.0675 0.0683 0.0753
N@10 0.0084 0.0141 0.0374 0.0391 0.0424
H@20 0.0301 0.0420 0.0941 0.0991 0.1056
N@20 0.0116 0.0179 0.0441 0.0468 0.0500

Yelp

H@5 0.0152 0.0151 0.0162 0.0179 0.0212
N@5 0.0099 0.0096 0.0100 0.0113 0.0137
H@10 0.0263 0.0253 0.0274 0.0304 0.0353
N@10 0.0134 0.0129 0.0136 0.0153 0.0182
H@20 0.0439 0.0422 0.0457 0.0511 0.0566
N@20 0.0178 0.0171 0.0182 0.0205 0.0235

Table A2: Full-sort performance on the industrial dataset. The best results are marked in bold fonts.
Increasing the dropout rate consistently leads to performance drop.

Methods Metric dropout=0.0 dropout=0.1 dropout=0.3 dropout=0.5

SASRec

H@5 0.5635 0.5662 0.5256 0.4976
N@5 0.6722 0.6747 0.6339 0.6092

H@10 0.7317 0.7335 0.6948 0.6723
N@10 0.3817 0.3751 0.3483 0.3222
H@20 0.4092 0.4026 0.3757 0.3504
N@20 0.4218 0.4152 0.3887 0.3638

ConvFormer

H@5 0.5996 0.5836 0.5661 0.5513
N@5 0.7078 0.6937 0.6796 0.6650

H@10 0.7645 0.7519 0.7395 0.7267
N@10 0.4002 0.3879 0.3720 0.3569
H@20 0.4276 0.4158 0.4008 0.3857
N@20 0.4397 0.4282 0.4136 0.3989

• The original implementation of FMLP-Rec may result in a NAN loss function during training
and yield subpar performance. To address this issue, we introduce gradient clipping and enhance
the initialization process in FMLP-Rec+. These modifications stabilize the training process, and
overall performance surpasses that of SASRec given other settings consistent.

• ConvFormer demonstrates the highest overall performance in the CTR estimation task, highlight-
ing the general applicability of the LighTCN layer and the proposed evaluation criteria in various
scenarios. Specifically, setting the kernel size as the sequence length (refered to as ConvFormer)
without finetuning yields promising results compared to other baseline methods. However, using
the full receptive field may not be optimal since early user behaviors could introduce noise and
lack informative signals. By fine-tuning the receptive field of the LighTCN layer (referred to as
ConvFormer+), further improvements in overall performance can be achieved.

14

Under review as a conference paper at ICLR 2024

Table A3: Statistics of the employed datasets.

Dataset #.Sequences #.Items #.Actions Sparsity

Beauty 22,363 12,101 198,502 99.93%
Sports 25,598 18,357 296,337 99.95%
Toys 19,412 11,924 167,597 99.93%
Yelp 30,431 20,033 316,354 99.95%
Industry 674,491 9,690 19,699,497 99.70%

Table A4: Performance comparison on our industrial dataset. Bold and underlined fonts indicate the
first and second best results, respectively.

Model HIT@10 HIT@20 HIT@30 NDCG@10 NDCG@20 NDCG@30

GRU4Rec 0.5732 0.6797 0.7365 0.3867 0.4137 0.4258
SASRec 0.5635 0.6722 0.7317 0.3817 0.4092 0.4218
FMLP-Rec 0.5781 0.6861 0.7449 0.3903 0.4177 0.4302
ConvFormer 0.5996 0.7078 0.7645 0.4002 0.4276 0.4397

A.4 PERFORMANCE OF ORDER-SENSITIVE SAR VARIANTS

In Table 1 we compare the performance of SAR and its variants, illustrating that the simple yet order-
sensitive modules can be competitive alternative to the self-attention token-mixer. We understand
that the claims may be aggresive, and it is responsible to ensure the rigor of our experiments. To this
end, we have conducted comprehensive experiments on the four benchmarks. We report the results
in Table 3, as an extension of Table 1, showing that the superiority of SAR-O, SAR-P and SAR-R
holds across a range of critical hyperparameters (the number of blocks) and random seeds (1-10).
We will also open-source the code of these variants, along with the training logs and checkpoint
models for each seed, to provide empirical support for our claims and facilitate reproducibility.

The main observations from Table 3 are summarized as follows.

• SAR-O, replacing A in SAR with a trainable parameter matrix A(O), outperforms SAR on both
benchmarks. The superiority is attributed to the order-sensitivity of the parameter matrix.

• SAR-P, personalizing SAR-O’s attention matrix to user behavior patterns, achieves similar perfor-
mance with SAR-O. The incremental improvement suggest that adaptively generated weights in
the item-to-item paradigm are not essential for SAR’s leading performance.

• SAR-R, fixing SAR-O’s weights non-trainable, achieves comparative performance with SAR. Al-
though SAR-R fails to capture semantic relationships between items, it is sensitive to the order of
items that is essential to next-item prediction task. As a result, the attention matrix A in SAR can
be replaced with a random matrix A(R) without performance loss. It is exactly this observation
that have inspired our key hypothesis: self-attentive token mixer is not necessarily effective for
sequential user modeling. This motivated us to investigate the essences that make Transformer a
superior sequential user model, which is one of the major contributions of this work.

• SAR-W is an additional variant that does not appear in the main text, which is similar to SAR-
R but has no token-mixer. That is, only the FFN layers are preserved. It exhibits a consistent

Table A5: Performance comparison as the interest extractor on CTR prediction task. Bold and
underlined fonts indicate the first and second best results, respectively.

Interest Extractor HIT@5 HIT@10 HIT@30 NDCG@5 NDCG@10 NDCG@30

GRU4Rec 0.4581 0.6575 0.8887 0.2971 0.3614 0.4173
SASRec 0.4560 0.6713 0.8940 0.2975 0.3677 0.4216
FMLP-Rec 0.3150 0.5546 0.8494 0.2000 0.2772 0.3479
FMLP-Rec+ 0.4581 0.6649 0.8897 0.3025 0.3689 0.4236
ConvFormer 0.4666 0.6787 0.8982 0.3014 0.3703 0.4236
ConvFormer+ 0.5037 0.6670 0.8929 0.3213 0.3744 0.4290

15

Under review as a conference paper at ICLR 2024

and significant drop in performance compared to SAR. This demonstrates the necessity of token
mixing, as even a fixed and randomized token mixer can still maintain competitive performance
with SAR.

Notably, the findings above align with recent literature that challenges the role of self-attention in
their respective fields. For example, Google’s recent work on abstractive summarization found that
replacing the attention matrix with a fixed learnable matrix, such as the SAR-R in our work, could
improve most metrics over self-attention (Tab. 3 by Tay et al. (2020)). They also concluded that
The simplest Synthesizers such as Random Synthesizers are fast competitive baseline. (Section 5.2
by Tay et al. (2020)). Similarly, MLP-Mixer (Tolstikhin et al., 2021) replaces self-attentive token
mixers with fixed learnable weights, showing advantages over canonical self-attentive token mixers
in many fundamental and data-rich fields.

In fact, our findings build up recent DL advances and make reasonable extensions for sequential user
modeling. It has been acknowledged that the token-mixer based on non-trainable fixed matrix could
achieve promising performance. For example, Goolge concluded that the non-trainable variant per-
forms achieves a strong 24 BLEU with fixed random attention weights (Tay et al., 2020); replacing
self-attention process with a non-trainable fixed Fourier layer (Lee-Thorp et al., 2022) could achieve
80% speed-up with a mere 3%-7% accuracy drop. Furthermore, we note that SAR-R with a fixed
random matrix is more lightweight and sensitive to the order of items than SAR, which are quite
important for sequential user modeling. Therefore, it is reasonable to observe that the performance
gap between SAR and SAR-R is negligible, with SAR-R even outperforming SAR in some cases.

A.5 PERFORMANCE OF ADDITIONAL ATTENTIVE LIGHT-WEIGHT BASELINES

We have compared ConvFormer with Fastformer (Wu et al., 2021) and PoolingFormer (Zhang et al.,
2021) in Table 3, as these two models beat a series of lightweight Transformer variants such as
LinFormer (Wang et al., 2020) and LongFormer (Beltagy et al., 2020). However, the results reported
in the main text only include two datasets and representative metrics for brevity. We report the results
on four datasets and all metrics in Table A7 to make them comprehensive and convenient for reuse,
which could facilitate to understand the position of current methods.

B CONVFORMER-F: ACCELERATION AND APPROXIMATION

K=10 K=20 K=30 K=40 K=50
(a) Beauty dataset

0.26

0.28

0.30

0.32

0.34

M
R

R

ConvFormer-F
ConvFormer

K=10 K=20 K=30 K=40 K=50
(b) Sports dataset

0.24

0.26

0.28

0.30

M
R

R

ConvFormer-F
ConvFormer

Figure B1: Comparing the recommendation
quality (MRR) at different kernel size K.

10 100 200 300 400 500
K

 (a) L=500

0.01

0.02

Ti
m

e
(s

) ConvFormer
ConvFormer-F
SASRec

10 100 300 500 700 1000
K

 (b) L=1000

0.02

0.04

0.06

0.08

Ti
m

e
(s

) ConvFormer
ConvFormer-F
SASRec

Figure B2: Comparing the inference time with
different sequence length L and kernel size K.

The criterion (1) may lead to inefficiencies in certain scenarios where user behavior sequences are
lengthy (Pi et al., 2020; Chen et al., 2021), as the computational complexity approachesO(L2) when
the receptive field size approaches the sequence length. To handle this complexity, inspired by the
convolution theorem (Pratt et al., 2017; Oppenheim et al., 2001) summarized in Lemma 4.1, we
develop an acceleration algorithm for ConvFormer, denoted by ConvFormer-F. The key idea is that
the convolution in the spatial domain can be converted as Hadamard product in the Fourier domain,
facilitating more efficient computation of the DWC layer (4) as follows:

DWC(R) = F−1 (F(R)⊙F(C)) (10)

where ⊙ indicates the Hadamard point-wise product, C is right-padded with zeros to ensure the
same length with R, F indicates the Discrete Fourier Transform (DFT), a fundamental technique
for processing discrete time series data (Oppenheim et al., 2001), and F−1 indicates the inverse
DFT (IDFT). The computational workflow of ConvFormer is summarized in Algorithm 1.

16

Under review as a conference paper at ICLR 2024

Table A6: Performance comparison of SAR and its variants, as a continued table of Table 1 in the
main text. Bold fonts indicate the best performance. Red (resp. green) fonts indicate the variants
that are superior (resp. inferior) to SAR with p-value < 0.01 in paired-sample t-test.

Layers Model HIT@1 HIT@5 HIT@10 NDCG@5 NDCG@10 MRR

Beauty dataset

1

SAR 0.1771 0.3593 0.4512 0.2726 0.3022 0.2736
SAR-P 0.1778(0.3028) 0.3607(0.1581) 0.4519(0.3028) 0.2737(0.1920) 0.3031(0.2002) 0.2746(0.1975)
SAR-O 0.1777(0.2720) 0.3617(0.0554) 0.4539(0.2720) 0.2743(0.0603) 0.3040(0.0165) 0.2752(0.0515)
SAR-R 0.1772(0.4342) 0.3602(0.2869) 0.4521(0.4342) 0.2733(0.2821) 0.3029(0.2267) 0.2743(0.2496)
SAR-W 0.1703(0.9999) 0.3452(1.0000) 0.4338(0.9999) 0.2622(1.0000) 0.2907(1.0000) 0.2641(1.0000)

2

SAR 0.1816 0.3690 0.4631 0.2800 0.3104 0.2804
SAR-P 0.1820(0.3520) 0.3696(0.3163) 0.4635(0.3520) 0.2805(0.2861) 0.3108(0.3262) 0.2809(0.2848)
SAR-O 0.1804(0.8409) 0.3688(0.5476) 0.4636(0.8409) 0.2791(0.7734) 0.3097(0.7387) 0.2795(0.7907)
SAR-R 0.1818(0.4456) 0.3687(0.6400) 0.4614(0.4456) 0.2797(0.6307) 0.3096(0.7919) 0.2801(0.6159)
SAR-W 0.1697(1.0000) 0.3450(1.0000) 0.4342(1.0000) 0.2616(1.0000) 0.2903(1.0000) 0.2635(1.0000)

3

SAR 0.1822 0.3709 0.4656 0.2810 0.3116 0.2814
SAR-P 0.1830(0.2599) 0.3740(0.0308) 0.4684(0.2599) 0.2831(0.0507) 0.3136(0.0598) 0.2830(0.0757)
SAR-O 0.1841(0.0713) 0.3748(0.0048) 0.4695(0.0713) 0.2841(0.0084) 0.3147(0.0061) 0.2841(0.0127)
SAR-R 0.1825(0.4377) 0.3724(0.1134) 0.4666(0.4377) 0.2820(0.2157) 0.3125(0.2469) 0.2822(0.2712)
SAR-W 0.1726(1.0000) 0.3477(1.0000) 0.4379(1.0000) 0.2644(1.0000) 0.2935(1.0000) 0.2665(1.0000)

Sports dataset

1

SAR 0.1391 0.3316 0.4490 0.2382 0.2761 0.2424
SAR-P 0.1403(0.1274) 0.3339(0.0702) 0.4526(0.1274) 0.2399(0.0881) 0.2782(0.0528) 0.2440(0.0700)
SAR-O 0.1416(0.0102) 0.3344(0.0246) 0.4528(0.0102) 0.2409(0.0081) 0.2790(0.0045) 0.2450(0.0054)
SAR-R 0.1410(0.0457) 0.3333(0.1171) 0.4506(0.0457) 0.2399(0.0541) 0.2777(0.0481) 0.2440(0.0403)
SAR-W 0.1328(0.9997) 0.3148(1.0000) 0.4275(0.9997) 0.2264(1.0000) 0.2628(1.0000) 0.2318(1.0000)

2

SAR 0.1443 0.3442 0.4647 0.2473 0.2861 0.2504
SAR-P 0.1464(0.0051) 0.3480(0.0003) 0.4686(0.0051) 0.2503(0.0002) 0.2891(0.0001) 0.2531(0.0003)
SAR-O 0.1462(0.0300) 0.3474(0.0021) 0.4682(0.0300) 0.2497(0.0059) 0.2887(0.0062) 0.2526(0.0100)
SAR-R 0.1446(0.3857) 0.3438(0.7097) 0.4646(0.3857) 0.2470(0.6650) 0.2860(0.5882) 0.2504(0.5743)
SAR-W 0.1335(1.0000) 0.3175(1.0000) 0.4328(1.0000) 0.2282(1.0000) 0.2653(1.0000) 0.2335(1.0000)

3

SAR 0.1451 0.3485 0.4709 0.2498 0.2893 0.2528
SAR-P 0.1492(0.0042) 0.3550(0.0009) 0.4792(0.0042) 0.2552(0.0021) 0.2952(0.0007) 0.2576(0.0021)
SAR-O 0.1494(0.0127) 0.3560(0.0004) 0.4794(0.0127) 0.2558(0.0020) 0.2956(0.0005) 0.2581(0.0025)
SAR-R 0.1474(0.0750) 0.3531(0.0041) 0.4766(0.0750) 0.2533(0.0173) 0.2931(0.0047) 0.2559(0.0189)
SAR-W 0.1339(1.0000) 0.3177(1.0000) 0.4326(1.0000) 0.2285(1.0000) 0.2655(1.0000) 0.2338(1.0000)

Toy dataset

1

SAR 0.1738 0.3517 0.4475 0.2666 0.2975 0.2690
SAR-P 0.1760(0.0687) 0.3565(0.0004) 0.4520(0.0687) 0.2701(0.0030) 0.3009(0.0048) 0.2720(0.0098)
SAR-O 0.1765(0.0037) 0.3567(0.0000) 0.4515(0.0037) 0.2705(0.0000) 0.3011(0.0000) 0.2723(0.0001)
SAR-R 0.1771(0.0040) 0.3542(0.0020) 0.4486(0.0040) 0.2695(0.0006) 0.3000(0.0013) 0.2719(0.0007)
SAR-W 0.1712(0.9606) 0.3411(1.0000) 0.4324(0.9606) 0.2598(0.9999) 0.2893(1.0000) 0.2630(0.9998)

2

SAR 0.1790 0.3647 0.4616 0.2759 0.3071 0.2771
SAR-P 0.1816(0.0383) 0.3656(0.2032) 0.4620(0.0383) 0.2776(0.0714) 0.3087(0.0529) 0.2790(0.0515)
SAR-O 0.1801(0.1893) 0.3650(0.3160) 0.4625(0.1893) 0.2766(0.1591) 0.3080(0.1069) 0.2780(0.1196)
SAR-R 0.1797(0.2902) 0.3634(0.9093) 0.4602(0.2902) 0.2755(0.6473) 0.3068(0.6494) 0.2770(0.5346)
SAR-W 0.1697(0.9998) 0.3410(1.0000) 0.4345(0.9998) 0.2590(1.0000) 0.2891(1.0000) 0.2622(1.0000)

3

SAR 0.1811 0.3681 0.4661 0.2786 0.3102 0.2796
SAR-P 0.1830(0.0929) 0.3703(0.018) 0.4691(0.0929) 0.2807(0.0103) 0.3126(0.0059) 0.2818(0.0105)
SAR-O 0.1824(0.2662) 0.3698(0.0980) 0.4673(0.2662) 0.2801(0.1055) 0.3115(0.1071) 0.2810(0.1538)
SAR-R 0.1792(0.8547) 0.3664(0.9009) 0.4643(0.8547) 0.2769(0.9272) 0.3085(0.9502) 0.2780(0.9044)
SAR-W 0.1690(1.0000) 0.3412(1.0000) 0.4345(1.0000) 0.2587(1.0000) 0.2888(1.0000) 0.2617(1.0000)

Yelp dataset

1

SAR 0.2199 0.5552 0.7315 0.3922 0.4494 0.3761
SAR-P 0.2208(0.2471) 0.5583(0.0285) 0.7332(0.2471) 0.3944(0.0520) 0.4511(0.0363) 0.3777(0.0723)
SAR-O 0.2216(0.0698) 0.5589(0.0095) 0.7331(0.0698) 0.3950(0.0221) 0.4515(0.0230) 0.3783(0.0262)
SAR-R 0.2199(0.5141) 0.5570(0.1078) 0.7313(0.5141) 0.3931(0.2295) 0.4495(0.4106) 0.3764(0.3732)
SAR-W 0.2026(1.0000) 0.5226(1.0000) 0.6969(1.0000) 0.3665(1.0000) 0.4230(1.0000) 0.3537(1.0000)

2

SAR 0.2254 0.5684 0.7446 0.4018 0.4589 0.3842
SAR-P 0.2290(0.0003) 0.5731(0.0000) 0.7473(0.0003) 0.4061(0.0000) 0.4626(0.0001) 0.3878(0.0001)
SAR-O 0.2281(0.0267) 0.5713(0.0459) 0.7472(0.0267) 0.4048(0.0220) 0.4618(0.0094) 0.3870(0.0010)
SAR-R 0.2275(0.0895) 0.5692(0.2404) 0.7455(0.0895) 0.4033(0.1147) 0.4604(0.0861) 0.3858(0.0795)
SAR-W 0.2070(1.0000) 0.5271(1.0000) 0.7013(1.0000) 0.3708(1.0000) 0.4272(1.0000) 0.3577(1.0000)

3

SAR 0.2291 0.5751 0.7498 0.4071 0.4638 0.3886
SAR-P 0.2308(0.1261) 0.5787(0.0376) 0.7539(0.1261) 0.4098(0.0720) 0.4666(0.0366) 0.3908(0.0746)
SAR-O 0.2324(0.0048) 0.5800(0.0038) 0.7538(0.0048) 0.4115(0.0019) 0.4679(0.0004) 0.3924(0.0011)
SAR-R 0.2314(0.0186) 0.5784(0.0332) 0.7525(0.0186) 0.4098(0.0255) 0.4663(0.0118) 0.3908(0.0167)
SAR-W 0.2045(1.0000) 0.5257(1.0000) 0.7014(1.0000) 0.3693(1.0000) 0.4262(1.0000) 0.3564(1.0000)

17

Under review as a conference paper at ICLR 2024

Table A7: Comparison with emerging attentive light-weight methods. The bold fonts represent
the best performance. “*” marks the metrics that ConvFormer improves significantly over the best
baselines, with p-value < 0.01 in the paired sample t-test.

Dataset Model H@1 H@5 H@10 N@5 N@10 MRR

Beauty

SASRec 0.1870 0.3741 0.4696 0.2848 0.3156 0.2852
FastFormer 0.1405 0.3395 0.4454 0.2438 0.2780 0.2449
PoolingFormer 0.1930 0.3932 0.4925 0.2981 0.3302 0.2971
ConvFormer 0.2019∗ 0.4119∗ 0.5105∗ 0.3125∗ 0.3443∗ 0.3093∗

Sports

SASRec 0.1445 0.3466 0.4622 0.2497 0.2869 0.2520
FastFormer 0.1185 0.3249 0.4573 0.2238 0.2665 0.2284
PoolingFormer 0.1568 0.3741 0.5000 0.2687 0.3093 0.2693
ConvFormer 0.1671∗ 0.3891∗ 0.5116∗ 0.2819∗ 0.3215∗ 0.2808∗

Toys

SASRec 0.1878 0.3682 0.4663 0.2820 0.3136 0.2842
FastFormer 0.1301 0.3390 0.4517 0.2380 0.2744 0.2384
PoolingFormer 0.1893 0.3873 0.4893 0.2927 0.3256 0.2925
ConvFormer 0.2007∗ 0.4033∗ 0.5100∗ 0.3069∗ 0.3384∗ 0.3048∗

Yelp

SASRec 0.2375 0.5745 0.7373 0.4113 0.4642 0.3927
FastFormer 0.1918 0.5451 0.7355 0.3727 0.4344 0.3557
PoolingFormer 0.2539 0.6087 0.7663 0.4378 0.4890 0.4144
ConvFormer 0.2816∗ 0.6347∗ 0.7863∗ 0.4653∗ 0.5146∗ 0.4406∗

Definition B.1 (DFT and IDFT). Given an L-length sequence X = [x1, ..., xL], DFT projects it to
a set of predefined exponential basis, and the projection onto the k-th basis is calculated as

x
(F)
k = F(X)k =

L−1∑
l=0

xl exp(−
2πi

L
lk), 0 ≤ k ≤ L− 1, (11)

where exp(·) is the exponential basis, i is the imaginary unit, k indicates the frequency of the expo-
nential basis. Inversely, given the projection onto each basis, we can recover the original sequence
via the Inverse DFT (IDFT):

xl = F−1(X(F))l =
1

L

L−1∑
k=0

x
(F)
k exp(

2πi

L
lk), 0 ≤ l ≤ L− 1, (12)

Lemma B.1. Let X = [x1, . . . , xL] and C = [c1, . . . , cL] be two L-length sequences. The Fourier
transform of a convolution of the two signals is the Hadamard product of their Fourier transforms:

F(C ∗X) = F(C)⊙F(X). (13)

Proof. Assuming that the sequence X is periodic with the period L, we have:

F (C ∗X)k
(a)
=

L−1∑
l=0

L−1∑
j=0

cjxl−j

 exp

(
−2πi

L
lk

)
=

L−1∑
j=0

cj

(
L−1∑
l=0

xl−j exp

(
−2πi

L
lk

))

(b)
=

L−1∑
j=0

cj exp

(
−2πi

L
jk

)(L−1∑
l=0

xl−j exp

(
−2πi

L
(l − j)k

))

(c)
=

L−1∑
j=0

cj exp

(
−2πi

L
jk

)(L−1∑
l=0

xl exp

(
−2πi

L
lk

))
(d)
= F (C)k ⊙F (X)k .

(14)

Below is some explanation for the derivation:

18

Under review as a conference paper at ICLR 2024

Algorithm 1 The computational workflow of ConvFormer
Input: a user’s sequence S = {i1, · · · , iL}, a target item it.
Output: the preference score p(it|i1:L).

1: get input embeddings Ê of S by Eq.(3)
2: set R← Ê and lookup target item’s embedding et
3: for n = 1 to N do ▷ Stacking N LighTCN layers
4: if acceleration then ▷ Based on Eq.(9)
5: C(F) ← F(Pad(C)), R(F) ← F(R)

6: R̂← LayerNorm(R+Dropout(F−1(C(F) ⊙R(F)))
7: else ▷ Standard operation with Eq.(4)
8: R̂← LayerNorm(R+Dropout(DWC(R))

9: R̃← LayerNorm(R̂+Dropout(CWC(R̂))

10: R← R̃
11: p(it|i1:L) = e⊤t R[L] ▷ Dot product scorer

(a) is the definition of DFT and discrete convolution operation;

(b) breaks down exp(2πilk/L) into exp(2πi(l − j)k/L) and exp(2πijk/L);

(c) holds due to the periority of X and exp(·);

(d) is the definition of DFT.

Eq.(14) holds for all 0 ≤ k ≤ L− 1. The proof is completed.

Both DFT and IDFT can be implemented as matrix-vector multiplication, which is differentiable and
thus can be integrated in neural user models. However, the complexity of DFT and IDFT is O(L2),
with no theoretical superiority over the standard DWC layer. In this regard, the actual accelerator
are the Fast Fourier Transform (FFT) and its inverse, which calculate DFT and IDFT in a recursive
manner and reduce their complexity to O(L log(L)). In this way, we can reduce the computational
complexity of the DWC layer from O(L2) to O(L log(L)), which is extremely advantageous when
modelling long user behavior sequences.

To showcase the efficacy of ConvFormer-F, it is necessary to verify its accuracy equivalence and
speed acceleration with respect to the standard ConvFormer. Overall, we reuse the hyperparameters
in Table C8, but for the stability of test results, we set the batch size to 512. To emphasize the differ-
ence in speed, we omit the inference time of these methods’ common layers, including embedding
and FFN layers. In practice, we firstly generate a random matrix R ∈ RL×D and then feed it into a
self-attention layer, a CWC layer and its accelerated version. We vary the maximum sequence length
L in {500, 1000} and the convolution kernel size from 10 to L, and record the average GPU infer-
ence time over 10 runs. Experiments are conducted with an AMD EPYC 7742 64-Core processor
and an NVIDIA RTX A6000 GPU.

The accuracy comparison is conducted in Figure B1. Overall, there is no significant difference
between the two methods, as evidenced by the substantial overlap between the 95% confidence
intervals represented by the error bars. Precisely, the MRR differences at K = 40 are merely 8e−4

and 1e−3 for the beauty and sports datasets, respectively. These observations support the accuracy
equivalence between ConvFormer and ConvFormer-F.

The GPU inference time is compared in Figure B2. The y-axis indicates the total inference time
for a batch of 512 sequences. Overall, the inference time of ConvFormer rises linearly with respect
to the kernel size K, while that of ConvFormer-F keeps constant with respect to K. As a result,
the speedup of the fast approximation approach is not readily apparent for small kernel sizes, e.g.,
K < 100 in L = 1000; nonetheless, as the kernel size is increased for better accuracy, the supe-
riority of ConvFormer-F becomes more pronounced. Note that the inference cost is a major flaw
with SASRec, which is mostly brought on by its item-to-item paradigm and softmax operator. In
particular, ConvFormer and ConvFormer-F accelerate SASRec by 3x and 5x, respectively, even with
the largest kernel setting, i.e., K = L.

19

Under review as a conference paper at ICLR 2024

C REPRODUCTION DETAILS

C.1 BASELINE DESCRIPTION

In our evaluation, ConvFormer is benchmarked against a range of established baselines in the field.
We adhered to the experimental settings outlined by Zhou et al. (2022), including hyperparameters
and training protocols, to ensure consistency and comparability with the established benchmark
(refer to Table C8 for detailed hyperparameter settings). The baseline models include:

• PopRec is a ranking model based on item popularity, determined by the frequency of interactions;
• FM (Rendle, 2010) is a factorized model to characterize pairwise interactions between variables;
• AutoInt (Song et al., 2019) employs self-attention for automatic feature interaction;
• GRU4Rec (Hidasi & Karatzoglou, 2018) encodes user interests with stacked gated recurrent unit;
• Caser (Tang & Wang, 2018) encodes user interests with horizontal and vertical convolution layers;
• HGN (Huang et al., 2020) uses hierarchical gating to model personalized long-short term interests;
• RepeatNet (Ren et al., 2019) strengthens RNN with a repetition mechanism for adaptive item

selection from user behaviors;
• CLEA (Qin et al., 2021) involves an item-level denoising procedure through contrastive learning;
• SASRec (Kang & McAuley, 2018) utilizes self-attentive token mixer to capture behavior patterns;
• BERT4Rec (Sun et al., 2019) extends SASRec with bidirectional encoders and Cloze training;
• SRGNN (Wu et al., 2019) session-based GNN to characterize item transitions for prediction;
• GCSAN (Xu et al., 2019) adds GNN to SASRec to encode dependencies between nearby items;
• FMLP-Rec (Zhou et al., 2022) replaces the self-attentive token mixer in SASRec with a learnable

filter layer, which is the state-of-the-art approach in the context of sequential user modeling.

Additionally, in Section 5.3, we compare ConvFormer with advanced attentive token mixers: Fast-
former (Wu et al., 2021) and PoolingFormer (Zhang et al., 2021), which have demonstrated effec-
tiveness over several Transformer variants (Wang et al., 2020; Beltagy et al., 2020).

• PoolingFormer implements a localized and large receptive self-attention layer, using pooling to
accelerate key and value vector computations.

• FastFormer utilizes an additive attention mechanism to model global context, and transforms
each item’s representation based on its interaction with global context representations.

We replicated Fastformer using its open-source implementation at https://github.com/
wuch15/Fastformerand developed PoolingFormer from scratch. For a fair comparison, com-
mon hyperparameters between ConvFormer, SASRec, and these models were kept consistent, such
as learning rate and hidden dimensions. Individual hyperparameters, like the pooling size in Pool-
ingFormer, were finely tuned for optimal performance. All of these experiments are repeated 11
times with different random seeds4.

C.2 DESCRIPTION OF SAR AND ITS VARIANTS

In Section 3, we commence our analysis with the standard SAR model, which serves as the basis
for our experimental variants. The SAR model operates on an input representation sequence R ∈
RL×D and employs an attention matrix A to fuse contextual information within the value vector:
S = A(RW(V)). This is followed by a feed-forward network (FFN) for cross-channel intersection.
A is computed through an item-to-item paradigm as follows:

Q = RW(Q) + b(Q),

K = RW(K) + b(K),

A = softmax(QK⊤
√
D).

4Results are reported with seeds 1-10 and 42.

20

https://github.com/wuch15/Fastformer
https://github.com/wuch15/Fastformer

Under review as a conference paper at ICLR 2024

Add&LayerNorm

v
a
lu

e
v
a
lu

e

keykey

q
u
e

ry
q

u
e

ry

AAA

...
Output sequence representation

...
Input sequence representation

(a) SAR

A
(P)

A
(P)

A
(P)

...
Input sequence representation

Add&LayerNorm

v
a
lu

e
v
a
lu

e

MLP

...
Output sequence representation

(b) SAR-P

...
Input sequence representation

Add&LayerNorm

v
a
lu

e
v
a
lu

e

...
Output sequence representation

AAA
(O)

A
(O)

A
(O)

(c) SAR-O

...
Input sequence representation

Add&LayerNorm

v
a
lu

e
v
a
lu

e

...
Output sequence representation

AAA
(R)

A
(R)

A
(R)

(d) SAR-R

Figure C3: Simple yet order-sensitive architectures for the alternatives to the item-to-item paradigm
in SAR. The non-trainable parameters are indicated by the blue box in (d).

To perform a valid comparison with its alternative counterparts, the multi-head trick is disabled in
this implementation i.e., the number of heads is set to 1 as indicated in Table C8. Other components,
such as skip connections, dropout, and layer normalization, are retained in line with the canonical
SASRec model (Kang & McAuley, 2018).

C.2.1 ORDER-SENSITIVE VARIANTS.

In this section, we describe order-sensitive SAR variants used in Section 3.1. These variants, as
graphically illustrated in Figure C3, maintain the standard SAR framework but differ in how the
attention matrix A is computed.

• SAR-O employs a trainable parameter matrix A(O) ∈ RL×L as the attention matrix.

• SAR-P utilizes a trainable MLP module to dynamically generate the attention scores, providing
a more customized output. The attention scores generated by each item is A

(P)
l = RlW

(P) +

b(P), 0 ≤ l ≤ L, where W(P) ∈ RD×T and b(P) ∈ RT are shared parameters for all items.

• SAR-R is similar to SAR-O, but attention A(R) is randomly initialized, fixed, and non-trainable.

Justification of order sensitivity. The concept of order sensitivity in a token mixer can be defined
as follows: for any item in the input sequence, changing the order of other items alters the repre-
sentation outputted by the token mixer. To illustrate this, consider the representation of the i-th item
in the input sequence, denoted as ri ∈ RD. In SAR and its variants, the output representation of ri
is given by si =

∑
ai,jrj

5. If we switch the order of two items, j1 and j2, the output representa-
tion changes accordingly: s′i =

∑L
j=1,j ̸=j1,j ̸=j2

ai,jrj + ai,j1rj2 + ai,j2rj1 , reflecting the model’s
sensitivity to the item order.

• In SAR, si does not exhibit order sensitivity. This is because the attention weights are dynamically
determined based on the similarity between items, irrespective of their positions in the sequence.
Consequently, swapping two items, j1 and j2, does not alter the output representation of the i-th
item, i.e., s′i = si.

• In SAR-O and SAR-R, the weights ai,j are fixed with respect to positions rather than dynamically
calculated, which makes si sensitive to the order of items, manifested as s′i ̸= si.

5We omit the value mapping for brevity here. Since the value mapping is performed on each time step of rj
individually, independent with the order of input sequence, ignoring it does not affect order sensitivity analysis.

21

Under review as a conference paper at ICLR 2024

• In SAR-P, the only difference from SAR-O is that the weights ai are dependent on ri: ai =
[ai,j]j=1:L = MLP(ri). Since the generated weights remain dependent on the position index j,
s′i ̸= si holds and thus SAR-P is order-sensitive.

C.2.2 VARIANTS WITH NON-SHARED PARAMETERS.

To explore the effect of parameter sharing and the resulting overall lightweight architecture, we
introduce two additional SAR variants:

• SAR-N is similar to SAR, but the query, key and value mappings are distinct at different steps:

Q
(N)
l = RW(Q)[l] + b(Q)[l], 0 ≤ l ≤ L,

K
(N)
l = RW(K)[l] + b(K)[l], 0 ≤ l ≤ L,

A(N) = softmax(Q(N)K(N)⊤/
√
D).

• SAR-N+ utilizes all input items to generate query, key, and value vectors. Precisely, let T :
RT×D → RTD×1 be the flatten operator and T −1 be its inverse, the attention is generated by:

Q(N+) = T −1
(
T (R)W(Q+) + b(Q+)

)
,

K(N+) = T −1
(
T (R)W(K+) + b(K+)

)
,

A(N+) = softmax(Q(N+)K(N+)⊤/
√
D).

where W(Q+) ∈ RTD×TD,W(K+) ∈ RTD×TD, b(Q+) ∈ RTD×1,b(K+) ∈ RTD×1.

C.3 HYPERPARAMETER SETTING

Table C8 presents the configuration of parameters. The report of model performance and the fine-
tuning of hyperparameters follow the protocol as follows.

• For baselines with publicly available results on the benchmark, we use the results reported based
on the work by Zhou et al. (2022). We have checked the results reproduciable and adhered to the
same experimental setting.

• For baselines without available results, we reproduce them with careful tuning. For fairness,
we maintain the same values for the common hyperparameters with current SOTA baseline and
ConvFormer, e.g., the embedding dimension, learning rate, dropout ratio. Then, we finetune their
own hyperparameters, e.g., the pooling size in PoolingFormer.

• For SAR-variants in Section A.4, these SAR variants rarely introduce new hyperparameters. To
make a fair comparison, we use the same common hyperparameters with SAR.

• For Convformer, we use the same values of common hyperparameters such as learning rate, num-
ber of blocks and dropout rate with the current SOTA baseline by Zhou et al. (2022). Fine-tuning
of ConvFormer is limited to its own hyperparameter, K, as detailed in Table C8. Exhaustive tuning
of other hyperparams is disabled.

D CONNECTING THE DOTS

D.1 ATTENTION V.S. CONVOLUTION, A MOVING AVERAGE PERSPECTIVE

The efficacy of model simplification often hinges on precise prior knowledge, prompting an inquiry
into why certain simplifications to the Transformer architecture prove effective and what insights
they offer. The self-attentive architecture can be conceptualized as a moving average (MA) model
in the value sequence V as S = AV, where the weights A are dynamically generated from the
inputs. While the dynamic weight augments model capacity, it encounters limitations in sequential
user modeling: (1) order-sensitivity; (2) instability, where the model parameters vary with the input,
leading to difficulties in parameter identification. SAR-O, which introduces an input-independent

22

Under review as a conference paper at ICLR 2024

Table C8: Parameter configurations on each dataset. ”*” in the Model field is a wildcard for models.

Parameter Model Beauty Sports Toys Yelp

max sequence length, L * 50 50 50 50
number of layers, N * 2 2 2 2
hidden dimension, D * 64 64 64 64
convolution kernel size, K ConvFormer 45 30 30 30
padding mode ConvFormer circular circular circular circular
learning rate * 1e−3 1e−3 1e−3 1e−3

weight decay * 0 0 0 0
number of attention heads SAR 1 1 1 1
number of attention heads PoolingFormer 2 2 2 2
number of attention heads FastFormer 4 2 2 2
attention dropout probability * 0.5 0.5 0.5 0.5
hidden dropout probability * 0.5 0.5 0.5 0.5
batch size * 256 256 256 256
patience * 10 10 10 10
number of maximum epochs * 200 200 200 200
pooling size PoolingFormer 2 4 2 4
pooling stride PoolingFormer 2 4 2 4
local convolution kernel size PoolingFormer 10 10 20 20

parameter matrix, effectively mitigates these limitations and enhances performance. This suggests
that traditional MA models retain significant research and practical value in this domain.

The MA model is designed for Markov process identification problems. Markov processes have
two important properties: (1) order, i.e. the number of the previous steps related to the current
state, and (2) coupling, i.e. whether the update of a particular channel depends on the states in
other channels. Our findings indicate that increasing the receptive field and minimizing channel
coupling improve performance, suggesting that user behavior sequences in latent space exhibit high-
order, decoupled Markovian properties. Techniques like optimal filtering and smoothing offer robust
inference methods for such processes, as exemplified by the success of Kalman attention by Liu et al.
(2020), which opens up promising avenues for future research.

D.2 LARGE RECEPTIVE FIELD V.S. LIGHTWEIGHT ARCHITECTURE, A LEARNING THEORY
PERSPECTIVE

In Criteria 2 and 3, we advocate for a large receptive field coupled with a lightweight architecture as
essential elements for effective token mixers. While our experimental results substantiate these crite-
ria, we further elucidate their theoretical underpinnings through the lens of Probably Approximately
Correct (PAC) learning, based on Lemma D.1.
Lemma D.1. Let g be the hypothesis (model) selected by the learning algorithm with the ‘statistical’
large dataset D. Let Ein(g) and Eout(g) be the within-sample error and out-of-sample error of the
selected model g, the generalization gap is defined as

δ(g) := Eout(g)− Ein(g). (15)

If δ is significantly large, overfitting happens and learning fails. Furthermore, g can be bounded as:

PD[|Eout(g)− Ein(g)|︸ ︷︷ ︸
δ(g)

> ϵ] ≤ 4(2M) exp

(
−1

8
ϵ2M

)
, (16)

where M is the sample size of the dataset D, dvc is the VC-dimension that measures the complexity
of the model, ϵ is a confidence threshold.

Employing a large receptive field enables efficient capture of long-term patterns, offering advantage
over stacking multiple small kernels which can distort information through successive non-linear
transformations, thus enabling a reduced within-sample error Ein. However, this approach increases
model complexity measured by dvc, thereby widening the generalization gap δ. To mitigate this,
a lightweight architecture, achieved through techniques like parameter sharing or inductive bias, is

23

Under review as a conference paper at ICLR 2024

Table E9: DWC vs convolution-based sequential user models (Tang & Wang, 2018).

DWC layer Horizontal convolution Vertical convolution Advantage of the DWC layer

convolution kernel 1 Z Z The DWC layer is more lightweight

Convolution kernel depth-wise convolution canonical convolution canonical convolution The DWC layer is more lightweight

Number of parameters
(given full receptive field) D × L D × L × Z L × Z The DWC layer avoids an extra hyper-

parameter Z

Pooling-demanding % ! ! The DWC layer does not incorporate
pooling and preserves the ordering in-
formation

Padding ! % % The DWC layer incorporates a
padding operation to ensure its input
and output have the same shape,
enabling residual link

Receptive field large limited L The DWC layer controls the risk of
overfitting and thus makes it feasible
to incorporate large receptive field

Meta-former architecture ! % % The DWC layer adapts the meta-
former architecture. Notably, given
meta-former architecture, the DWC
layer remains superior than other
token-mixers, see section 5.3 for ref-
erence.

Complexity (accelerated) O(D × L log L) O(Z × L log L ×
D logD)

O(ZD × L log L) The DWC layer performs 1-D convo-
lution in each channel, thus can be ac-
celerated with 1D FFT; the horizontal
convolution performs 2-D convolution
and employs Z kernels, thus can be
accelerated with 2D FFT with larger
complexity.

Table E10: MLP vs DWC with Full Receptive Field.

Technical difference DWC layer (FRF) MLP Advantage of the DWC layer

Number of parameters D× L because each hid-
den dimension has unique
convolution weight.

L×L×D with unique MLP per
hidden dimension, L × L with
shared MLP across dimensions.

The number of parameters in a DWC layer is compar-
atively lower than that of an MLP, particularly when
dealing with longer sequences.

Meta-former architecture ! % The DWC layer is based on the Meta-Former architec-
ture, which distinguishes it from canonical MLPs.

Accelerable with FFT ! % The FFT can accelerate the computation of the DWC
layer, but it does not speed up the computation of MLP.

necessary. Both strategies cooperate to effectively minimize training error and control the general-
ization gap, consequently reducing the generalization error Eout.

E MORE COMPARISON WITH EXISTING METHODS

E.1 COMPARISON WITH MLPS

A potential concern might arise regarding the Depth-Wise Convolution (DWC) layer reducing to a
Multi-Layer Perceptron (MLP) under a full receptive field (FRF) setting. However, key differences
exist between the two, as outlined in Table E10. To highlight the core differences:

• Acceleration: FFT can expedite the computation of DWC layers, a feature not applicable to MLPs.
This underscores a fundamental difference in computational efficiency.

• Dimensions: For a one-dimensional input sequence X ∈ RL×1, an MLP requires a weight matrix
W ∈ RL×L to maintain output shape (for residual link). In contrast, a DWC layer with FRF only
needs W ∈ RK×1 with K = L, highlighting its lightweight nature even in the FRF setting.

ConvFormer is a non-trivial advancement in the field of sequential user modeling albeit with a
relatively simple architecture. This is evidenced by the observation that it is not feasible to obtain
ConvFormer by simply adding a simple update to existing sequential user models. The details are
formulated as follows.

24

Under review as a conference paper at ICLR 2024

Table F11: Performance on four datasets. Bold and underlined fonts indicate the best and second-
best result, respectively. ”*” marks the significant improvement over the second-best result with
p-value < 0.01 on the one-sample t-test.

Dataset Metric FM AutoInt GRU4Rec Caser SASRec BERT4Rec GCSAN FMLP L-Mixer

Beauty

H@1 0.0405 0.0447 0.1337 0.1337 0.1870 0.1531 0.1973 0.2011 0.2020
H@5 0.1461 0.1705 0.3125 0.3032 0.3741 0.3640 0.3678 0.4025 0.4151∗
N@5 0.0934 0.1063 0.2268 0.2219 0.2848 0.2622 0.2864 0.3070 0.3143∗
H@10 0.2311 0.2872 0.4106 0.3942 0.4696 0.4739 0.4542 0.4998 0.5139∗
N@10 0.1207 0.1440 0.2584 0.2512 0.3156 0.2975 0.3143 0.3385 0.3462∗
MRR 0.1096 0.1226 0.2308 0.2263 0.2852 0.2614 0.2882 0.3051 0.3105∗

Sports

H@1 0.0489 0.0644 0.1160 0.1135 0.1455 0.1255 0.1669 0.1646 0.1652
H@5 0.1603 0.1982 0.3055 0.2866 0.3466 0.3375 0.3588 0.3803 0.3919∗
N@5 0.1048 0.1316 0.2126 0.2020 0.2497 0.2341 0.2658 0.2760 0.2823∗
H@10 0.2491 0.2967 0.4299 0.4014 0.4622 0.4722 0.4737 0.5059 0.5150∗
N@10 0.1334 0.1633 0.2527 0.2390 0.2869 0.2775 0.3029 0.3165 0.3221∗
MRR 0.1202 0.1435 0.2191 0.2100 0.2520 0.2378 0.2691 0.2763 0.2804∗

Toys

H@1 0.0257 0.0448 0.0997 0.1114 0.1878 0.1262 0.1996 0.1935 0.1984
H@5 0.0978 0.1471 0.2795 0.2614 0.3682 0.3344 0.3613 0.4063 0.4052
N@5 0.0614 0.0960 0.1919 0.1885 0.2820 0.2327 0.2836 0.3046 0.3068
H@10 0.1715 0.2369 0.3896 0.3540 0.4663 0.4493 0.4509 0.5062 0.5053
N@10 0.0850 0.1248 0.2274 0.2183 0.3136 0.2698 0.3125 0.3368 0.3391
MRR 0.0819 0.1131 0.1973 0.1967 0.2842 0.2338 0.2871 0.3012 0.3043

Yelp

H@1 0.0624 0.0731 0.2053 0.2188 0.2375 0.2405 0.2493 0.2727 0.2797
H@5 0.2036 0.2249 0.5437 0.5111 0.5745 0.5976 0.5725 0.6191 0.6260∗
N@5 0.1333 0.1501 0.3784 0.3696 0.4113 0.4252 0.4162 0.4527 0.4602∗
H@10 0.3153 0.3367 0.7265 0.6661 0.7373 0.7597 0.7371 0.7720 0.7721
N@10 0.1692 0.1860 0.4375 0.4198 0.4642 0.4778 0.4696 0.5024 0.5077∗
MRR 0.1470 0.1616 0.3630 0.3595 0.3927 0.4026 0.4006 0.4299 0.4360∗

E.2 COMPARISON WITH CURRENT CNN-BASED SOLUTIONS

There are several major differences between ConvFormer and the conventional convolution net-
works, particularly Caser (Tang & Wang, 2018), an exemplar CNN-based sequential user model.
ConvFormer incorporates a meta-former architecture with a residual link, layer normalization, and
disentanglement between the token-mixer and the channel-mixer, which makes it fundamentally dif-
ferent from canonical convolution networks6. Besides, the DWC layer in ConvFormer is fundamen-
tally different from the horizontal and vertical convolution layers proposed by Tang & Wang (2018)
which are commonly used in sequential user models. The technical differences and advantages of
the DWC layer are illustrated in Table E9. To summarize:

• The horizontal convolution (Tang & Wang, 2018) is essentially a canonical convolution followed
by a max-pooling layer, and even with a large receptive field, it is not equivalent to our DWC
layer. In fact, the horizontal convolution layer is similar to the Conv-V variant in Section 5.3.2.
According to Figure 5, the Conv-V variant is obviously inferior to the DWC layer, which is a
reasonable result since it violates our criteria of lightweight architecture.

• The vertical convolution is actually a canonical multi-kernel 2D convolution with kernel shape
1× L, cascaded by a max-pooling layer. In contrast, the DWC layer is a depth-wise single-kernel
2D convolution with kernel shape D× L, free of a cascaded pooling layer.

F BROADER IMPACT

ConvFormer, as a practical implementation of our proposed criteria, demonstrates superior perfor-
mance over various existing methods in sequential user modeling. To further validate the generality
and applicability of these criteria, we introduce another model, L-Mixer. It uses an affine layer acting
as the token mixer, which is embarassingly simple yet satisties the proposed criteria simultaneously.
The performance outcomes of L-Mixer, detailed in Table F11, show promise with respect to current
art model. However, it lacks adaptability to varying input lengths during inference and cannot be

6The incorporation of meta-former architecture is a non-trivial technical point that has recently received
attention from the machine learning community (Yu et al., 2022).

25

Under review as a conference paper at ICLR 2024

accelerated like the LighTCN layer. Hence, ConvFormer remains our primary exemplar and focus
in the main text.

We hope that the leading performance of these two simple yet effective modifications will inspire
future research in this domain. These models demonstrate that adherence to well-thought-out design
criteria can lead to efficient and effective solutions in sequential user modeling. Future research
could explore further refinements to these models, address their limitations, and perhaps even de-
velop new approaches inspired by the principles laid out in our study.

26

	Introduction
	Problem statement
	Examining Self-attentive token mixer in user modeling
	Is the item-to-item token-mixer suitable for sequential user modeling?
	Is the large receptive field essential for sequential user modeling?
	Is the lightweight architecture essential?

	Proposed method
	Three criteria for sequential user modeling
	The ConvFormer architecture
	Embedding layer
	Light temporal convolution neural (LighTCN) layer
	Dot-product scorer

	Accelerated approximation algorithm

	Experiments
	Experimental setup
	Overall performance
	Ablation studies
	Large receptive field
	Lightweight convolution
	Attention vs. convolution

	Related Works
	Conclusions
	Additional experiment results
	Performance on the full-sort setting
	Performance on large-scale industrial dataset
	Performance on the general task
	Performance of order-sensitive SAR variants
	Performance of additional attentive light-weight baselines

	Convformer-F: acceleration and approximation
	Reproduction details
	Baseline description
	Description of SAR and its Variants
	Order-sensitive variants.
	Variants with non-shared parameters.

	Hyperparameter Setting

	Connecting the dots
	Attention v.s. Convolution, a moving average perspective
	Large receptive field v.s. lightweight architecture, a learning theory perspective

	More comparison with existing methods
	Comparison with MLPs
	Comparison with current CNN-based solutions

	Broader Impact

