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Abstract
To learn from data collected in diverse dynam-
ics, Imitation from Observation (IfO) methods
leverage expert state trajectories based on the
premise that recovering expert state distributions
in other dynamics facilitates policy learning in
the current one. However, Imitation Learning
inherently imposes a performance upper bound
of learned policies. Additionally, as the envi-
ronment dynamics change, certain expert states
may become inaccessible, rendering their distri-
butions less valuable for imitation. To address
this, we propose a novel framework that inte-
grates reward maximization with IfO, employ-
ing F-distance regularized policy optimization.
This framework enforces constraints on glob-
ally accessible states—those with nonzero vis-
itation frequency across all considered dynam-
ics—mitigating the challenge posed by inaccessi-
ble states. By instantiating F -distance in different
ways, we derive two theoretical analysis and de-
velop a practical algorithm called Accessible State
Oriented Policy Regularization (ASOR). ASOR
serves as a general add-on module that can be in-
corporated into various RL approaches, including
offline RL and off-policy RL. Extensive experi-
ments across multiple benchmarks demonstrate
ASOR’s effectiveness in enhancing state-of-the-
art cross-domain policy transfer algorithms, sig-
nificantly improving their performance.

1. Introduction
Imitation Learning (IL) and Reinforcement Learning
(RL) (Sutton & Barto, 1998) facilitates large-scale policy
optimization using datasets that are either static (Wu et al.,
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2019; Fujimoto et al., 2019) or continuously updated during
training (Lillicrap et al., 2016; Haarnoja et al., 2018). When
applied to non-stationary environments with evolving dy-
namics, obtaining effective policies necessitates extensive
training datasets with sufficient dynamics coverage (Liu
et al., 2022; Li et al., 2023). This challenge arises because
optimal policies and state-action distributions are inherently
dynamics-specific and do not generalize well. As a result,
trajectory data collected under one dynamics cannot be di-
rectly utilized for policy learning in another.

To address inefficient data exploitation, IfO algorithms (Wu
et al., 2019; Torabi et al., 2018b; Jiang et al., 2020) pro-
pose a dynamics-agnostic approach that enables learning
from data with varying dynamics. It imitates stationary
state distributions of expert policies and relies on the idea
that expert state distributions are similar across different
dynamics (Gangwani & Peng, 2020; Desai et al., 2020; Ra-
dosavovic et al., 2021). Building on this idea, Xue et al.
(2023a) further shows that the learning policy can achieve
strong cross-dynamics performance if it recovers the expert
state distribution in at least one of the dynamics. Instead,
we highlight a key limitation of this idea: the similarity
of state distributions does not always hold, particularly in
tasks where state accessibility varies with environmental
dynamics. In such cases, certain expert states become in-
accessible as the environment changes. For example, an
autonomous vehicle may safely navigate intersections at
high speed under low traffic densities, but will face a high
risk of collisions in dense traffic. Consequently, states repre-
senting “safe driving at high speed” become inaccessible in
certain dynamics, leading to distinct stationary state distri-
butions. In such scenarios, expert trajectories with dynamics
shift can be misleading.

To deal with the issue of distinct state accessibility, ex-
pert states that are not visited in some dynamics should be
excluded during training. We define globally accessible
states which maintains the same accessibility across differ-
ent dynamics. By restricting imitation to these states, the
policy can still leverage expert state trajectories from vari-
ous dynamics while avoiding misleading information from
inaccessible states. Meanwhile, IL cannot be naturally inte-
grated with datasets containing reward signals and requires
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demonstrations to be optimal. To overcome this limitation,
we propose a policy regularization method that incorpo-
rates imitation as constraint while optimizing the reward
maximization objective in RL. Specifically, the constraint
ensures that the F-distance (Arora et al., 2017) between
the accessible state distributions of the current and expert
policies remains upper-bounded. This approach offers two
key advantages: By instantiating the F-distance with JS
divergence and network distance, we establish lower-bound
performance guarantees for policy regularization under dy-
namics shift; By instantiating the F-distance with a GAN-
like distance measure, we transform policy regularization
into a practical reward augmentation algorithm which can
be a general add-on module to existing cross-dynamics RL
algorithms (Chen et al., 2021; Luo et al., 2022).

In empirical evaluations, we access the proposed algorithm
across various environments, including Minigrid (Chevalier-
Boisvert et al., 2023), the simulated robotics environment
MuJoCo (Todorov et al., 2012), the simulated autonomous-
driving environment MetaDrive (Li et al., 2023), and a large-
scale fall guys-like game environment. The proposed algo-
rithm exhibits superior performance when integrated with
multiple state-of-the-art algorithms. Our contributions can
be summarized as follows: 1) We identify a common lim-
itation of existing IfO methods under dynamics shift and
propose state distribution imitation restricted to globally
accessible states; 2) We design an F-distance regularized
policy optimization framework that combines expert imi-
tation with reward maximization; 3) By instantiating the
F-distance in different ways, we conduct theoretical analy-
ses and introduce a practical algorithm, both validating the
effectiveness of policy regularization on globally accessible
states.

2. Backgroud
2.1. Preliminaries

To model a set of decision-making tasks with different
environment dynamics, we consider the Hidden Parame-
ter Markov Decision Process (HiP-MDP) (Doshi-Velez &
Konidaris, 2016) defined by a tuple (S,A,Θ, T, r, γ, ρ0),
where S is the state space and A is the bounded action space
with actions a ∈ [−1, 1]. Θ is the space of hidden param-
eters. Tθ(s

′|s, a) is the transition function conditioned on
(s, a), as well as a hidden parameter θ sampled from Θ.
r(s, a, s′) is the environment reward function. By taking all
s, a, s′ into account, the reward function inherently includes
the transition information and does not change in different
dynamics. We also assume r(s, a, s′) w.r.t. the action a is
λ-Lipschitz. Discussions on these Lipschitz properties can
be found in Appendix A.3. s′ is termed as accessible from

s under dynamics T 1 if
∑

a∈A T (s′|s, a) > 0. γ ∈ (0, 1) is
the discount factor and ρ0(s) is the initial state distribution.

Policy optimization under dynamics shift aims at find-
ing the optimal policy that maximizes the expected re-
turn under all possible θ ∈ Θ: π∗ = argmaxπ η(π) =
EθEπ,Tθ

[
∑∞

t=0 γ
tr(st, at, st+1)], where the expectation

is under s0 ∼ ρ0, at ∼ π(·|st), and st+1 ∼
Tθ(·|st, at). The Q-value Qπ

T (s, a) denotes the ex-
pected return after taking action a at state s: Qπ

T (s, a)=
Eπ,T [

∑∞
t=0 γ

tr(st, at, st+1)|s0 = s, a0 = a]. The value
function is defined as V π

T (s) = Ea∼π(·|s)Q
π
T (s, a).

The optimal policy π∗ under T is defined as π∗
T =

argmaxπ Es∼ρ0
V π
T (s). We also intensely use the station-

ary state distribution (also referred to as the state occupation
function) dπT (s) = (1− γ)

∑∞
t=0 γ

tp (st = s | π, T ). The
stationary state distribution under the optimal policy is de-
noted as d∗T (s), which is the shorthand for dπ

∗
T

T (s). d∗T (s)
will be briefly termed as optimal state distribution in the rest
of this paper.

2.2. Related Work

Cross-domain Policy Transfer Cross-domain policy
transfer (Niu et al., 2024) focuses on training policies in
source domains and testing them in the target domain. In
this paper, we focus on a related problem of efficient train-
ing in multiple source domains. The resulting algorithm can
be combined with any of the following cross-domain policy
transfer algorithms to improve the test-time performance. In
online RL, VariBAD (Zintgraf et al., 2020) trains a context
encoder with variational inference and trajectory likelihood
maximization. CaDM (Lee et al., 2020) and ESCP (Luo
et al., 2022) construct auxiliary tasks including next state
prediction and contrastive learning to train the encoders.
Instead of relying on context encoders, DARC (Eysenbach
et al., 2021) makes domain adaptation by assigning higher
rewards on samples that are more likely to happen in the
target environment. Encoder-based (Chen et al., 2021) and
reward-based (Liu et al., 2022) policy transfer algorithms
are also effective in offline policy adaptation and have been
extended to offline-to-online tasks (Niu et al., 2022; 2023).
VGDF (Xu et al., 2023) use ensembled value estimations
to perform prioritized Q-value updates, which can be ap-
plied in both online and offline settings. SRPO (Xue et al.,
2023a) focus on a similar setting of efficient data usage with
this paper, but is based on a strong assumption of universal
identical state accessibility. We demonstrate that such an
assumption will not hold in many tasks and a more deli-
cate characterization of state accessibility will lead to better
theoretical and empirical results.

1T without subscript θ refers to the transition function under
any of the hidden parameter θ.
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Imitation Learning from Observations Imitation Learn-
ing from Observation (IfO) approaches obviate the need
of imitating expert actions and is suitable for tasks where
action demonstrations may be unavailable. BCO (Wu et al.,
2019) and GAIfO (Torabi et al., 2018b) are two natural
modifications of traditional Imitation Learning (IL) meth-
ods (Ho & Ermon, 2016) with the idea of IfO. IfO has also
been found promising when the demonstrations are collected
from several environments with different dynamics. Usually
an inverse dynamics model is first trained with samples from
the target environment by supervised learning (Wu et al.,
2019; Radosavovic et al., 2021), variational inference (Liu
et al., 2020), or distribution matching (Desai et al., 2020). It
is then used to recover the adapted actions in samples from
the source environment. The recovered samples can be used
to update policies with action discrepancy loss (Gangwani &
Peng, 2020; Radosavovic et al., 2021; Liu et al., 2020). To
our best knowledge, only HIDIL (Jiang et al., 2020) consid-
ered state distribution mismatch across different dynamics,
where policies are allowed to take extra steps to reach the
next state specified in the expert demonstration. We con-
sider in this paper a more general setting where states in
expert demonstrations may even be inaccessible.

3. Accessible States Oriented Policy Learning
In this section, we first provide a motivating example in
Sec. 3.1, where expert state trajectories can mislead the
learning policy in cross-dynamics training due to different
state accessibility. Based on the globally accessible states
defined in Sec. 3.2, we then propose a general approach of
F -distance regularized policy optimization. In Sec. 3.3 and
Sec. 3.4, we propose two instantiations of the F-distance
and respectively provide infinite-sample and finite-sample
performance analyses for the policy regularization method.
In Sec. 3.5, we propose a GAN-like instantiation of the
F-distance, giving rise to the practical algorithm.

3.1. Motivating Example

Previous IfO approaches imitate expert policies through
state distribution matching (Torabi et al., 2018a; Desai et al.,
2020; Jiang et al., 2020) for cross-dynamics policy training.
Fig. 1 demonstrates a lava world task with dynamics shift
where expert state distributions are no longer reliable. Con-
sidering a three dimensional state space including agent row,
agent column, and a 0-1 variable indicating whether there is
an accessible lava block within one step reach of the agent.
The agent starts from the blue grid and targets at the green
grid with positive reward. It also receives a small negative
reward on each step. The red grid stands for the dangerous
lava area which ends the trajectory on agent entering. One
lava block is fixed at Row 1, while the other may appear at
Row 2, 3, 4, and 5. Fig. 1 demonstrates two examples where

Figure 1. Lava world example with dynamics shift.

the movable lava block is at Row 2 and Row 4. Taking state
(1,3,0) as an example, the same action of “moving down”
gives rise to different next state distributions due to distinct
lava positions, leading to environment dynamics shift.

The state trajectories of the optimal policies on two example
lava environments are plotted with black lines. The optimal
state distributions are different under distinct environment
dynamics. For example, state (3,3,0) has non-zero probabil-
ity under d∗(s) in Fig. 1 (above), but cannot be visited by the
optimal policy in Fig. 1 (bottom). Existing state-only policy
transfer algorithms will therefore not be suitable for such
seemingly simple task, as demonstrated by the empirical
results in Appendix C.2. The main cause of this distribution
difference is the break of accessibility. State (4,2) is accessi-
ble from (3,2) in Fig. 1 (lower), but is inaccessible in Fig. 1
(upper). The inaccessible states will certainly have zero
visitation probability and make the optimal state distribution
different. Such break of accessibility can also happen in
various real-world tasks, as discussed in Appendix B.

3.2. F-distance Regularized Policy Optimization with
Accessible State Distribution

Motivated by examples in Sec. 3.1, we propose to ignore
inaccessible states and focus on states that are accessible
under all possible dynamics. We term the latter as globally
accessible states with the following formal definition.

Definition 3.1 (Globally Accessible States). In an HiP-
MDP (S,A,Θ, T, r, γ, ρ0), a state s ∈ S is called an glob-
ally accessible state if for all θ ∈ Θ, there exist a policy
π, such that dπTθ

(s) > 0. S+ ⊆ S is denoted as the set of
globally accessible states. The accessible state distribution
of policy π under dynamics T is defined as dπ,+T (s) =
(1 − γ)

∑∞
t=0 γ

tp (st = s, st ∈ S+|π, T ) /Z(π), where
Z(π) =

∑∞
t=0 γ

tp (st ∈ S+|π, T ) is the normalizing term.

In the lava world example in Fig. 1, the intersection of
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optimal state trajectories and globally accessible states is
marked with yellow stars. These states are more likely
to be visited by the expert policies across both dynamics,
effectively filtering out misleading states that are optimal
in one dynamics and suboptimal in others. Consequently,
expert state distributions can be safely imitated on globally
accessible states under dynamics shifts.

Meanwhile, IL relies on access to expert trajectories, limit-
ing its applicability in broader scenarios. In a more general
RL setting, where the dataset consists of trajectories with
mixed policy performance and reward labels, policy opti-
mization to maximize environment reward is often more
preferable. To simultaneously leverage the expert state dis-
tribution, we propose to regularize the training policy to
generate a stationary state distribution that closely aligns
with the expert accessible state distribution d∗,+T (s). The
regularization is exerted with an upper-bound constraint on
the F-distance.

Definition 3.2 (F-distance, Definition 2 in (Arora et al.,
2017)). Let F be a class of functions from Rd to [0, 1] such
that if f ∈ F , 1 − f ∈ F . Let ϕ be a concave measuring
function. Then the F -divergence with respect to ϕ between
two distributions µ and ν is defined as

dF,ϕ(µ, ν) = sup
ω∈F

E
x∼µ

[ϕ(ω(x))]+ E
x∼ν

[ϕ(1−ω(x))]−C(ϕ),

where C(ϕ) is irrelevant to F , µ, and ν.

The resulting regularized policy optimization problem is
formulated as follows:

max
π

Eθ,τπ

∞∑
t=0

γtr (st, at, st+1)

s.t. max
T

dF,ϕ

(
dπT (·), d

∗,+
T0

(·)
)
< ε,

(1)

where T0 is an arbitrary environment dynamics. In the fol-
lowing, we will demonstrate the effectiveness of this policy
regularization framework both theoretically and empirically.

3.3. Infinite Sample Analysis with JS Divergence
Instantiation

In Sec. 3.3 and Sec. 3.4, we conduct theoretical analysis on
how the policy regularization method in Eq. (1) influences
policy performance under dynamics shift. We start with
the definition of M -Rs accessible MDPs, which formally
characterizes the required accessibility property of MDPs so
that expert state distributions can be imitated in a dynamics-
agnostic approach.

Definition 3.3. Consider MDPs M1 = (S,A, T1, r, γ, ρ0)
and M2 = (S,A, T2, r, γ, ρ0). If for all transi-
tions (s, a, s′) with T1(s

′|a, s) > 0, there exists states
s0, s1, · · · , sN and actions a0, a1, · · · , aN−1 such that

N ⩽ M , s0 = s, sN = s′,
∏N

n=1 T2(sn|sn−1, an−1) > 0,
and∣∣∣∣∣
N−1∑
n=1

γn−1r(sn, an, sn+1) + (1− γN−1)V ∗
T1
(s0)

∣∣∣∣∣ ⩽ Rs,

M2 is referred to as M -Rs accessible from M1.

In this definition, M is the number of extra steps required
in M2 to reach the state s′ from s, compared with in M1.
Rs constrains the reward discrepancy in these extra steps.
One special case is when M2 and M1 are 1-0 accessible
from each other, all states between (s, s′) will have the
same state accessibility. It is identical to the property of
“homomorphous MDPs” (Xue et al., 2023a), based on which
a theorem about identical optimal state distribution can be
proved. Most of the previous approaches in IfO is built upon
such assumption of 1-0-accessible MDPs, which is an over-
simplification in many tasks. For example, the Minigrid
environment in Sec. 3.1 contains 3-0.03 accessible MDPs.
Instead, our derivations are based on the milder assumption
on M -Rs accessible MDPs that fits for a broader range of
practical scenarios.

We first consider the case where policy regularization is
performed with infinite samples, so that the constraint on
F-distance is followed during both training and validation.
We utilize JS divergence with the following instantiation of
the F-distance.
Proposition 3.4. When ϕ(t) = log(t) and F = {all func-
tions from Rd to [0, 1]}, dF,ϕ is the JS divergence.

We show that the learning policy π̂ will have a performance
lower-bound given a bounded JS-divergence with the opti-
mal accessible state distribution.
Theorem 3.5. Consider the HiP-MDP (S,A,Θ, T, r, γ, ρ0)
with its MDPs M -Rs accessible from each other. For all
policy π̂, if there exists one certain dynamics T0 such that
max
θ∈Θ

DJS(d
π̂
Tθ
(·)∥d∗,+T0

(·)) ⩽ ε, we have

η(π̂) ⩾ max
θ

η(π∗
Tθ
)− 2Rs + 6λ+ 2Rmaxε

1− γ
. (2)

Previous approaches (Xu et al., 2023; Janner et al., 2019;
Xue et al., 2023b) also provide policy performance lower-
bounds, but these bounds have quadratic dependencies on
the effective planning horizon 1

1−γ . By accessible state-
based policy regularization, we obtain a tighter discrepancy
bound with linear dependency on the effective horizon.

3.4. Finite Sample Analysis with Network Distance
Instantiation

In this subsection, we derive a performance lower-bound of
π̂ if it is regularized with finite samples from the optimal ac-
cessible state distribution. Due to the limited generalization
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ability of JS distance (Xu et al., 2020), we characterize the
regularization error in Eq. (1) with the network distance.

Proposition 3.6 (Neural network distance (Arora et al.,
2017)). When ϕ(t) = t and F is the set of neural net-
works, F-distance is the network distance: dF (µ, ν) =
supF∈F {Es∼µ[F (s)]− Es∼ν [F (s)]} .

Given m samples and the network distance bounded by εF ,
we analyze the generalization ability of the policy regular-
ization in Eq. (1) with the following theorem.

Theorem 3.7. Consider the HiP-MDP (S,A,Θ, T, r, γ, ρ0)
with its MDPs M -Rs accessible from each other. Given
{s(i)}mi=1 sampled from d+,∗

T0
, for policy π̂ regularized by

d̂+,∗
T0

with the constraint max
θ∈Θ

dF (d̂
π̂
Tθ
, d̂+,∗

T0
) < εF , we

have2

η(π̂) ⩾ max
θ

η(π∗
Tθ
)− 2Rs + 8λ

1− γ
−O(

1/
√
m+ εF
1− γ

)

(3)
with probability at least 1− δ, where d̂π̂T and d̂+,∗

T0
are the

empirical version of distributions dπ̂T and d+,∗
T0

on {s(i)}mi=1.

Thm. 3.7 shows that with finite samples, the policy regular-
ization still leads to a tight performance lower-bound with
linear horizon dependency. The lower-bound is stronger
than the sample complexity analysis of Behavior Cloning
with quadratic horizon dependency (Xu et al., 2020) and
has the same horizon dependency with GAIL (Ho & Ermon,
2016).

3.5. Practical Algorithm with GAN-like Objective
Function

In this subsection, we design practical algorithms to solve
the policy regularization problem in Eq. (1). The first chal-
lenge is to estimate the value of a certain instantiation of the
F-distance. With the following proposition, we manage to
do so with a GAN-like optimization process.

Proposition 3.8. When F is a set of neural networks and
ϕ(t) = log t, the F -distance dF,ϕ(µ, ν) is equivalent to the
discriminator’s objective function in a GAN (Goodfellow
et al., 2014), where µ is the real data distribution D̂real and
ν is the generated data distribution D̂G.

According to the proposition, dF,ϕ

(
dπT (·), d

∗,+
T0

(·)
)

in
Eq. (1) can be obtained by training a GAN discriminator to
classify two datasets, one sampled from dπT (·) and the other
sampled from d∗,+T0

(·). While dπT (·) can be related to data
newly collected in the replay buffer (Liu et al., 2021; Sinha
et al., 2022), sampling from d∗,+T0

(·) is still challenging. We
introduce the binary observation state Ot with Ot = 1 de-
noting st is the optimal state at timestep t (Levine, 2018).

2The O notation omits constants irrelevant to m, εF , and γ.
The full version is in Thm. A.4.

Algorithm 1 The workflow of ASOR on top of ESCP (Luo
et al., 2022).

1: Input: Training MDPs {M0, · · · ,Mn−1}; Context
encoder ϕ; Policy network π; Value network V ; Dis-
criminator Network ω; Rollout horizon H; State parti-
tion ratio ρ1, ρ2; Regularization coefficient λ; Replay
Buffer R.

2: for step = 0, 1, 2, . . . do
3: Sample MDP Mi from {M0,M1, · · · ,Mn−1}.
4: for t = 1, 2, . . . ,H do
5: Sample zt from ϕ (z | st, at−1, zt−1) and then

sample at from π (a | st, zt), as in ESCP.
6: Rollout and get transition data

(st+1, rt, dt+1, st, at, zt) from Mi; Add the
data to the replay buffer R.

7: Sample a batch Dbatch; Add ρ1ρ2|Dbatch| states with
top ρ1 portion of high values and ρ2 portion of high
proxy visitation counts to DP ; Add other states to
DQ.

8: Train ω as a GAN discriminator, regarding DP as
the real dataset and DQ as the generated dataset.

9: For one-step transition in Dbatch, update rt with rt +
λ logω(st).

10: Use the updated Dbatch to update ϕ, π, and V .

d∗,+T0
(st) can therefore be written as dπ,+T0

(s|O0:∞), which
is the distribution of the states generated by a certain π,
given these states are optimal. With the Bayes’ rule, we
have

d∗,+T0
(s)

dπT (s)
=

dπ,+T0
(s|O0:∞)

dπT (s)

=
p(O0:∞|s, π, T0)d

π,+
T0

(s)

p(O0:∞|π, T0)
· 1

dπT (s)

=
p(O0:∞|s, π, T0)d

π
T (s)

p(O0:∞|π, T0)
· 1

dπT (s)
·
dπ,+T0

(s)

dπT (s)

=
d∗T0

(s)

dπT (s)
·
dπ,+T0

(s)

dπT (s)
, (4)

where the last equation is also obtained with the Bayes’ rule.
According to Xue et al. (2023a), state s will be more likely
to be sampled from d∗T0

(·) than from dπT (·) if it has a higher
state value V (s) than average. Meanwhile, dπ,+T0

(s) will be
higher if s falls in the set of globally accessible states S+

and is most likely to be visited by various policies under dy-
namics shift. Therefore, any of the pseudo-count approaches
of visitation frequency can be used to measure whether s
is more likely to be sampled from dπ,+T0

(s). In simulated
environments with small observation spaces (Sec. 4.1 and
4.2), disagreement in next state predictions of ensembled
environment models has shown to be a good proxy of visita-
tion frequency (Yu et al., 2020). In large-scale real-world
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tasks (Sec. 4.3), next state predictions can be unreliable, so
we adopt Random Network Distillation (RND) (Burda et al.,
2019) and use the error of predicting a random mapping as
the proxy visitation measure.

With the trained discriminator ω∗(x) in the F-distance,
Eq. (1) can be transformed into an unconstrained optimiza-
tion problem with the following Lagrangian to maximize3:

Eθ,π,Tθ

[ ∞∑
t=0

γt (r (st, at, st+1) + λ logω∗(st))

]
+

λε

1− γ
,

(5)
where λ > 0 is the Lagrangian Multiplier. The only dif-
ference between Eq. (5) and the standard RL objective is
that logω∗(st) is augmented to the environment reward
r(st, at, st+1). Therefore, the proposed approach can work
as an add-on module to a wide range of RL algorithms with
reward augmentation.

Summarizing previous derivations, we obtain a practical re-
ward augmentation algorithm termed as ASOR (Accessible
State Oriented Regularization) for policy optimization un-
der dynamics shift. We select the ESCP (Luo et al., 2022)
algorithm, which is one of the SOTA algorithms in online
cross-dynamics policy training, as the example base algo-
rithm. The detailed procedure of ESCP+ASOR is shown
in Alg. 1. After the environment rollout and obtaining the
replay buffer (line 6), we sample a batch of data from the
buffer, obtain a portion of ρ1ρ2 states with higher values
and proxy visitation counts, and add them to the dataset
DP . Other states are added to DQ. Then a discriminator
network ω is trained (line 8) to estimate the logarithm of the
optimal discriminator output λ logω∗(s), which is added
to the reward rt (line 9). The effects of hyperparameters
ρ1, ρ2, and λ are investigated in Sec. 4.1. The procedure of
the offline algorithm MAPLE (Lee et al., 2020)+ASOR is
similar to ESCP+ASOR, where the datasets are built with
data from the offline dataset rather than the replay buffer.

4. Experiments
In this section, we conduct experiments to investigate the fol-
lowing questions: (1) Can ASOR efficiently learn from data
with dynamics shift and outperform current state-of-the-art
algorithms? (2) Is ASOR general enough when applied to
different styles of training environments, various sources
of environment dynamics shift, and when combined with
distinct algorithm setup? (3) How does each component
of ASOR (e.g., the reward augmentation and the pseudo-
count of state visitations) and its hyperparameters perform
in practice? To answer questions (1)(2), we construct cross-
dynamics training environments based on tasks including
Minigrid (Chevalier-Boisvert et al., 2023)4, D4RL (Fu et al.,

3The derivations are in Appendix A.1.
4We leave the results in Appendix C.2.

2020), MuJoCo (Todorov et al., 2012), and a Fall Guys-like
Battle Royal Game. Dynamics shift in these environments
comes from changes in navigation maps, evolvements of
environment parameters, and different layouts of obstacles.
To train RL policies in these environments, ASOR is im-
plemented on top of algorithms including PPO (Schulman
et al., 2017), MAPLE (Chen et al., 2021), and ESCP (Luo
et al., 2022), which are all state-of-the-art approaches in the
corresponding field. To answer question (3), we visualize
how the learned discriminator and the pseudo state count
behave in different environments. Moreover, ablation stud-
ies are conducted to examine the role of the discriminator
and the influence of hyperparameters. Detailed descriptions
of baseline algorithms are in Appendix C.1.

4.1. Results in Offline RL Benchmarks

For offline RL benchmarks, we collect the static dataset
from environments with three different environment dynam-
ics in the format of D4RL (Fu et al., 2020). Specifically,
data from the original MuJoCo environments, environments
with 3 times larger body mass, and environments with 10
times higher medium density are included. For baseline
algorithms, we inlude IfO algorithms BCO (Torabi et al.,
2018a) and SOIL (Radosavovic et al., 2021), standard offline
RL algorithms CQL (Kumar et al., 2020) and MOPO (Yu
et al., 2020), offline cross-domain policy transfer algorithms
MAPLE (Chen et al., 2021), MAPLE+DARA (Liu et al.,
2022), and MAPLE+SRPO (Xue et al., 2023a).

The comparative results are exhibited in Tab. 1. IfO ap-
proaches have the worst performance because they ignore
the reward information (BCO) or cannot safely exploit
the offline dataset (SOIL). Without the ability of cross-
domain policy learning, CQL and MOPO cannot learn
from data with dynamics shift and show inferior perfor-
mances. Cross-domain policy transfer algorithms MAPLE,
MAPLE+DARA, and MAPLE+SRPO show reasonable per-
formance enhancement, while our MAPLE+ASOR algo-
rithm leads to the highest performance. This highlights the
effectiveness of policy regularization on accessible states.
We discuss the conceptual advantages of ASOR compared
with DARA and SRPO in Appendix A.4.

The results of ablation studies are shown in Tab. 2. They
show that a larger value of reward augmentation coefficient
λ can give rise to performance increase. Meanwhile, using
fixed values of λ, ρ1 and ρ2 will not lead to a large drop
of performance scores, so ASOR is robust to hyperparam-
eter changes. ASOR’s will have degraded performance if
training datasets DP and DQ are improperly constructed,
e.g., with random data partition, or without considering state
values and visitation counts, i.e., with fixed ρ1 = 0 or fixed
ρ2 = 0.
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Table 1. Results of offline experiments on MuJoCo tasks. Numbers before ± are scores normalized according to D4RL (Fu et al., 2020)
and averaged across trials with four different seeds. Numbers after ± are normalized standard deviations. ME, M, MR and R correspond
to the medium-expert, expert, medium-replay and random dataset, respectively.

BCO SOIL CQL MOPO MAPLE MAPLE
+DARA

MAPLE
+SRPO

MAPLE
+ASOR

Walker2d-ME 0.25±0.04 0.14±0.08 0.63±0.13 0.06±0.05 0.14±0.08 0.31±0.02 0.22±0.07 0.29±0.12
Walker2d-M 0.17±0.07 0.16±0.01 0.75±0.02 0.15±0.22 0.41±0.19 0.46±0.10 0.32±0.17 0.49±0.04
Walker2d-MR 0.01±0.00 0.04±0.01 0.06±0.00 -0.00±0.00 0.13±0.01 0.12±0.00 0.13±0.01 0.14±0.01
Walker2d-R 0.00±0.00 0.00±0.00 0.00±0.00 -0.00±0.00 0.22±0.00 0.16±0.01 0.22±0.00 0.22±0.00
Hopper-ME 0.08±0.02 0.01±0.00 0.20±0.07 0.01±0.00 0.45±0.07 0.49±0.01 0.43±0.06 0.51±0.06
Hopper-M 0.00±0.00 0.08±0.00 0.29±0.06 0.01±0.00 0.38±0.09 0.26±0.02 0.48±0.04 0.71±0.14
Hopper-MR 0.00±0.00 0.00±0.00 0.08±0.00 0.01±0.01 0.55±0.17 0.75±0.10 0.73±0.16 0.76±0.08
Hopper-R 0.00±0.00 0.00±0.00 0.10±0.00 0.01±0.00 0.12±0.00 0.12±0.00 0.25±0.08 0.32±0.00
HalfCheetah-ME 0.43±0.00 0.00±0.00 0.03±0.04 -0.03±0.00 0.53±0.07 0.39±0.00 0.58±0.04 0.61±0.02
HalfCheetah-M 0.14±0.02 0.39±0.00 0.42±0.01 0.36±0.27 0.61±0.01 0.66±0.03 0.62±0.00 0.62±0.01
HalfCheetah-MR 0.16±0.01 0.25±0.00 0.46±0.00 -0.03±0.00 0.52±0.01 0.53±0.02 0.54±0.00 0.56±0.01
HalfCheetah-R 0.14±0.01 0.35±0.01 -0.01±0.01 -0.03±0.00 0.20±0.02 0.19±0.01 0.22±0.00 0.21±0.00

Average 0.11 0.11 0.25 0.04 0.36 0.37 0.40 0.45

Table 2. Results of ablation studies in Offline MuJoCo tasks. The scores are averaged on each environment with different expert levels.
Fixed

λ = 0.1
Fixed

λ = 0.3
Random
partition

Fixed
ρ1 = 0

Fixed
ρ2 = 0

Fixed
ρ1,ρ2 = 0.5

Fixed
ρ1,ρ2 = 0.3

MAPLE
+ASOR

Walker2d 0.22 0.25 0.26 0.22 0.29 0.30 0.26 0.28
Hopper 0.31 0.54 0.30 0.47 0.38 0.46 0.54 0.58
HalfCheetah 0.48 0.49 0.47 0.49 0.50 0.49 0.50 0.50

Average 0.34 0.43 0.34 0.40 0.39 0.42 0.43 0.45

4.2. Results in Online Continuous Control Tasks

In online continuous control tasks, we explore other dimen-
sions of dynamics shift, namely environment non-stationary
and the continuous change of environment parameters. Such
tasks are far more complicated than offline tasks with 3
different dynamics, but are within the capability of current
approaches thanks to the existence of online interactive train-
ing environments. We consider the HalfCheetah, Walker2d,
and Ant environments in the MuJoCo simulator (Todorov
et al., 2012) and the autonomous driving environment in the
MetaDrive simulator (Li et al., 2023). Sources of dynamics
change include wind, joint damping, and traffic densities.
For baselines we include the IfO algorithm GARAT (Desai
et al., 2020), standard online RL algorithm SAC (Haarnoja
et al., 2018), online cross-domain policy transfer algorithm
OSI (Yu et al., 2017), ESCP (Luo et al., 2022), CaDM (Lee
et al., 2020), and SRPO (Xue et al., 2023a).

Comparative results in online continuous control tasks are
shown in Fig. 2, where our ESCP+ASOR algorithm has
the best performance in all environments. Specifically, it
only makes marginal improvements in the HalfCheetah en-
vironment, in contrast to large enhancement in other envi-
ronments. This is because the agent will not “fall over” in
the HalfCheetah environment, and the state accessibility
will not change a lot under dynamics shift, undermining

the effect of the accessible state-based policy regularization.
We also compare in Fig. 3 (left) the augmented reward with
the environment reward on different states in Walker-2d. On
states where the agent is about to fall over, the augmented
reward drops significantly while the environment reward
does not change much, demonstrating the effectiveness of
the reward augmentation.

4.3. Results in A Large-Scale Fall Guys-Like Battle
Royal Game Environment

In the large-scale fall guys-like game environment, we focus
on highly dynamic and competitive race scenarios, char-
acterized by a myriad of ever-changing obstacles, shifting
floor layouts, and functional items. The elements within the
game exhibit both functional and attribute changes, result-
ing in dynamics shift and evolving state accessibility. As
shown in Fig. 4, the effects of trampolines (e.g., height and
orientation) vary across different maps and the agent’s inter-
action with the trampoline will therefore result in different
environment transitions depending on the specific configura-
tion. The resulting dynamics shift has high stochasticity and
cannot be effectively modelled by context encoder-based
algorithms (Luo et al., 2022; Lee et al., 2020). We train
the agent on 10 distinct maps, each presenting unique chal-
lenges and configurations. The training step is set to 6M.
Metrics except policy entropy were averaged over the final
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Figure 2. Results of online experiments on MuJoCo and MetaDrive tasks. “NS” refers to tasks with non-stationary environment dynamics.

Augmented Reward 0.29 3.11 -88.95 -336.37

Environment Reward 4.06 4.05 4.51 4.73
Figure 3. Left: Comparisons of the logarithm of the discriminator output, i.e., the augmented reward, and the environment reward on
different states in the Walker-2d environment. The augmented reward can better reflect the state optimality. Right: Curves for average
extra loss and augmented reward in the fall-guys like game environment.

(a) Vertical and low (b) Vertical and high (b) Upper left and high

Figure 4. Demonstrations of dynamics shift caused by different
trampoline effect. Colors and textures are only for visual enhance-
ment and are not part of the agent’s observations.

1M steps and the policy entropy is averaged in the initial 1M
steps. More experiment details are listed in Appendix C.3,
including additional map demonstrations, MDP setups, and
the network structure.

As demonstrated in Tab. 3, PPO+ASOR achieves the highest
scores in all five performance-related metrics. To be specific,
the high total reward, unweighed goal reward, and success
rate demonstrate the overall effectiveness of ASOR when ap-
plied to complex large-scale tasks. Low trapped rate, small
distance from cliff, and high policy entropy demonstrate
the strong exploration ability of ASOR since it is better
at getting rid of low-reward regions and has higher policy
stochasticity. The low unnecessary jump rate demonstrates
the effectiveness of policy regularization only on accessible
states. Jumping states may appear in the optimal trajectories

in maps with diverse altitudes, but are unnecessary and hin-
der the fast goal reaching in other maps. Fig. 3 (right) shows
the curve of the augmented reward and the extra loss, includ-
ing the discriminator training loss and the RND training loss.
The loss curve drops smoothly and the average augmented
reward remains stable, which means that the discriminator
network is easy to train and has stable performance.

5. Conclusion
In this paper, we focus on efficient policy optimization with
data collected under dynamics shift. We demonstrate that
despite widely utilized in IfO algorithms, the idea of similar
expert state distribution across different dynamics can be
unreliable when some states are no longer accessible as the
environment dynamics changes. We propose a policy regu-
larization method that only imitates expert state distributions
on globally accessible states. By formally characterizing the
difference of state accessibility under dynamics shift, we
show that the accessible state-based regularization approach
provides strong lower-bound performance guarantees for
efficient policy optimization. We also propose a practical
algorithm called ASOR that can serve as an add-on reward
augmentation module to existing RL approaches. Extensive
experiments across various online and offline RL bench-
marks indicate ASOR can be effectively integrated with
several state-of-the-art cross-domain policy transfer algo-
rithms, substantially enhancing their performance.
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Table 3. Experiment results in the fall guys-like game environment. Metrics with the up arrow (↑) are expected to have larger values and
vice versa. Metrics with (∼) have no specific tendencies.

Total Reward
(↑)

Goal Reward
(↑)

Success Rate
(↑)

Trapped Rate
(↓)

Unnecessary
Jump Rate (↓)

Distance from
Cliff (∼)

Policy
Entropy (∼)

PPO 0.329±0.308 1.154±0.085 0.361±0.009 0.012±0.009 0.064±0.003 0.152±0.025 5.725±0.185
PPO+SRPO 0.337±0.257 1.513±0.076 0.376±0.006 0.038±0.015 0.040±0.003 0.148±0.018 5.859±0.098
PPO+ASOR 0.554±0.336 1.781±0.053 0.387±0.005 0.005±0.005 0.029±0.003 0.143±0.021 6.358±0.122

Limitations This paper focuses on the setting of HiP-
MDP with evolving environment dynamics and a static re-
ward function. The resulting ASOR algorithm will not be
applicable to tasks with multiple reward functions. Mean-
while, the theoretical results will be weaker on some adver-
sarial HiP-MDPs with large Rs. Details will be discussed
in Appendix A.3.

Impact Statement
The ASOR approach enables better adaptation of RL mod-
els in dynamic environments, making RL applications more
resilient across diverse real-world conditions. The concept
of avoiding misleading inaccessible states may improve
the safety of autonomous agents, ensuring that they do not
make catastrophic decisions when transitioning between
environments. Therefore, ASOR’s method can enhance
cross-domain policy transfer, making RL algorithms more
efficient for applications such as robotics, industrial automa-
tion, healthcare, and finance.
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A. Additional Derivations and Proofs
A.1. Derivations of the Lagrangian

For expression convenience, we denote dπT (·) with µ(·) and d∗,+T0
(·) with ν(·). We also omit the maximization over T in

Eq. (1) as it can be obtained by following all policy constrains in different dynamics. We start from the optimization problem

max
π

Est,at,st+1∼τπ

[ ∞∑
t=0

γtr (st, at, st+1)

]
s.t. dF,ϕ (µ(·), ν(·)) < ε. (6)

The F-distance term can be transformed as:

dF,ϕ (µ(·), ν(·)) = Es∼µ[logω
∗(s)] + Es∼ν [log(1− ω∗(s))]

=

∫
µ(s) logω∗(s)ds+

∫
ν(s) log(1− ω∗(s))ds

=

∫
(1− γ)

∞∑
t=0

γtp(st = s|π, T ) logω∗(s)ds

+

∫
(1− γ)

∞∑
t=0

γtp(st = s, st ∈ S+|π∗, T0) log(1− ω∗(s))ds

= (1− γ)

∞∑
t=0

γt [Est∼τπ logω∗(st) + Est∼τ∗,+ log(1− ω∗(st))]

(7)

where ω∗ is the trained discriminator. So the optimization problem can be written as the following standard form

min
π

Est,at,st+1∼τπ

∞∑
t=0

−γtr (st, at, st+1)

s.t. − (1− γ)

∞∑
t=0

γt [Est∼τπ logω∗(st) + Est∼τ∗,+ log(1− ω∗(st))]−
ε

1− γ
< 0.

(8)

Neglecting items irrelevant to π, we get the Lagrangian L as

L = −Est,at,st+1∼τπ

[ ∞∑
t=0

γt (r(st, at, st+1) + λ logω∗(st))

]
− λε

1− γ
. (9)

A.2. Proofs of Theorems

Lemma A.1 (Value Discrepancy). Considering MDPs M1 = (S,A, T1, r, γ, ρ0) and M2 = (S,A, T2, r, γ, ρ0) which are
M -Rs accessible from each other, for all s ∈ S we have

|V ∗
T1
(s)− V ∗

T2
(s)| ⩽ Rs + 2λ

1− γ
, (10)

where λ is the action coefficient in the reward function. Detailed definition are in Sec. 2.1.

Proof. Without the loss of generality, we consider the state s with V ∗
T1
(s) ⩾ V ∗

T2
(s). Under the optimal policy π∗

1(s), the
next state of s in M1 will be s′ = T (s, a∗). As M2 is M -Rs accessible from M1, there exists N ⩽ M such that in
M2, s′ can be reached from s with action sequence a1, a2, · · · , aN . We then borrow the idea of iteratively computing
|V ∗

T1
(s)− V ∗

T2
(s)| from Xue et al. (Xue et al., 2023a). According to the optimistic Bellman equation

V ∗
T (s) = max

a
r(s, a, s′) + γV ∗

T (T (s, a)), (11)
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we have ∣∣V ∗
T1
(s)− V ∗

T2
(s)
∣∣

= V ∗
T1
(s)− V ∗

T2
(s)

⩽ r(s, a∗, s′) + γV ∗
T1
(s′)−

N−1∑
i=0

γir(si, ai, si+1)− γNV ∗
T2
(s′)

(s0
.
= s, sN

.
= s′ for brevity)

= r(s, a∗, s′)− γN−1r(sN−1, aN−1, s
′) + γ(1− γN−1)V ∗

T2
(s′)

+

N−2∑
n=0

γnr(sn, an, sn+1) + γ[V ∗
T1
(s′)− V ∗

T2
(s′)]

⩽ (1− γN−1)(r(s, a∗, s′) + γV ∗
T2
(s′)) + 2λ+

N−2∑
n=0

γnr(sn, an, sn+1) + γ[V ∗
T1
(s′)− V ∗

T2
(s′)]

⩽ (1− γN−1)(r(s, a∗, s′) + γV ∗
T1
(s′)) + 2λ+

N−2∑
n=0

γnr(sn, an, sn+1) + γ[V ∗
T1
(s′)− V ∗

T2
(s′)]

⩽ Rs + 2λ+ γ[V ∗
T1
(s′)− V ∗

T2
(s′)].

(12)

Iteratively computing
∣∣V ∗

T1
(s)− V ∗

T2
(s)
∣∣, we have

∣∣V ∗
T1
(s′)− V ∗

T2
(s′)
∣∣ ⩽ Rs + 2λ

1− γ
. (13)

Theorem A.2 (Thm. 3.5 in the main paper.). Consider the MDP M1 = (S,A, T1, r, γ, ρ0) which is M -Rs acces-
sible from the MDP M2 = (S,A, T2, r, γ, ρ0). For all policy π̂, if there exists one certain dynamics T0 such that
max
T

DJS(d
π̂
T (·)∥d

∗,+
T0

(·)) ⩽ ε, we have

η(π̂) ⩾ max
T

η(π∗
T )−

2Rs + 6λ+ 2Rmaxε

1− γ
. (14)

Proof. |ηT1
(π∗

T1
)− ηT2

(π∗
T2
)| can be bounded with Thm. A.1:

|ηT1
(π∗

T1
)− ηT2

(π∗
T2
)| =

∣∣Es∈ρ0
V ∗
T1
(s)− Es∈ρ0

V ∗
T2
(s)
∣∣ ⩽ Rs + 2λ

1− γ
. (15)

With a slight abuse of notation, we define the transition distribution dπT (s, a, s
′) = dπT (s)π(a|s)T (s′|s, a) and the accessible-

state transition distribution dπ,+T2
(s, a, s′) = dπ,+T (s)π̂(a|s)T (s′|s, a). Consider π̃ such that dπ̃T (s) = d∗,+T0

(s) for all s ∈ S.
The accumulated return of policy π̃ under transition T1 can be written as ηT1

(π̂) = (1 − γ)−1Es,a,s′∼dπ̃
T1

[r(s, a, s′)].
We also consider the accumulated return of the optimal policy under transition T2 including only accessible states:
η+T2

(π∗,+
T2

) = (1 − γ)−1Es,a,s′∼d∗,+
T2

[r(s, a, s′)], where π∗,+
T2

is the optimal policy making transitions among accessible
states. Consider the Lipschitz property of the reward function:

|r(s, a1, s′)− r(s, a2, s
′)| ⩽ λ∥a1 − a2∥1. (16)

Taking expectation w.r.t. dπ̃T1
(·) on both sides, we get

Es∼dπ̃
T1
|r(s, a1, s′)− r(s, a2, s

′)| ⩽ Es∼dπ̃
T1
λ∥a1 − a2∥1. (17)

Letting µ(A1, A2|s) be any joint distribution with marginals π̂ and π∗,+
T2

conditioned on s ∈ S+. Taking expectation w.r.t. µ
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on both sides, we get∣∣∣Edπ̂
T1

r(s, a, s′)− Ed∗,+
T2

r(s, a, s′)
∣∣∣ ⩽ Es∼d∗

T ′Ea1,a2∼µ|r(s, a1, s′)− r(s, a2, s
′)|

⩽ λEs∼dπ̂
T1

Eµ∥a1 − a2∥1

⩽ max
s

λEµ∥a1 − a2∥1

⩽ 2λ

(18)

According to the definitions of ηT1
(π̃) and η+T2

(π+,∗
T2

), the L.H.S. of Eq. (18) is exactly the difference of the two accumulated
returns. Therefore, we get ∣∣ηT1(π̃)− η+T2

(π∗,+
T2

)
∣∣ ⩽ 2λ

1− γ
. (19)

Then we will compute the discrepancy between η+T2
and ηT2

. ηT2
can be computed with

ηT2(π
∗
T2
) = Es∼ρ0V

π∗
T2

T2
(s)

= Eτ

N−1∑
n=0

γnr(sn, an, sn+1) + γNV
π∗
T2

T2
(sN ),

(20)

where sN is the accessible state accessible from s0 with π∗,+
T2

. According to the definition of M -Rs accessible MDPs,

ηT2
(π∗

T2
) = Eτ

N−1∑
n=0

γnrn + γNV
π∗
T2

T2
(sN )−Rs +Rs

⩽ Eτ

N−1∑
n=0

γnrn −
N−2∑
n=0

γnrn − (γN−1 − 1)r(s0, π
+,∗
T2

(s0), sN )

+ γNV
π∗
T2

T2
(sN )− (γN − γ)V

π+,∗
T2

T2
(sN ) +Rs

⩽ Eτr(s0, π
+,∗
T2

(s0), sN ) + γV
π+,∗
T2

T2
(sN ) + γN (V

π∗
T2

T2
(sN )− V

π+,∗
T2

T2
(sN )) +Rs + 2λ

= η+T2
(π+,∗

T2
) + γN (V

π∗
T2

T2
(sN )− V

π+,∗
T2

T2
(sN )) +Rs + 2λ,

(21)

where rn is the short for r(sn, an, sn+1). Iteratively scaling the value discrepancy between π∗
T2

and π+,∗
T2

, we get∣∣ηT2(π
∗
T2
)− η+T2

(π+,∗
T2

)
∣∣ ⩽ Rs + 2λ

1− γM
⩽

Rs + 2λ

1− γ
. (22)

According to results in imitation learning (Lem. 6 in (Xu et al., 2020)), we have

|ηT1
(π̃)− ηT1

(π̂)| ⩽ 2Rmaxε

1− γ
(23)

Combining Eq. (15)(19)(21)(23), we have∣∣ηT1
(π̃)− ηT1

(π∗
T1
)
∣∣ ⩽ |ηT1

(π̂)− ηT1
(π̃)|+

∣∣ηT1
(π̃)− η+T2

(π+,∗
T2

)
∣∣

+
∣∣η+T2

(π+,∗
T2

)− ηT2
(π∗

T2
)
∣∣+ ∣∣ηT2

(π∗
T2
)− ηT1

(π∗
T1
)
∣∣

⩽
2Rs + 6λ+ 2Rmaxε

1− γ
.

(24)

Taking expectation with respect to all T in the HiP-MDP concludes the proof.

Lemma A.3 (Lemma 2 in Xu et. al (Xu et al., 2020)). Consider a network class set P with ∆-bounded value functions,
i.e., |P (s)| ≤ ∆, for all s ∈ S, P ∈ P . Given an expert policy πE and an imitated policy πI with dP

(
d̂πE , d̂π1

)
−

infπ∈Π dP

(
d̂πE , d̂π

)
≤ εP , then ∀δ ∈ (0, 1), with probability at least 1− δ, we have

dP (dπE , dπI) ≤ inf
π∈Π

dP

(
d̂πE , d̂π

)
+ 2R̂(m)

dπE (P) + 2R̂(m)
dπI (P) + 12∆

√
log(2/δ)

m
+ εP . (25)
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Proof. See Appendix B.3 of (Xu et al., 2020).

Theorem A.4. Consider the MDP M1 = (S,A, T1, r, γ, ρ0) which is M -Rs accessible from the MDP M2 =
(S,A, T2, r, γ, ρ0) and the network set P bounded by ∆, i.e., |P (s)| ⩽ ∆. Given {s(i)}mi=1 sampled from d+,∗

T2
, if

π+,∗
T2

∈ P and the reward function rπ̂,T1(s) = Ea∼π̂,s′∼T1r(s, a, s
′) lies in the linear span of P , for policy π̂ regularized by

d̂+,∗
T2

according to Eq. (1) with dP(d̂
π̂
T1
, d̂+,∗

T2
) < εP , we have

ηT1(π̂) ⩾ ηT1(π
∗
T1
)− 2Rs + 8λ

1− γ
− 2∥r∥P

1− γ

(
R̂(m)

d+,∗
T2

(P) + R̂(m)

dπ̂
T1

(P) + 6∆

√
log(2/δ)

m
+

ε

2

)
(26)

with probability at least 1− δ.

Proof. As M1 is M -Rs accessible accessible from M2, there exists policy π̃ such that dπ̃T1
(s) = d∗,+T2

(s) for all s ∈ S+.
With Thm. A.2, we have

ηT1(π̃) ⩾ ηT1(π
∗
T1
)− 2Rs + 6λ

1− γ
(27)

Then we compute the performance discrepancy ηT1(π̂)− ηT1(π̃) given that dP(d̂π̂T1
, d̂π̃T1

) < εP . The following derivations
borrow the main idea from Xu et al. (Xu et al., 2020) and turn the state-action occupancy measure ρ into the state-only
occupancy measure d. We start with the network distance of the ground truth state occupancy measures. According to
Lem. A.3, we have

dP(d
π̂
T1
, dπ̃T1

) ⩽ 2R̂(m)

d+,∗
T2

(P) + 2R̂(m)

dπ̂
T1

(P) + 12∆

√
log(2/δ)

m
+ εP (28)

with probability at least 1− δ. Meanwhile,

|ηT1(π̂)− ηT1(π̃)|

⩽
1

1− γ

∣∣∣∣Es∼dπ̂
T1

[rπ̂,T1
(s)]− Es∼dπ̃

T1
[rπ̃,T1

(s)]

∣∣∣∣
⩽

1

1− γ

∣∣∣∣Es∼dπ̂
T1

[rπ̂,T1
(s)]− Es∼dπ̃

T1
[rπ̂,T1

(s)]

∣∣∣∣+ 1

1− γ

∣∣∣∣Es∼dπ̃
T1

[rπ̂,T1
(s)]− Es∼dπ̃

T1
[rπ̃,T1

(s)]

∣∣∣∣
⩽

1

1− γ

∣∣∣∣Es∼dπ̂
T1

[rπ̂,T1(s)]− Es∼dπ̃
T1

[rπ̂,T1(s)]

∣∣∣∣+ 2λ

1− γ
.

(29)

As we assume that the reward function rπ̂,T1
(s) lies in the linear span of P , there exists n ∈ N, {ci ∈ R}ni=1 and

{Pi ∈ P}ni=1, such that r = c0 +
∑n

i=1 ciPi. So we obtain that

|ηT1(π̂)− ηT1(π̃)| ⩽
1

1− γ

∣∣∣∣Es∼dπ̂
T1

[rπ̂,T1
(s)]− Es∼dπ̃

T1
[rπ̂,T1

(s)]

∣∣∣∣+ 2λ

1− γ

⩽
1

1− γ

∣∣∣∣∣
n∑

i=1

ciEs∼dπ̂
T1

[Pi(s, a)]−
n∑

i=1

ciEs∼dπ̃
T1

[Pi(s, a)]

∣∣∣∣∣+ 2λ

1− γ

⩽
1

1− γ

n∑
i=1

|ci|
∣∣∣Es∼dπ̂

T1

[Pi(s, a)]− Es∼dπ̃
T1

[Pi(s, a)]
∣∣∣+ 2λ

1− γ

⩽
1

1− γ

(
n∑

i=1

|ci|

)
dP
(
dπ̂T1

, dπ̃T1

)
+

2λ

1− γ

⩽
1

1− γ
∥r∥PdP

(
dπ̂T1

, dπ̃T1

)
+

2λ

1− γ
.

(30)

Combining Eq. (28) and Eq. (30), we have

ηT1(π̂) ⩾ ηT1(π̃)−
2∥r∥P
1− γ

(
R̂(m)

d+,∗
T2

(P) + R̂(m)

dπ̂
T1

(P) + 6∆

√
log(2/δ)

m
+

ε

2

)
+

2λ

1− γ
(31)
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Table 4. Comparison between the Lipschitz coefficient λ and the maximum reward Rmax in practical environments.

Environment Action-related Reward λ Rmax

CartPole-v0 0 0 1.00
InvertedPendulum-v2 0 0 1.00
Lava World 0 0 1.00
MetaDrive 0 0 ⩾ 1
Fall-guys Like Game 0 0 ⩾ 1

Swimmer-v2 −0.0001∥a∥22 0.0001 0.36
HalfCheetah-v2 −0.1∥a∥22 0.1 4.80
Hopper-v2 −0.001∥a∥22 0.001 3.80
Walker2d-v2 −0.001∥a∥22 0.001 ⩾ 4
Ant-v2 −0.5∥a∥22 0.5 6.00
Humanoid-v2 −0.1∥a∥22 0.1 ⩾ 8

with probability at least 1− δ. Combining Eq. (31) and Eq. (27), we have

ηT1
(π̂) ⩾ ηT1

(π∗
T1
)− 2Rs + 8λ

1− γ
− 2∥r∥P

1− γ

(
R̂(m)

d+,∗
T2

(P) + R̂(m)

dπ̂
T1

(P) + 6∆

√
log(2/δ)

m
+

ε

2

)
(32)

with probability at least 1− δ. Taking expectation with respect to all T in the HiP-MDP concludes the proof.

A.3. Discussions on the Theorems

Lipschitz Assumption The Lipschitz assumption in Sec. 2.1 requires that if s and s′ keep unchanged, the deviation of the
reward r will not be larger than λ times the deviation of the action a:

|r(s, a1, s′)− r(s, a2, s
′)| ⩽ λ∥a1 − a2∥1. (33)

Therefore, the Lipschitz coefficient λ is only depends action-related terms in the reward function. In Tab. 4, we list the
action-related terms of the reward functions for various RL evaluation environments, along with the corresponding values
of λ derived from these terms. As indicated in the table, the action-related terms in reward functions exhibit reasonably
small coefficients in all environments compared with the maximum environment reward Rmax. Therefore, the Lipschitz
coefficient λ will not dominate the error term in Thm. 3.5 and Thm. 3.7.

Failure Cases Apart from the Lipschitz assumptions that can easily be realized, Thm. 3.5 and Thm. 3.7 depend on
the formulation of M -Rs accessible MDPs. Potential failure cases will therefore include tasks with high Rs, so that the
performance lower bounds become weak. This will happen if states with lowest rewards exist in the optimal trajectory of
some, and not all dynamics. In the example of lava world in Fig. 1, if a reward of -100 is assigned to grid (3,4), Rs will be
as large as 100, leading to a weak performance lower bound when the bottom lava block is at Row 2 with a best episode
return of 1. Nevertheless, issues with theoretical analyses will not negatively influence the practical performance of ASOR.

A.4. Comparisons with Previous Approaches

Intuitively, the practical algorithm procedure of ASOR share some insights with some offline RL algorithms including
AWAC (Nachum et al., 2019), CQL (Kumar et al., 2020) and MOPO (Yu et al., 2020). For example, ASOR prefers states
with high values similar to AWAC and states with high visitation counts similar to CQL and MOPO. The advances of
ASOR include: 1) By restricting the considered states to accessible states, ASOR can be applied in offline datasets collected
under dynamics shift, where the aforementioned offline RL algorithms can only learn from the dataset with static dynamics.
Thm. 3.5 and Thm. 3.7 demonstrate the effectiveness of such procedure. 2) ASOR modifies the original policy optimization
process by reward augmentation. This enables the easy combination of ASOR with other cross-domain algorithms to
enhance their performance.

ASOR also share the approach of classifier-based reward augmentation with DARA (Liu et al., 2022) and SRPO (Xue et al.,
2023a). The classifier input in DARA is (s, a, s′) from the source and target environments. Compared with ASOR, the
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Figure 5. MetaDrive environments with different traffic densities.

classifier in DARA exhibits higher complexity and is harder to train. It also requires the access to the information of target
environments. Therefore, DARA has poor performance as demonstrated in Sec. 4.1 and cannot be applied to tasks with
no prior knowledge on the target environments. The algorithm and theories of SRPO are based on the assumption of the
same state accessibility, which is an over-simplification of some environments, as demonstrated in Sec. 3.1 and Sec. B.
Comparative results in Sec. 4 demonstrate the inferior performance of SRPO compared with ASOR, in correspondence with
the flaw in the assumption. Also, the theoretical analysis in the SRPO paper is built on the assumption called “homomorphous
MDPs” which is stronger than the M -Rs accessible MDPs used in this paper and is a special case of the latter.

B. Examples of Distinct State Distributions
We claim in the main paper that previous assumption of similar state distributions under distribution shift will not hold
in many scenarios. Apart from the motivating example of lava world in Sec. 3.1, we demonstrate more examples in the
MetaDrive (Li et al., 2023) and the fall-guys like game environment. Examples of MetaDrive environments with different
traffic densities are shown in Fig. 5. The dynamics shift lies in that the ego vehicle will have different probabilities to detect
other vehicles nearby. In environments with low traffic densities, there is enough space for some vehicles with optimal
policies to drive in high speeds. But in environments packed with surrounding vehicles, fast driving will surely lead to
collisions. So the vehicles can only drive in low speeds. As the vehicle speed is included in the agent’s state space, difference
in traffic densities will lead to distinct optimal state distributions.

Visualizations of the fall-guys like game environment used in Sec. 4.3 are shown in Fig. 7, where map components including
the conveyor belt speed, the balloon reaction, the floor reaction, and the hammer distance will work together, giving rise to
dynamics shift. Taking the variation of hammer distance (Fig. 7 (d)) as an example, in the left environment the optimal
trajectory will contain states where the hammer is near the agent. But in the right environment, there are trajectories that
keep the hammer far away to avoid being hit out of the playground. Blindly imitating optimal states collected in the left
environment will lead to suboptimal performance in the right environment.

C. Experiment Details
C.1. Baseline Algorithms

In experiments with four different tasks, we compare ASOR with the following baseline algorithms:

• PPO (Schulman et al., 2017): The widely used, off-the-shelf online RL algorithm with on-policy policy update.

• SAC (Haarnoja et al., 2018): The widely used off-policy RL algorithm with entropy maximization for better exploration.

• BCO (Torabi et al., 2018a): Learn a agent-specific inverse dynamics model to infer the experts’ missing action
information.

• GAIfO (Torabi et al., 2018b): A state-only version of the GAIL algorithm.

• GARAT (Desai et al., 2020): Use the action transformer trained with GAIL-like imitation learning to recover the
experts’ next states in the original environment.
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Figure 6. Results in the Minigrid environment. (a) Performance comparison between PPO+ASOR and baseline algorithms. (b) The
average reward on the environment with different position of the second lava row. PPO and PPO+SRPO has very low rewards when the
bottom lava is on row 5; (c) The state uncertainty estimated by ASOR on different rows of the lava environment.

• SOIL (Gangwani & Peng, 2020): An algorithm combining state-only imitation learning with policy gradients. The
overall gradient consists of a policy gradient term and an auxiliary imitation term.

• CQL (Kumar et al., 2020): The widely used offline RL algorithm with conservative Q-learning.

• MOPO (Yu et al., 2020): A model-based offline RL algorithm subtracting disagreements in next-state prediction from
environment rewards.

• MAPLE (Chen et al., 2021): The offline RL algorithm based on MOPO with an additional context encoder module for
cross-dynamics policy adaptation.

• OSI (Yu et al., 2017): An algorithm using context encoders for online system identification.

• CaDM (Lee et al., 2020): The online RL algorithm with context encoders for cross-dynamics policy adaptation.

• DARA (Liu et al., 2022): Make reward augmentations with importance weights between source and target dynamics.

• SRPO (Xue et al., 2023a): Make reward augmentations with the assumption of similar optimal state distributions under
dynamics shift.

C.2. Results in Minigrid Environment

For experiments in the Minigrid environment (Chevalier-Boisvert et al., 2023), the row number of the bottom lava is
randomly sampled from {2, 3, 4, 5}, leading to dynamics shift. By including lava indicator as part of the state input, the
policy is fully aware of environment dynamics changes and the need of context encoders (Luo et al., 2022; Lee et al., 2020) is
excluded. The categorical action space includes moving towards four directions. The reward function for each environment
step is -0.02 and reaching the green goal grid will lead to an additional reward of 1. The episode terminates when the red
lava or the green goal grid is reached. For baseline algorithms we select online RL algorithms PPO (Schulman et al., 2017)
and PPO+SRPO (Xue et al., 2023a), as well as IfO algorithms SOIL (Gangwani & Peng, 2020) and GAIfO (Torabi et al.,
2018b).

We demonstrate the experiment results in Fig. 6 (a). Our ASOR algorithm can increase the performance of PPO by a large
margin, while SRPO can only make little improvement. This is because the optimal state distribution in different lava world
environments will not be the same. SRPO will still blindly consider all relevant states for policy regularization, leading
to suboptimal policies. Fig. 6 (b) demonstrates the average reward with each possible position of the bottom lava block.
PPO and PPO+SRPO have low performance when the bottom lava block is at Row 5. They mistakenly regard grids at
(5,4) and (5,5) as optimal, but ASOR will recognize these grids as non-accessible states. We also demonstrate in Fig. 6
(c) the disagreement in next state predictions used to compute pseudo count. States far from the starting point have higher
prediction disagreements and lower pseudo counts.
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Figure 7. More demonstrations of dynamics shifts in fall guys-like game. Colors and textures are only for visual enhancement and are not
part of the agent’s observations.

C.3. Additional Setup of the Fall-guys Like Game Environment

Additional Environment Demonstrations Next, we present additional examples of dynamic shifts within the fall-guys
like game environment to demonstrate the diverse and variable nature of in-game elements. As shown in Fig. 7, the game
environment features a range of dynamic shifts which contribute to the complexity and unpredictability of the gameplay.
Specifically, we observe the following scenarios: Fig. 7 (a): The speed of conveyor belts changes across different game
settings, leading to varied transitions in the agent’s position and momentum when it steps onto these belts. Fig. 7 (b):
Balloons exhibit different reactions upon interaction with the agent. This variation can significantly affect the agent’s
subsequent trajectory. Fig. 7 (c): The behavior of floors under the agent’s influence varies significantly. Some floors may
collapse, disappear, or shift unexpectedly, introducing further complexity to the environment. Fig. 7 (d): The distance
and direction in which the agent is ejected when struck by hammers can vary widely. This variability depends on the
unpredictable environmental dynamic shifts, for example, the force and angle of the hammer’s swing.

MDP Setup Below, we provide definitions of state space, action space, and rewards in the fall-guys like game environment.

State space S:

• Terrain Map (dim=(16 × 16 × 2) with granularities of [1.0, 2.0]): The relative terrain waypoints in the agent’s
surrounding area. Various granularities capture different details and perceptual ranges effectively.

• Item Map (dim=(16× 16× 1) with granularities of [1.0, 2.0]): Map of nearby items or objects. Multiple maps focus
on different item types, with granularities for varying spatial scales.

• Target Map (dim=(16 × 16 × 1) with granularities of [1.0, 4.0, 16.0]): Map of archive points locations. Various
granularities capture different details and perceptual ranges at different spatial scales.

• Goal Map (dim=(16 × 16 × 1) with granularities of [1.0, 4.0, 16.0]): Map of intermediate goal locations. Various
granularities capture different details and perceptual ranges at various spatial scales.

• Agent Info (dim=32): Details about agent’s own state, including position, rotation, velocity, animation state, and
forward direction.
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• Destination Info (dim=9): Details about the destination, including position, rotation, and size of the destination,
providing crucial details for navigation and goal achievement.

Action space A:

• MoveX (dim=3): Move along the X-axis. The three discrete options typically represent movement in the positive X
direction, negative X direction, or no movement.

• MoveY (dim=3): Move along the Y-axis, with three discrete options for movement in the positive Y direction, negative
Y direction, or no movement.

• Jump (dim=2): Represents jump behavior. Options are to initiate a jump or not.

• Sprint (dim=2): Represents sprint behavior. Options are to start sprinting or not.

• Attack (dim=2): Executes an attack. The two discrete options are to initiate an attack or not.

• UseProp (dim=2): Utilizes a prop. The two discrete options indicate whether the prop is used or not.

• UsePropDir (dim=8): Determines the direction for prop usage. The eight discrete options offer various directional
choices for prop utilization.

• Idle (dim=2): Represents idle behavior. Options are to remain idle or not.

Reward r:

• Arrive Target (value=1.0): Rewards the agent for successfully reaching the archive point, with a positive reward of 1.0
upon achievement.

• Arrive Goal (value=0.3): Rewards the agent for reaching intermediate goal locations within the environment, with a
positive reward of 0.3.

• Arrive Destination (value=1.0): Rewards the agent for reaching the final destination or endpoint within the environment,
motivating task completion.

• Goal Distance (decay rate=0.05): Offers distance-based rewards, varying based on proximity to specific goal locations.
Rewards diminish as the agent moves away from the goal, with distinct values for different distance ranges.

• Fall or Wall (value=−1.0): Penalizes the agent for continuously hitting the wall or falling off a cliff with a penalty of
-1.0.

• Stay (value=−0.01): Penalizes the agent for remaining stationary for extended periods, encouraging continuous
exploration and movement.

• Time (value=−0.02): Penalizes each time step, encouraging efficient decision-making and timely task completion.

Network Architecture The network architecture is structured as follows: The Terrain Map, Item Map, Target Map, and
Goal Map are each fed into a convolutional neural network (CNN) with ReLU non-linearity, followed by a fully connected
network (FCN). This process yields four separate 32-dimensional vector representations for each respective map. The
Destination Info and Agent Info are independently input into attention layers, generating 32-dimensional vectors for each.
Subsequently, all 32-dimensional vectors (from the CNNs and attention layers) are concatenated into a single feature vector.
The concatenated feature vector undergoes processing by a multi-head FCN to yield various output actions. Additionally,
the concatenated feature vector is processed by another FCN to produce a value as the value function estimator.

Training Setup We utilized the Ray RLlib framework (Liang et al., 2018), configuring 100 training workers and 20
evaluation workers. The batch size was set to 1024, with an initial learning rate of 1 × 10−3, which linearly decayed to
3× 10−4 over 250 steps. An entropy regularization coefficient of 0.003 was employed to ensure adequate exploration during
training. The training was conducted using NVIDIA TESLA V100 GPUs and takes around 20 hours to train 6M steps.
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