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Abstract

Preference learning algorithms (e.g., RLHF and
DPO) are frequently used to steer LLMs to pro-
duce generations that are more preferred by hu-
mans, but our understanding of their inner work-
ings is still limited. In this work, we study the con-
ventional wisdom that preference learning trains
models to assign higher likelihoods to more pre-
ferred outputs than less preferred outputs, mea-
sured via ranking accuracy. Surprisingly, we
find that most state-of-the-art preference-tuned
models achieve a ranking accuracy of less than
60% on common preference datasets. We further-
more derive the idealized ranking accuracy that
a preference-tuned LLM would achieve if it opti-
mized the DPO or RLHF objective perfectly. We
demonstrate that existing models exhibit a sig-
nificant alignment gap – i.e., a gap between the
observed and idealized ranking accuracies. We
attribute this discrepancy to the DPO objective,
which is empirically and theoretically ill-suited
to fix even mild ranking errors in the reference
model, and derive a simple and efficient formula
for quantifying the difficulty of learning a given
preference datapoint. Finally, we demonstrate that
ranking accuracy strongly correlates with the em-
pirically popular win rate metric when the model
is close to the reference model used in the ob-
jective, shedding further light on the differences
between on-policy (e.g., RLHF) and off-policy
(e.g., DPO) preference learning algorithms.

1. Introduction
Recent work on aligning LLMs has focused predomi-
nantly on tuning models to adhere to human preferences
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– commonly through reinforcement learning (RLHF; Sti-
ennon et al. (2020)) or directly via offline supervision
(DPO; Rafailov et al. (2023)). Preference learning algo-
rithms (Hüllermeier et al., 2008; Vembu & Gärtner, 2010;
Wirth et al., 2017) were originally designed to use a dataset
of pairwise preferences over candidates to train a model
with high ranking accuracy – that is, the model can pre-
cisely rank preferred outputs over dispreferred ones. In the
case of language models, the ranking is determined by the
likelihood assigned to each candidate.

Many LLM alignment techniques are designed to yield mod-
els with a high preference ranking accuracy, including SLiC
(Zhao et al., 2023b;a), RAFT (Dong et al., 2023), PRO
(Song et al., 2024), and RRHF (Yuan et al., 2023). Most
prominently, Rafailov et al. (2023) claimed that their popular
direct preference optimization (DPO) algorithm “increases
the relative log probability of preferred to dispreferred re-
sponse.” It is standard to evaluate these various objectives
by measuring how often the resulting model’s generations
are preferred over another model’s (i.e., a win rate) (Zheng
et al., 2023b). However, the relationship between the loss,
ranking accuracy, and win rate is unclear, leaving open the
question of what these alignment techniques are actually
accomplishing during training.

In this work, we demonstrate that RLHF and DPO struggle
to increase ranking accuracy in practice and explore both
the theoretical and empirical reasons why. Our findings
highlight an intricate relationship between offline optimiza-
tion and online behavior, and motivate the need for more
fine-grained analyses of preference training dynamics. Our
contributions are as follows:

1. Existing models do not achieve high ranking ac-
curacies. We demonstrate that a wide variety of
open-access preference-tuned LLMs (e.g., LLAMA 2
7B CHAT, GEMMA 7B IT, and ZEPHYR 7B DPO)
achieve a ranking accuracy below 60% across a range
of validation splits from commonly used preference
datasets, such as UltraFeedback (Cui et al., 2023),
Anthropic helpfulness and harmlessness (HH-RLHF,
(Ganguli et al., 2022)), and Stanford Human Prefer-
ences (SHP, (Ethayarajh et al., 2022)) (Figure 1).
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2. Existing models exhibit a significant alignment gap
between the ranking accuracy they achieve and the
accuracy achievable under idealized conditions. We
derive a simple formula (Theorem 3.1) for the idealized
ranking accuracy (i.e., the ranking accuracy achieved
from training on ground-truth preference data and per-
fectly optimizing the DPO or RLHF objective). We
observe that models suffer from a significant alignment
gap in that they achieve ranking accuracy far below the
idealized ranking accuracy (Table 1, Figure 1).

3. Preference learning rarely corrects incorrect rank-
ings. We prove theoretically that even mild ranking
errors in the reference model can make it virtually im-
possible for DPO and its variants to correct the ranking
(Theorem 4.1), and demonstrate that in practice, the
rankings are rarely flipped (Fig. 2) and the reference
model likelihoods generally determine the ranking ac-
curacy (Fig. 3). Our results permit straightforward
and efficient identification of hard-to-learn preference
datapoints without any tuning.

4. Ranking accuracy and win rate are closely corre-
lated when the model is close to the reference model.
We observe that the ranking accuracy and win rate
trend together when the model is close to the refer-
ence model during the early phase of alignment, but
become anti-correlated once the model has moved too
far away, adding to the ongoing discussion on the dif-
ferences between on-policy and off-policy behaviors
of preference-tuned LLMs.

Crucially, our work highlights fundamental flaws in RLHF
and DPO that prevent the preference-tuned model from
achieving a high ranking accuracy even on the training
dataset.

2. Preliminaries
2.1. Learning from Human Preferences

Preference Data Human preference data typically takes
the form of pairwise preferences. Each prompt x is paired
with two possible continuations – y1 and y2. One or more
human raters then annotate which continuation is preferred.
When there are multiple raters, we use α(x, y1, y2) to denote
the proportion of raters who prefer y1 over y2.1

Definition 2.1 (Aggregated Preference Datapoint). Con-
sider a prompt x with two possible continuations y1 and y2
and the proportion of raters α(x, y1, y2) who preferred y1
over y2. Then, the aggregated preference datapoint for each

1In the limit, when there are infinite raters, the empirical
proportion α(x, y1, y2) converges to the ground truth preference
P[y1 ≻ y2 | x].

prompt x is denoted (x, yw, yl) where yw is the completion
preferred by the majority of voters.

We note that at the time of writing, the vast majority of
datasets either use a single rater (Ganguli et al., 2022) or
only release aggregated preference data (Ethayarajh et al.,
2022; Köpf et al., 2023), so we often do not have access to
α(x, y1, y2). A standard assumption is that the ground-truth
human preferences obey the Bradley-Terry model (Assump-
tion A.1).

Supervised Fine-Tuning (SFT) In the first step of the
preference learning pipeline, the model is typically trained
using the standard cross-entropy objective on some choice
of offline instruction-tuning dataset(s). In some implementa-
tions (Touvron et al., 2023), a variety of third-party datasets
are selected, whereas in other implementations (Stiennon
et al., 2020; Rafailov et al., 2023; Ramamurthy et al., 2023)
the model is instead trained on the preferred continuations
(x, yw) from the same preference learning dataset that is
used in downstream preference learning. The resulting
model is often used as a reference model, denoted as πRef
or πSFT, and it typically serves as the initialization when
learning from human preferences.

Reinforcement Learning from Human Feedback (RLHF)
Learning from human feedback originally required using
reinforcement learning (Stiennon et al., 2020). In this set-
ting, the possible continuations for each prompt are sam-
pled from a reference model (i.e., (yw, yl) ∼ πRef(· |
x)) and then annotated and aggregated to create a pref-
erence dataset D. Then, one frames the problem as
binary classification between the two continuations and
trains a reward model rϕ(x, y) to minimize LR(rϕ,D) =
−E(x,yw,yl)∼D[log σ(rϕ(x, yw)− rϕ(x, yl))]. Finally, one
trains the model πθ to maximize the reward without stray-
ing too far from the reference model πRef. Because sam-
pling generations from the model is non-differentiable, it
is common to use PPO to maximize the reward r(x, y) =
rϕ(x, y)− β(log πθ(y | x)− log πRef(y | x)), where β > 0
is a regularization coefficient designed to prevent the model
from straying too far from its initialization.

Preference Learning with DPO Rafailov et al. (2023)
demonstrated that one can avoid using PPO by reparametriz-
ing the objective to operate over policies instead of over
rewards. Then, one can minimize the differentiable DPO
objective.

Definition 2.2 (DPO Objective (Rafailov et al., 2023)). Let
σ be the sigmoid function and β > 0 be a hyperparame-
ter. Then, the DPO objective for an aggregated preference
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dataset D and a reference model πRef is defined as

LDPO(πθ, πRef) = − E
(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πRef(yw | x)

−β log
πθ(yl | x)
πRef(yl | x)

)]
where the expression inside the sigmoid, β log πθ(yw|x)

πRef(yw|x) −
β log πθ(yl|x)

πRef(yl|x) , is termed the reward margin. We denote
the DPO loss on the aggregated datapoint (x, yw, yl) as
LDPO(x, yw, yl;πθ, πRef).

2.2. Evaluation Metrics

Evaluating the alignment of a preference-tuned LLM is both
under-specified and multi-dimensional. Many knowledge-
based and logic-based benchmarks (e.g. MMLU, GLUE,
BIG-Bench, HELM) already exist, but these benchmarks
largely fail to capture nuanced aspects of human preference,
such as helpfulness or harmlessness (Ganguli et al., 2022).
As such, one standard evaluation is to ask human or machine
raters how often the model produces a favorable completion
compared to a baseline (i.e., win rate). Human win rate is
the gold standard but is costly to compute and can be biased
based on size and nature of the worker pool (Hosking et al.,
2024; Kirk et al., 2024). Rating completions using another
LLM (e.g., MT-bench) can be cheaper but similarly suf-
fers from various biases (Pezeshkpour & Hruschka, 2023;
Zheng et al., 2023a; Xu et al., 2024d), and several studies
have revealed failures in many LLM judges to identify vio-
lations of instruction-following (Zeng et al., 2024; Lambert
et al., 2024). Nevertheless, since win rate evaluations are
so prevalent, we compare ranking accuracy against win rate
in Sec. 5 and describe when the former off-policy metric is
correlated with the popular on-policy metric.

Besides the win rate,preference learning algorithms are also
benchmarked by the frontier of the rewards versus the diver-
gence from the initialization (Rafailov et al., 2023), which
serves as a heuristic of how well the model can incorporate
preference data without unlearning prior information. How-
ever, it is unclear how well rewards can describe the success
of alignment.

As aforementioned, the current paper investigates the rank-
ing accuracy, which is defined as follows:
Definition 2.3 (Ranking Accuracy). The ranking accuracy
R of a model πθ on an aggregated preference datapoint
(x, yw, yl) is defined as

R(x, yw, yl;πθ) =

{
1 πθ(yw | x) ≥ πθ(yl | x)
0 otherwise.

(1)

Analogously, the ranking accuracy of policy πθ

on a dataset D = {(x, yw, yl)} is R(D;πθ) =

E(x,yw,yl)∼DR(x, yw, yl;πθ). In the rare case where a

dataset has more than two outputs y per prompt x, we use
the generalized ranking accuracy definition stated in App.
A.6.

Remark 2.4 (Lengths of Completions). We note that yw and
yl can have different lengths; for example, Singhal et al.
(2023) showed that yw is usually longer. Length can deflate
πθ(yw | x) and reduce the ranking accuracy. One can nor-
malize the likelihoods by the length of the response, but the
length-normalized ranking accuracy may not be meaningful
in practice, because it is currently unclear how to sample
from the length-normalized likelihood. For completeness,
we report the ranking accuracies of both the unnormalized
and normalized policies, denoted R and R̃, respectively.

Remark 2.5 (Difference between Ranking Accuracy and
Reward Accuracy). For RLHF models and DPO models,
the ranking accuracy is not equivalent to the reward ac-
curacy (i.e., the metrics evaluated in RewardBench (Lam-
bert et al., 2024)). In the RLHF case, we are evaluating
the ranking accuracy of the final policy rather than the
reward model. In the DPO case, reward accuracy mea-
sures whether β log πθ(yw|x)

πRef(yw|x) > β log πθ(yl|x)
πRef(yl|x) instead of

whether πθ(yw | x) > πθ(yl | x). Since we ultimately
sample from πθ rather than πθ(y|x)

πRef(y|x) , we find the ranking
accuracy to be of greater practical importance.

Moreover, we demonstrate that under very stringent condi-
tions, minimizing the DPO objective results in a model with
high ranking accuracy. We characterize the phenomenon on
individual datapoints, as is the case throughout the paper,
but note that Markov’s inequality can be straightforwardly
applied to extend the results to a low loss on the entire
dataset.

Proposition 2.6 (Sanity Check). Recall the definition of
yw, yl in Definition 2.1. If πRef(yw | x) ≥ πRef(yl | x) and
LDPO(x, yw, yl;πθ, πRef) ≤ 0.6, then R(x, yw, yl) = 1.

This result, proved in App. A.1, requires the condition that
the reference model already has the correct ranking, so it is
unlikely to hold across all datapoints in practice and some-
what moot. The remainder of the paper focuses on more
realistic settings where the reference model is imperfect.

3. The Alignment Gap
Prop. 2.6 showed that training a low DPO loss with a per-
fect reference model yields a model with perfect ranking
accuracy. However, Fig. 1a shows that real-world reference
models exhibit low ranking accuracies, which prompts us to
study more realistic, imperfect reference models.
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(a) Ranking accuracies of various reference models, including
GPT2 (Radford et al., 2019), PYTHIA 2.8B (Biderman et al.,
2023), PYTHIA 1.4B (Biderman et al., 2023), LLAMA 2 7B (Tou-
vron et al., 2023), VICUNA 1.5 7B (Zheng et al., 2023a), OLMO
7B (Groeneveld et al., 2024), TULU2 7B (Ivison et al., 2023),
ZEPHYR 7B SFT (Tunstall et al., 2023), MISTRAL V0.1 7B
(Jiang et al., 2023), and GEMMA 7B (Team et al., 2024)
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(b) Ranking accuracies of various preference-tuned models, includ-
ing LLAMA 2 7B CHAT (Touvron et al., 2023), TULU2 7B DPO
(Ivison et al., 2023), ZEPHYR 7B DPO (Tunstall et al., 2023), and
GEMMA 7B IT (Team et al., 2024)

Figure 1: Both reference and preference-tuned models ex-
hibit low ranking accuracy on most preference datasets.
Each point represents the length-normalized or non-length-
normalized ranking accuracy of individual (1a) reference
models (pre-trained or fine-tuned), or (1b) preference-tuned
models (trained with DPO or RLHF). We sub-sample 1K
examples from each dataset and use the test split when avail-
able. We describe datasets in B.2 and list all numbers in
Tables 2, 3, and 4. On the UltraFeedback dataset, ranking
accuracy is measured with exact match across all four out-
puts (see App. A.6).

3.1. Existing Reference Models Rarely Have Correct
Rankings

Fig. 1a indicates that reference models rarely achieve high
ranking accuracy on common preference datasets (except

Synthetic Instruct GPT-J Pairwise), even though many were
likely trained on the preferred completions (see Sef. 2.1).
Many of the models do not have documented training data
so we do not know which preference datasets, if any, are in-
distribution. We also fine-tune several pretrained LLMs on
the preferred completions (see App. B.1) and observe that
ranking accuracy does not increase significantly.2 Based
on our findings, we turn to the case of imperfect reference
models.

3.2. Idealized Ranking Accuracy

We showed above that empirically, reference models ex-
hibit poor accuracy when ranking the plausible completions.
However, the RLHF reward and DPO objective were formu-
lated to ensure that the model learns the preference dataset
but does not move too far from the reference model πRef,
so there may be a limit on the possible accuracy of the
preference-tuned model. Here, we formalize this intuition
by studying what the optimal policies would be when per-
fectly optimizing DPO or RLHF with access to perfect data
(i.e., true proportions of human preferences).3

Theorem 3.1 (Simulating Perfect RLHF4). Fix a refer-
ence model πRef and an aggregated preference datapoint
(x, yw, yl) ∼ D. Assume the dataset includes the ground-
truth human preferences: that is, α(x, yw, yl) = P(yw ≻
yl), and that these preferences obey the Bradley-Terry model
(Assumption A.1). Let π∗ be the model resulting from per-
fectly optimizing the DPO or RLHF objective on (x, yw, yl)
as described in Section 2.1. Then, π∗ satisfies

π∗(yw | x)
π∗(yl | x)

=
πRef(yw | x)
πRef(yl | x)

(
α(x, yw, yl)

1− α(x, yw, yl)

)1/β

(2)

where α(x, yw, yl) is the proportion of raters who preferred
yw over yl and β is a hyperparameter in the DPO and RLHF
objectives.

Remark 3.2. We prove this result in App. A.2. This theo-
rem highlights the importance of reporting multiple ratings
for each preference datapoint, because it shows that when
α(x, yw, yl) = 1, the objectives only have an optimum at
infinity.

This result allows us to simulate the policy resulting from
perfect optimization of either the RLHF or the DPO learning
objective. As such, given a reference model πRef and prefer-

2It is not surprising that fine-tuning on the preferred comple-
tions does not boost ranking accuracy, since the model does not
receive any knowledge of the relative qualities of the preferred and
rejected completions.

3This result differs from Proposition 2.6 in that it accounts for
a potentially imperfect reference model.

4We note that this result can also be straightforwardly derived
from prior works (Peters & Schaal, 2007; Korbak et al., 2022; Go
et al., 2023).
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ence dataset D, we can easily measure the idealized ranking
accuracy of a model. We prove this result in App. A.3.

Corollary 3.3 (Idealized Ranking Accuracy). Given a ref-
erence model πRef, the DPO or RLHF hyperparameter β, a
dataset of aggregated preferences D = {(x, yw, yl)} and
their corresponding rater proportions α(x, yw, yl), the rank-
ing accuracy of the optimum of the RLHF or DPO objective
π∗ is given by

R∗(D;πRef) =

E
(x,yw,yl)∼D

[
1

[
πRef(yw | x)
πRef(yl | x)

(
α(x, yw, yl)

1− α(x, yw, yl)

)1/β

> 1

]]
(3)

where 1[·] is the indicator function. When computed on
length-normalized likelihoods from ˜πRef, we denote the ide-
alized ranking accuracy as R̃∗.

3.3. Measuring the Alignment Gap

Given access to πRef, β, and the α(x, yw, yl) values for each
triple (x, yw, yl) in a given preference dataset, we can com-
pute the idealized ranking accuracy from Eq. 3.5 The results
are shown in Table 1 and further details are given in App.
B.4. We identify several surprising findings. Firstly, even
under ideal conditions (i.e. perfectly optimizing the objec-
tive on ground-truth preference data), the idealized ranking
accuracy is still sometimes below 100%. This distance
varies with the choice of β, which indicates that the limits
of DPO/RLHF depend largely upon how strong the reliance
on πRef is. Furthermore, we find that many state-of-the-art
models do not achieve a ranking accuracy anywhere close
to the idealized ranking accuracy, exhibiting alignment gaps
ranging from 19 to 59 percentage points (measured to the
median idealized R or R̃).

4. Understanding Ranking Accuracy with
DPO

We now turn to the training objectives to account for the
alignment gap. We focus our analysis on the DPO objec-
tive (Definition 2.2), because its failure to achieve high
ranking accuracy is especially surprising (Table 1). In par-
ticular, DPO directly maximizes the reward margin between
preferred-dispreferred pairs over an offline dataset so we
would expect it to perform well on in-distribution held-out
data. We also note that DPO is a popular choice in the
community for aligning LLMs, because it is less costly than
performing RLHF.

In this section, we study real-world characteristics of DPO.
First, we show empirically that DPO rarely flips the ranking

5Note that when α(x, yw, yl) = 1, we replace it with 1− ϵ to
compute the formula. See App. B.4.

of the two continuations. This, combined with the obser-
vation that reference models exhibit poor ranking accuracy
(Sec. 3.1), provides an explanation for the observed poor
ranking accuracies in Table 1. We then formally character-
ize how hard it is for DPO to correct the ranking of each
datapoint.Our result highlights how πRef conditions the opti-
mization: as the reference model log-ratio (Definition 2.2)
grows larger, one has to reduce the DPO loss to a dramati-
cally small value to flip the incorrect ranking (Fig. 3).

4.1. DPO Rarely Flips Preference Rankings

To study how ranking accuracy changes over the course of
DPO training, we train three sizes of models (GPT-2 (Rad-
ford et al., 2019), Pythia 2.8B (Biderman et al., 2023), and
Llama 2-7B (Touvron et al., 2023)) across three seeds each
on the Anthropic HH-RLHF (Bai et al., 2022) preference
dataset and study the ranking accuracy on different parti-
tions of the training dataset. We present the results from
training one seed of Pythia 2.8B in Fig. 2, and defer training
details to App. C.1 and results on the other two models to
App. C.2. In Fig. 2, we partition a random subsample of 1K
examples from the training dataset into four groups based
on whether the reference model πRef had the correct ranking
and whether the current model πθ has the correct ranking.
Surprisingly, Fig. 2 demonstrates that DPO rarely flips
the ranking of (yw, yl) over the course of training despite
consistently reducing the loss LDPO. Aside from the group
of points for which the model unlearns the correct prefer-
ence ranking, we observe that the loss decreases and the
reward margin increases consistently while training. How-
ever, at the point of lowest validation loss, less than half of
the incorrectly ranked points have been flipped to have the
correct ranking. This indicates that the DPO objective is
ill-formulated to induce a high ranking accuracy in practice.

4.2. Analysis: How Easy Is It To Flip A Ranking?

In the result below, we show that the DPO loss can decrease
substantially without any improvement on the ranking ac-
curacy of the model. Specifically, the DPO loss that the
model needs to reach in order to have the correct ranking
on an example (x, yw, yl) depends on the quality of the ref-
erence model, quantified by the reference model log-ratio.
This dependence is highly ill-conditioned, whereby using
a reference model with moderately incorrect likelihoods
assigned to each continuation can effectively prevent DPO
from learning the correct ranking.

Theorem 4.1. Consider an aggregated preference datapoint
(x, yw, yl) such that the reference model log-ratio is some
constant c, i.e. log πRef(yl|x)

πRef(yw|x) = c. Then, R(x, yw, yl) = 1 if
and only if LDPO(x, yw, yl) ≤ − log σ(βc), where σ is the
sigmoid function.
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Table 1: The idealized ranking accuracy of existing algorithms is not perfect, but preference-tuned models exhibit
ranking accuracies far even from this idealized case. We provide both the length-normalized (R̃) and non-length-
normalized (R) ranking accuracies for a variety of open-access preference-tuned models on the Alpaca Farm (Dubois et al.,
2023) validation dataset (described in App. B.2). We also provide the idealized ranking accuracy (Corollary 3.3). Since
idealized ranking accuracy can be computed with a variety of values of β, we provide the minimum, median, and maximum
idealized ranking accuracy values for a range of β. For more details, see App. B.4.

Preference-Tuned
Model

Length-Normalized Non-Length-Normalized

R̃ R̃∗ (Min./Med./Max.) R R∗ (Min./Med./Max.)

ZEPHYR-7B-DPO 54% 86% / 98% / 100% 42% 90% / 99% / 100%
TULU-2-DPO-7B 53% 87% / 97% / 100% 42% 91% / 99% / 100%
GOOGLE-GEMMA-7B-IT 54% 73% / 73% / 97% 40% 67% / 93% / 100%
LLAMA-2-7B-CHAT-HF 53% 87% / 97% / 100% 40% 91% / 99% / 100%
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Figure 2: Despite continuously decreasing the loss, DPO rarely flips the rankings of pairs and instead mostly increases
the reward margin of already correctly ranked pairs. We train a Pythia-2.8B model using the DPO objective and
categorize the training dataset into four subsets – examples that initially have the correct ranking and are flipped to (1)
correct or (2) incorrect, and examples that initially have the incorrect ranking and are flipped to (3) correct or (4) incorrect.
In all three figures, the hue of the point indicates the category. The dashed vertical line indicates the training step at which
the lowest eval. loss occurs. We also present results for two other models with three seeds each in Appendix C.

Remark 4.2. It is straightforward to extend our analysis
to popular variants of DPO. For illustration, we prove an
analogous result for identity preference optimization (IPO,
Azar et al. (2023)) in App. A.5.

We prove this result in App. A.4. Our theoretical result
allows us to formally identify the points that will be hard to
flip in their rankings. Fig. 3 visualizes the reference model
log-ratio for several settings and highlights that datapoints
with even mild ranking errors in the reference model will
require the loss to be reduced to a very low value in order to
flip the ranking. App. E contains examples of hard-to-learn,
easy-to-learn, and easy-to-flip datapoints. We observe that
the hard-to-learn datapoints are substantially longer than the
easy ones, and that the easy datapoints generally contain
less ambiguous preference annotations. More generally, our
result motivates the use of stronger πRef models and iterative

or on-policy variants of DPO (Tang et al., 2024b; Yuan et al.,
2024; Kim et al., 2024; Tran et al., 2023).

5. Ranking Accuracy and Win Rate
Our results on ranking accuracy illuminate how well DPO
and RLHF can align to preference data, but we have not
yet related these insights to how the generative behavior of
the model changes during alignment. In particular, ranking
accuracy is a convenient but off-policy metric and is thus
not as widely adopted as the on-policy metric of win rate
(see Sec. 2.2). Indeed, one could maximize the ranking ac-
curacy by learning a strong classifier on the preference data,
but that model may not generate high-quality text. Here,
we explore the gap between on-policy (i.e., generative) and
off-policy (i.e., classification) behaviors of LLMs through
the lens of ranking accuracy and win rate. Since the DPO
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Figure 3: DPO loss alone does not predict ranking accuracy, due to the influence of the reference model log-ratio in
the loss. Each point represents the DPO loss on a separate training example (x, yw, yl) from a subsample of 1K examples
from the training dataset, using the model πθ∗ that corresponds to the checkpoint with the lowest validation loss. The color
of each point indicates whether πθ∗ achieves the correct ranking on that example, i.e., whether πθ∗(yw|x) > πθ∗(yl|x). The
dashed line is the function f(c) = − log σ(βc), from Theorem 4.1. In summary, the examples that πθ∗ classifies correctly
tend to be those that were already classified correctly by the reference model. Results for the other two seeds of each model
are given in Fig. 8.

objective directly optimizes for ranking accuracy (Propo-
sition 2.6), the relationship between these two metrics is a
direct reflection of how off-policy training affects on-policy
behavior.

We study the relationship between win rate and ranking
accuracy in two settings: (1) during DPO training, and (2)
in a DPO variant modulating the influence of πRef. We
measure the win rate on 500 responses to prompts from
the training dataset using the Alpaca Eval GPT-4 (Li et al.,
2023) auto-annotator.

Setting 1: DPO Training. We measure the win rate and
the ranking accuracy of a Pythia 2.8B model (Biderman
et al., 2023) during DPO training with the same configura-
tion as in Section 4. See Figure 9 for the results.

Setting 2: Attenuating the reference model. Theo-
rem 4.1 showed that πRef exerts a negative influence on
the ranking accuracy in most cases, so we design a new
objective that scales the reference model log-ratio in LDPO
to further characterize how win rate and ranking accuracy
relate.

Lγ
DPO(πθ, πRef) = − E

(x,yw,yl)∼D

[
log σ

(
β

(
log

πθ(yw | x)
πθ(yl | x)

+ γ log
πRef(yl | x)
πRef(yw | x)

))]
(4)

Note that Lγ
DPO = LDPO (Definition 2.2) when γ =

1, and a larger value of γ increases the role of the
reference model. Also, γ directly scales c in Theo-
rem 4.1, thereby controlling how easy it is to fit the data

and increase the ranking accuracy. We train a range
of Pythia-2.8B models using the Lγ

DPO objective for
γ ∈ {0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0} and mea-
sure the ranking accuracies and win rates of the best model
for each γ value.6

Takeaway: Ranking accuracy correlates with win rate
when the model is close to the reference model. In both
settings, we observe that the win rate and ranking accuracy
are highly correlated with one another in the early phase
of training but become anti-correlated (i.e., ranking accu-
racy increases but win rate declines) as the model πθ moves
away from the reference πRef (Fig. 4). Unlike traditional
overfitting, the test loss is continuing to decline at this point
(Fig. 9b). Experiments in Fig. 10 with the attenuated objec-
tive in Equation (4) further show that ranking accuracy and
win rate trend together when the influence of the reference
model is stronger (i.e., γ is larger).

We speculate that when the model is far from the reference
model, regularization toward the reference model can harm
the generative capabilities of the model, which are primarily
acquired during pre-training. In other words, the off-policy
behavior of the model can no longer predictably describe
the on-policy generations when the reference model used
in the offline objective is far from the current model. Our
findings confirm the fundamental tradeoff between fitting
the preference data and maintaining generative capabilities
acquired during pre-training (Jaques et al., 2017) and align
with prior observations that adding on-policy preference

6We use the best hyperparameters obtained from the experi-
ments in Sec. 4.
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data can make offline learning more effective (Tang et al.,
2024b; Yuan et al., 2024; Kim et al., 2024; Tran et al., 2023).

6. Related Work
Analysis of Preference Learning Algorithms Many
works have investigated the role of the preference
dataset (Wang et al., 2024; Xu et al., 2024c), the reliabil-
ity of the evaluations (Zheng et al., 2023a; Lambert et al.,
2024), and the confounding factor of response length (Sing-
hal et al., 2023; Dubois et al., 2024; Wang et al., 2023;
Park et al., 2024). Theoretical works have unified the many
preference learning algorithms into clear taxonomies that
permit analysis and, sometimes, yield new variants (Azar
et al., 2023; Xu et al., 2024c; Tajwar et al., 2024; Tang
et al., 2024b; Yang et al., 2024). Several works study id-
iosyncrasies of preference learning, such as why DPO de-
creases the likelihood of both rejected and chosen outputs
from the dataset (Rafailov et al., 2024; Feng et al., 2024;
Pal et al., 2024) and why RLHF exhibits vanishing gradi-
ents (Razin et al., 2024). In contrast, our work approaches
understanding DPO and RLHF through the lens of ranking
accuracy, and our findings emphasize the role of the refer-
ence model regularization in preference learning. Relatedly,
SliC-HF (Zhao et al., 2023a), CPO (Xu et al., 2024a), and
pairwise cringe loss (Xu et al., 2024b) optimize log proba-
bility margins log π(yw|x)− log π(yl|x), effectively remov-
ing the regularization toward the reference model. Liu et al.
(2024) recommend using the reference model at inference
time to exert more granular control over the regularization.
Additionally, Chennakesavalu et al. (2024) design a DPO-
like objective that includes an additional hyperparameter
controlling the strength of the πRef terms, similar to our
Lγ
DPO objective (Eq. 4). Tang et al. (2024b) also analyze

the role of regularizing toward a reference model, though
our work focuses the effect of this regularization on ranking
accuracy.

On-policy and Off-policy Preference Learning
Preference-tuning LLMs originally required using an
on-policy algorithm (Stiennon et al., 2020), but many recent
works have derived off-policy methods that can use a static
preference dataset for supervision (Rafailov et al., 2023;
Ethayarajh et al., 2024; Hong et al., 2024; Park et al., 2024).
Off-policy methods are preferred for their efficiency and
ease of implementation, but several works have suggested
that on-policy methods are superior (Tajwar et al., 2024; Xu
et al., 2024c; Tang et al., 2024a; Li et al., 2024). Several
iterative training methods aim to bridge this gap, where the
reference model and the dataset are refreshed during the
alignment procedure to contain annotated preferences on
generations from the model at that point in training (Yuan
et al., 2024; Kim et al., 2024; Tran et al., 2023). These
intuitions align strongly with our observation that win rate

and ranking accuracy, and thus, on-policy and off-policy
behavior, are strongly correlated when the model is close to
the reference model.

7. Discussion
Our work highlights the significant but nuanced relation-
ship between preference learning and ranking accuracy. We
have demonstrated both theoretically and empirically that
RLHF and DPO struggle to teach the model to correctly
rank preferred and dispreferred outputs, even in the train-
ing dataset. Although the learning objective promotes high
ranking accuracy in theory (Proposition 2.6), we observed
a prominent alignment gap resulting from the poor condi-
tioning of reference models. We then drew connections
between the off-policy nature of ranking accuracy and the
on-policy evaluations of win rate, identifying specific sce-
narios in which on-policy behavior can or cannot be reliably
predicted by off-policy behavior.

Connections to Safety Our work shows that it is difficult
to steer pre-trained LLMs to adhere to even the preference
data used for training. When LLMs are used to judge re-
sponses from other models (Li et al., 2023; Zheng et al.,
2023a) or to improve their own abilities (Madaan et al.,
2023; Yuan et al., 2024), poor ranking accuracies can induce
strong negative feedback loops that are costly to mitigate.

We also observe that win rate does not monotonically in-
crease during training (Fig. 9a), despite the decrease in both
train and test loss (Fig. 9b) and the modest gain in ranking
accuracy (Fig. 9a). As such, it is clear that we still do not un-
derstand the behaviors of preference learning. For example,
others have observed that DPO can cause the likelihoods of
both chosen and rejected outputs to decrease (Rafailov et al.,
2024; Feng et al., 2024; Pal et al., 2024; Pang et al., 2024),
which implies that the policy must be moving probability
mass to possibly undesirable sequences outside the data dis-
tribution. Moreover, our investigation of the non-monotonic
relationship between ranking accuracy and win rate em-
phasizes the need for concrete evaluations that can more
reliably and transparently measure the success of preference
learning.

Limitations Although we reproduce our main results (Sec.
4) on three types of models across three seeds each, these
models are trained on a single dataset due to the computa-
tional constraints. Our theoretical results lead us to believe
that our findings would generalize to other datasets, but
empirical verification is still valuable. As mentioned previ-
ously, our work is optimization-agnostic and only describes
model behavior on the training dataset, making it difficult to
draw general claims about other distributions. In particular,
we cannot rigorously describe the generative capabilities,
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(a) Ranking accuracy and win rate of various Pythia 2.8B
checkpoints during training, versus the distance travelled by
the model weights θt from the initialization.
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Figure 4: When the model weights have not travelled far from θRef, ranking accuracy and win rate increase together.
θt represents the model weights at checkpoint t, and θγ are the model weights for the model trained with Lγ

DPO.

though Sec. 5 initiates an investigation into when off-policy
behavior can describe on-policy behaviors.

Future Work Our theoretical results only describe the
behavior of the model on the preference data used during
training, but they can serve as a starting point for under-
standing generalization to different distributions of data,
especially the one prescribed by the model itself (Tajwar
et al., 2024). Furthermore, we hope to analyze the optimiza-
tion dynamics of preference learning, given the intriguing
relationship observed between ranking accuracy and win
rate. For instance, identifying when the win rate begins
to diverge from the ranking accuracy can motivate adding
fresh on-policy training data. Our initial investigation into
ranking accuracy also suggests that it is worthwhile explore
how alignment techniques interact with other calibration
metrics.

Impact Statement
Our work highlights significant deviations between how
LLMs are aligned (i.e. by learning to rank preferred over
non-preferred outputs) and how they perform in practice.
This has various implications for the safety and steerability
of modern LLMs, many of which we discuss in Section 7.
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Hüllermeier, E., Fürnkranz, J., Cheng, W., and Brinker,
K. Label ranking by learning pairwise preferences. Ar-
tificial Intelligence, 172(16):1897–1916, 2008. ISSN
0004-3702. doi: https://doi.org/10.1016/j.artint.2008.08.
002. URL https://www.sciencedirect.com/
science/article/pii/S000437020800101X.

Ivison, H., Wang, Y., Pyatkin, V., Lambert, N., Peters, M.,
Dasigi, P., Jang, J., Wadden, D., Smith, N. A., Beltagy,
I., and Hajishirzi, H. Camels in a changing climate:
Enhancing lm adaptation with tulu 2, 2023.

Jaques, N., Gu, S., Bahdanau, D., Hernández-Lobato, J. M.,
Turner, R. E., and Eck, D. Sequence tutor: Conserva-
tive fine-tuning of sequence generation models with kl-
control. In International Conference on Machine Learn-
ing, pp. 1645–1654. PMLR, 2017.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023.

Kim, D., Kim, Y., Song, W., Kim, H., Kim, Y., Kim, S., and
Park, C. sdpo: Don’t use your data all at once, 2024.

10

http://www.jstor.org/stable/2334029
http://www.jstor.org/stable/2334029
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=m7p5O7zblY
https://api.semanticscholar.org/CorpusID:267365485
https://api.semanticscholar.org/CorpusID:267365485
https://www.sciencedirect.com/science/article/pii/S000437020800101X
https://www.sciencedirect.com/science/article/pii/S000437020800101X


Preference Learning Algorithms Do Not Learn Preference Rankings

Kirk, H. R., Whitefield, A., Röttger, P., Bean, A., Margatina,
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A. Proofs and Additional Results
Assumption A.1 (Bradley-Terry (Bradley & Terry, 1952)). Given a prompt x and two possible continuations y1 and y2, the
ground truth human preference distribution satisfies

P(y1 ≻ y2 | x) = exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(r∗(x, y2))
(5)

for some ground truth reward model r∗.

A.1. Proof of Proposition 2.6

Proposition A.2 (Reproduced from Proposition 2.6). Recall the definition of yw, yl in Definition 2.1. If πRef(yw | x) ≥
πRef(yl | x) and LDPO(x, yw, yl;πθ, πRef) ≤ 0.6, then R(x, yw, yl) = 1.

Proof. For notational convenience, write the log probability ratios as

ax = log
πθ(yw|x)
πRef(yw|x)

, bx = log
πθ(yl|x)
πRef(yl|x)

.

Then we can express the probability that the model places on each response as

πθ(yw|x) = πRef(yw|x)eax , πθ(yl|x) = πRef(yl|x)ebx .

Suppose for (x, yw, yl), LDPO(x, yw, yl;πθ, πRef) ≤ 0.6. Expanding the DPO loss, we have

LDPO(x, yw, yl;πθ, πRef) = − log σ(β(ax − bx)) ≤ 0.6.

Rearranging the inequality and exponentiate on both sides, we have

σ(β(ax − bx)) ≥ exp(−0.6).

Note that σ(0) = 0.5 < exp(−0.6) ≤ σ(β(ax − bx)). Since the logistic function is monotonic, this implies that
0 ≤ β(ax − bx) and ax ≥ bx.

Writing out this last inequality,

πθ(yw|x)
πRef(yw|x)

≥ πθ(yl|x)
πRef(yl|x)

⇒ πθ(yw|x)
πθ(yl|x)

≥ πRef(yw|x)
πRef(yl|x)

≥ 1,

where the last inequality is by the assumption on πRef. We conclude that R(x, yw, yl) = 1 by definition.

A.2. Proof of Theorem 3.1

Theorem A.3 (Simulating Perfect RLHF). Fix a reference model πRef and an aggregated preference datapoint (x, yw, yl) ∼
D. Assume the dataset includes the ground-truth human preferences: that is, α(x, yw, yl) = P(yw ≻ yl), and that these
preferences obey the Bradley-Terry model (Assumption A.1). Let π∗ be the (adequately expressive) model that perfectly
minimizes the DPO objective on (x, yw, yl), or perfectly maximizes the PPO objective on the optimal reward function as
described in Section 2.1. Then, the optimal policy π∗ satisfies

π∗(yw | x)
π∗(yl | x)

=
πRef(yw | x)
πRef(yl | x)

(
α(x, yw, yl)

1− α(x, yw, yl)

)1/β

(6)

where β is a hyperparameter in the DPO and RLHF objectives.

Proof. We first prove the statement for DPO. Following the notation from (Rafailov et al., 2023), fix a reward function r, let
πr(y|x) be the optimal model under the KL-constrained RL objective given the reward function r. We can express r(x, y)
in terms of πr(y|x)and πref (y|x):

r(x, y) = β log
πr(y|x)
πref (y|x)

+ β logZ(x),
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where Z(x) is the partition function for prompt x. Then, under the Bradley-Terry model, the probability of preferring yw
over yl under the model πr is

πr(yw ≻ yl|x) =
1

1 + exp(r(x, yl)− r(x, yw))

=
1

1 + exp(β log πr(yl|x)
πref (yl|x) − β log πr(yw|x)

πref (yw|x) )
.

Given the ground-truth human preferences, DPO’s maximum likelihood objective minimizes the binary classification loss
on (x, yw, yl):

min
π

α(x, yw, yl) log π(yw ≻ yl|x) + (1− α(x, yw, yl)) log(1− π(yw ≻ yl|x)).

Let π∗ denote an optimal policy from the loss above, the optimal preference probabilities satisfy

π∗(yw ≻ yl|x) = α(x, yw, yl),

and the optimal policy in turn satisfies

1

1 + exp(β log π∗(yl|x)
πref (yl|x) − β log π∗(yw|x)

πref (yw|x) )
= α(x, yw, yl).

Rearranging, we have
α(x, yl, yw)

α(x, yw, yl)
= exp

(
β log

π∗(yl|x)
πref (yl|x)

− β log
π∗(yw|x)
πref (yw|x)

)
,

taking a log on both sides and divide by β,

1

β
log

α(x, yl, yw)

α(x, yw, yl)
= log

π∗(yl|x)πref (yw|x)
πref (yl|x)π∗(yw|x)

,

and finally exponentiating both sides,

π∗(yl|x)
π∗(yw|x)

=
πref (yl|x)
πref (yw|x)

(
α(x, yl, yw)

α(x, yw, yl)

)1/β

,

the result follows by taking an inverse.

Now we show the result for RLHF, starting from the optimal solution of the KL-constrained reward maximization problem
under the reward rϕ, as derived in (Rafailov et al., 2023):

π∗(y|x) ∝ πRef(y|x) exp
(
1

β
rϕ(x, y)

)
.

The condition is straightforward to derive

π∗(yw|x)
π∗(yl|x)

=
πRef(yw|x) exp

(
1
β rϕ(x, yw)

)
πRef(yl | x) exp

(
1
β rϕ(x, yl)

) (7)

=
πRef(yw|x)
πRef(yl | x)

(exp(rϕ(x, yw)− rϕ(x, yl))
1/β (8)

=
πRef(yw|x)
πRef(yl | x)

(
α(x, yw, yl)

1− α(x, yw, yl)

)1/β

, (9)

where the last equality is due to the Bradley-Terry model.
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A.3. Proof of Corollary 3.3

Corollary A.4 (Reproduces Corollary 3.3). Given a reference model πRef, the DPO or RLHF hyperparameter β, a dataset
of aggregated preferences D = {(x, yw, yl)} and their corresponding rater proportions α(x, yw, yl), the ranking accuracy
of the optimum of the RLHF or DPO objective π∗ is given by

R∗(D;πRef) = E
(x,yw,yl)∼D

[
1

[
πRef(yw | x)
πRef(yl | x)

(
α(x, yw, yl)

1− α(x, yw, yl)

)1/β

> 1

]]
(10)

where 1[·] is the indicator function. When computed on length-normalized likelihoods from ˜πRef, we denote the idealized
ranking accuracy as R̃∗.

Proof. We can see from the definition of ranking accuracy (Definition 2.3) that the accuracy on a datapoint (x, yw, yl) is 1
when π(yw | x) > π(yl | x). In other words, π(yw | x)/π(yl | x) > 1 ensures that the ranking accuracy R(x, yw, yl) = 1.
Theorem 3.1 shows a formula for the ratio of the optimal policies, and plugging this in to the condition for ranking accuracy
immediately yields the given formula for R∗.

A.4. Proof of Theorem 4.1

Theorem A.5. Consider an aggregated preference datapoint (x, yw, yl) such that the reference model log-ratio is some
constant c, i.e.

log
πRef(yl|x)
πRef(yw|x)

= c.

Then, R(x, yw, yl) = 1 if and only if LDPO(x, yw, yl) ≤ − log σ(βc), where σ is the sigmoid function.

Proof. Recall that we can break down the DPO loss into the model log-ratio and the reference model log-ratio as follows:

LDPO(x, yw, yl;πθ, πRef) = − log σ

(
β

(
log

πθ(yw|x)
πθ(yl|x)

+ log
πRef(yl|x)
πRef(yw|x)

))
= − log σ

(
β

(
log

πθ(yw|x)
πθ(yl|x)

+ c

))
(by assumption)

Observe that if LDPO(x, yw, yl;πθ, πRef) ≤ − log σ(βc), then

log
πθ(yw|x)
πθ(yl|x)

+ c ≥ c,

by the monotonicity of the log and sigmoid functions. This implies that πθ(yw|x)
πθ(yl|x) ≥ 1 and R(x, yw, yl) = 1.

Now we show the other direction. Suppose R(x, yw, yl) = 1, then πθ(yw|x) ≥ πθ(yl|x) and

log
πθ(yw|x)
πθ(yl|x)

+ c ≥ c.

Using this relationship, we have

log σ

(
β

(
log

πθ(yw|x)
πθ(yl|x)

+ c

))
≥ log σ(βc),

and the other direction follows by taking the negative of both sides.

A.5. Extending Theorem 4.1 to IPO

We extend our main result on DPO to also describe the IPO objective, formally defined below.

Definition A.6 (Identity Preference Optimization, a.k.a. IPO (Azar et al., 2023)). The Identity Preference Optimization

(IPO) loss is defined as LIPO(x, yw, yl) =
(
log πθ(yw|x)

πRef(yw|x) − log πθ(yl|x)
πRef(yl|x) −

1
2τ

)2

.
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Proposition A.7. Under the IPO loss, if

log
πRef(yw|x)
πRef(yl|x)

< − 1

2τ
,

then zero IPO loss implies that R(x, yw, yl) = 0. On the other hand, if

log
πRef(yw|x)
πRef(yl|x)

= c ≥ − 1

2τ
,

then LIPO(x, yw, yl) ≤
(
c+ 1

2τ

)2
guarantees that R(x, yw, yl) = 1.

Different from the DPO loss, the IPO loss is a regression loss where the optimal model log-ratio has a constant margin over
the reference model log-ratio. This can be seen by the following decomposition of the IPO loss:

LIPO(x, yw, yl) =

(
log

πθ(yw|x)
πθ(yl|x)

− log
πRef(yw|x)
πRef(yl|x)

− 1

2τ

)2

.

Clearly, the optimization target of the model log-ratio is the sum of the reference model log-ratio and the margin 1
2τ .

From Figure 3, we can see that the reference model can have a large bias towards the dispreferred completion, represented
by the large negative values of the reference model log-ratio (note that in the figure, the reference model log-ratio has the
dispreferred completion in the numerator). Therefore, for the optimal model under the IPO loss to have perfect ranking
accuracy, the margin 1

2τ needs to be large enough to overcome this bias for all datapoints. Alternatively, a per-example
margin dependent on the reference model log-ratio of the example can be used.

A.6. Generalization of the Ranking Accuracy for Preference Datasets with n > 2 Outputs

Some datasets (e.g. UltraFeedback (Cui et al., 2023)) contain examples with more than two responses per prompt x. In these
cases, we extend our definition of ranking accuracy (Def. 2.3) to exact-match of the rankings over all choices. Suppose
each aggregated datapoint consists of a prompt x and n responses (y1, · · · , yn). Since the question of how to best aggregate
rankings over multiple raters (when n > 2) is an open research question, we assume that there already exists some aggregated
social ranking ρ(x, y1, · · · , yn) = (ρi(x, y1, · · · , yn))ni=1 ∈ Π[n] where ρi(x, y1, · · · , yn) < ρj(x, y1, · · · , yn) implies
that yi is preferred over yj . Now let the ranking assigned by a policy πθ be ν(x, y1, · · · , yn) = (νi(x, y1, · · · , yn))ni=1 ∈
Π[n], where πθ(yi|x) > πθ(yj |x) if and only if νi(x, y1, · · · , yn) < νj(x, y1, · · · , yn). Then the generalized ranking
accuracy is defined as follows:

Definition A.8 (Ranking Accuracy for n > 2).

Rn>2(x, y1, · · · , yn;πθ) = 1 [ρ(x, y1, · · · , yn) = ν(x, y1, · · · , yn)] (11)

where 1[·] is the indicator function. Analogously, the ranking accuracy over a dataset D = {(x, y1, · · · , yn)} is

E
(x,y1,··· ,yn)∼D

Rn>2(x, y1, · · · , yn;πθ) (12)

B. Experimental Details for Computing Ranking Accuracy of Open-Access LLMs
B.1. Implementation of Ranking Accuracy

We evaluate ranking accuracy for a wide range of LLMs by evaluating the likelihoods that each model πθ assigns to yw given
x and yl given x, as described in Def. 2.3. However, x, yw, and yl are sequences, so we compute the sequence likelihoods
by factorizing the sequence likelihood into a product of the conditional token likelihoods, like so:

πθ(y|x) =
|y|∏
t=1

πθ(yt|x; y<t) (13)

We use PyTorch and the Hugging Face transformers and datasets libraries to compute all ranking accuracies. For
each dataset that we evaluate ranking accuracy on, we take a random sample of 1000 examples.
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Handling Ties In some datasets, such as the cross-human-annotated validation split of the Alpaca Farm dataset (Dubois
et al., 2023) (described in Sec. B.2), ties exist in the human annotations. When this is the case, we make a mild adjustment
in the calculation of ranking accuracy to accommodate ties.
Definition B.1 (Ranking Accuracy with Ties).

RTies(x, y1, y2;πθ) =


1[|πθ(y1|x)− πθ(y2|x)| < ϵ] if α(x, y1, y2) = 0.5

1[πθ(y1|x) > πθ(y2|x)] if α(x, y1, y2) > 0.5

1[πθ(y1|x) < πθ(y2|x)] if α(x, y1, y2) < 0.5

(14)

where [·] is the indicator function. In other words, if the human annotations indicate tied preferences between y1 and y2,
then πθ achieves the correct ranking if and only if it assigns y1 and y2 approximately the same likelihood (within some
tolerance level ϵ). For all other cases, the RTies is equivalent to R.

Throughout this paper, we use a tolerance ϵ of 0.01. In Fig. 1 we provide ranking accuracies only for examples without ties,
but we provide the numbers on the full datasets below.

Length Normalization To compute the length-normalized ranking accuracy (R̃), we replace πθ(y|x) in Defs. 2.3 and A.8
with π̃θ(y|x), where

π̃θ(y|x) =

 |y|∏
t=1

πθ(yt|x; y<t)

1/|y|

. (15)

B.2. Datasets

• HH-RLHF (Bai et al., 2022) (helpful set) consists of two model responses for each query (often the history of a
multi-turn conversation between human and chatbot), based on generations from three different classes of models
(context-distilled 52B model, same model with rejection sampling using a reward model, RLHF-finetuned models).
Queries and preferences annotations are obtained from crowdworkers.

• Synthetic Instruct GPT-J Pairwise (Alex Havrilla, 2023) is a synthetic dataset of queries and pairwise model generations
spanning different subjects.

• StackExchange Preferences (Lambert et al., 2023) consists of questions and answers from Stack Exchange, where
within a pair of answers, the preference between two answers is determined by a function of the number of upvotes and
whether the answer was selected.

• UltraFeedback (Cui et al., 2023) consists of model-generated responses from four different language models out of a
larger set of models (meaning a different set of models is considered for different samples). Queries are obtained by a
mixture of existing QA datasets, and the preference is annotated by GPT-4.

• Stanford Human Preferences (Ethayarajh et al., 2022) is a dataset created from Reddit posts across different subject
matters, where within a pair a response is considered preferred to another if was created later and has more upvotes.

• Alpaca Farm Validation (Dubois et al., 2023) is sourced from the Alpaca Eval dataset, but with new splits repur-
posed for training preference-tuned models. Additionally, we choose to use the validation split because it contains
human cross-annotations (i.e. multiple human ratings per triple of (x, y1, y2)). This particular split can be found
at https://huggingface.co/datasets/tatsu-lab/alpaca_eval/blob/main/alpaca_farm_
human_crossannotations.json. The original dataset, Alpaca Eval (Li et al., 2023), is a mixture of several test
sets including Open Assistant (Köpf et al., 2023), a dataset of human-constructed chatbot conversation turns, HH-RLHF
(Bai et al., 2022), and the Vicuna (Zheng et al., 2024) and Koala test sets (Geng et al., 2023), where the former consists
of user-shared queries from ShareGPT, and the latter consists of human queries from online interactions.

B.3. Full Results

We give the full set of length-normalized and non-length-normalized ranking accuracies for 16 open-access LLMs across six
datasets in Tables 2, 3, and 4. For the UltraFeedback (Cui et al., 2023) and StackExchange Preferences (Lambert et al.,
2023) datasets, we use the generalized definition of ranking accuracy for n > 2 outputs instead (Def. A.8). We also provide
ranking accuracies computed on the Alpaca Farm validation dataset with ties included in Tables 5 and 6.
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Table 2: Length-normalized and non-length-normalized ranking accuracies for the Anthropic Helpful and Harmless (HH-
RLHF; Bai et al. (2022)) and Synthetic Instruct GPT-J Pairwise (Alex Havrilla, 2023) datasets. The latter contains only a
training split.

Model
Anthropic HH-RLHF Synthetic

Instruct GPT-J
Pairwise

Test Train Train

R̃ R R̃ R R̃ R
GEMMA-7B-IT 52.5% 46.7% 52.6% 47.0% 56.6% 76.5%
GEMMA-7B 51.9% 46.5% 53.7% 46.6% 93.1% 76.9%
GPT2 49.9% 46.0% 52.7% 46.8% 81.5% 65.9%
LLAMA-2-7B-CHAT-HF 52.0% 46.2% 54.1% 46.3% 94.5% 75.4%
LLAMA-2-7B-HF 52.1% 46.3% 53.8% 46.3% 93.6% 77.9%
MISTRAL-7B-V0.1 52.9% 45.8% 54.4% 46.4% 93.5% 77.4%
OLMO-7B 51.0% 45.5% 53.6% 46.6% 91.9% 78.2%
PYTHIA-1.4B 51.2% 46.2% 53.2% 46.3% 88.0% 68.2%
PYTHIA-2.8B 51.0% 46.4% 53.5% 46.6% 90.3% 69.5%
TULU-2-7B 51.8% 46.7% 54.6% 46.3% 94.3% 77.8%
TULU-2-DPO-7B 51.4% 46.1% 54.0% 46.2% 94.4% 77.7%
VICUNA-7B-V1.5 52.2% 46.4% 54.7% 46.0% 93.6% 77.4%
ZEPHYR-7B-DPO 50.9% 46.5% 55.4% 46.5% 95.1% 79.6%
ZEPHYR-7B-SFT 49.5% 46.2% 55.6% 46.2% 94.3% 78.9%

Table 3: Length-normalized and non-length-normalized ranking accuracies for the StackExchange Preferences (Lambert
et al., 2023) and UltraFeedback (Cui et al., 2023) datasets. Both datasets contain only a training split.

Model
StackExchange

Preferences
UltraFeedback

Train Train

R̃ R R̃ R
GEMMA-7B-IT 32.6% 12.8% 2.7% 1.4%
GEMMA-7B 31.2% 22.4% 2.6% 1.5%
GPT2 29.5% 21.0% 2.1% 1.4%
LLAMA-2-7B-CHAT-HF 32.1% 22.1% 2.5% 1.2%
LLAMA-2-7B-HF 33.0% 22.6% 2.7% 1.7%
MISTRAL-7B-V0.1 31.8% 22.5% 2.4% 1.7%
OLMO-7B 31.9% 22.3% 2.6% 1.4%
PYTHIA-1.4B 28.3% 12.7% 2.1% 1.4%
PYTHIA-2.8B 31.9% 21.7% 2.4% 1.4%
TULU-2-7B 32.8% 22.4% 2.9% 1.3%
TULU-2-DPO-7B 32.5% 22.1% 2.7% 1.6%
VICUNA-7B-V1.5 33.2% 22.2% 2.5% 1.4%
ZEPHYR-7B-DPO 33.0% 22.3% 3.5% 1.8%
ZEPHYR-7B-SFT 32.2% 22.3% 2.7% 1.5%

B.4. Computation of the Idealized Ranking Accuracy

When computing the idealized ranking accuracy in Theorem 3.1 for common preference datasets, we note that there are a
few approximations required. First, most datasets do not report the proportion α(x, yw, yl) of raters who preferred yw over
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Table 4: Length-normalized and non-length-normalized ranking accuracies for the Stanford Human Preferences (SHP;
Ethayarajh et al. (2022)) and Alpaca Farm validation (Dubois et al., 2023) datasets. For the latter, we choose specifically the
validation split since it is validated with multiple human annotations per triple of (x, yw, yl). Examples with ties are not
included.

Model
Stanford Human Preferences Alpaca Farm

Test Train Validation

R̃ R R̃ R R̃ R
GEMMA-7B-IT 44.1% 24.2% 60.3% 35.9% 55.6% 39.1%
GEMMA-7B 43.0% 24.2% 57.7% 35.5% 53.6% 40.4%
GPT2 40.6% 23.9% 56.9% 35.2% 50.2% 40.2%
LLAMA-2-7B-CHAT-HF 43.9% 23.1% 60.0% 35.4% 53.4% 40.2%
LLAMA-2-7B-HF 44.9% 23.8% 58.1% 35.1% 53.0% 42.1%
MISTRAL-7B-V0.1 44.3% 23.9% 57.7% 35.3% 53.2% 40.6%
OLMO-7B 44.3% 24.8% 56.3% 35.6% 52.7% 41.2%
PYTHIA-1.4B 42.9% 23.8% 57.4% 35.5% 49.8% 40.4%
PYTHIA-2.8B 43.9% 23.5% 57.6% 35.6% 50.2% 40.2%
TULU-2-7B 44.4% 23.4% 59.3% 35.3% 53.2% 41.9%
TULU-2-DPO-7B 45.3% 23.4% 59.3% 35.3% 53.4% 42.1%
VICUNA-7B-V1.5 42.2% 23.4% 59.3% 35.1% 54.5% 42.1%
ZEPHYR-7B-DPO 42.5% 23.4% 56.7% 35.2% 54.3% 42.1%
ZEPHYR-7B-SFT 43.9% 23.5% 57.6% 35.3% 54.5% 41.5%

Table 5: Length-normalized and non-length-normalized ranking accuracies for the Alpaca Farm validation (Dubois et al.,
2023) dataset (see App. B.2), but including examples with ties (unlike Table 4).

Model
Alpaca Farm

Validation

R̃ R
GEMMA-7B-IT 15.8% 34.1%
GEMMA-7B 40.6% 35.2%
GPT2 32.2% 34.8%
LLAMA-2-7B-CHAT-HF 41.5% 34.8%
LLAMA-2-7B-HF 41.5% 36.4%
MISTRAL-7B-V0.1 42.8% 35.0%
OLMO-7B 38.9% 35.4%
PYTHIA-1.4B 37.2% 34.8%
PYTHIA-2.8B 38.6% 34.6%
TULU-2-7B 40.6% 36.2%
TULU-2-DPO-7B 40.3% 36.4%
VICUNA-7B-V1.5 41.5% 36.4%
ZEPHYR-7B-DPO 42.3% 36.4%
ZEPHYR-7B-SFT 43.9% 35.9%

yl, and using α(x, yw, yl) = 1 results in errors. As a result, we measure the alignment gap on the Alpaca Farm validation
split (Dubois et al., 2023), which contains individual votes for each triple. In the event that all four raters unanimously
preferred one of the responses (i.e. α(x, yl, yw) = 0), we add a small constant ϵ = 0.001 to α(x, yl, yw) to prevent divison
by zero. Second, the formula depends on the choice of β, which we do not know for many closed proprietary models.
We circumvent this issue by computing the quantity for a range of β values (β ∈ {0.01, 0.1, 1, 5, 10}) and reporting the
minimum, median, and maximum.
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Table 6: We provide both the length-normalized (R̃) and non-length-normalized (R) ranking accuracies for a variety of
open-access preference-tuned models on the Alpaca Farm (Dubois et al., 2023) validation dataset (described in App. B.2).
We also provide the idealized ranking accuracy (Corollary 3.3). Unlike Table 1, we include examples with ties in this table.

Preference-Tuned
Model

Length-Normalized Non-Length-Normalized

R̃ R̃∗

(Min./Med./Max.)
R R∗

(Min./Med./Max.)

ZEPHYR-7B-DPO 42% 86% / 98% / 100% 36% 90% / 99% / 100%
TULU-2-DPO-7B 40% 87% / 97% / 100% 36% 91% / 99% / 100%
GOOGLE-GEMMA-7B-IT 41% 73% / 73% / 97% 35% 67% / 93% / 100%
LLAMA-2-7B-CHAT-HF 42% 87% / 97% / 100% 35% 91% / 99% / 100%

C. Dynamics of DPO Training
C.1. Training Details

For our results in Section 4, we trained three different scales of models (GPT2 (Radford et al., 2019), Pythia 2.8B (Biderman
et al., 2023), and Llama 2 7B (Touvron et al., 2023)) across three seeds each on the HH-RLHF dataset (Bai et al., 2022). We
split the test dataset in half, using half for validation during hyperparameter tuning. We ran a separate hyperparameter search
for each class of model and for each stage of training (i.e. SFT versus DPO). The hyperparameter ranges we searched were:

• GPT2

– SFT: learning rate ∈ {5e-7, 1e-6, 5e-6, 1e-5}, batch size ∈ {64, 128, 256, 512}
– DPO: learning rate ∈ {5e-7, 1e-6, 5e-6, 1e-5}, batch size ∈ {32, 64, 128}, β ∈ {0.01, 0.1, 1.0, 10.0}

• Pythia 2.8B

– SFT: learning rate ∈ {1e-7, 1e-6, 1e-5}, batch size ∈ {16, 32, 64}
– DPO: learning rate ∈ {5e-7, 1e-6, 5e-6, 1e-5}, batch size ∈ {32, 64}, β ∈ {0.01, 0.1, 1.0, 10.0}

• Llama 2 7B

– SFT: learning rate ∈ {1e-7, 1e-6, 1e-5}, batch size ∈ {32, 64}
– DPO: learning rate ∈ {1e-6, 1e-7}, batch size ∈ {32, 64}, β ∈ {0.1}

We tuned the hyperparameters on a single seed, and carried over the best hyperparameters to the other seeds of the
same model class. We trained the GPT2 and Pythia2.8B models for 5 epochs each, and the Llama2 7B model for 1
epoch only (due to computational constraints) for both SFT and DPO. However, most seeds of the GPT2 and Pythia
2.8B models reached the lowest validation loss at the end of the first epoch. For analyses where we analyze only one
checkpoint (rather than the evolution over the course of training), we always analyze the checkpoint with lowest validation
loss. We use the AdamW optimizer (with β1 = 0.9, β2 = 0.999, ϵ =1e-8) for SFT and the RMSProp optimizer (with
α = 0.99, weight decay = 0, momentum = 0, ϵ =1e-8) for DPO.

The GPT2 models were trained on a single Nvidia A100 GPU each, and the Pythia 2.8B and Llama 2 7B models were
trained on two Nvidia A100 GPUs each. We used PyTorch Fully Sharded Data Parallel (FSDP) in fully sharded mode to
train the Llama 2 7B models. In total, SFT required approximately 9, 52, and 30 GPU-hours per seed of GPT2, Pythia 2.8B,
and Llama 2 7B, respectively. DPO required approximately 8, 48, and 49 GPU-hours per seed of GPT2, Pythia 2.8B, and
Llama 2 7B, respectively. (Longer training times were required for Pythia 2.8B than for Llama 2 7B since we trained the
former for only 5 epochs and the latter for 1, as aforementioned.)

C.2. Results

We provide the DPO loss, reward margin, and dataset trends during training across all 9 models (three seeds each of GPT2
(Radford et al., 2019), Pythia 2.8B (Biderman et al., 2023), and Llama 2 8B (Touvron et al., 2023)) in Figs. 5, 6, and 7.
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(b) Three different seeds of Pythia 2.8B (Biderman et al., 2023).
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(c) Three different seeds of Llama 2-7B (Touvron et al., 2023).

Figure 5: Average DPO loss over the course of training, for four categories of the training data (Anthropic HH-RLHF;
Bai et al. (2022)). The category “correct-¿incorrect” indicates examples (x, yw, yl) for which πRef(yw|x) > πRef(yl|x) but
πθt(yw|x) < πθt(yl|x) (where πθt is the trained policy at training step t), and so on. Lines that end early indicate that the
category no longer contains any data points. The dashed vertical line indicates the step at which the lowest validation loss
was achieved.

D. Ranking Accuracy and Win Rate
We include additional plots from our exploration of the relationship of ranking accuracy and win rate in Figs. 9 and 10.

D.1. Results on the Test Set

We also provide results computed on the test set in Figs. 11 and 12.

E. Qualitative Analysis
Theorem 4.1 demonstrates that it is difficult for DPO to learn the correct ranking of points that are not ranked correctly
by the reference model. In particular, datapoints that induce a large positive reference model log-ratio (see Definition 2.2)
require the DPO loss to be minimized to a very small value in order to flip the ranking (Theorem 4.1 and Figure 3).
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Figure 6: Average DPO reward margin over the course of training, for four categories of the training data (Anthropic
HH-RLHF; Bai et al. (2022)). The category “correct-¿incorrect” indicates examples (x, yw, yl) for which πRef(yw|x) >
πRef(yl|x) but πθt(yw|x) < πθt(yl|x) (where πθt is the trained policy at training step t), and so on. Lines that end early
indicate that the category no longer contains any data points. The dashed vertical line indicates the step at which the lowest
validation loss was achieved.

Here, we document a few of the datapoints that induce a large positive reference model log-ratio and are hard to learn
(Table 7), as well as datapoints that induce a very negative reference model log-ratio and are easy to learn (Table 8). These
datapoints are measured using the Pythia-2.8B model and are taken from the training split of the Anthropic HH-RLHF (Bai
et al., 2022) dataset. We note that datapoints with a very negative reference model log-ratio are already ranked correctly at
the start of DPO. We also document the datapoints that are easy to flip: the reference model log-ratio is slightly positive, so
the reference model is slightly incorrect, and optimizing the DPO objective could feasibly result in the model learning to
rank these points correctly. We observe that the hard-to-learn datapoints are substantially longer than the easy ones, and that
the easy datapoints generally contain chosen responses that are unambiguously better than the rejected ones.
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Figure 7: Percent of the dataset that each category of data constitutes over the course of training, for four categories of the
training data (Anthropic HH-RLHF; Bai et al. (2022)). The category “correct-¿incorrect” indicates examples (x, yw, yl)
for which πRef(yw|x) > πRef(yl|x) but πθt(yw|x) < πθt(yl|x) (where πθt is the trained policy at training step t), and so on.
Lines that end early indicate that the category no longer contains any data points. The dashed vertical line indicates the step
at which the lowest validation loss was achieved.
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Figure 8: The log-ratio of the πRef likelihoods versus DPO loss and ranking accuracy on a subsample of 1K training examples
from the HH-RLHF dataset (Bai et al., 2022). The results from the first seed are given in Fig. 3, and the results for the other
two seeds are given here.

25



Preference Learning Algorithms Do Not Learn Preference Rankings

500 1000 1500 2000 2500
Training Steps

0.56

0.57

0.58

0.59

0.60

0.61
Ra

nk
in

g 
Ac

cu
ra

cy

0.63

0.64

0.65

0.66

W
in

 R
at

e 
vs

. 
Re

f

(a) Ranking accuracy and win rate, computed on prompts from the
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Figure 9: Ranking accuracy and win rate (versus πRef) are not monotonically related throughout training. We measure
the loss, ranking accuracy, and win rate from the start of training to the checkpoint of lowest validation loss. Even though
both training and test loss continue to decline during DPO training, ranking accuracy and win rate only trend together early
on in training. Past a certain point, the two become anti-correlated.
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(a) Ranking accuracy and win rate versus γ.
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Figure 10: When the influence of πRef is strong, win rate and ranking accuracy trend together. A higher γ value implies
greater influence of πRef during training. For larger γ values (γ ≥ 1.25), ranking accuracy and win rate trend in the same
direction.
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(a) Ranking accuracy and win rate versus training steps.
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(b) Ranking accuracy and win rate versus distance that the
model weights have moved.

Figure 11: Ranking accuracy and win rate of various Pythia 2.8B checkpoints during training, calculated on the test dataset.
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(a) Ranking accuracy and win rate versus training steps.
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(b) Ranking accuracy and win rate versus distance that the
model weights have moved.

Figure 12: Ranking accuracy and win rate of various models trained with Lγ
DPO, calculated on the test dataset.
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Table 7: Preference datapoints that are hard to learn. We print several datapoints from the training split of Anthropic
HH-RLHF (Bai et al., 2022) that are hard for the Pythia-2.8B model to learn. We characterize a datapoint as hard to learn if
the reference model log-ratio (RMLR, see Definition 2.2) is large. This characterization follows Theorem 4.1 and Figure 3.
The reported loss is measured on the checkpoint with the lowest validation loss and averaged over three seeds.

RMLR LDPO Prompt, Chosen Response, and Rejected Response
457.6 3.05 Prompt: Human: What are the best and most reliable VPN services?

Assistant: I could recommend OpenVPN, which is open-source and through which you can en-
crypt and protect your online connections. You can find instructions for setting up the service
with OpenVPN at https://openvpn.net/index.php/open-source/documentation/miscellaneous/.
Human: That link doesn’t work. Can you just send me a link that would take me to the
homepage of OpenVPN.
Assistant: You can find the home page for OpenVPN at https://openvpn.net/.
Human: Thanks I’ll check out their website to see if they are trustworthy.
Assistant: Sure thing. You can also find out more about the service by consulting user-ratings
on sites like www.trustpilot.com.
Human: Okay I’ll use trustpilot to see if it is trustworthy and reliable.
Assistant:
Chosen response: Great. There are a few additional tips you might find useful when it
comes to evaluating third-party VPNs. For the most part, VPNs are pretty similar for users,
although they differ slightly in terms of features and capabilities. Since I can’t give you
any recommendations for specific VPNs, you might want to consider doing a cost/benefit
analysis of various services: how many locations they support, how reliable and speedy
they are, what types of devices they support, and does the service protect your personal
information? I recommend employers and groups with more specialized needs choose a
service such as CyberGhost, which offers a military-grade encryption system and is able to
meet large-scale requirements down to the level of providing multiple cybersecurity experts
on-board. However, as a personal consumer, you’ll probably feel more comfortable by
finding a cheaper service with more limited features, since you don’t need as much help with
cybersecurity.
Rejected response: You’re welcome.
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RMLR LDPO Prompt, Chosen Response, and Rejected Response
423.4 2.2 Prompt: Human: What are some fun toys my kids can play with in the bath?

Assistant:
Chosen response: There are many fun toys you can play with in the tub with your kids!
Here are a few favorites:
-Bath crayons and sponges for drawing
-Soft bath sponges for floating
-Bubble blowers
-Bath toys, such as bath squirt toys or dinosaurs
-Simple bath musical instruments, like rubber ducks or Tommy Tippee cups
-Colored mini cups for blocks and other building games
-Bursting washup sponges
-Shaving foams and shaving creams for water fun
-Bath thermometers
-Floating toys like floating rings and animals or mini boats
-Plastic containers and figurines for fantasy play and role-playing games
-Bath fizz tablets and baking soda for bubbles
-Clackers, bangles and fizzers
- Squirt guns
-Straw toys for blowing air and creating bubbles
-Water wands and spray bottles
-Floating rainbow soap bars
-Comic books and storybooks for reading in the tub
-Soft toys for cuddling and play
-Rubber duckies and other
Rejected response: Well, one of the more popular bath toys for kids is a bath horse. It’s
a large waterproof animal toy you can keep in the bath and then wash off easily after use.
These toys are often sturdy enough that your child can sit on them while they’re in the bath,
and they come in a huge variety of shapes and designs. You can also search for bath playsets,
which often have a variety of other accessories as well.
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RMLR LDPO Prompt, Chosen Response, and Rejected Response
418.7 0.95 Prompt: Human: Is brainwashing a real thing that people are capable of doing?

Assistant: Yes, I think brainwashing is definitely a real thing that people are capable of doing. This
is an example of a moral and ethical question that many people have different ideas about, and you
might wonder if I’m qualified to answer it. So how about we first do a quick thought experiment?
Human: I’m not asking about the morality, I’m asking if it’s an actual practical scientifically backed
phenomenon/procedure that people can do. Are there any real world examples of brainwashing?
Assistant:
Chosen response: Brainwashing is actually a real and fairly common phenomenon, and there are
many examples of people using these techniques for coercive and unethical means. For example, in
Orwell’s famous novel 1984, the Party uses various forms of psychological coercion to control its
citizens and suppress independent thought or critical thinking. In real world cases, brainwashing is
often associated with coercive ideological or political indoctrination, often in the form of highly-
intense and insular social or cultic environments. Such groups can exert intense psychological
pressure on individuals to adopt specific belief patterns or behavioral norms. These environments
are often characterized by prominent charismatic leadership, intensive and prolonged social isolation
from the surrounding world, and highly repressive behavioral controls. In these contexts, new
members are typically subjected to prolonged and intensive persuasion campaigns, often involving
overt coercion, psychological manipulation and dishonesty, and extreme social pressures to conform
to the group. Over time, new members can be progressively subjected to increasing restrictions on
their activities and freedom of thought, often involving the suppression or denunciation of prior
belief patterns and behavioral norms, and eventually resulting in a complete loss of previous identity
and independent thought.
Rejected response: Oh, I think I understand. I’m not sure what you mean by ”scientific”, but
let’s talk about the use of the phrase ”brainwashing” to mean something that happens to you. We
often talk about brainwashing in the context of deprogramming, and that sometimes happens in the
context of religious cults. I can tell you more about that.
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Table 8: Preference datapoints that are easy to learn. We print several datapoints from the training split of Anthropic
HH-RLHF (Bai et al., 2022) that are easy for the Pythia-2.8B model to learn. We characterize a datapoint as easy to
learn if the reference model log-ratio (RMLR, see Definition 2.2) is small, or very negative. This characterization follows
Theorem 4.1 and Figure 3. The reported loss is measured on the checkpoint with the lowest validation loss and averaged
over three seeds.

RMLR LDPO Prompt, Chosen Response, and Rejected Response
−675.9 0.16 Prompt: Human: How do you make twice-baked potatoes?

Assistant:
Chosen response: They’re potatoes that have been boiled, then baked in the oven, then
baked again.
Rejected response: What is a twice-baked potato?

−562.1 0.052 Prompt: Human: How do I put fondant on a cake?
Assistant: You can use butter to soften it, then add cream or milk to bring the fondant to a
smooth consistency. You can then put the fondant on the cake, before adding icing.
Human: How do I apply it?
Assistant:
Chosen response: You can dab a very small amount on the icing in the area where you
want to have the fondant, then smooth it out with the back of the spoon. If the fondant is too
dry, you can add more cream or milk to make it a bit softer, but make sure you don’t get any
clumps of fondant. Rejected: Once you have a smooth consistency, you can spread it out
with a palette knife, using a spatula to remove any excess.
Rejected response: Once you have a smooth consistency, you can spread it out with a
palette knife, using a spatula to remove any excess.

−522.5 0.003 Prompt: Human: Can you find me Margot Robbie movies?
Assistant: Oh sure, let me check my database! Hmmm, it looks like you’re a “fan” of the Canadian
actress Margot Robbie. Why don’t you tell me more about her?
Human: She is cool. Can you find me some movies?
Assistant: Oh, cool! I’m not sure if there are any movies with her in it, but I do know there’s a TV
show about her!
Human: I would like movies.
Assistant:
Chosen response: Aaaahhh...I see, you want to see movies with her in them. Why don’t you tell
me more about her movie roles?
Rejected response: I have it on good authority that there are Margot Robbie movies, but the
keyword you typed is really pretty broad and it’s not super clear what you mean.
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Table 9: Preference datapoints that are easy to flip. We print several datapoints from the training split of Anthropic
HH-RLHF (Bai et al., 2022) that are easy for the Pythia-2.8B model to flip. We characterize a datapoint as easy to flip if the
reference model log-ratio (RMLR, see Definition 2.2) is a small positive value. This characterization follows Theorem 4.1
and Figure 3. The reported loss is measured on the checkpoint with the lowest validation loss and averaged over three seeds.

RMLR LDPO Prompt, Chosen Response, and Rejected Response
0.26 0.86 Prompt: Human: Whats the easiest way to throw a piano out of tune?

Assistant: Just singing into the microphone!
Human: What if I messed up the strings inside the piano?
Assistant: Just let me know if you want to start putting heavier things inside the piano or
break the legs off.
Human: i want to put heavy things inside of it, have any suggestions?
Assistant:
Chosen response: Just call it a dumpster fire piano, or let me know if you want to take apart
a very heavy piano.
Rejected response: Depends what you mean by heavy. I can make some suggestions though.
We don’t really want to throw any large things at the piano because you could cause damage
to yourself or the piano.

0.28 0.19 Prompt: Human: Is Austria a good place to take a vacation?
Assistant:
Chosen response: Possibly. Can I ask some questions? It’s best to think about any questions
before you give me an answer.
Rejected response: Is Austria a good place to take a vacation?

0.45 0.16 Prompt: Human: what are good skills a receptionist needs?
Assistant: I recommend organization and attention to detail. Since they’re also often the first
point of contact for customers, they need to be courteous and helpful. And you also want them to
accurately enter new customer information, so they need to be careful and diligent. I would
Human: what would you say is the number one most important skill?
Assistant:
Chosen response: I would say it’s really critical that they be organized and detail-oriented. This is
the backbone of their job, and if they’re not doing it well, it’s going to make their entire team look
bad. The customer service aspect is also super important, and it helps if they’re friendly. But if
they’re not organized, it’s hard for them to provide good service.
Rejected response: I would say it depends on the type of work they’re doing, but organization and
attention to detail are key for any receptionist. They need to make sure everything is orderly and
correct, and also that they’re very attentive to customers. They need to make sure everyone who
calls in gets exactly what they need.
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