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ABSTRACT

Learning lighting adaption is a key step in obtaining a good visual perception and
supporting downstream vision tasks. There are multiple light-related tasks (e.g.,
image retouching and exposure correction) and previous studies have mainly inves-
tigated these tasks individually. However, we observe that the light-related tasks
share fundamental properties: i) different color channels have different light proper-
ties, and ii) the channel differences reflected in the time and frequency domains are
different. Based on the common light property guidance, we propose a Learning
Adaptive Lighting Network (LALNet), a unified framework capable of processing
different light-related tasks. Specifically, we introduce the color-separated features
that emphasize the light difference of different color channels and combine them
with the traditional color-mixed features by Light Guided Attention (LGA). The
LGA utilizes color-separated features to guide color-mixed features focusing on
channel differences and ensuring visual consistency across channels. We intro-
duce dual domain channel modulation to generate color-separated features and a
wavelet followed by a vision state space module to generate color-mixed features.
Extensive experiments on four representative light-related tasks demonstrate that
LALNet significantly outperforms state-of-the-art methods on benchmark tests and
requires fewer computational resources. We provide an anonymous online demo at
https://xxxxxx2025. github.io/LALNet/.
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Figure 1: Our LALNet significantly outperforms state-of-the-art methods on four representative
benchmark tests of light-related image enhancement, including image retouching, tone mapping,
low-light enhancement, and exposure correction.

1 INTRODUCTION

Photography is the art of light. Images taken under poor lighting conditions often suffer from poor
quality, which not only affects image visual presentation but also poses challenges to subsequent
computer vision tasks such as target detection and tracking. Therefore, learning adaptive lighting
becomes a critical step in obtaining a good visual perception and supporting downstream vision tasks.
This process is similar to the perception of the human visual system, that is, light adaptation, which
enables us to maintain stable visual perception under diverse lighting environments.

Many tasks in computer vision aim to achieve light adaptation, 1nclud1ng image retouching (
, ), tone mapping ( , , ), low light
enhancement ( , ; s ), and exposure correctlon (

, ). The common goal of these light-related tasks is to adjust the light level of the scene to
the perceptually optimal level, thereby revealing more visual details. However, due to the different
characterlstlcs of these light-related tasks, most of the current methods ( ,

, ) are designed to deal with the above tasks individually and are d1fﬁcult to
apply to other light-related tasks. For example, image retouching ( ; , )
aims to enhance the aesthetic visual quality of images affected by light defects, often requiring special
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Figure 2: Motivation of our method. Visualization of different color channel differences and statistical
DWT spectral energy distributions of different tasks.

attention to global light; tone mapping ( ; , ) preserves rich details
by compressing high dynamic range light to low dynamlc range, focusmg more on adaptation to
high dynamic range light; low-light enhancement ( , , ) reveals more
details by boosting the brlghtness of dark areas, but requires special processmg of noise; and exposure
correction ( , , ) must adjust the brightness of both underexposed
and overexposed scenes to achleve clearer images. The different characteristics of these tasks make
ex1st1ng methods inconsistent in performance on multiple tasks. Although some works ( ,

, ) have attempted to perform light-related tasks with a unified architecture,
the 1nsufﬁ01ent analysis of light-related task specificity has resulted in unsatisfactory performance
compared to methods designed for these individual tasks.

Interestingly, can a unified framework be designed to handle these light-related tasks, just as the
human visual system can adapt to a variety of lighting environments? Motivated by this question, we
aim to design a unified framework capable of handling multiple light enhancement tasks separately.

To this end, we delve deep into analyzing the common light properties of these light-related tasks
and utilize them to inspire the design of our unified framework. We observe two key insights from
light-related tasks: i) different color channels have different light properties; ii) the channel
differences reflected in the time and frequency domains are different. To analyze these differences,
we employ the Discrete Wavelet Transform ( , ) to decompose the input image into
low-frequency and high-frequency components, and statistics on the energy distribution of the R/G/B
channels based on the square of the pixel values separately. Fig. 2 illustrates the color channel
attributes of two light-related task images in the time and frequency domains. It can be observed that
the light properties of different channels differ significantly and that there is no fixed pattern between
the different images. For example, for the first image, the G-channel exhibits a more balanced
luminance distribution, while for the second image, the R-channel performs better in this regard. On
the other hand, the frequency domain exhibits channel differences that are different from the time
domain. For example, in the first image, the G-channel is brighter, but the R-channel has the highest
energy distribution in the frequency domain. This illustrates that capturing channel differences in
the time and frequency domains is different. Channel differences cannot be fully characterized in
the time or frequency domains alone. More analysis is prov1ded in the appendlx Moreover, it is
well known that the specific attributes ( s s ) of
light-related tasks are mainly embodied in the low frequency components, whereas the details of the
contents are more related to the high-frequency components. These findings highlight the importance
of learning adaptive lighting by leveraging distinctive features of different color channels in the time
and frequency domains.

Motivated by the above light properties, we propose a unified light adaptation framework, namely
LALNet. Our method leverages the potential channel light differences to guide effective adaptive
lighting. We decompose the light adaptation problem into two sub-tasks: (i) light adaptation,
which addresses light variations under different light conditions, and (ii) detail enhancement, which
preserves and refines image details while performing adaptive lighting. We begin to learn adaptive
light enhancement from downsampled low-resolution images, optimizing for low computational
complexity. To implement light adaptation, we propose a dual-branch architecture comprising channel
separation and channel mixing. The channel separation branch employs the Dual Domain Channel
Modulation (DDCM) module to extract color-separated features, focusing on light differences and
color-specific luminance distributions for each channel in the frequency and time domains. In the
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channel mixing branch, we apply wavelet feature modulation and vision state space module to
integrate color-mixed lighting information, capturing inter-channel relationships and lighting patterns
that achieve balanced light enhancement. A key component of our framework is Light Guided
Attention (LGA), which utilizes color-separated features to guide color-mixed light information for
adaptive lighting. This mechanism enhances the network’s capability to perceive changes in channel
luminance differences and ensure visual consistency and color balance across channels. Consequently,
our network is effectively adaptive to light variations while attending to feature differences across
channels. Finally, we employ an iterative detail enhancement strategy to recover the image resolution
level by level while enhancing the details. We conduct comprehensive experiments and demonstrate
the state-of-the-art performance of our LALNet on four light-related tasks, as shown in Fig.

Our contributions can be summarized as follows:

o In this paper, we propose a unified light adaptation framework inspired by the common light
property, namely the Learning Adaptive Lighting Network (LALNet).

e We introduce the Dual Domain Channel Modulation to capture the light differences of
different color channels and combine them with the traditional color-mixed features by Light
Guided Attention.

e Extensive experiments on four representative light-related tasks show that LALNet signifi-
cantly outperforms state-of-the-art methods in benchmarking and that our method requires
fewer computational resources.

2 METHODS

2.1 MOTIVATION

Previous studies (Cai et al., 2023; Li et al., 2024a; Zhang et al., 2024; Su et al., 2024) for light-
related tasks, such as tone mapping and low-light enhancement, are often tailored to individual tasks,
leading to suboptimal performance across multiple scenarios. These frameworks typically fail to
account for the common properties shared across different lighting-related tasks, which limits their
generalizability. As a result, many frameworks are either overly specialized or inefficient when faced
with multiple tasks. This leads to performance inconsistencies, especially when frameworks designed
for specific tasks are applied to others. For instance, Retinexformer focuses on separating reflection
and illumination to enhance low-light images, but its underlying Retinex theory is inapplicable to
tasks such as tone mapping and image retouching. This limitation is evident in scenarios where low-
light enhancement methods struggle to maintain color fidelity during tone mapping. Our motivation
is rooted in the observation that, despite the diverse nature of light-related tasks, there are key shared
properties: distinct light properties across color channels and channel differences in time and
frequency domains. These channel differences manifest differently in both the time and frequency
domains, further complicating the task of adaptive lighting. To address these issues, we aim to
design a unified framework that adapts to different lighting conditions more effectively than previous
frameworks that focus on individual tasks. By analyzing these shared light properties across multiple
tasks, our framework seeks to capture the subtle differences between color channels and ensure
consistent and balanced visual outcomes across various lighting conditions.

2.2 FRAMEWORK OVERVIEW

The overall pipeline of LALNet is illustrated in Fig. 3. Our framework is composed of two key
components: light adaptation and detail enhancement. Given a low-quality (LQ) input image X,
our goal is to generate a high-quality (HQ) output Y with optimal light. We begin to learn adaptive
light enhancement from downsampled low-resolution images X3, optimizing for low computational
complexity. Subsequently, we employ the two-branch structure for extracting light features, containing
color separation and color mixing branches. The channel separation branch employs the DDCM
and group convolution modules to extract color-separated feature F g, focusing on light differences
and color-specific luminance distributions for each channel in the time and frequency domains. In
the channel mixing branch, we utilize wavelet feature modulation combined with the vision state
space module (VSSM) to extract color-mixed feature F,, promoting cross-channel interaction and
achieving balanced light enhancement. This can be expressed mathematically as:

F., = GConv(DDCM(X? 1)), Fem = VSSM(WEM(X? )). (1)

To emphasize the light differences in different channels, we introduce Light Guided Attention, which
injects the color-separated features into color-mixed features to obtain the light adaptive feature Fj,,
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Figure 3: Architecture of LALNet for light adaptation. The core modules of LALNet are: (a)
dual domain channel modulation (DDCM) that extracts color-separated features, focusing on light
differences for each channel in the frequency and time domains, and (b) light guided attention (LGA)
utilizes color-separated features to guide color-mixed light information for light adaptation.

which is described as:
Fla = LGA(cha ch)- (2)

This process ensures consistent and uniform light adaptation across the entire image and eliminates
color distortion caused by channel crosstalk. Finally, we integrate the low- and high-frequency
components via learnable differential pyramid and iterative detail enhancement, progressively refining
image resolution and enhancing fine details.

2.3 LIGHT ADAPTATION

In the literature, we generally utilize the traditional convolutions to convolve with all channels
for light-related tasks, generating RGB-mixed features. This operator can capture the interaction
information and shared features among channels. However, this also amplifies the luminance non-
uniformity and noise existing in the three channels. Notably, for light-related tasks, we have observed
that characteristic differences between the RGB channels and the time and frequency domains exhibit
different differences. There is also no consistent pattern across images. As shown in Fig. 2, the
three channels exhibit distinct differences in luminance, with one channel usually being closer to
ground truth. If we only utilize color-mixed features to adapt to light, the negative interference
between channels will also spread to all channels. Therefore, we introduce an additional branch that
extracts channel-separated features alongside the channel-mixed features. Channel-mixed features are
responsible for capturing mixed luminance and color information, while channel-separated features
guide the network to focus on channel differences. This design prompts the network to adapt to light
while attending to feature differences across channels.

2.3.1 COLOR SEPARATION REPRESENTATION
Based on the analysis in Sec. |, the time and frequency domains reflect different channel differences.
Therefore, we employ DDCM to capture the color-separated features.

Dual Domain Channel Modulation. To avoid cross-channel interference between operating channels
in the spatial domain, we process each channel independently in the frequency and time domains
and introduce learnable parameters to modulate the channels. After frequency domain processing,
the images are inverted back to the time domain. Then, to complement the color-separated feature
representation, we utilize channel attention to capture the color-separated features in the time domain.

Specifically, given an input image X, each channel of the image is denoted as X; (: = 1,2, 3). We
perform a 2D fast Fourier Transform (FFT) for X; to obtain the frequency domain representation:

Si(u,v) = F(X;)(u,v) = FFT2(X,), 3)

where S;(u,v) = R;(u,v) + j - Ii(u,v), R;(u,v) and I;(u, v) denote the real and imaginary parts,
respectively. Then, we perform convolution operations on the R;(u, v) and I;(u, v), respectively:

]‘f{i(ua U) = WRi * Rl(ua U)? il(ua U) = Wh * Ii(u7 ’U), (4)

where W, and W, are the convolution kernels, * denote convolution operation. Afterward, we
predict weight for the R;(u, v) and I;(u, v) and apply the weights to the real and imaginary parts
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after convolution:
Ag, = softmax(Wg, *R;), Ay, = softmax(Wj, L), 5)
R; (uv ’U) = RZ (u’ U)ARi7 I; (ua v) = L(u, U)Alia (6)

where W, and W, are the convolution weights, softmax denote the activation function. Subse-
quently, we reorganize the decoupled real and imaginary parts into frequency-domain signals, and
perform the Inverse Fourier Transform to obtain the decoupled time-domain information as follows:

Si(u,v) = Rj(u,v) + j - T;(u,v), (7
X, = F1(S}(u,v)) = IFFT2(S)). 8)

Finally, after concatenating channels, we capture the separated features of image in the time domain
through the channel attention module to further enhance the color-separated feature representation.

F.s = CAB(Concat (X}, X5, X})). 9

2.3.2 COLOR MIXING REPRESENTATION

In parallel, we introduce wavelet feature modulation for extracting channel mixed features. Since
light patterns often exhibit global characteristics ( , ), inspired
by ( , ), we employ wavelet transform to achleve channel mixed features F.,. The
process begins with the extraction of small-scale features using a small convolutional kernel to capture
local information. These features are then passed through a Wavelet Transform Block (WTB), where
the generated large-scale features modulate the small-scale features, enabling the network to better
integrate global light representation. The process can be represented as follows:

cA,cH,cV,cD = WTB(Convsx3(X)), (10)
Afterward, the modulated features are concatenated and further passed the convolutional layer.
F.n = Convzys(Concat(cA, cH, cV,cD)). (11)

To further enhance the network’s ability to capture global light information, we complement wavelet
feature modulation with the vision state space module ( R ). This module can efficiently
capture long-range dependencies without being computationally expensive as in transformer-based
methods. Specifically, VSSM first extends the channel to 2C by a linear layer and then splits
it into two features according to the channel dimensions, which serve as inputs to two parallel
branches. In the first branch, the channels are expanded to nC' using a linear layer, followed by
depth-wise convolution, SiLU activation, 2D selective scanning, and LayerNorm. 2D selective
scanning transforms 2D image features into linear sequences by scanning in four orientations: top-left
to bottom-right, bottom-right to top-left, top-right to bottom-left, and bottom-left to top-right. Each
sequence’s dependencies are modeled using discrete state-space equations, and the outputs from all
sequences are merged and reshaped back into a 2D format. The second branch directly activates the
original features via SiLU. Finally, the outputs of both branches are multiplied and compressed back
to the original dimensions using a linear layer. The whole process can be represented as follows:

F,F; = Chunk(Linear(F.n)), (12)
F/, = LN(SS2D(SiLU(DWConv(F1)))), F, = SiLU(Fy), (13)
Fon = MLP(LN((F} @ Fy))), (14)

where Linear(-) denote linear projection, ® denotes the Hadamard product.

2.3.3 LIGHT GUIDED ATTENTION

Although VSSM performs well in capturing long-range dependencies, it still faces problems such
as local information forgetting and channel redundancy. Moreover, color mixed features ignore
the feature differences between different channels, treating them equally in the network. However,
in light-related tasks, we have observed significant differences between color channels, with no
consistent pattern across images. These differences are crucial for adaptive lighting. For this reason,
we propose to inject color-separated features into color-mixed features by light guided attention to
perceive channel differences.
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Specifically, for first LGA module, we input the channel-mixed features F from VSSM and the
channel-separated features F from group convolution into the LGA. Subsequently, the input FL,  is
processed through a 1 x 1 convolution followed by a depthwise convolution, producing K and V
tensor with doubled the number of channels. This can be expressed mathematically as:

K,V = Convsy3(Convy sy (FLL)). (15)
The query Q is then generated from the channel-separated features F_:
Q = COHVgxg(COnle1(GCOHV3><3(F‘1:S))). (16)

We compute the attention weights by the dot product between Q and K, normalized by the softmax
function, and multiplied by V to obtain the updated features:

. QK"
Attention(Q, K, V) = softmax(—— x 7)V, 17

Q ) ( NG ) (17)
where dg is the dimension of K and 7 denotes the scaling factor. It can be remarked that we
utilize channel-separated features as QQ vectors to motivate the model to focus on channel differences.
In summary, the design of LGA enhances the adaptive representation of image features in both
spatial and channel dimensions and improves the network’s ability to capture dependencies between
image channels. After LGA processing, we can obtain the low-resolution light-adaption output Y.
Subsequently, we utilize the iterative detail enhancement strategy to enhance the detail of Y[, which
is introduced in the following.

2.4 DETAIL ENHANCEMENT

To achieve faithful reconstruction, we apply a learnable differential pyramid (LDP) to capture
high-frequency details. Through LDP, we obtain the complete multi-scale high-frequency features
Xpr = [XOp, . . ., X{z 1], tapering resolutions from H x W to QL% X % L denotes the number
of pyramid levels (L=3 in our framework). More details about the implementation of LDP are
provided in the appendix.

Using the high-frequency information Xyp captured by the LDP, we employ an iterative detail
enhancement to progressively refine the light-adaption image Y. Specifically, for the I;;, pyramid,
we first up-sample the low-frequency image Y}  and concatenate it with HF component Xf{}l, then
feed it into a residual network to predict a refinement mask M'~!. This mask allows pixel-by-pixel
refinement of the HF component, which is subsequently added to the up-sampling Y} . to generate

the reconstructed result of the current layer Yi;l. The process at the Iy, pyramid is formulated as:
M= = Res(Concat(Up(Yip), Xp ), Yix' = Up(Yie) + (X M), (19)
where Res(-) and Up(-) denote the residual block and up-sampling, respectively.

2.5 LOSS FUNCTIONS

We utilize three objective losses to optimize our network, including reconstruction loss, perceptual
loss, and high-frequency loss.

Reconstruction loss. To maintain the accuracy of the reconstructed image, we directly adopt
pixel-wise Lgre and Lgsspy loss on the final prediction Y and the ground truth G:

L

Lre =) || Yir — Gigll, (19)
=0

Lesm = 1 — SSIM(Y, G), (20)

where Y/ denotes the output of each layer of the network and G/ ;. denotes the Gaussian pyramid of
the ground truth.

High-frequency loss. To efficiently reconstruct high-frequency details, we introduce a high-frequency
loss function. By calculating the L; loss between the output high-frequency component and the
high-frequency of ground truth:

L—-1

Lur = ) || Yir — i), » 2D
1=0
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Figure 4: Visual comparisons between our LALet and the state-of-the-art methods on the HDR+
dataset (Zoom-in for best view). The error maps in the upper left corner facilitate a more precise
determination of performance differences.

where Gl denotes the HF component of the ground truth obtained through the Laplacian pyramid.
Perceptual loss. To obtain more robust adaptive light, we employ a perceptual loss function that
assesses a solution concerning perceptually relevant characteristics (e.g., the structural contents and
detailed textures):

Lp = VGGLoss(Y, G), (22)
where VGGLoss represents the 5-th convolution layer within VGG19 network ( , ).
Output loss. To summarize, the complete objective of our proposed model is combined as follows:

Liotal = &+ Lre + B Lssim +v - Lur + 1 - Lp, (23)

where «, 3, 7y, and 7 are the corresponding weight coefficients.

3 EXPERIMENTS
3.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our method on four representative light-related tasks: image retouching (HDR+
Burst Photography ( , )), tone mapping (HDRI Haven ', exposure correction
(SCIE ( , )), low-light enhancement (LOL dataset ( , )). The HDR+ dataset
is a staple for image retouching, especially in mobile photography. We utilize 675 image sets for
training and 248 for testing The HDRI Haven dataset is widely recognized as one of the benchmarks

for evaluating tone mapping ( ; , ), which includes 570 HDR images
of diverse scenes under various light COHdlthIlS We select 456 image sets for training and 114 for
testing. Following the settings of ( , ) for SICE, it contains 1000 training images,
and 24 test images. LOL dataset ( , ) contains 500 image pairs in total, with 485 pairs

used for training and 15 pairs set aside for testing.

Implementation details. We implement our model with Pytorch on the NVIDIA L40s GPU platform.
The model is trained with the Adam optimizer (3; = 0.9, 83 = 0.999) for 4 x 105 iterations. The
learning rate is initially set to 2 x 10~* and then steadily decreased to 1 x 106 by the cosine
annealing scheme during the training process. We adopt traditional PSNR and SSIM metrics on the

"https://hdri-haven.com/
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Table 1: Quantitative results of image retouching and tone mapping methods. /” denotes the
unavailable source code. Metrics with 1" and | denote higher better and lower better. The best and
second results are in red and blue, respectively.

Image Retouching in HDRPlus

Method ‘ #Params e R SSIMT  TMQIT  LPIPS]  AE] NIQE] MUSIQ
UPE (Wang et al., 20192) 999K | 2333 0852 0856  0.150 7.68 1275 66.98
HDRNet (Gharbi et al., 2017) 482K | 24.15 0845 0877 0110 7.15 1047 68.73
CSRNet (Ile et al., 2020) 37K 2372 0864 0.884  0.104 667  10.99 67.82
DeepLPF (Moran et al., 2020) 1L72M | 2573 0902 0877 0073 605 1035 70.02
LUT (Zeng et al., 2020) 502K | 2329 0855 0882  0.117 7.6 1136 67.67
CLUT (Zhang et al., 2022) 952K | 2605 0892  0.88 0088 557 11.19 67.39
LPTN (Liang et al.,, 2021b) 616K | 2480 0.884  0.885 0087 838 1244 67.99
SLUT (Wang et al., 2021) 452M | 2613  0.901 / 0.069 534 / /
SepLUT (Yang et al., 2022) 120K | 2271 0833 0879 0093 862 1226 67.89
Restormer (Zamir et al., 2022) 26.1M 25.93 0.900 0.883 0.050 6.59 10.49 68.92
LLFLUT (Zhang et al., 2024) 731K 26.62 0.907 / 0.063 5.31 / /
COTF (Li et al,, 2024a) 310K | 2378 0882 0876 0072 776 11.54 68.07
Retinexformer (Caictal,2023) | 1.6IM | 2620 0910 0879 0046 614 1075 68.93
RetinexMamba (Bai ctal,, 2024) | 4.59M | 2681 0911  0.880  0.047 589  10.52 69.02
LALNet-Tiny 246K | 2968 0939 0882 0031 481 978 70.07
LALNet-Lite 536K | 3009 0945  0.886  0.028 452  9.81 70.31
LALNet 287M | 3036 0946  0.888  0.026 448  9.87 70.29

E
H
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SepLUT CoTF RetinexMamba Ours h GT

Figure 5: Visual comparisons between our LALet and the state-of-the-art methods on the HDRI
Haven dataset (Zoom-in for best view). The error maps in the upper left corner facilitate a more
precise determination of performance differences.

RGB channel to evaluate the reconstruction accuracy. We also employ TMQI (Yeganeh & Wang,
2013), LPIPS (Zhang et al., 2018) and CIELAB color space (Zhang et al., 1996) to evaluate image
quality and perceptual quality respectively.

3.2 COMPARISON WITH STATE-OF-THE-ARTS

Quantitative comparison. The performance of the proposed unified framework is evaluated on
four light-related image enhancement tasks, namely, (1) image retouching, (2) tone mapping, (3)
exposure correction, and (4) low-light enhancement. We quantitatively compare the proposed
method with a wide range of state-of-the-art light-related methods in Tab. [, Tab. 2, and Appendix.
For image retouching, as shown in Tab. [, the proposed LALNet outperforms all the previous
SOTA methods by a large margin. Specifically, our method significantly outperforms the SOTA
methods RetinexFormer (Cai et al., 2023), LLFLUT (Zhang et al., 2024) and CoTF (Li et al., 2024a),
RetinexMamba (Bai et al., 2024), improving PSNR by 3.55 dB in the HDR+ dataset. Notably, our
LALNet-Tiny has only 246 K parameters and 1.62G FLOPs, but the performance is also significantly
better than other SOTA methods. For tone mapping, Tab. 7 reports the quantitative results on the
HDRI Haven dataset. We can see that our method has the best overall performance. Our method
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Table 2: Quantitative results of exposure correction methods on the SCIE dataset. /" denotes the
unavailable source code.

Exposure Correction in SCIE
Method Under Over Average
PSNRtT SSIM?T | PSNRT SSIMt | PSNRT SSIMt  LPIPS| NIQE| MUSIQT

URtinexNet ( s ) 17.39  0.6448 7.40 0.4543 12.40  0.5496 0.3549 12.78 49.11
DRBN ( s ) 1796  0.6767 | 1733  0.6828 17.65  0.6798  0.3891 12.06 48.77
SID ( s ) 19.51  0.6635 | 1679 0.6444 | 18.15 0.6540 0.2417 11.79 51.07

MSEC ( s ) 19.62  0.6512 | 17.59 0.6560 | 18.58  0.6536 0.2814 / /
SID-ENC ( s ) 21.30  0.6645 | 19.63  0.6941 | 20.47  0.6793 0.2797 11.49 52.29
DRBN-ENC ( s ) | 21.89  0.7071 19.09 0.7229 | 2049 0.7150 0.2318 11.23 54.15
CSRNet ( s ) 2143 0.6789 | 20.13  0.7250 | 20.78 0.7019 0.1390  10.59 61.79

CLIP-LIT ( s ) 15.13  0.5847 7.52 04383 | 11.33 0.5115 0.3560 / /
FECNet ( s ) 22.01  0.6737 | 1991 0.6961 | 2096 0.6849 0.2656  11.05 53.73

FECNet+ERL ( s ) | 2235  0.6671 20.10  0.6891 | 21.22  0.6781 / / /
CoTF ( s ) 2290  0.7029 | 20.13  0.7274 | 21.51 0.7151 0.1924 10.19 51.61
Retinexformer ( s ) 2375  0.7157 | 22.13 0.7466 | 22.94 0.7310 0.1714  10.37 55.67
RetinexMamba ( s ) 2356 0.7212 | 21.59 0.7384 | 22.58 0.7298 0.1856  10.35 53.67
LALNet-Tiny 2377 0.7135 | 22.01 0.7484 | 22.89 0.7310 0.1258 9.56 62.94
LALNet 2455  0.7291 | 22.85 0.7596 | 23.70 0.7444 0.1327 9.53 62.42

Table 3: Ablation studies of key components. Table 4: Ablation studies on different loss functions

on the HDR+ dataset.
Variants WFM DDCM LGA PSNR} SSIM{
#1 ‘/ X X 29.11 0.933 Variants Lg. Lyr  Lssim Lp PSNRT SSIMT
# v v X 2058 0935 #1 v X vV VvV 3014 094
#3 v X v 3001 0942 #w v o/ X /2988 0941
#4 X v v 3005 0942 #3 v / v X 2072 0939
#5 v v v 3036 0.946 #4 v / vV /3036 0946

has the best performance with 32.28 dB PSNR, 0.969 SSIM, 0.961 TMQI, 0.019 LPIPS, and 3.69
AE. For exposure correction, Tab. 2 report the quantitative results on the SCIE. As can be seen, our
method improves 1.19 dB PSNR and 0.0293 SSIM compared to the CoTF ( , ) (CVPR24)
method. For low-light enhancement, Our LALNet significantly outperforms SOTA methods on the
LOL-v1 dataset while requiring moderate computational and memory costs. Compared with the
recent best method RetinexMamba ( s ), LALNet achieves 1.26 dB PSNR and 0.027
SSIM. However, our method only costs 16% (6.86 / 42.82) GFLOPs.

Qualitative results. Visual comparison of LALNet and state-of-the-art light-related image enhance-
ment methods are shown in Fig. 4, Fig. 5, Fig. 6, and Fig. 10. Please zoom in for better visualization.
To better visualize the performance differences of various methods, we present an error map to show
the differences between the results of each method and the target image, as shown in the upper left
corner of the image. In the error map, the red area indicates a larger difference, while the blue area
indicates that the two are closer. It is worth noting that error maps have no special units and only
indicate errors. These figures illustrate that our LALNet consistently delivers visually appealing
results on light-related tasks. Results reveal the proposed method usually obtains better precise
color reconstruction and vivid color saturation. Meanwhile, our method faithfully reconstructs fine
high-frequency textures. For instance, in Fig. 4, our method exhibits excellent color fidelity and
restores proper global brightness and local contrast, consistent colors, and sharp details. In Figure 5,
the second best method, RetinexMamba, exhibits ghosting and dead blacks, but our LALNet still
performs well. These results prove that our method produces more pleasing visual effects. More
results and visual comparisons are presented in our Supplementary Material.

3.3 ABLATION STUDIES

We conduct comprehensive breakdown ablations to evaluate the effects of our proposed framework.

Effectiveness of specific modules. To validate the effectiveness of the DDCM, WFM, and LGA
modules in the low-frequency pathway, we set up different variants to validate the effectiveness of
the proposed framework. The results are listed in Tab. 3. Variants #1 is removing the color-separated
branch, with a performance drop of 1.25 dB. For Variants #2, we remove the LGA module and
directly sum channel-mixed and channel-separated features for light guidance. The results confirm
the effectiveness of the color-separated feature to guide the light adaptation, with a PSNR increase of
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N
S
Error Value

RetinexMamba

N
S
Error Value

CoTF RetinexMamba Ours
Figure 6: Visual comparisons between our LALet and the SOTA methods on the SCIE dataset.

0.47 dB. In Variants #3, we use group convolution replacing DDCM to extract channel-separated
features, and the PSNR is reduced by 0.35 dB. Similarly, Variants #4 apply a convolution block
to replace the WFM with a performance reduction of 0.31 dB PSNR. The results show that our
proposed DDCM and WFM are effective compared to conventional feature extraction. These results
consistently demonstrate the effectiveness of our method.

Ablation study on loss functions. To test the effect of the loss function on the performance, we
set up different variants and modified the loss function combination step by step. Tab. 4 shows that
adding L, or Lgspv loss can improve performance. In particular, the addition of L, loss results in
0.64 PSNR higher than the baseline. Meanwhile, Lyr is equally positive for the performance gain.

Selection of the number of leve}s. We validate the in- 11 5. Apjation stu dy on the pyramid levels num-
fluence of the number of pyramid levels I. As Shown  pe; The "N.A” result is not available due to insuf-
in Tab. 5, the model achieves the best performance  ficient GPU memory.

on all tested resolutions when ! = 3. When a larger
number of levels (I > 4) result in a significant de-  Metrics . F“mbeg szLe"el; —
cline in performance. This is becagse when [ is larger PSNR NA 3025 3036 2923
and the number of downsamples is more, the model SSIM NA. 0943 0946 0936
fails to reconstruct the high frequencies efficiently, TMQI NA. 0879 0.887 0879
resulting in performance degradation. When [ = 1, LPIPS N.A. 0.029  0.026 0.031
the low-frequency image resolution equals the input #PAE Zl\tlsﬁM 247115\/[ 24;;%/[ 352-2%1

3 H H 3 arams o . . .
image resolution, l.eadmg to a burst of computational FLOPs  3291G 13.84G 686G 554G
memory. Comparing | = 2 and [ = 3 demonstrates

that despite the small input image resolution of the low-frequency pathway, high-frequency details
can still be recovered efficiently in our framework.

4 CONCLUSION

This paper proposes a unified framework for learning adaptive lighting via light property guidance. In
particular, we propose DDCM for extracting color-separated features and capturing the light difference
across channels. The LGA utilizes color-separated features to guide color-mixed features for adaptive
lighting, achieving color consistency and color balance. Extensive experiments demonstrate that our
method significantly outperforms state-of-the-art methods, improving PSNR by 3.55 dB in the HDR+
dataset, 3.68 dB in the HDRI Haven dataset, 1.26 dB in the SCIE dataset, and 0.76 dB in the LOL
dataset respectively compared with the second best method.
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In this Appendix, we present the related work and provide additional results and analysis.

A RELATED WORK

Image Retouchlng Recently learning-based methods have utilized CNNs ( ;
; , ) for image retouching, particularly on datasets like

MIT—Adobe FlveK ( s ) and HDR+ ( , ). Some methods
( R ; s ) reformulate retouching images as a curve estimation task. For
instance, DeepLPF ( , ) optimizes local filters to achieve fine-grained adJustments

Considering inference time and memory consumption, 3D Lookup Tables (LUTs) ( ,

, ) have been proposed, offering efficient retouching with competitive results. He
etal. ( , ) developed CSRNet for efficient image retouching. In addition, GAN-based
models ( , ; s ) have been explored for unpaired supervision.

Tone Mapping Learning-based methods have been apphed to tone mappmg, aiming to brldge the
gap between HDR and LDR imaging (

, ). CNN-based models ( , ) 1a1d the groundwork for tone Inapplng, with later
works exploring GANSs for pixel-level accuracy ( ,

). Despite these advancements, issues such as halo artlfacts and local 1ncon51sten01es persist.
Hu et al. ( , ) addressed these in a hybrid way, combining tone mapping and denoising
using discrete cosine transforms, while Zhang et al. (Zhang et al., 2019a) leveraged HSV color space
manipulation to reduce halos and enhance detail retention. However, for tasks such as exposure
correction and low-light enhancement that require luminance and high-frequency information, the
luminance (e.g., L or V channels) is obtained through nonlinear transformations, which may result in
loss of or distortion of luminance details. Despite notable progress, existing methods often struggle
to balance global and local tone mapping, resulting in unsatisfactory results in other tasks.

Exposure Correction Exposure correction tackles the challenge of balancing light in images. Meth-
ods like RetinexNet ( , ) decompose illumination and reflectance for separate en-
hancement, while ZeroDCE ( , ) uses high-order pixel curves for underexposed
images. DRBN ( , ) learns pixel mappings to decompose and recombine images
under perceptual guidance. However, these methods primarily focus on underexposure, neglecting
the variety of real-world exposure scenarios. Afifi et al. ( , ) introduced a multi-scale
Laplacian pyramid network to address diverse exposure challenges, while Huang et al. ( ,

) leveraged a Fourier-based network to enable complementary interactions between spatial
and frequency domains. More recently, Li et al. ( , ) proposed a collaborative transfor-
mation framework for real-time exposure correction, efficiently combining global and pixel-level
adjustments.

Low- llght Image Enhancement Deep learning-based methods, particularly CNNs ( ,
, ; , ), have made significant strides in low-light enhancement.

Wang et al. ( , ) introduced DeepUPE, a Retinex-inspired model for illumination
prediction. Xu et al. ( s ) developed SNR-Net, a CNN-Transformer hybrid, achieving
SOTA performance at the cost of computational efficiency. To mitigate this, Zamir et al.introduced
Restormer ( , ), an efficient model with long-range pixel interactions. Cai et al. (

s ) extended this further with Retinexformer, setting new benchmarks. Bai et al. (

, ) employed State Space Models for computational efficiency in low-light enhancement.
However, Retinex-based methods (Cai et al., 2023; Liu et al., 2021a; Bai et al., 2024) are based
on the theory of separated illumination and reflection, but they usually assume smooth and uniform
lighting conditions, which may not hold in realistic scenes involving complex lighting variations.
In addition, these methods typically work in luminance or reflection space, where high-frequency
details may be distorted during decomposition. On the other hand, balancing global receptive fields
with computational demands remains a core challenge for real-world applicability.

B FURTHER ANALYSIS OF MOTIVATION

Different wavelengths of light exhibit different response characteristics when an image sensor
captures photons for photoelectric conversion. After processing by an image signal processor, these
differential responses are sometimes amplified or minimized but are difficult to eliminate. In addition,
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Figure 7: Motivation. Visualization of the light-related task images in different color channels and
their corresponding DWT spectra energy distribution. R-FFT denotes the Fourier Frequency Domain
diagram of the R channel. LowFreq and HighFreq are low-frequency and high-frequency images.

the differences in the Bayer pattern of different image sensors also result in different channels showing
different responses to luminance and noise. Meanwhile, light sources in natural scenes are usually
non-uniform, which also leads to the fact that sunlight, shadows, reflections, and other factors can
cause RGB channels to respond differently to the same scene.

Recall that in Sec. |, we discussed two observations that serve as the motivation to design our network.
We show more motivation cases in Fig. 7 (From observations of the exposure correction and tone
mapping tasks). In particular, (a) different color channels have different light properties, and (b) the
channel differences reflected in the time and frequency domains are different. To further analyze
our first motivation, we visualized the frequency domain images of the different channels using the
Fourier Transform and compared them. The results show that, as in the time domain, significant
differences are exhibited between the different channels in the frequency domain. Based on the
observations in Fig. 2 and Fig. 7, the common properties of several light-related tasks investigated in
this paper are verified, which also contribute to the design of our network.
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Figure 8: The architecture of the Learnable Differential Pyramid module that extracts high-frequency
information from the input image.
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C VISUALIZATION IN THE NETWORK

We demonstrate the Learnable Difference Pyramid and Iterative Detail Enhancement modules in
Fig. 8 and Fig. 9. To efficiently capture high-frequency details of the input image, inspired by the
traditional difference pyramid, we construct a learnable difference pyramid using simple convolution
and residual blocks.

In detail, input image X is first processed by an initial convolution to obtain the initial feature map
F°. For each pyramid level I, we generate the Gaussian feature map F' and the high-frequency
feature map F,ll ¢ of the current level through the difference module, where the difference module is
composed of three successive convolution and maximum pooling operations. The high-frequency
feature Flh ¢ further generates the high-frequency output Xl € REXWX3 through the residual block
and Gaussian features F! are used as inputs to the next layer. Through [ — 1 iterations, we obtain the
complete differential pyramid X p = [X%f, . . ., XII;}] that contains multi-scale high-frequency

features adaptively learned from the LQ images, tapering resolutions from H x W to 54 x /.

Meanwhile, in order to reduce the computational resources, we implement light adaptation at low
resolution. To compensate for the loss of details, we use an iterative detail enhancement module to
recover high-frequency details. Specifically, we ﬁrst up-sample the low-frequency mapped image

Y!, ;- and concatenate it with HF component X’; %, then fed it into a residual network to predict the
mask M;_;. This mask allows pixel-by-pixel refinement of the HF component, which is subsequently

added to the up-sampling Y, ;. to generate the reconstructed result of the current layer YlL}l The
operations at the [ — th layer can be formulated as:

T &)
E—* Upsampling

Figure 9: The architecture of the Iterative Detail Enhancement module progressively restores resolu-
tion and fine details.

ResBlock
ResBlock
ResBlock

Iterative Detail Enhancement

D MORE RESULTS ON RELEASED MODELS

We also further validate the effectiveness of our model in low-light enhancement ( ),
exposure correction ( s ), HDR Survey (Fairchild, 2023), and UVTM (Cao et al 2023)
datasets that contains more complex lighting. The MSEC dataset ( , ) renders i 1mages
using relative EVs of -1.5 to +1.5 and contains a total of 17675 training images, 750 validation
images, and 5905 test images. Table 9 reports the quantitative results of the MSCE. We can see
that our method has the best overall performance. On the MSEC dataset, our method has the best
performance with 23.93 dB PSNR, 0.8734 SSIM, and 0.0791 LPIPS. We validate our model on
non-homologous third-party image and video HDR datasets, as shown in Table 6, and our model far
outperforms existing methods. The HDR Survey dataset consists of 105 HDR images, with no ground
truth, and is one of the benchmarks for HDR tone mapping evaluations (Cao et al., 2020; Rana et al.,
2020; Panetta et al., 2021; Liang et al., 2018; Paris et al., 2011). The UVTM video dataset, also with
no ground truth, includes 20 real captured HDR videos. Note that the HDR Survey and UVTM video
datasets are only for testing purposes.

Table 6: Validating generalization on third-party datasets include HDR Survey and UVTM video
datasets.

Datasets Metrics HDRNet CSRNet 3DLUT CLUT SepLUT IVTMNet CoTF  Ours
HDR Survey TMQI  0.8641 0.8439  0.8165 0.8140  0.8085 09160  0.8612 0.9292
UVTM TMQI  0.8281 0.8973  0.8787 0.8799  0.8629 0.8991 0.9006 0.9576
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Table 7: Quantitative results of tone mapping methods. ”/” denotes the unavailable source code.
Metrics with 1 and | denote higher better and lower better. The best and second results are in red and

blue, respectively.

Tone Mapping in HDRI Haven

Method #Params 5o RFSSIMT  TMQIT LPIPS|  AE]

UPE ( , ) 999K | 2358 0821 0917  0.191 10.85
HDRNet ( ,2017) 482K | 2533 0912 0941 0113  7.03
CSRNet ( , 2020) 37K 2578 0872 0928  0.153  6.09
DeepLPF ( ,2020) | L72M | 2486 0939 0948 0077  7.64
LUT ( , 2020) S92K | 2452 0846 0912 0171 733
CLUT ( ,2022) 952K | 2429  0.836 0908  0.169  7.08
LPTN ( , ) 616K | 2621 0941 0954  0.113  8.82
SepLUT ( ,2022) 120K | 24.12 0854 0915 0165 8.03
Restormer ( ,2002) | 26M | 2730 0954 0948 0.032  5.67
CoTF ( , ) 310K | 26.65 0935 0948  0.098  5.84
Retinexformer ( ,2023) | L6IM | 2773 0955 0949  0.030  5.41
RetinexMamba ( ,2024) | 459M | 28.60 0955 0953  0.032  5.12
LALNet-Tiny 246K | 3158 0963 0954 0024  4.07
LALNet-Lite 536K | 3179 0964 0954  0.023  3.87
LALNet 287M | 3228 0969 0961  0.019  3.69

Table 8: Quantitative results of LLE methods on the LOLv1 dataset. ”*” denotes that the results are

from reference papers.

Method FLOPs(G) IP;‘S’VI\VH%TIght Enggﬁ?w
3DLUT ( , ) 0.075 14.35 0.445
DeepUPE ( ) 21.10 14.38 0.446
DeepLPF ( ) 5.86 15.28 0.473
UFormer ( ) 12.00 16.36 0.771
RentinexNet ( ) 587.47 17.19 0.589
EnGAN ( ) 61.01 17.48 0.650
Sparse ( , ) 53.26 17.20 0.640
FIDE ( , ) 28.51 18.27 0.665
KinD ( , ) 34.99 20.35 0.813
CSRNet ( , ) 6.6 20.46 0.659
MIRNet ( ) 785 24.14 0.842
LANet ( , ) / 21.71 0.810
Restormer ( ) 144.25 2243 0.823
CoTF ( , ) 1.81 20.06 0.755
Retinexformer ( )* 15.57 23.93 0.831
RetinexMamba ( ) 42.82 24.03 0.827
LALNet-Tiny 1.62 24.06 0.845
LALNet 6.86 25.29 0.854

E ABLATION STUDY

To validate the effectiveness of the SS2D module, we use Self-Attention and Residual Block to
replace the SS2D module in the original published model. We use the Self-Attention module released
by Restormer ( , ), and ResBlock is constructed from two convolutional layers and
activation functions. The results, as shown in Table 10, show that using SS2D as part of the base
module effectively captures global features and strikes a balance between performance and efficiency.
Notably, the same excellent results are obtained using the Self-Attention module, which is attributed
to the design of our overall framework, further demonstrating the effectiveness of our proposed
adaptive lighting framework.
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Table 9: Quantitative results of exposure correction methods on the MSCE dataset.

Exposure Correction in MSCE
Method Under Over Average

PSNRT SSIMf | PSNRT SSIMt | PSNRT SSIM{  LPIPS|
He ( , ) 16.52  0.6918 16.53  0.6991 16.53  0.6959  0.2920
CLAHE ( , ) 16.77  0.6211 1445  0.5842 1538  0.5990 0.4744
LIME ( R ) 13.98  0.6630 9.88 0.5700 11.52  0.6070  0.2758
WVM ( , ) 18.67  0.7280 12.75 0.645 1512 0.6780 0.2284
RetinexNet ( s ) 12.13  0.6209 1047  0.5953 11.14  0.6048  0.3209
URtinexNet ( R ) 13.85  0.7371 9.81 0.6733 11.42  0.6988  0.2858
DRBN ( , ) 19.74  0.8290 19.37  0.8321 1952 0.8309  0.2795
SID ( , ) 19.37  0.8103 18.83  0.8055 19.04  0.8074 0.1862
MSEC ( , ) 20.52  0.8129 19.79  0.8156 | 20.08 0.8145 0.1721
SID-ENC ( , ) 2259  0.8423 | 2236  0.8519 | 2245 0.8481 0.1827
DRBN-ENC ( R ) | 2272 0.8544 | 22.11  0.8521 2235  0.8530 0.1724
CLIP-LIT ( , ) 1779  0.7611 12.02  0.6894 1432 0.7181  0.2506
FECNet ( R ) 2296  0.8598 | 2322  0.8748 | 23.12  0.8688  0.1419
LCDPNet ( , ) 2235  0.8650 | 22.17 0.8476 | 2230  0.8552  0.1451

FECNet+ERL ( , ) | 23.10 08639 | 23.18  0.8759 | 23.15  0.8711 /
CoTF ( R ) 2336  0.8630 | 2349 0.8793 | 2344  0.8728  0.1232
LALNet 23.81 0.8636 | 24.05 0.8798 | 2393 0.8734 0.0791

Table 10: Ablation study on the global feature extraction modules.

Variants \ Replaced Modules #Params FLOPs PSNRT SSIMT TMQIt LPIPS| AE]

#1 ResBlock 299M  7.13G 29.77 09412 0.8781  0.0291 4.760
#2 Self-Attention 225M 648G 2991 0.938  0.8801 0.0297 4.872
#3 | Ours 28 686G 30.36  0.9458 0.8883  0.0261 4.483

Further, we use FDCM to capture color-separated features, and to avoid channel mixing during
information propagation, we use group convolution to keep the color channels separated. To verify
the effectiveness of the design, we use traditional convolution to replace group convolution. The
experimental results are shown in Table | |, where the channel mixing caused by the conventional
convolution leads to a performance degradation of 0.41 dB. This phenomenon shows the necessity
of color channel separation and the effectiveness of using color-separated features to guide light
adaptation.

Table 11: Ablation study on the Group Convolution (G-Conv) and traditional Convolution (T-Conv).

Variants \ Replaced Modules #Params FLOPs PSNRT SSIMT TMQIt LPIPS| AE]
#1 | T-Conv 293M 691G 2995 09399 0.8791 0.0292 4.645
#2 | G-Conv 28™  6.86G 3036 0.9458 0.8883 0.0261 4.483

F MORE VISUAL COMPARISON

We present more comparisons between state of the arts for enhancement light-related images in
Figures 12, 13, 14, 15, 16, and 17. This is similar to Fig. 4 of the main paper where we compare
methods using their original released models. As shown, all existing models do not handle these
lighting-related images well. Although RetinexFormer and RetinexMamba obtained the second-
best quantitative results in most tasks, the qualitative results show that they suffer from varying
degrees of artifacts, which seriously impact the visual quality. This phenomenon also indicates that
Retinex-based methods are inapplicable to challenging light tasks.
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Figure 10: Visual comparisons between our LALet and the SOTA methods on the LOLv1 dataset.
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Figure 11: Visual comparisons between our LALet and the SOTA methods on the HDR Survey
dataset.
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Figure 12: Visual comparisons between our LALet and the SOTA methods on the HDR+ dataset
(Zoom-in for best view). The error maps in the upper left corner facilitate a more precise determination
of performance differences.
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Figure 13: Visual comparisons between our LALet and the SOTA methods on the HDR+ dataset
(Zoom-in for best view). The error maps in the upper left corner facilitate a more precise determination
of performance differences.
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Figure 15: Visual comparisons between our LALNet and the SOTA methods on the HDRI Haven
dataset (480p resolution).

20

Error Value

~N
S
Error Value

CoTF etinexMamba Ours

Figure 16: Visual comparisons between our LALNet and the SOTA methods on the SCIE dataset.
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Figure 17: Visual comparisons between our LALNet and the SOTA methods on the LOLv1 dataset.
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