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Abstract

Few-shot learning and meta-learning have at-
tracted increasing attention in recent years.
Meta-learning in NLP has also shown great
progress, including subset masked language
modeling tasks (SMLMT). Although SMLMT
has led to improved few-shot generalization,
its potential for further uses has not been ex-
plored. In this paper, we propose SentiSMLMT,
an extension of SMLMT which injects senti-
ment knowledge into the model by utilizing
sentiment lexicon within the self-supervised
framework. Experimental results show that
our approach is simple but effective, achieving
significant improvements in sentiment-related
tasks.

1 Introduction

Pre-trained language models have achieved signif-
icant progress on diverse tasks of NLP (Howard
and Ruder, 2018; Peters et al., 2018; Radford et al.,
2018; Devlin et al., 2019; Liu et al., 2019). Along
with the success of pre-trained language models, a
number of novel approaches have been proposed
for sentiment analysis (Araci, 2019; Yin et al.,
2020; Zhou et al., 2020; Tian et al., 2020; Sosea
and Caragea, 2021; Barbieri et al., 2022; Ein-Dor
et al., 2022). Some approaches concentrate on as-
sociating the pre-training objective with sentiment
knowledge (Zhou et al., 2020; Tian et al., 2020;
Sosea and Caragea, 2021), and some make use of
existing lexicons (Khanpour and Caragea, 2018;
Zhou et al., 2020; Sosea and Caragea, 2021).

Meanwhile, meta-learning methods (Vinyals
et al., 2016; Finn et al., 2017; Snell et al., 2017)
have shown to be effective in various applications,
especially in few-shot scenarios. Although most of
the research in meta-learning aims to solve vision
tasks, recent work has also shown the usefulness of
meta-learning in the field of NLP (Guo et al., 2018;
Yu et al., 2018; Geng et al., 2019; Mi et al., 2019;
Bansal et al., 2020a,b, 2021; Wang et al., 2021).

In particular, Bansal et al. (2020b) proposed the
first self-supervised approach in NLP using meta-
learning, inspired by the Cloze task (Taylor, 1953).

In this paper, we propose an effective method
to enhance sentiment knowledge by integrating
knowledge of a sentiment lexicon into the self-
supervised meta-training objective proposed by
Bansal et al. (2020b). We design meta-training
tasks based on the assumption that the relationship
between words plays a crucial role in the guidance
of sentiment-oriented meta-training. Experimental
results show that our method achieves significant
improvements over baselines, where our focus is
mainly on few-shot text classification tasks. More-
over, we conduct extensive experiments for abla-
tion studies on two factors of the training process.

2 Proposed Approach

2.1 Background

In this work, we leverage Subset Masked Language
Modeling Tasks (SMLMT) (Bansal et al., 2020b),
a self-supervised approach to create a large num-
ber of meta-learning tasks from unlabeled text. It
is fundamentally an N-way k-shot classification
task, where each label is a vocabulary word and k
sentences containing each word are given as sup-
port set with the corresponding word masked out.
The model learns to classify sentences where each
sentence includes one mask token.

Bansal et al. (2020b) showed that meta-training
SMLMT tasks on large-scale yields better few-shot
performance across diverse text classification tasks.
However, designing meta-learning tasks to be bet-
ter aligned with the target task can lead to further
improvements. Such task-guided meta-training can
produce better initial points for fine-tuning, which
is crucial in few-shot settings. In particular, we
focus on sentiment analysis, and propose methods
to create sentiment-aware SMLMT tasks that effec-
tively inject sentiment knowledge into the model.



2.2 Sentiment-aware Meta-training

We present SentiSMLMT, or sentiment-aware
SMLMT, an extension of SMLMT which is specif-
ically designed for inducing sentiment-specific
bias. In SentiSMLMT, we fully exploit sentiment-
carrying words when creating a task, instead of
randomly sampling words from the entire vocabu-
lary. We leverage sentiment lexicon as the source
of sentiment-carrying words.

Lexicon. We use AFINN sentiment lexicon
(Nielsen, 2011) to create SentiSMLMT tasks.
AFINN sentiment lexicon1 is a list of 3,382 En-
glish words annotated with an integer sentiment
rating r, where −5 ≤ r ≤ 5. In order to employ
words that indicate stronger sentiments, we define
positive words and negative words as words that
satisfy r ≥ 3 and r ≤ −3 respectively. P, N and
S = P ∪N each denotes the set of positive words,
negative words and sentiment words.

Corpus. We use Yelp review dataset2 as the
source text to create meta-training tasks since it
is a corpus rich with sentiment information and
emotional expressions. Among 6,990,280 English
reviews in the corpus, we only use a small part of it
by randomly sampling 100,000 reviews. We obtain
vocabulary V from this sampled corpus.

Task Proposal. In this work, we focus on design-
ing the subset of vocabulary words that constitute
an SMLMT task. We propose three methods based
on the relationship between words, making use of
the knowledge obtained from the sentiment lexi-
con. We mainly consider n = 2 tasks and assume
m tasks are being created.

SentiSMLMTrandom includes two random sen-
timent words, either positive or negative.

Trandom = {(s1, s2)i | s1, s2 ∈ V ∩ S, s1 ̸= s2}mi=1

SentiSMLMTbinary includes one sentiment
word and one neutral word.

Tbinary = {(s, u)i | s ∈ V ∩ S, u ∈ V − V ∩ S}mi=1

SentiSMLMTcontrast includes one positive word
and one negative word.

Tcontrast = {(p, n)i | p ∈ V ∩ P, n ∈ V ∩N}mi=1

1https://github.com/fnielsen/afinn/blob/
master/afinn/data/AFINN-en-165.txt

2https://www.yelp.com/dataset

Figure 1: Examples of SentiSMLMT word pairs. A
2-way 2-shot task for SentiSMLMTcontrast is also shown.
Note that more samples are used for support set and
query set in actual experiments.

Note that we use uniform sampling when sam-
pling words from their corresponding set. An exam-
ple of each approach is displayed in Figure 1. For
meta-training, we use the same model architecture
as in Bansal et al. (2020b), a BERT encoder with an
additional parameter generator. It is meta-trained
using the MAML framework (Finn et al., 2017).
Instead of training from scratch, we initialize the
model with SMLMT model checkpoints3 which is
meta-trained with 2 million general SMLMT tasks.
It can be viewed as a type of post-training (Xu
et al., 2019; Zhuang et al., 2021) or inter-training
(Ein-Dor et al., 2022), where a large-scale language
model is adapted for a specific purpose before the
fine-tuning step, without any use of labeled data.

3 Experiments

3.1 Experimental Setup

We meta-train each model with 10000 tasks of
each type. For all tasks, 20 samples are used for
both support set and query set. Adam optimizer
(Kingma and Ba, 2014) is used for both inner loop
and outer loop. Other hyperparameters can be
found in Appendix A.

3.2 Evaluation Methodology

We evaluate our models on multiple few-shot text
classification tasks. Among the diverse down-
stream tasks used in Bansal et al. (2020b), we
choose all tasks that are related to sentiments; air-
line4, Amazon rating classification and Amazon

3Available at https://github.com/iesl/metanlp.
4Sentiment classification on tweets about airlines.

https://github.com/fnielsen/afinn/blob/master/afinn/data/AFINN-en-165.txt
https://github.com/fnielsen/afinn/blob/master/afinn/data/AFINN-en-165.txt
https://www.yelp.com/dataset
https://github.com/iesl/metanlp


Task N k BERT† SMLMT† SentiSMLMT

random binary contrast

Airline 3
4 42.76 ± 13.50 42.83 ± 06.12 54.38 ± 07.22 46.58 ± 07.90 55.05 ± 08.37

8 38.00 ± 17.06 51.48 ± 07.35 60.29 ± 07.04 51.39 ± 07.11 64.47 ± 03.88

16 58.01 ± 08.23 58.42 ± 03.44 64.69 ± 05.29 59.90 ± 08.17 66.69 ± 06.01

Rating Books 3
4 39.42 ± 07.22 34.96 ± 03.94 37.70 ± 09.40 38.32 ± 05.53 44.55 ± 07.85

8 39.55 ± 10.01 37.20 ± 04.15 39.91 ± 08.92 40.56 ± 06.33 44.36 ± 09.01

16 43.08 ± 11.78 43.62 ± 04.59 47.58 ± 06.85 46.00 ± 04.44 52.85 ± 05.85

Rating DVD 3
4 32.22 ± 08.72 38.26 ± 03.62 39.55 ± 05.77 40.49 ± 04.90 40.50 ± 05.50

8 36.35 ± 12.50 37.92 ± 03.61 38.60 ± 05.50 37.90 ± 03.37 44.48 ± 04.87

16 42.79 ± 10.18 41.87 ± 04.30 43.64 ± 04.19 44.18 ± 03.37 49.19 ± 04.06

Rating Electronics 3
4 39.27 ± 10.15 37.69 ± 04.82 39.73 ± 05.86 36.00 ± 05.15 43.76 ± 07.63

8 28.74 ± 08.22 39.98 ± 04.03 46.17 ± 04.73 43.37 ± 05.79 48.40 ± 08.47

16 45.48 ± 06.13 45.85 ± 04.72 50.56 ± 03.91 48.32 ± 06.85 53.51 ± 06.60

Rating Kitchen 3
4 34.76 ± 11.20 40.75 ± 07.33 42.69 ± 08.88 43.79 ± 05.22 47.54 ± 08.52

8 34.49 ± 08.72 43.04 ± 05.22 47.78 ± 06.29 47.13 ± 06.54 48.90 ± 09.81

16 47.94 ± 08.28 46.82 ± 03.94 52.65 ± 04.67 49.12 ± 07.83 54.72 ± 07.25

Sentiment Books 2
4 54.81 ± 03.75 55.68 ± 02.56 59.66 ± 05.45 55.35 ± 03.12 65.74 ± 06.09

8 53.54 ± 05.17 60.23 ± 05.28 65.51 ± 06.76 61.98 ± 05.18 72.13 ± 05.90

16 65.56 ± 04.12 62.92 ± 04.39 68.64 ± 05.52 67.53 ± 03.26 73.84 ± 05.32

Sentiment DVD 2
4 54.98 ± 03.96 52.95 ± 02.51 54.92 ± 04.60 54.29 ± 03.54 59.54 ± 06.21

8 55.63 ± 04.34 54.28 ± 04.20 59.53 ± 04.65 54.83 ± 03.67 64.66 ± 07.65

16 58.69 ± 06.08 57.87 ± 02.69 61.16 ± 05.27 60.10 ± 03.01 73.65 ± 03.96

Sentiment Electronics 2
4 58.77 ± 06.10 56.40 ± 02.74 60.54 ± 05.24 58.83 ± 04.47 69.21 ± 06.43

8 59.00 ± 05.78 62.06 ± 03.85 65.56 ± 05.60 61.65 ± 04.65 70.40 ± 06.89

16 67.32 ± 04.18 64.57 ± 04.32 69.90 ± 05.37 64.92 ± 05.63 75.17 ± 04.00

Sentiment Kitchen 2
4 56.93 ± 07.10 58.64 ± 04.68 67.19 ± 05.15 62.22 ± 05.05 72.54 ± 06.33

8 57.13 ± 06.60 59.84 ± 03.66 68.35 ± 04.96 61.83 ± 04.81 73.54 ± 07.04

16 68.88 ± 03.39 65.15 ± 05.83 75.92 ± 04.67 68.05 ± 05.34 79.67 ± 03.69

Overall Average
4 45.99 ± 07.97 46.46 ± 04.26 50.71 ± 06.40 48.43 ± 04.99 55.38 ± 06.99

8 44.71 ± 08.71 49.56 ± 04.59 54.63 ± 06.05 51.18 ± 05.27 59.04 ± 07.06

16 55.31 ± 06.93 54.12 ± 04.25 59.42 ± 05.08 56.46 ± 05.32 64.37 ± 05.19

Table 1: k-shot accuracy on sentiment-related downstream tasks. Models with the best and the second-best
performance are denoted in bold and underlined font respectively. Results marked † are from Bansal et al. (2020b).

sentiment classification5.
We consider k = 4, 8, 16 settings for few-shot

learning. Each model is fine-tuned on 10 different
sets for each task and each k, and we report the
average of 10 runs. For fine-tuning, we follow the
settings of Bansal et al. (2020b).

3.3 Main Results
Full results are shown in Table 1. We com-
pare our results with other unsupervised base-
lines, BERT (Devlin et al., 2019) and SMLMT
(Bansal et al., 2020b). First, we observe that all
three SentiSMLMT approaches improve upon the
original SMLMT model. SentiSMLMTrandom and
SentiSMLMTcontrast improve on all tasks, while
SentiSMLMTbinary improves on most of the tasks.

Among the three approaches,
SentiSMLMTcontrast turns out to be the best-

5Amazon tasks include 4 domains each.

performing approach, achieving the highest
accuracy on all 9 tasks. It outperforms other
models by a large margin, where it shows accuracy
gains of 8.92%, 9.48% and 10.25% compared
to SMLMT, for k = 4, 8, 16 respectively. We
believe this is because the training objective of
SentiSMLMTcontrast is most similar to the objective
of target tasks, where the labels getting predicted
are usually polarized. Also, sampling positive
words and negative words in a fixed ratio might
have worked as class balancing in supervised
learning.

It is interesting that such an improvement is
made with a relatively small number of tasks,
demonstrating the effectiveness of sentiment-aware
meta-training. Moreover, the consistent improve-
ments on target tasks of all 4 domains imply that
the sentiment knowledge acquired is general; it can
be generalized across domains.



Figure 2: Performance of SentiSMLMTcontrast models
meta-trained with word pairs of different sentiment in-
tensities. This figure shows the overall average of 9
downstream tasks that appear in Table 1. Baseline indi-
cates the original SMLMT model.

Figure 3: Performance of SentiSMLMTrandom models
meta-trained with n-way tasks with different n, each
n = 2, 3, 4. This figure shows the overall average of
9 downstream tasks that appear in Table 1. Baseline
indicates the original SMLMT model.

3.4 Effect of Sentiment Intensity

As described in Section 2.2, we intentionally used
sentiment words that display strong sentiments.
In this section, we conduct extensive experiments
to identify the significance of sentiment intensity,
specifically in the case of SentiSMLMTcontrast. For
each setting of weak, moderate, and strong6 in-
tensity, we only use words that satisfy |r| = 1,
|r| = 2 and 3 ≤ |r| ≤ 5 respectively. The results
are presented in Figure 2. Interestingly, we find
that sentiment intensity is a crucial factor in inject-
ing sentiment knowledge. Utilizing words with
stronger intensity produces greater improvements.
This could be a motivating example of exploiting
sentiment intensity to train the model more effec-
tively.

6Identical to the original setting.

3.5 Effect of n

Unlike the other two, SentiSMLMTrandom can be
easily extended by increasing the value of n. In
Figure 3, we show the results obtained by using dif-
ferent values of n. The results indicate that it can be
beneficial to make n larger (though it might saturate
at some point), which is actually making the meta-
training tasks harder. Results on n = 4 are compa-
rable to that of SentiSMLMTcontrast, though it takes
more time and computing resource to meta-train the
model. This shows the scalability of SentiSMLMT,
along with the possibility of further improvements
by designing tasks with larger n values.

3.6 Performance on Other Target Tasks

Task N k SMLMT† SentiSMLMT

contrast

CoNLL 4
4 46.81 50.55*
8 61.72 61.36
16 75.82 75.69

MITR 8
4 46.23 51.57*
8 61.15 62.32
16 69.22 71.03

Disaster 2
4 62.26 61.94
8 67.89 64.92
16 72.86 73.88

Political Bias 2
4 57.72 60.80
8 63.02 64.47
16 66.35 66.60

Political Audience 2
4 57.94 57.88
8 62.82 60.60
16 64.57 63.46

Political Message 9
4 16.16 17.31
8 19.24 20.22
16 21.91 21.69

Scitail 2
4 50.68 50.88
8 55.60 55.94
16 56.51 56.81

Overall Average
4 48.26 50.13
8 55.92 55.69
16 61.03 61.31

Table 2: k-shot accuracy on downstream tasks not re-
lated to sentiments. * indicates statistical significance in
a two-tailed t-test (p < 0.05) against SMLMT. Results
marked † are from Bansal et al. (2020b).

In order to evaluate the effect of sentiment-aware
meta-training on other tasks, we also compare
the results of SMLMT and SentiSMLMTcontrast
on downstream tasks presented in Bansal et al.
(2020b), but not used in Section 3.3. The results are
presented in Table 2. As expected, the differences
are marginal in most cases, not being statistically
significant. While it aligns well with our purpose
of building a sentiment-oriented model, it turns out
that it doesn’t hurt the performance of other target
tasks.



4 Conclusion

In this work, we introduced SentiSMLMT, an
approach that enables sentiment-oriented meta-
training for improved performance on sentiment-
related tasks. Although we limited the scope to
a fully self-supervised setting to observe the char-
acteristics of SentiSMLMT precisely without any
interference of other training objectives, it still can
be jointly trained with supervised tasks as presented
in Bansal et al. (2020b), where additional perfor-
mance gains are expected.

Limitations

As the task creation process of our method heavily
relies upon the sentiment lexicon, its efficacy may
depend on its quality. Although we could read-
ily access a high-quality sentiment lexicon such as
AFINN (Nielsen, 2011) in English, it might not be
able in some languages, especially for low-resource
languages. The proposed work might not be appli-
cable to such languages.
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A Implementation Details

Hyperparameters for meta-training not stated in
Section 3.1 are listed in Table 3.

Hyperparameter Value

Meta-training Epochs 1
Task Batch Size 5

Outer Loop Learning Rate 1e-05
Inner Loop Learning Rate 5e-05

Lowercase Text False
Maximum Sequence Length 128

Table 3: Hyperparameters for meta-training.

All experiments were conducted on 1 NVIDIA
TITAN V GPU with 12GB memory. Meta-training
10000 n = 2 tasks took about 12 hours. For meta-
training, we used the code we reimplemented using
PyTorch (Paszke et al., 2019) and Hugging Face
Transformers (Wolf et al., 2020) library.


