
Under review as a conference paper at ICLR 2024

β-DQN: DIVERSE EXPLORATION VIA LEARNING A
BEHAVIOR FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient exploration remains a pivotal challenge in reinforcement learning (RL).
While numerous methods have been proposed, their lack of simplicity, generality
and computational efficiency often lead researchers to choose simple techniques
such as ϵ-greedy. Motivated by these considerations, we propose β-DQN. This
method improves exploration by constructing a set of diverse polices through a
behavior function β learned from the replay memory. First, β differentiates ac-
tions based on their frequency at each state, which can be used to design strategies
for better state coverage. Second, we constrain temporal difference (TD) learning
to in-sample data and derive two functions Q and Qmask. Function Q may overesti-
mate unseen actions, providing a foundation for bias correction exploration. Qmask
reduces the values of unseen actions in Q using β as an action mask, thus yields a
greedy policy that purely exploit in-sample data. We combine β,Q,Qmask to con-
struct a set of policies ranging from exploration to exploitation. Then an adaptive
meta-controller selects an effective policy for each episode. β-DQN is straightfor-
ward to implement, imposes minimal hyper-parameter tuning demands, and adds
a modest computational overhead to DQN. Our experiments, conducted on simple
and challenging exploration domains, demonstrate β-DQN significantly enhances
performance and exhibits broad applicability across a wide range of tasks.

1 INTRODUCTION

Exploration is considered as a major challenge in deep reinforcement learning (DRL) (Sutton &
Barto, 2018; Yang et al., 2021). The agent needs to trade off between exploiting current knowl-
edge for known rewards and exploring the environment for future potential rewards. Despite many
complex methods have been proposed for efficient exploration, the most commonly used ones are
still simple methods like ϵ-greedy and entropy regularization (Mnih et al., 2015; Schulman et al.,
2017). Possible reasons come from two aspects. One is these advanced methods need meticulous
hyper-parameters tuning and much computational overhead (Badia et al., 2020a;b; Fan et al., 2023).
Another aspect is these methods adopt specialized inductive biases, which may achieve high per-
formance in specific hard exploration environments, but tend to underperform simple methods on a
broader range of domains, highlighting the lack of generality (Burda et al., 2019; Taiga et al., 2020).

We improve exploration while taking into account the following considerations: (1) Simplicity. We
aim to make clear improvement while also keep the method simple, making it straightforward to
implement and has less burden on hyper-parameters tuning. (2) Mild increase on computational
overhead. While the primary focus lies in sample efficiency in RL, we aim to strike a balance that
avoids substantial increase in training time. Our goal is to develop a method that is both effective
and efficient. (3) General for various domains. The method should be general that is applicable for
a wide range of tasks, rather than narrowly focusing on some hard exploration games.

In this paper, we design an exploration method by only additionally learning a behavior function β
from the replay memory using supervised learning. Learned from the current replay memory, β can
distinguish which actions have been frequently explored and which have not. This can be used to
design strategies for better state coverage, for example by taking the action with the least probability
at each state. In addition, we use β to constrain TD learning to bootstrap from in-sample state-action
pairs as shown in Eq. (2). The Q function learns in-sample estimation from the replay memory and
generalizes at missing data. The Q function itself may overestimate at unseen state-action pairs, we

1

Under review as a conference paper at ICLR 2024

policy set
construction

𝜋

𝑠 𝑎

(𝑠, 𝑎, 𝑟, 𝑠′)

Memory

policy selection

space coverage bias correction

in-sample TD

{𝜋𝑐𝑜𝑣 𝛿1 ,⋯ ,𝜋𝑐𝑜𝑣 𝛿𝑚 , 𝜋𝑐𝑜𝑟 𝛼1 ,⋯ ,𝜋𝑐𝑜𝑟 𝛼𝑛 }

function 𝛽 function 𝑄function 𝑄𝑚𝑎𝑠𝑘

policy set

Figure 1: An overview of our method. We learn a behavior function β from replay memory, constrain the
TD learning to in-sample data to learn function Q, and mask Q with β to get Qmask. With β,Q and Qmask, we
construct a set of policies ranging from exploration for space coverage and bias correction to pure exploitation.
A meta-controller is designed to adaptively select a policy to interact with then environment for each episode.

use this property to design exploration strategies to try these actions for bias correction (Simmons-
Edler et al., 2021; Schaul et al., 2022). Further, if we reduce Q values at unseen actions determined
by β, denoted as Qmask, we can derive a greedy policy that purely exploits current experience in the
memory. This share the same purpose as offline RL that tries to maximize the cumulative reward
limited to a dataset (Lange et al., 2012; Levine et al., 2020), which leads to a conservative policy
with best possible performance. The three functions β, Q and Qmask all have a clear purpose, we
use them to construct a set of diverse polices ranging from exploration for space coverage and bias
correction to pure exploitation. With the set of diverse policies, we consider the policy selection
as a non-stationary multi-armed bandit problem (MAB) (Garivier & Moulines, 2008). We design
a meta-controller to adaptively select an effective policy to interact with the environment for each
episode, which enables flexibility without an accompanying hyper-parameter-tuning burden.

Our method have several advantages. (1) We only additionally learn a behavior function which is
straightforward to implement and computational efficient compared to some other methods (Badia
et al., 2020a; Kim et al., 2023). (2) When constructing the policy set, we do not inject inductive
biases specialized for one specific task, so the method is general and applicable across a wide range
of domains. (3) Our method interleaves exploitation and exploration at intra-episodic level, carries
out temporal-extended exploration and is state-dependent, which is considered as the most effective
way (Pislar et al., 2022; Dabney et al., 2021). We report promising results on MinAtar (Young
& Tian, 2019) and MiniGrid (Chevalier-Boisvert et al., 2023) to show our method significantly
enhances performance and exhibits broad applicability in both easy and hard exploration domains.

2 RELATED WORK

Reinforcement learning (RL) is generally known as learning by trial and error. If something has
not been encountered, it cannot be learned (Pislar et al., 2022). This makes exploration a central
challenge for RL. The most commonly used exploration strategies are simple dithering methods
like ϵ-greedy and entropy regularization (Mnih et al., 2015; Schulman et al., 2017; Haarnoja et al.,
2018). These methods are general but considered inefficient because they are state-independent and
lack temporal persistence. Inducing a consistent, state-dependent exploration policy over multiple
time steps is the direction that has always been pursued (Osband et al., 2016; Sekar et al., 2020;
Ecoffet et al., 2021; Dabney et al., 2021; Simmons-Edler et al., 2021; Pislar et al., 2022).

Bootstrapped DQN (Osband et al., 2016) induces temporally-extended exploration by building up
K bootstrapped estimates of the Q-value function in parallel and sample a single Q function for the
duration of one episode. The computation increases linearly with the head number K. Temporally-
extended ϵ-Greedy (ϵz-greedy) (Dabney et al., 2021) simply repeats the sampled random action
for a random duration, whose exploration is still state-independent. Adding exploration bonuses
to environment reward by quantifying the novelty of experience is another line of work. Count-
based bonuses encourage agents to visit states with a low visit count, and a lot of work has been
proposed to estimate counts in high dimension states spaces (Bellemare et al., 2016; Tang et al.,
2017; Ostrovski et al., 2017). Another way is based on prediction error such as Intrinsic Curiosity
Module (ICM) (Pathak et al., 2017) and Random Network Distillation (RND) (Burda et al., 2019;
Badia et al., 2020b). The intuition being that the prediction error will be low on states that are
similar to those previously visited and high on newly visited states. These methods emphasize

2

Under review as a conference paper at ICLR 2024

tackling difficult exploration problems such as MONTEZUMA’S REVENGE. They usually obtain
better performance on hard exploration environments, but often underperform simple methods like
ϵ-greedy on easy exploration environments (Taiga et al., 2020), which is not general.

Recent promising works tried to handle the problem with population-based methods, which collect
samples with diverse behaviors derived from a population of different exploratory policies (Badia
et al., 2020a; Fan & Xiao, 2022; Kapturowski et al., 2023; Fan et al., 2023; Kim et al., 2023).
They show powerful performance that outperforms the standard human benchmark on all 57 Atari
games (Bellemare et al., 2013). These methods maintain a group of actors with independent pa-
rameters, build a distributed systems and interact with the environment around billions of frames.
Though there has been a performance gain, the computational cost blows up and is unaffordable for
most research communities. This has the unfortunate side effect of widening the gap between those
with ample access to computational resources, and those without (Ceron & Castro, 2021). Our goal
is not to surpass these works, but to absorb strengths from previous work and design an effective
method with mild computational resources, which is affordable for most researchers.

3 BACKGROUND

Markov Decision Process (MDP). Reinforcement learning (RL) (Sutton & Barto, 2018) is a
paradigm of agent learning via interaction. It can be modeled as a MDPM = (S,A, R, P, ρ0, γ).
S is the state space, A is the action space, P : S × A × S → [0, 1] is the environment transition
dynamics, R : S×A×S → R is the reward function, ρ0 : S → R is the initial state distribution and
γ ∈ (0, 1) is the discount factor. The goal of the agent is to learn an optimal policy that maximizes
the the expected discounted cumulative rewards E[

∑∞
t=0 γ

trt].

Deep Q-Network (DQN). Q-learning is a classic algorithm to learn the optimal policy. It
learns the Q function with Bellman optimality equation (Bellman, 2021), Q∗(s, a) = E[r +
γmaxa′ Q∗(s′, a′)]. An optimal policy is then derived by taking an action with maximum Q value
at each state. DQN (Mnih et al., 2015) scales up Q-learning by using deep neural networks and
experience replay (Lin, 1992). It stores transitions in a replay memory and samples batches of that
data uniformly to estimate an action-value function Qθ with temporal-difference (TD) learning. A
target network with parameters θ¯ copies the parameters from θ only every C steps to stabilize the
computation of learning target y = r + γmaxa′ Qθ¯(s

′, a′).

4 METHOD

Drawing from insights introduced in Section 2, promising exploration strategies should be state-
dependent, temporally-extended and consist of a set of diverse policies. And keeping the simplicity
and generality in mind, we design an exploration method that is well-performed on a wide range
of domains and computational-affordable for our research community. In Section 4.1, we introduce
hwo to get the three basic functions, β and Q for exploration and Qmask for exploitation. In Sec-
tion 4.2, by combing the three functions, we interpolate exploration and exploitation at intra-episodic
level and get a set of polices ranging from exploration for space coverage or bias correction to pure
exploitation. In Section 4.3, we design an adaptive meta-controller to choose the most promising
policy to interact with the environment for each episode. Fig. 1 shows an overview of our method.

4.1 LEARNING BASIC FUNCTIONS

We construct three basic functions: two for exploration and one for exploitation. The behavior
function β is used to explore underexplored actions. The Q function is used to explore overestimated
actions. The Qmask which reduces unseen state-action values is used to go to the boundary of current
experience, which is exploitation. We get three basic functions with clear purposes, and the only
extra computation comes from the learning of the behavior function β comparing with DQN.

Behavior Function. The behavior function β is easy to learn, we sample a batch of data B and train
a network using supervised leaning with cross entropy loss:

Lβ = − 1

|B|
∑

(s,a)∈B

log β(s, a). (1)

3

Under review as a conference paper at ICLR 2024

The β can differentiate between actions are frequently taken and those are rarely taken at a state. If
we choose actions that are less taken, for example π := argmina β(s, a), it is a pure exploration
policy persuing better state space coverage, without caring about the performance. We use the same
data batch to learn β and Q, thus there is no extra computation from sampling.

Action Value Function. Valued-based methods such as DQN estimate an action-value function Q
with temporal-difference (TD) learning. We constrain the learning to in-sample state-action pairs:

Q(s, a)← r + γ max
a′:β(a′|s′)>ϵ

Q(s′, a′). (2)

The max operator only bootstraps from actions well-supported in the replay memory determined by
β(s, a) > ϵ, where ϵ is a small number. Because the data coverage in the replay memory is limited
to a tiny subset of the whole environment space, when combing with deep neural networks, Eq. (2)
learns an in-sample estimation at existing state-action pairs and generalizes at missing data. It may
erroneously overestimate out-of-distribution state-action pairs to have unrealistic values. The greedy
policy based on Q, i.e. π := argmaxa Q(s, a), is an optimistic policy that may take erroneously
overestimated actions. This can be one kind of exploration that induces corrective feedback to
mitigate biased estimation in Q function (Kumar et al., 2020a; Schaul et al., 2022).

Though the Q function learned by in-sample TD learning may overestimate, the behavior function β
can differentiate actions between frequently and rarely taken. Combining Q with β, we can reduce
the action values at unseen actions and get a conservative estimate:

Qmask(s, a) =

{
Q(s, a), if β(s, a) > ϵ

mina∈A Q(s, a), otherwise
(3)

If we take greedy actions based on Qmask, i.e. π := argmaxa Qmask(s, a), we get a pure exploita-
tion policy. This is similar to offline/batch reinforcement learning (Lange et al., 2012; Levine et al.,
2020). The learning goal is to maximize the cumulative reward limited to a static dataset. This re-
turns a conservative policy with currently best possible performance (Kumar et al., 2020b; Kostrikov
et al., 2022; Shrestha et al., 2021; Xiao et al., 2023; Zhang et al., 2023).

4.2 CONSTRUCTING POLICY SET

With the three basic functions β,Q and Qmask with clear purposes, we construct a set of diverse
polices that benefits learning. The principle idea is that we can combine two modes of behavior, an
exploration mode and an exploitation mode. For example, ϵ-greedy is the combination of a random
policy and a greedy policy. Previous work (Pislar et al., 2022) has shown that intra-episodic explo-
ration, i.e., change the mode of exploitation and exploration in one episode is the most promising
diagram. We interpolate between exploration policy and exploitation policy to get a set of policies
that explore at some states and exploit at other states within one episode. We construct two kinds of
exploration polices. One is to explore rarely taken actions for better state space coverage, the other
is to explore overestimated actions and get corrective feedback for bias correction.

Exploration for Space Coverage. Because β can differentiate between frequently and rarely taken
actions, and Qmask is a conservative estimate which denotes pure exploitation. We combine β and
Qmask to explore for better state space coverage:

πcov(δ) =

{
argmaxa Qmask(s, a), if β(s, a) > δ ∀ a ∈ A
DiscreteU({a : β(s, a) ≤ δ}), otherwise

(4)

Here, DiscreteU(·) denotes taking a random element from a discrete set. The intuition for πcov(δ) is
that if all actions have been tried several times at a state, we follow the exploitation mode to choose
actions and reach the boundary of explored area. Otherwise, we choose an action uniformly from
undertaken actions which determined by δ. Here δ ∈ [0, 1] is a parameter, we can set different
values to get a group of polices with different exploration degrees. In particular, πcov(0) is the pure
exploitation policy following Qmask, and πcov(1) is a random policy.

Exploration for Bias Correction. The action value-based algorithms is known to overestimate
action values under certain conditions (Van Hasselt et al., 2016; Fujimoto et al., 2018). Accurate
value estimation is critical to extract a good policy in DRL. We combine the overestimated Q and
the conservative Qmask to try overestimated actions at different states to get corrective feedback:

πcor(α) = argmax
a

(αQ(s, a) + (1− α)Qmask(s, a)). (5)

4

Under review as a conference paper at ICLR 2024

The intuition is that we may want to follow the current best actions at some states and explore
overestimated actions at some other states. Here α ∈ [0, 1] is a parameter that we can set different
values to get policies with different exploration degree for bias correction. In particular, πcor(0) is
the pure exploitation policy following Qmask, and πcor(1) is the optimistic policy following Q.

Constructing Policy Set. By setting different δ and α in πcov and πcor, we generate a policy set Π
that ranging from exploration for better space coverage and bias correction to exploitation:

Π =
{
πcov(δ1), · · · , πcov(δm), πcor(α1

), · · · , πcor(αn
)
}

(6)

The policy set does not inject specialized inductive bias thus is general for a wide range of tasks,
and the computation will not increase when we add more polices with different δ and α.

4.3 META-CONTROLLER FOR POLICY SELECTION

After we have a set of polices, we need to select an effective policy to interact with the environment
for each episode. Similar to previous work (Badia et al., 2020a; Fan & Xiao, 2022; Fan et al., 2023;
Kim et al., 2023), we consider the policy selection problem as a non-stationary multi-armed bandit
(MAB) (Garivier & Moulines, 2008; Lattimore & Szepesvári, 2020) and each policy in the set is an
arm. We design a meta-controller to select policies adaptively.

Assume there are N policies in the policy set Π. For each episode k ∈ N, a MAB algorithm chooses
an arm Ak = πi among the possible arms {π0, · · · , πN−1} conditioned on the sequence of previous
actions and returns, and receives an episodic return Rk(Ak) ∈ R. The returns {Rk(π)}k≥0 are
modeled by a series of random variables whose distributions could change through time during the
learning. Our goal is to get a policy π that maximizes the return after a given interaction budget K.

We use a sliding-window with length L ∈ N∗ to adapt to the non-stationarity case, i.e. we only care
about the recent L results and L is smaller than the interaction budget K. The number of times a
policy πi has been selected after k episodes for a window of length L is:

Nk(πi, L) =

k−1∑
m=0∨k−L

I(Am = πi), (7)

where 0 ∨ k − L means max(0, k − L), and I(·) is indicator function:

I(U) =

{
1, if U is True
0, otherwise.

(8)

The empirical mean return of πi until episode k is:

µk(πi, L) =
1

Nk(πi, L)

k−1∑
m=0∨k−L

Rm(πi)I(Am = πi). (9)

Next we design a bonus b to encourage exploration. Since the greedy policy derived by Qmask is
a pure exploitation policy, we consider an action as an exploration action if it is different from the
action taken by policy π := argmaxa Qmask(s, a). For example, if policy πi is selected to interact
with the environment at episode j, the exploration bonus is computed as:

Bj(πi) =
1

Tj

Tj∑
t=0

I(πi(st) = argmax
a

Qmask(st, a)), (10)

where Tj denotes the length for episode j, Bj(πi) ∈ [0, 1] is a count-based bonus for exploration.
Then the empirical mean exploration bonus of πi until episode k is:

bk(πi, L) =
1

Nk(πi, L)

k−1∑
m=0∨k−L

Bm(πi)I(Am = πi). (11)

Here, the episode k have not been tried and the summation is until k − 1. Then for episode k, our
meta-controller chooses a policy by considering both the environment return and exploration bonus:

Ak =

{
πi, if Nk(πi, L) = 0,

argmaxπi
(µk(πi, L) + bk(πi, L)), otherwise.

(12)

5

Under review as a conference paper at ICLR 2024

In this formula, if a policy has not been selected in the last L episodes, we will prioritize selecting
that policy. Otherwise, a policy that explores more often and also gets high returns is preferred. In
implementation, we normalize the return into [0, 1] by (Rk−Rmin)/(Rmax−Rmin), where Rmax and
Rmin are the maximum and minimum return in the sliding window. Thus µk and bk are at the same
magnitude. The pseudo-code of our method is summarized in Appendix A Algorithm 1.

5 EXPERIMENTS

In this section, we aim to answer the following questions: (1) Does our method leads to diverse
exploration thus benefits learning? (2) Does our method improve performance on both general and
sparse reward domains, and also consumes mild computational overhead? (3) What is the role of
the two kinds of exploration policies πcov and πcor in different environments? (4) Is there difference
if we learn Q and Qmask with TD learning and in-sample TD learning separately?

5.1 A TOY EXAMPLE

The Cliff G

State-Action Pairs in Memory

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e4

0.0

0.2

0.4

0.6

Es
tim

at
io

n
Er

ro
r

Estimation Error at Seen/Unseen Actions

Seen Actions
Unseen Actions

The Cliff G

argmax Qmask

The Cliff G

argmax Q

The Cliff G

cor(= 0.2)

The Cliff G

cor(= 0.6)

The Cliff G

cov(= 0.05)

The Cliff G

cov(= 0.1)

Figure 2: Policy diversity at a specific case. Top left shows the state-
action pairs in the memory. Top right shows value errors at seen and un-
seen actions, implying different roles of Q and Qmask. Remaining rows
show diverse polices derived from β,Q and Qmask. These polices take
different actions and lead to different states, which benefits the learning.

We first give a toy example on
CliffWalk environment (Sutton
& Barto, 2018) to show the pol-
icy diversity and the learning
process of our method. Clif-
fWalk has 48 states and 4 ac-
tions in total as shown in Fig. 2.
The goal is to reach state G at
the bottom right starting from
the bottom left. The reward of
reaching G is 1, dropping into
the cliff gives -1, otherwise is 0.

For clear illustration of the pol-
icy diversity, we design a spe-
cific case where there is only
one suboptimal trajectory in the
replay memory as shown in
Fig. 2 top left. The function β
learned by Eq. (1) will assign
probability 1 to the only existing
action at these states and other
actions as 0. The top right fig-
ure shows the estimation error of
function Q learned by Eq. (2) at
seen and unseen actions. We can
find Q will learn accurate esti-
mates at seen actions but inaccurate estimates at unseen actions, which indicates Q may overesti-
mate at some states and Qmask can yield a best possible policy following current data in the memory.
When combining β,Q and Qmask, we obtain a group of diverse policies as shown in the remaining
rows in Fig. 2. These polices take different actions and leading to states that are novel or have biased
estimation. Another similar example is given in Appendix C Fig. 10.

In Fig. 3, we show the learning process of our method. The top left figure shows the learning curves
of β-DQN and DQN. Our method finds the goal state and gets the reward 1, while DQN learns how
to avoid falling into the cliff but fails to reach the goal state G. The second and third rows show
the state coverage of β-DQN and DQN during learning. Our method explores the whole state space
quickly and then maintains the coverage after that. In contrast, DQN agent tries to explore states
that are far away from the cliff but neglects to explore the right bottom area that is closed to the
cliff and also closed to the goal state. Moreover, the top right figure gives more details of the policy
selection in β-DQN. At the beginning, the exploration policies for data coverage (πcov) are chosen
more frequently. After a good coverage of the whole state space, the exploration policies for bias
correction (πcor) are chosen more frequently in this sparse reward environment.

6

Under review as a conference paper at ICLR 2024

DQN’s coverage during learning

𝛽-DQN’s coverage during learning

2k 5k 10k 20k

Figure 3: Details during the learning process. The top left shows the learning curves of β-DQN and DQN.
The heatmaps show the state coverage during learning. Our method explores the whole space quickly and finds
the path to the goal state which gives reward 1. In contrast, DQN agent learns how to avoid falling into the cliff
but fails to reach the goal state G. The top right figure further shows the policy selection in β-DQN. It first tries
to explore the state space with πcov, and then converts to correct inaccurate estimation using πcor.

5.2 OVERALL PERFORMANCE

We evaluate our method on MiniGrid (Chevalier-Boisvert et al., 2018) and MinAtar (Young & Tian,
2019) based on OpenAI Gym interface (Brockman et al., 2016). MiniGrid implements many tasks
in the grid world environment. Most of the games are designed with sparse rewards which is hard
to succeed. MinAtar is an image-based miniaturized version of Atari games (Bellemare et al., 2013)
which maintains the mechanics of the original games as much as possible and is much faster. For
MiniGrid, the map is randomly generated at each episode. For MinAtar, objects are randomly
generated at different time steps. So all these environments require the policy to generalize across
different configurations. More details about these environments can be found in Appendix B.

We compare our method with DQN (Mnih et al., 2015), bootstrapped DQN (Osband et al., 2016),
ϵz-greedy (Dabney et al., 2021), RND (Burda et al., 2019) and LESSON (Kim et al., 2023). All
algorithms are based on DQN but employ different exploration strategies. RND is specialized for
sparse reward environments, other methods are general for all kinds of domains. We use the same
network architecture for all algorithms as used in MinAtar (Young & Tian, 2019). We search the
learning rates for baselines among {3e-4,1e-4, 3e-5} and report the best performance. For our
method, though it induces several hyper-parameters, we use one group of parameters across all en-
vironments. We fix the policy set Π = {πcov(0.05), πcov(0.1), πcor(0), πcor(0.1), πcor(0.2), · · · , πcor(1)},
and sliding-window length L = 1000. Other common parameters are set the same as shown in
Appendix A Table 2. We run each experiment with 10 different random seeds. Each run consists of
5 million steps. The performance is evaluated by running 30 episodes after every 100k steps.

Table 1: Overall performance on MiniGrid (success rate) and MinAtar (final score). Numbers in bold represent
the method that achieves the best performance. The last row shows the computational overhead compared with
DQN. Our method achieves best performance on most games and adds mild computational overhead.

Environment DQN BootDQN ϵz-greedy RND LESSON β-DQN (Ours)

MiniGrid

DoorKey 0.44 0.11 0.0 0.99 0.86 0.98
Unlock 0.22 0.17 0.0 0.95 0.64 0.99

RedBlueDoors 0.43 0.46 0.0 1.0 0.73 0.38
SimpleCrossing-Easy 1.0 1.0 0.95 0.95 0.97 0.99
SimpleCrossing-Hard 1.0 0.81 0.05 0.93 0.6 1.0
LavaCrossing-Easy 0.29 0.66 0.26 0.68 0.75 0.84
LavaCrossing-Hard 0.0 0.01 0.0 0.39 0.06 0.16

MinAtar

Asterix 22.78 22.54 18.79 13.4 18.43 39.09
Breakout 16.69 21.88 19.06 14.1 17.71 29.04
Freeway 60.78 59.94 59.68 49.26 54.38 62.56
Seaquest 14.66 14.31 16.98 5.61 9.41 33.23

SpaceInvaders 67.28 69.91 68.7 31.58 55.94 98.28
Computational Overhead 100% 195.34 % 94.32 % 152.57 % 371.07 % 138.78 %

7

Under review as a conference paper at ICLR 2024

The final scores are shown in Table 1. We report mean success rate on MiniGrid and mean return
on MinAtar. Our method consistently demonstrates superior performance across a wide range of
environments, encompassing both general and sparse reward environments. Bootstrapped DQN
observes some mild improvement on MinAtar and MiniGrid, indicating its generality but limited
performance improvement. ϵz-greedy finds no obvious improvement on MinAtar and a big drop
on MiniGrid. Because repeating the same actions several times blindly may make the agent bump
into a wall again and again, which wastes a lot of trials. This indicates even with the injection of
temporal persistence, the state-independent exploration is inefficient. RND performs the best on
most of the sparse reward environments but performs the worst on MinAtar, which indicates it is not
a general method. LESSON improves on MiniGrid to some extend, but performs somehow worse
on MinAtar. And it takes much more computational overhead (371%) comparing with DQN than
ours (138%) as shown in the last row. ϵz-greedy run a little faster than DQN because it sample a
random action and act for a random duration. This will consume less inference from Q network. To
summary, our method is general, effective and computational efficient. Besides the final scores, we
show the learning curves for each environment in Appendix C Fig. 11.

5.3 ANALYSIS OF OUR METHOD

Our method construct a set of diverse polices with the behavior function β. Then a meta-controller
is used to select an effective policy for each episode. There are some interesting questions we delve
deeper: (1) What kind of policy in the policy set is preferred to select by the meta-controller during
learning? (2) Which policy performs better, argmaxa Q or argmaxa Qmask? (3) Is there difference
if we learn Q and Qmask with TD learning and in-sample TD learning separately? (4) Since we can
set different δ and α to construct the policy set, what is the influence of the policy set size?

5.3.1 THE ROLE OF THE TWO KINDS OF EXPLORATION POLICIES

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

LavaCrossing-Easy

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

Asterix

0 1 2 3 4 5
Environment Steps 1e6

0.00

0.25

0.50

0.75

1.00

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

RedBlueDoors

0 1 2 3 4 5
Environment Steps 1e6

0.00

0.25

0.50

0.75

1.00

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

LavaCrossing-Hard

cov

cor

Figure 4: Policy selection during learning. In simple (LavaCrossing-Easy) or dense reward (Asterix) environ-
ments, exploring for bias correction plays more important role. In hard exploration environments (RedBlue-
Doors, LavaCrossing-Hard), the two kinds of polices interleave and result in a more intricate selection pattern.

We construct two kinds of exploration polices in our policy set, πcov for state space coverage and
πcor for bias correction. In Fig. 4, We illustrate the selection proportions of the two kinds of polices
within the siding-window during the learning process. Here, πcov includes {πcov(0.05), πcov(0.1)},
πcor includes {πcor(0.1), πcor(0.2), · · · , πcor(1)}. We can find in simple (LavaCrossing-Easy) or dense
reward (Asterix) environments, exploring for bias correction plays more important role. In hard
exploration environments such as RedBlueDoors and LavaCrossing-Hard, the two types of policies
interleave, resulting in a more intricate selection pattern. This indicates pure exploration itself does
not benefit the learning, because novel states may not correlate with improved rewards (Bellemare
et al., 2016; Simmons-Edler et al., 2021). In simple environments, it is usually more beneficial
to find more low-hanging-fruit rewards, rather than spending much effort exploring novel areas. In
hard exploration environments, it is the case that state-novelty exploration plays more important role
and find something. This parallels the principles of depth-first search (DFS) and breadth-first search
(BFS). When encountering positive rewards, our approach adopts a depth-first exploration, delving
deeper into the discovered areas for further exploration. Conversely, in the absence of immediate
rewards, we shift towards a breadth-first strategy, exploring widely in search of promising areas.

5.3.2 THE PERFORMANCE OF POLICES IN THE POLICY SET

We have three basic functions in our method, we show the performance of them in Fig. 5. The
policy argmina β always takes actions with the least probability thus learns nothing. The policy

8

Under review as a conference paper at ICLR 2024

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

DoorKey

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

SimpleCrossing-Hard

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

40

Ep
is

od
e

Sc
or

e

Asterix

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

40

Ep
is

od
e

Sc
or

e

Seaquest

argmaxaQmask

argmaxaQ
argmina

Figure 5: The performance of the three basic polices during learning. argmina β learns nothing since it
does not care about performance. argmaxa Qmask chooses in-sample greedy actions and performs the best.
argmaxa Q take greedy actions among the whole action space and may take overestimated actions.

argmaxa Qmask chooses greedy actions that is well-supported in the replay memory and performs
the best. The policy argmaxa Q takes greedy actions among the whole action space, it may take
overestimated actions thus the performance is not as stable as argmaxa Qmask. This result aligns
with our expectations, highlighting the distinct purposes of the three basic functions.

5.3.3 PERFORMANCE ANALYSIS WITH DIFFERENT CONFIGURATIONS.

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

Unlock

0 1 2 3 4 5
Environment Steps 1e6

0

20

40

60

80

100

Ep
is

od
e

Sc
or

e

SpaceInvaders

Single Q
Two Qs

(a) Learning two separate Qs.

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Su

cc
es

s
R

at
e

LavaCrossing-Easy

0 1 2 3 4 5
Environment Steps 1e6

0

20

40

60

80

100

120

Ep
is

od
e

Sc
or

e

SpaceInvaders

cov(0.05)

cor(1)

cor(0)
Size 8
Size 13
Size 23

(b) The influence of the policy set size.

Figure 6: Ablation studies on different configurations. (a) We learn two Qs separately and find no obvious
difference, which means it is enough to derive two Qs from Eq. (2). (b) We construct policy sets with different
sizes. There is clear performance improvement when we include all the three functions in the policy set.

Learning Two Separate Q Functions. Our method learns one Q function with Eq. (2) and obtain
Q and Qmask. The intuition is that though Eq. (2) give us a conservative estimate based on in-
distribution data, it may still overestimate at unseen state-action pairs. In Fig. 6(a), we show the
ablation that learns two separate Q functions with TD learning and in-sample TD learning. We find
no obvious difference across environments, which means learning one Q function is enough to get
both conservative and optimistic estimation and is more computational efficient.

Size of Policy Set. We can construct policy sets with different sizes, and Fig. 6(b) shows the influ-
ence. Here, πcov(0.05), πcor(0), πcor(1) means there is only one policy. And others show the size of the
policy set that combining all three basic functions. More details can be found in Appendix C.3.4.
We can find πcov(0.05) almost learns nothing, which means only focusing on space coverage does no
benefit the leaning. Though πcor(0) and πcor(1) both learns something, they perform poorer than a
big policy set, which means a single policy itself is not enough to get good performance due to the
lack of diverse exploration. In contrast, when we combine the three basic functions, we get obvious
performance gain with larger set sizes, which emphasize the importance of diverse exploration.

6 CONCLUSION

In this paper, we improve exploration by constructing a group of diverse polices via only additionally
learning a behavior policy β from the replay memory with supervised learning. With β, we construct
a set of exploration policies ranging from exploration for space coverage and bias correction to
pure exploitation. Then an adaptive meta-controller is designed to select the most effective policy
to interact with the environment for each episode. Our method is simple, general and adds little
computational overhead to DQN. Experiments conducted on MinAtar and MiniGrid demonstrate
our method is effective and exhibits broad applicability in both easy and hard exploration domains.
Future work could be extending our method to environments with continuous action space.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International conference on machine learning, pp. 507–517. PMLR, 2020a.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles
Blundell. Never give up: Learning directed exploration strategies. In International Confer-
ence on Learning Representations, 2020b. URL https://openreview.net/forum?id=
Sye57xStvB.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Richard E. Bellman. Dynamic Programming. Princeton University Press, Princeton, 2021. ISBN
9781400835386. doi: doi:10.1515/9781400835386. URL https://doi.org/10.1515/
9781400835386.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=H1lJJnR5Ym.

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insight-
ful and inclusive deep reinforcement learning research. In International Conference on Machine
Learning, pp. 1373–1383. PMLR, 2021.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Will Dabney, Georg Ostrovski, and Andre Barreto. Temporally-extended ε-greedy exploration. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=ONBPHFZ7zG4.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Jiajun Fan and Changnan Xiao. Generalized data distribution iteration. In International Conference
on Machine Learning, pp. 6103–6184. PMLR, 2022.

Jiajun Fan, Yuzheng Zhuang, Yuecheng Liu, Jianye HAO, Bin Wang, Jiangcheng Zhu, Hao Wang,
and Shu-Tao Xia. Learnable behavior control: Breaking atari human world records via sample-
efficient behavior selection. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=FeWvD0L_a4.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International Con-
ference on Machine Learning, pp. 3061–3071. PMLR, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

10

https://openreview.net/forum?id=Sye57xStvB
https://openreview.net/forum?id=Sye57xStvB
https://doi.org/10.1515/9781400835386
https://doi.org/10.1515/9781400835386
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://github.com/maximecb/gym-minigrid
https://openreview.net/forum?id=ONBPHFZ7zG4
https://openreview.net/forum?id=ONBPHFZ7zG4
https://openreview.net/forum?id=FeWvD0L_a4

Under review as a conference paper at ICLR 2024

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for non-stationary bandit
problems. arXiv preprint arXiv:0805.3415, 2008.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.
URL http://jmlr.org/papers/v23/21-1342.html.

Steven Kapturowski, Vı́ctor Campos, Ray Jiang, Nemanja Rakicevic, Hado van Hasselt, Charles
Blundell, and Adria Puigdomenech Badia. Human-level atari 200x faster. In The Eleventh In-
ternational Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=JtC6yOHRoJJ.

Woojun Kim, Jeonghye Kim, and Youngchul Sung. Lesson: Learning to integrate exploration strate-
gies for reinforcement learning via an option framework. In International Conference on Machine
Learning. PMLR, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforcement
learning via distribution correction. Advances in Neural Information Processing Systems, 33:
18560–18572, 2020a.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020b.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3):293–321, 1992.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International conference on machine learning, pp. 2721–2730. PMLR,
2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Miruna Pislar, David Szepesvari, Georg Ostrovski, Diana L Borsa, and Tom Schaul. When should
agents explore? In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=dEwfxt14bca.

11

http://jmlr.org/papers/v23/21-1342.html
https://openreview.net/forum?id=JtC6yOHRoJJ
https://openreview.net/forum?id=JtC6yOHRoJJ
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=dEwfxt14bca
https://openreview.net/forum?id=dEwfxt14bca

Under review as a conference paper at ICLR 2024

Tom Schaul, Andre Barreto, John Quan, and Georg Ostrovski. The phenomenon of policy churn.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=qTCiw1frE_l.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine
Learning, pp. 8583–8592. PMLR, 2020.

Aayam Kumar Shrestha, Stefan Lee, Prasad Tadepalli, and Alan Fern. Deepaveragers: Offline
reinforcement learning by solving derived non-parametric {mdp}s. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
eMP1j9efXtX.

Riley Simmons-Edler, Ben Eisner, Daniel Yang, Anthony Bisulco, Eric Mitchell, Sebastian Seung,
and Daniel Lee. Reward prediction error as an exploration objective in deep rl. In Proceedings
of the Twenty-Ninth International Conference on International Joint Conferences on Artificial
Intelligence, pp. 2816–2823, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Adrien Ali Taiga, William Fedus, Marlos C. Machado, Aaron Courville, and Marc G. Bellemare.
On bonus based exploration methods in the arcade learning environment. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
BJewlyStDr.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. Advances in neural information processing systems, 30, 2017.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. Journal of
Machine Learning Research, 23(267):1–6, 2022. URL http://jmlr.org/papers/v23/
21-1127.html.

Chenjun Xiao, Han Wang, Yangchen Pan, Adam White, and Martha White. The in-sample soft-
max for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=u-RuvyDYqCM.

Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Jianye Hao, Zhaopeng Meng, Peng Liu, and
Zhen Wang. Exploration in deep reinforcement learning: a comprehensive survey. arXiv preprint
arXiv:2109.06668, 2021.

Kenny Young and Tian Tian. Minatar: An Atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Hongchang Zhang, Yixiu Mao, Boyuan Wang, Shuncheng He, Yi Xu, and Xiangyang Ji. In-
sample actor critic for offline reinforcement learning. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
dfDv0WU853R.

12

https://openreview.net/forum?id=qTCiw1frE_l
https://openreview.net/forum?id=qTCiw1frE_l
https://openreview.net/forum?id=eMP1j9efXtX
https://openreview.net/forum?id=eMP1j9efXtX
https://openreview.net/forum?id=BJewlyStDr
https://openreview.net/forum?id=BJewlyStDr
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
https://openreview.net/forum?id=u-RuvyDYqCM
https://openreview.net/forum?id=dfDv0WU853R
https://openreview.net/forum?id=dfDv0WU853R

Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS

Hyper-parameters. All methods are based on DQN. We maintain most parameters the same as
DQN and reduce the interaction steps to run more different random seeds. We run each experiment
with 5 million steps of interaction with the environment. We proportionally reduce other parameters
based on the interaction steps. The ϵ-greedy exploration is linearly decayed from 1 to 0.01 in 1
million steps. The target network is updated every 1000 steps. The replay memory size is set as
100,000. The minibatch size is 32. The replay ratio is 0.25 (Fedus et al., 2020), that is to say the Q
function is updated once per four environmental steps. The optimizer for the network is Adam. The
discount factor is 0.99. Table 2 shows the detailed hyper-parameters that used for all methods.

Besides the common parameters, there are other parameters that are specific to different meth-
ods. For bootstrapped DQN, we follow the parameters setting in the original paper (Osband et al.,
2016). We split K = 10 separate bootstrap heads after the convolutional layer. And the gradi-
ents are normalized by 1/K. The parameter p in Bernoulli mask ω1, · · · , ωK ∼ Ber(p) is set
as 1 to save on minibatch passes. When evaluate the performance, we combine all the heads
into a single ensemble policy by choosing the action with the most votes across heads. For ϵz-
greedy, to decide the duration of random actions, we use a heavy-tailed distribution zeta distribution
(z(n) ∝ n−µ) with µ = 2. For RND, we the intrinsic reward scale α is set as 10. In LESSON,
the temperature parameter τ = 0.02. The Intrinsic reward coefficient α is set as default value
in (Kim et al., 2023). For our method β-DQN, we use β(s, a) > ϵ as a constraint for the max
operator to bootstraps from actions in Eq. (2), we use fixed value ϵ = 0.05. We also fix the pol-
icy set Π = {πcov(0.05), πcov(0.1), πcor(0), πcor(0.1), πcor(0.2), · · · , πcor(1)}, and sliding-window length
L = 1000. We count the same states visited in an episode and avoid visiting the same state-action
too much immediately, which is an augment of the behavior function. We search the learning rates
for all methods among {3e-3,1e-3,3e-5} and report the best performance. For these baselines, we
implement DQN, Bootstrapped DQN, and ϵz-greedy according to the original papers and refer some
awesome public codebases like Tianshou (Weng et al., 2022) 1 and Clearnrl (Huang et al., 2022) 2.
RND and LESSON are based on publicly released code 3.

Table 2: Hyper-parameters of DQN on MiniGrid and MinAtar environments.

Hyperparameter Value
Minibatch size 32

Replay memory size 100,000
Target network update frequency 1,000

Replay ratio 0.25
Discount factor 0.99

Optimizer Adam
Initial exploration 1
Final exploration 0.01

Exploration decay steps 1M
Total steps in environment 2M

Network Architecture. We use the same network architecture for all algorithms as used in MinAtar
baselines (Young & Tian, 2019). It consists of a convolutional layer, followed by a fully connected
layer. The convolutional layer has 16 3× 3 convolutions with stride 1, the fully connected layer has
128 units. These settings are one quarter of the final convolutional layer and fully connected layer
of the network used in DQN (Mnih et al., 2015).

For bootstrapped DQN, We split the network of the final layer into K = 10 distinct heads, each
one is a fully connected layer with 128 units. RND (Burda et al., 2019) involves two more neural

1https://github.com/thu-ml/tianshou
2https://github.com/vwxyzjn/cleanrl
3https://github.com/beanie00/LESSON

13

https://github.com/thu-ml/tianshou
https://github.com/vwxyzjn/cleanrl
https://github.com/beanie00/LESSON

Under review as a conference paper at ICLR 2024

networks. One is a fixed randomly initialized neural network which takes an observation to an
embedding, and a predictor network trained to predict the embedding output by the fixed randomly
initialized neural network. For LESSON (Kim et al., 2023), it involves the prediction networks
the same as RND. And the prediction-error maximizing (PEM) intra-policy contains a separate Q-
function, which estimates the expected sum of prediction-error intrinsic rewards. Besides, it learns
an option selection policy {πΩ} and the terminal functions {βω}, thus has more networks to learn.

Evaluation. We run each method on each environment with 10 different random seeds, and show the
mean score and standard error with solid line and shaded area in Fig. 11. The performance is evalu-
ated by running 30 episodes after every 100K environmental steps. We use ϵ-greedy exploration at
evaluation with ϵ = 0.01 to prevent the agent from being stuck at the same state.

Algorithm 1 β-DQN
1: Initialize replay memory D with fixed size
2: Initialize functions β,Q,Qmask, and construct policy set Π following Eqs. (4) to (6)
3: for episode k = 0 to K do
4: Select a policy π according to Eq. (12)
5: Initialize the environment s0 ← Env
6: for environments step t = 0 to T do
7: Select an action at ∼ π(·|st)
8: Execute at in Env and get rt, st+1

9: Store transition (st, at, rt, st+1) in D
10: Update β and Q following Eqs. (1) and (2)
11: end for
12: end for

B ENVIRONMENT DETAILS

B.1 CLIFFWORLD

Cliffworld is a simple navigation task introduced by Sutton & Barto (2018) as shown in Figure 7.
There are 48 states in total which is presented as two-dimensional coordinate axes x and y. The size
of action space is 4, with left, right, up and down. The agent needs to reach the goal state G at the
bottom right starting from the start state S at the bottom left. The reward of reaching the goal is +1,
dropped into the cliff gives -1, otherwise is 0. We set the discount factor as 0.9 and the max episode
steps as 100. The black line on the figure shows the optimal path.

Figure 7: The illustration of Cliffworld environment. Each grid denotes a state, the black line shows
the optimal path from start state S to goal state G.

B.2 MINIGRID

MiniGrid (Chevalier-Boisvert et al., 2018; 2023) 4 is a gridworld Gymnasium (Brockman et al.,
2016) environment, which is designed to be particularly simple, lightweight and fast. It implements
many tasks in the gridworld environment and most of the games are designed with sparse rewards.
We choose seven different tasks as shown in Figure 8.

4https://github.com/Farama-Foundation/Minigrid

14

https://github.com/Farama-Foundation/Minigrid

Under review as a conference paper at ICLR 2024

(a) DoorKey (b) Unlock (c) RedBlueDoors

(d) SimpleCross-Easy (e) SimpleCross-Hard (f) LavaCrossing-Easy (g) LavaCrossing-Hard

Figure 8: Visualization of MiniGrid environments.

The map for each task is randomly generated at each episode to avoid overfitting to a fixed map. The
state is an array with the same size of the map. The red triangle denotes the player, and other objects
are denoted with different symbols. The action space is different from tasks. For navigation tasks
like SimpleCrossing and LavaCrossing, actions only include turn left, turn right and move forward.
For other tasks like DoorKey and Unlock, actions also include pickup a key and open a door. Let
MaxSteps be the max episode steps, MapWidth and MapHeight be the width and height of the map.
We introduce each task as follows.

DoorKey. This task is to first pickup the key, then open the door, and finally reach the goal state
(green block). MaxSteps is defined as 10 ×MapWidth ×MapHeight. Reaching the goal state will
get reward +MaxSteps/100, otherwise there is a penalty reward -0.01 for each step.

Unlock. This task is to first pickup the key and then open the door. MaxSteps is defined as 8 ×
MapHeight2. Opening the door will get reward +MaxSteps/100, otherwise there is a penalty reward
-0.01 for each step.

RedBlueDoors. This task is to first open the red door and then open the blue door. MaxSteps is
defined as 20 ×MapHeight2. The agent will get reward +MaxSteps/100 after the red door and the
blue door are opened sequentially, otherwise there is a penalty reward -0.01 for each step.

SimpleCross-Easy/Hard. This task is to navigate through the room and reach the goal state (green
block). Knocking into the wall will keep the agent unmoved. MaxSteps is defined as 4×MapWidth×
MapHeight. Reaching the goal state will get reward +MaxSteps/100, otherwise there is a penalty
reward -0.01 for each step.

LavaCross-Easy/Hard. This task is to reach the goal state (green block). Falling into the lava
(orange block) will terminate the episode immediately. MaxSteps is defined as 4 × MapWidth ×
MapHeight. Reaching the goal state will get reward +MaxSteps/100, falling into the lava will get
reward -MaxSteps/100, otherwise there is a penalty reward -0.01 for each step.

B.3 MINATAR

MinAtar (Young & Tian, 2019) 5 is image-based miniaturized version of Atari environments (Belle-
mare et al., 2013), which maintains the mechanics of the original games as much as possible and

5https://github.com/kenjyoung/MinAtar

15

https://github.com/kenjyoung/MinAtar

Under review as a conference paper at ICLR 2024

(a) Asterix (b) Breakout (c) Freeway (d) Seaquest (e) SpaceInvaders

Figure 9: Visualization of MinAtar environments.

is much faster than original version. MinAtar implements five Atari games in total, we show the
visualization of each game in Figure 9.

State Space. Each game provides the agent with a 10 × 10 × n binary state representation. The n
channels correspond to game specific objects, such as ball, paddle and brick in the game Breakout.
The objects in each game are randomly generated at different time steps. The difficulty will change
as the game progresses, for examples, there will be more objects and the objects will move faster.
So these environments needs the policy to generalize across different configurations.

Action Space. The action space consists of moving in the 4 cardinal directions, firing, and no-op,
and omits diagonal movement as well as actions with simultaneous firing and movement. This sim-
plification increases the difficulty for decision making. In addition, MinAtar games add stochasticity
by incorporating sticky-actions, that the environment repeats the last action with probability 0.1 in-
stead of executing the agent’s current action. This can avoid deterministic behaviour that simply
repeats specific sequences of actions, rather than learning policies that generalize.

Reward Function. The rewards in most of the MinAtar environments are either 1 or 0. The only
exception is Seaquest, where a bonus reward between 0 and 10 is given proportional to remaining
oxygen when surfacing with six divers.

B.4 WALL-CLOCK TIME COMPARISON

Only reporting sample efficiency cannot tell us how long we need to train an agent for each method.
We compare the wall-clock time during training in Table 3. We use Frames Per Second (FPS)
to measure the training speed. FPS counts the number of frames that the agent interacts with the
environment per second.

We test the speed on device with GPU NVIDIA RTX A5000 and CPU AMD EPYC 7313 16-Core
Processor. Each time we run 1 experiments and do 3 runs for each method. We can find our method
β-DQN (FPS:627) is slower than DQN (FPS: 870) and faster than methods like Bootstrapped DQN
(FPS:445), RND (FPS:570) and LESSON (FPS:234). In addition, since we use a simple network
architecture, the computational overhead is relatively low for networks comparing with the compu-
tation consumed by environments. If we use a large network, the computation gap will be larger
between our method and other methods which have more networks like RND and LESSON. ϵz-
greedy run a little faster than DQN because it sample a random action and act for a random duration.
This will consume less inference from Q network.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 TOY EXAMPLE

Besides the example given in Fig. 2, we give another example with full state coverage as shown
in Fig. 10. The top left shows all states have been visited. Each state has at least one optimal
action in the replay memory, but there are still actions have not been tried. The function β learned
by Eq. (1) will assign probability uniformly to existing actions at these states and other actions as
0. The top right figure shows the estimation error of function Q learned by Eq. (2) at seen and
unseen actions. We can find Q learns accurate estimates at seen actions but inaccurate at unseen
actions, which indicates Q may overestimate at some states and Qmask can yield a best possible

16

Under review as a conference paper at ICLR 2024

Table 3: Wall-clock time comparison between different methods. We use Frames Per Second (FPS)
to measure the speed of interaction with environments during training. Our method adds mild com-
putational overhead on DQN.

Method FPS (mean ± std) Computational Overhead
DQN 870.64 ± 7.59 100%

Bootstrapped DQN 445.72 ± 14.68 195.34%
ϵz-greedy 923.04 ± 38.58 94.32%

RND 570.63 ± 32.31 152.57%
LESSON 234.63 ± 12.71 371.0%

β-DQN (Ours) 627.36 ± 5.34 138.78%

policy following current data in the memory. A detailed illustration is given at the second row. The
blue shading indicates the action values for the greedy actions of Qmask and Q. We can find Qmask
learn the accurate estimate, but Q overestimates at some state-action pairs and take wrong actions.
When combining β,Q and Qmask, we obtain a group of diverse policies as shown in the remaining
rows. These polices take different actions and explore the whole state action space.

C.2 OVERALL PERFORMANCE

We show the learning curves of each method on MiniGrid and MinAtar in Fig. 11. Each line is
the average of running 10 different random seeds. The solid line shows the mean success rate for
MiniGrid and the mean return for MinAtar. The shaded area shows the standard error. We can
find our method β-DQN achieves the best performance on most of environments across easy and
hard exploration domains, which indicates our method achieves diverse exploration and helps the
learning. This highlights that our methods is general and suitable for all kinds of tasks.

C.3 ADDITIONAL ANALYSIS

C.3.1 THE ROLE OF THE TWO KINDS OF EXPLORATION POLICIES

We construct two kind of exploration polices in our policy set, πcov for state space coverage and πcor
for bias correction. We can get many of these polices with different δ and α. To show the role of
the two kinds of exploration policies, we count them together for clear illustration. For example our
main result is based on policy set Π = {πcov(0.05), πcov(0.1), πcor(0), πcor(0.1), πcor(0.2), · · · , πcor(1)},
and sliding-window length L = 1000. We count {πcov(0.05), πcov(0.1)} together as πcov for state
space coverage, and {πcor(0.1), πcor(0.2), · · · , πcor(1)} together as πcor for bias correction. We also
plot πcor(0) separately, since it is a pure exploitation policy.

In Fig. 12, We show the selection proportions of the two kinds of polices in the sliding-window
during the learning process. We can find, in all MinAtar environment, the most frequently selected
policy are always πcor. It means following the exploit mode at some states and exploring some over-
estimated action is enough to get good performance. This indicates, in dense reward environment,
there is no need to put much effort to discover hard explored rewards, it is usually more efficient
to find more low-hanging-fruit rewards. In MiniGrid environments, the policy selection pattern is
more complicated. The state-novelty exploration plays more important role in some environments
such as RedBlueDoors and LavaCrossing-Hard. The two types of policies interleave, resulting in
a more intricate selection pattern. Our meta-controller parallels the principles of depth-first search
(DFS) and breadth-first search (BFS). When encountering positive rewards, our approach adopts a
depth-first exploration, delving deeper into the discovered areas for further exploration. Conversely,
in the absence of immediate positive feedback, we shift towards a breadth-first strategy, exploring
widely in search of promising areas.

C.3.2 THE PERFORMANCE OF POLICES IN THE POLICY SET

We have three basic functions in our method, one may curious about the performance of the po-
lices derived from the three functions. We show the performance of them in Fig. 13. The policy

17

Under review as a conference paper at ICLR 2024

The Cliff G

State-Action Pairs in Memory

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e4

0.0

0.2

0.4

0.6

Es
tim

at
io

n
Er

ro
r

Estimation Error at Seen/Unseen Actions

Seen Actions
Unseen Actions

The Cliff G

argmax Qmask

The Cliff G

argmax Q

1.0 0.5 0.0 0.5 1.0

The Cliff G

argmax Qmask

The Cliff G

argmax Q

The Cliff G

cor(= 0.2)

The Cliff G

cor(= 0.6)

The Cliff G

cov(= 0.05)

The Cliff G

cov(= 0.1)

Figure 10: Policy diversity at a specific case. The top left figure shows the state-action pairs in
the current memory. All states have been visited and each state has at least one optimal action in
the replay memory, but there are still actions have not been tried. The top right figure shows Q
value errors at seen and unseen actions. And the second rows explicitly show the action values for
the greedy actions of Qmask and Q, which indicates Q may overestimate at some states and Qmask
can yield a best possible policy, implying different roles of Q and Qmask. In the remaining rows,
we show diverse polices derived from β,Q and Qmask. These polices take different actions at these
states, which benefits the learning.

18

Under review as a conference paper at ICLR 2024

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

DoorKey

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Unlock

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

RedBlueDoors

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

SimpleCrossing-Easy

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

SimpleCrossing-Hard

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

LavaCrossing-Easy

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

Su
cc

es
s

R
at

e

LavaCrossing-Hard

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

40

Ep
is

od
e

Sc
or

e

Asterix

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

Ep
is

od
e

Sc
or

e

Breakout

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

40

50

60

Ep
is

od
e

Sc
or

e

Freeway

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

40

Ep
is

od
e

Sc
or

e

Seaquest

0 1 2 3 4 5
Environment Steps 1e6

0

20

40

60

80

100

Ep
is

od
e

Sc
or

e

SpaceInvaders

� � � � � �
����������������� ���

���

���

���

���

���

���

���

�
�
�
�
�
�
�
��
�
��

�����������������

�������� �������� ������������ ��� ������ ����

Figure 11: Learning curves on all environments. Our method achieves the best performance on
most of environments across easy and hard exploration domains, which indicates our method is
general and effective.

0 1 2 3 4 5
Environment Steps 1e6

0.25

0.00

0.25

0.50

0.75

1.00

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

DoorKey

0 1 2 3 4 5
Environment Steps 1e6

0.00

0.25

0.50

0.75

1.00

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

Unlock

0 1 2 3 4 5
Environment Steps 1e6

0.00

0.25

0.50

0.75

1.00

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

RedBlueDoors

0 1 2 3 4 5
Environment Steps 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

SimpleCrossing-Easy

0 1 2 3 4 5
Environment Steps 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

SimpleCrossing-Hard

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

LavaCrossing-Easy

0 1 2 3 4 5
Environment Steps 1e6

0.25

0.00

0.25

0.50

0.75

1.00

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

LavaCrossing-Hard

0 1 2 3 4 5
Environment Steps 1e6

0.00

0.25

0.50

0.75

1.00

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

Asterix

0 1 2 3 4 5
Environment Steps 1e6

0.25

0.00

0.25

0.50

0.75

1.00

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

Breakout

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

Freeway

0 1 2 3 4 5
Environment Steps 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

Seaquest

0 1 2 3 4 5
Environment Steps 1e6

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Po
lic

y
Se

le
ct

io
n

Pr
op

or
tio

n

SpaceInvaders

� � � � � �
����������������� ���

����

����

����

����

����

����

�
�
���

�
��

�
��
�
��
�
�
��

��
�
�
��
��
�

�����������������

��� ��� ������

Figure 12: Policy selection proportions during learning on all environments. Policy πcor play more
important role in simple and dense reward environments to get corrective feedback and correct bi-
ased estimation. In hard exploration environments, the two kinds of polices πcor and πcov interleave
and result in a more intricate selection pattern.

19

Under review as a conference paper at ICLR 2024

argmina β always takes actions with the least probability, it does not care about the performance
thus learns nothing. The policy argmaxa Qmask chooses greedy actions that is well-supported in the
replay memory and performs the best, which is what we expected. The policy argmaxa Q takes
greedy actions among the whole action space. It may take overestimated actions at some states thus
the performance is not as stable as argmaxa Qmask.

We can also find in some environments like SimpleCrossing-Easy and SimpleCrossing-Hard,
argmaxa Q performs similar as argmaxa Qmask. This indicates the space has been fully explored
and there is little estimation bias in function Q. In contrast, in some other environments like Asterix
and SpaceInvaders, there is a large gap between argmaxa Q and argmaxa Qmask. This indicates
there is a lot of underexplored overestimated actions waiting for correcting.

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

DoorKey

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Unlock

0 1 2 3 4 5
Environment Steps 1e6

0.25

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

R
at

e

RedBlueDoors

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

SimpleCrossing-Easy

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

SimpleCrossing-Hard

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

LavaCrossing-Easy

0 1 2 3 4 5
Environment Steps 1e6

0.2

0.0

0.2

0.4

Su
cc

es
s

R
at

e
LavaCrossing-Hard

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

40

Ep
is

od
e

Sc
or

e

Asterix

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

Ep
is

od
e

Sc
or

e

Breakout

0 1 2 3 4 5
Environment Steps 1e6

0

20

40

60

Ep
is

od
e

Sc
or

e

Freeway

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

40

Ep
is

od
e

Sc
or

e

Seaquest

0 1 2 3 4 5
Environment Steps 1e6

0

20

40

60

80

100
Ep

is
od

e
Sc

or
e

SpaceInvaders

� � � � � �
����������������� ���

���

���

���

���

���

���

�
�
�
�
�
�
�
��
�
��

�������������������

������������ �������� �������

Figure 13: The performance of the three basic polices during learning. argmina β learns nothing
since it does not care about performance. argmaxa Qmask chooses in-sample greedy actions and
performs the best. argmaxa Q take greedy actions among the whole action space and may take
overestimated actions. Its performance is closed to but a little worse than argmaxa Qmask.

C.3.3 LEARNING TWO SEPARATE Q FUNCTIONS

Our method learns one Q function with Eq. (2) and obtain Q and Qmask from the single function.
The intuition is that though Eq. (2) gives us a conservative estimate based on in-distribution data, it
may still overestimate at unseen state-action pairs as shown in the toy example Figs. 2 and 10. A
more natural way is that we can maintain the update rule in DQN unchanged as:

Q(s, a)← r(s, a) + γmax
a′

Q(s′, a′). (13)

And additionally learn another Q following Eq. (2). In this way, we learn Q function with TD
learning and Qmask with in-sample TD learning. We show the ablation in Fig. 14. On most of these
environment, we find no big difference, which means learning one Q function with Eq. (2) is enough
to get both conservative and optimistic estimation and adds less computational overhead.

20

Under review as a conference paper at ICLR 2024

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

DoorKey

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

Unlock

0 1 2 3 4 5
Environment Steps 1e6

0.25

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s

R
at

e

RedBlueDoors

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

SimpleCrossing-Easy

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

SimpleCrossing-Hard

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

LavaCrossing-Easy

0 1 2 3 4 5
Environment Steps 1e6

0.2

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s

R
at

e

LavaCrossing-Hard

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

40

Ep
is

od
e

Sc
or

e

Asterix

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

Ep
is

od
e

Sc
or

e

Breakout

0 1 2 3 4 5
Environment Steps 1e6

0

20

40

60

Ep
is

od
e

Sc
or

e

Freeway

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

40

Ep
is

od
e

Sc
or

e

Seaquest

0 1 2 3 4 5
Environment Steps 1e6

0

20

40

60

80

100

Ep
is

od
e

Sc
or

e

SpaceInvaders

� � � � � �
����������������� ���

���

���

���

���

���

���

�
�
�
�
�
�
�
��
�
��

�����������������

�������� ������

Figure 14: Ablation study on learning two separate Q functions. We learn the Q function with
TD learning, and learning Qmask with constrained TD learning and behavior function β. There is
no obvious difference between the two methods, which means learning one Q with constrained TD
learning is enough to derive two Q functions.

C.3.4 THE INFLUENCE OF POLICY SET SIZE.

One benefit of our method is that we can construct policy sets with different sizes without increasing
computational overhead. By adding different δ and α, we get larger policy set. We construct different
sizes of policy sets as shown in Fig. 15.

The πcov(0.05), πcor(0), πcor(1) in the figure means there is only one policy. And others show the size
of the policy set that combining all three basic functions like Eq. (6). Size 8 denotes the policy
set Π = {πcov(0.05), πcov(0.1), πcor(0), πcor(0.2), πcor(0.4), · · · , πcor(1)}. Size 13 denotes the policy set
Π = {πcov(0.05), πcov(0.1), πcor(0), πcor(0.1), πcor(0.2), · · · , πcor(1)}, which we used in our main results.
Size 23 denote the policy set Π = {πcov(0.05), πcov(0.1), πcor(0), πcor(0.05), πcor(0.1), · · · , πcor(1)}.
We can find πcov(0.05) does not learn anything in most of environments, which indicates only focus-
ing on space coverage does no benefit the leaning. This may because novel states may not correlate
with improved rewards (Bellemare et al., 2016; Simmons-Edler et al., 2021). Though πcor(0) and
πcor(1) both learns something, they perform poorer than a big policy set, which indicates a single pol-
icy itself is not enough to get good performance due to the lack of diverse exploration. In contrast,
when we combine the three of the basic functions, we get obvious performance gain with larger set
sizes, which emphasize the importance of diverse exploration. And when we increase the policy size
to 13 and 23, there is no big difference within 5 million environmental steps, which may indicate
the diversity is similar in this two policy sets.

21

Under review as a conference paper at ICLR 2024

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

DoorKey

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Unlock

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

RedBlueDoors

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

SimpleCrossing-Easy

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

SimpleCrossing-Hard

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

R
at

e

LavaCrossing-Easy

0 1 2 3 4 5
Environment Steps 1e6

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s

R
at

e

LavaCrossing-Hard

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

40

Ep
is

od
e

Sc
or

e

Asterix

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

Ep
is

od
e

Sc
or

e

Breakout

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

40

50

60

Ep
is

od
e

Sc
or

e

Freeway

0 1 2 3 4 5
Environment Steps 1e6

0

10

20

30

40

Ep
is

od
e

Sc
or

e

Seaquest

0 1 2 3 4 5
Environment Steps 1e6

0

20

40

60

80

100

120

Ep
is

od
e

Sc
or

e

SpaceInvaders

� � � � � �
����������������� ���

���

���

���

���

���

���

�
�
�
�
�
�
�
��
�
��

������������

��������� ������ ������ ������ ������� �������

Figure 15: The influence of the policy set size. We construct the policy set with different sizes. The
performance improves with increasing policy size and obtain obvious improvement if we contain all
the three basic functions in the policy set.

22

	Introduction
	Related Work
	Background
	Method
	Learning Basic Functions
	Constructing Policy Set
	Meta-Controller for Policy Selection

	Experiments
	A Toy Example
	Overall Performance
	Analysis of our method
	The role of the two kinds of exploration policies
	The performance of polices in the policy set
	Performance Analysis with Different Configurations.

	Conclusion
	Implementation Details
	Environment Details
	Cliffworld
	MiniGrid
	MinAtar
	Wall-Clock Time Comparison

	Additional Experimental Results
	Toy example
	Overall Performance
	Additional Analysis
	The role of the two kinds of exploration policies
	The performance of polices in the policy set
	Learning two separate Q functions
	The influence of policy set size.

