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ABSTRACT

Out-of-distribution (OOD) detection is essential for neural networks to ensure
reliable predictions in open-world machine learning. Previous approaches have
shown that suitable surrogate outlier data are helpful in training OOD detection
models. However, obtaining appropriate surrogate outliers presents several sub-
stantial challenges, including difficulties in collecting surrogate datasets and con-
fusion of selecting the appropriate outlier data. In this paper, we propose a novel
framework called Diffusion-Based Outlier Generation (DOG), which synthesizes
surrogate outlier data using a large-scale pre-trained diffusion model. DOG gen-
erates surrogate outliers using only the in-distribution (ID) data, which are subse-
quently used to further fine-tune the OOD detection model. Compared to previous
methods that only use visual or text category information to synthesize outliers,
our implementation combines both of them to generate outliers for downstream
fine-tuning tasks. Specifically, our method reconstructs images with a diffusion
model conditioned on the text category, which utilizes the implicit semantic in-
formation contained in the visual images, along with explicit textual category in-
formation, to synthesize surrogate outliers. In addition, our DOG presents a novel
approach for outlier exposure by allowing dynamic adjustment of surrogate out-
lier data based on the results, leading to an enhancement in OOD detection perfor-
mance. Extensive experiments across various OOD detection tasks demonstrate
that DOG achieves the optimal performance compared to its advanced counterparts.

1 INTRODUCTION

With the continuous development of machine learning in the open world, the out-of-distribution
(OOD) detection task becomes particularly important (Hendrycks & Gimpel, 2016; Lee et al.,
2018b; Liang et al., 2018a). In many scenarios, neural network models are needed to make more
reliable prediction results, such as medical treatment (Obadia et al., 2018; DiMatteo et al., 2000),
autonomous driving (Urmson et al., 2008; Geiger et al., 2012), etc. Due to the carefully designed
model structure and training strategy on the in-distribution (ID) data, deep models are often prone
to give over-confidence misclassification results on OOD data, i.e., those who belong to unknown
classes in the training process, therefore being harmful to the applications of neural network mod-
els in real-world applications. To ensure the reliability and safety of neural network models, OOD
detection (Ren et al., 2019; Bulusu et al., 2020; Fang et al., 2022) has been extensively investigated.

Existing OOD detection methods make great progresses to correctly discriminate OOD data, and
can be roughly divided into two categories: post-hoc methods and fine-tuning methods. Post-hoc
methods are usually based on pre-trained feature extraction models with strong representation abil-
ity, designing cleverly different score functions to separate ID and OOD data (Liu et al., 2020; Sun
et al., 2022). These methods fix feature representations and have difficulty resolving entangled ID
and OOD latents, which limits their OOD detection performance from further improvement. Fine-
tuning methods regularize the feature space so that they can further discriminate between ID and
OOD data. Recent research on Outlier Exposure (OE) (Hendrycks et al., 2018) has explored the
introduction of surrogate OOD data to obtain a more separable representation, which can reach a
much better result (Hendrycks et al., 2018; Zhang et al., 2023). Although the performance is good,
collecting suitable OOD data is very labor-intensive and financial-intensive. Additionally, there are
some methods that attempt to generate outliers to facilitate the model assigning a more compact
boundary to the ID data (Du et al., 2022; Tao et al., 2023). These methods either sample in the
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Figure 1: Illustration of our approach. The two figures on the left are synthesis surrogate data which
the above row is real images of ID data and the lower row is the generated images, the figure on the
right is the key insight of our approach. (a) ID samples and Synthesis Outliers for class Plane (b)
ID samples and Synthesis Outliers for class Dog (c) Our method generates surrogate outliers closer
to the ID data which can benefit model generalize OOD detection ability for unseen OOD cases.

feature space based on some assumptions or synthesize outliers using information from a single
modality, which affect correlations of surrogate outliers and ID data thus hurting performance.

To overcome the above drawbacks, we will mainly explore novel techniques to concern whether
appropriate surrogate OOD data can be generated to further improve the OOD detection effect. In
this paper, we propose a new framework DOG that synthesizes surrogate outliers by using of a text-
to-image diffusion model. Our key insight is that prior knowledge contained in the textual classes
can aid the synthesis of outliers. However, previous approaches that use only textual category in-
formation are prone to deviations during the outlier synthesis process. Our framework mines the
implicit object information contained in the image data, and uses textual class as an initial starting
point for optimization. Guided by the image features and textual classes of ID data, we can utilize
a diffusion model to synthesize surrogate outliers that can be considered as novel OOD data. These
outliers are located near the low-density boundary of the ID data and are hereafter referred to as
near-OOD data. Partial generation results are shown in Figures 1(a) and 1(b). We follow the insight
of outlier exposure (Wang et al., 2023) on synthetic surrogate outliers, fine-tuning the model to rec-
ognize near-OOD data, enabling the model to generalize its detection capability to unforeseen OOD
cases. It can promote the model to assign the OOD latent embedding far from ID by regularizing
the model to output a low confident predictions for OOD data which is shown in Figure 1(c).

We conducted extensive experiments on representative OOD detection setups to evaluate the open-
world performance of our DOG in detecting OOD samples effectively. For instance, compared with
the conventional outlier exposure method (Hendrycks et al., 2018), our DOG reduces the average
FPR95 on CIFAR benchmarks by 2.10 and 20.27. Our contributions is summarized as follows:

1. DOG is a new framework that employs a diffusion model to generate surrogate outliers from
ID data. This approach generates synthetic outliers that approximate the distribution of the
ID data, the model can extend its OOD detection capabilities to unforeseen OOD scenarios.
Consequently, it leads to improved OOD detection performance.

2. It is highlighted that DOG serves as a new outlier exposure strategy. It presents a differ-
ent perspective compared to existing OE methods. Specifically, DOG does not need to
artificially introduce surrogate outlier datasets, which addresses the problem of selecting
appropriate surrogate outlier data. This is a challenging task in OE methods.

3. We conducted extensive experiments on widely used benchmark datasets, including the
well-known CIFAR benchmarks as well as the challenging ImageNet settings. In the com-
monly used OOD experimental tasks, our method outperformed other strong baselines and
achieved state-of-the-art performance, further verifying the effectiveness of our approach.

2 PRELIMINARIES

Let X ⊂ Rd and Y = {1, ..., C} be the feature space and the ID label space, respectively.
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Random Variables and Data Distributions. Denote Xid ∈ X and Xod ∈ X the feature random
variables corresponding to ID and OOD data, respectively. Yid ∈ Y and Yod /∈ Y are the label ran-
dom variables corresponding to ID and OOD data, respectively. We use PXid,Yid

(x, y) to represent
the ID joint distribution and use PXod,Yod

to represent the OOD joint distribution. Then PXid
is the

ID marginal distribution and PXod
is the OOD marginal distribution.

Out-of-Distribution Detection. Let DTrain
ID = {(xi, yi)}ni=1 be the training ID data drawn from

the ID joint distribution PXid,Yid
. Following Fang et al. (2022), OOD detection aims to learn OOD

detector G usingDTrain
ID such that for any test data x: 1) if x is drawn from PXid

, then G can classify
x into correct ID classes; and 2) x is drawn from PXod

, then G can detect x as OOD.

Many representative OOD detection methods adopt the post-hoc strategies (Sun et al., 2021; Liu
et al., 2020; Sun et al., 2022). Therein, given a threshold τ , a pre-trained ID model fθ and a scoring
function S, then x is detected as ID data if and only if S(x; fθ) ≥ τ :

Gτ (x) = ID, if S(x; fθ) ≥ τ ; otherwise, Gτ (x) = OOD. (1)

The effectiveness of post-hoc OOD detection is largely dependent on the design of S and the ID
model fθ such that the scores assigned to OOD data are lower than those of the ID data.

Outlier Exposure. To further enhance the performance of OOD detection, a fine-tuning detection
method Outlier Exposure (OE) (Hendrycks et al., 2018) has been proposed. OE introduces surrogate
OOD data Dout = {xs

j}mj=1, then implements the fine-tuning strategy based on the empirical risk
minimization principle, i.e.,

argmin
θ

1− α

n

n∑
i=1

ℓ(fθ(xi), yi) +
α

m

m∑
j=1

ℓOE(fθ(x
s
j)),

where α is the parameter, ℓ is the loss function and ℓOE is the surrogate OOD loss. By utilizing
surrogate OOD data, model can learn to assign some OOD samples to latent embeddings far from
all ID classes, which typically reveals reliable performance in OOD detection.

Obviously, surrogate OOD samples have a very large impact on OE performance. There are two big
challenges: (I) Collecting high-quality surrogate OOD data is very labor-intensive and costly, which
is not appropriate in practical applications. (II) Picking the surrogate OOD data is a perplexing
problem, and inappropriate OOD data (e.g., large gap with ID samples) may even negatively affect
the OOD detection performance. When trained with overly divergent surrogate OOD data, the model
inherits this data bias and may make overconfident predictions on unseen OOD data that differ from
the surrogate data.

Diffusion Model. Diffusion models are inspired by non-equilibrium statistical physics. By iterat-
ing a forward diffusion process to destroy the structure in the data distribution, and then learning a
backward diffusion process to recover the structure of the data, obtaining a data generation model
(Sohl-Dickstein et al., 2015; Ho et al., 2020). Diffusion model is a parameterized Markov chain
that uses variational inference to generate samples after finite time T steps. We consider the for-
ward diffusion process as q(xt|xt−1) which does not involve the parameter distribution; the reverse
denoising process as pθ(xt−1|xt) which reconstructs the data distribution from the noise. In the pro-
cess of gradually adding Gaussian noise to the original image x0, the standard deviation of the noise
is determined by a fixed value βt, and the mean value is determined by a fixed value βt and the data
xt−1. Let ϵθ(xt, t) denotes noise predictor network. We consider αt = 1 − βt and z ∼ N (0, I),
the sampling process is as follows:

xt−1 =
1
√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)) + σtz. (2)

Diffusion model can model conditional distributions of p(xt|y), which can be implemented with the
conditional network ϵθ(xt, t, y) (Dhariwal & Nichol, 2021; Ho & Salimans, 2021). By controlling
the synthesis process with input y, text, semantic graph, or other image-to-image generation tasks
can be achieved (Reed et al., 2016; Isola et al., 2017; Park et al., 2019; Rombach et al., 2022).
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Figure 2: Overview of DOG. To simplify the process, we omit the specific details of diffusion models.
The Image Encoder and Text Encoder are components that are part of the CLIP, which is also used as
the conditional encoder for the text-to-image diffusion model. The candidate word ci is selected by
Section 3.1.2. The pre-trained CLIP can map both visual images and text into a unified latent space.
DOG utilizes CLIP to identify candidate word ci that are distributed at the boundaries of ID data as
anchors for generating near-OOD data, which is used as surrogate outliers to fine-tune model.

3 METHODOLOGY

Fine-tuning the model solely with ID data can result in overconfident outcomes due to the lack of
unseen OOD instances, which poses a challenge in OOD detection. One possible solution is to
synthesize outlier data to improve the fine-tuning process. Previous approaches, such as ConfGAN
(Lee et al., 2018a), have employed Generative Adversarial Networks (GANs) to generate outlier
data and aid in training process. Other approaches, VOS (Du et al., 2022) and NPOS (Tao et al.,
2023), synthesizes outliers in the latent space by sampling from low-likelihood regions. However,
the use of GANs in ConfGAN is deemed unstable and does not significantly enhance the learning of
the detection classifier. VOS and NPOS generate outliers based on penultimate features, assuming
parametric distributions in a low-dimensional latent space, making it challenging to optimize the
model effectively. Considered that diffusion-based models are able to achieve both high fidelity and
high coverage of the distribution simultaneously, in this paper, we aim to develop a diffusion model-
based strategy for generating outliers to address the lack of unforeseen OOD data. An overview of
our proposed DOG framework is presented in Figure 2.

3.1 SURROGATE OUTLIER DATA SYNTHESIS

We propose using a diffusion model to synthesize surrogate outliers to overcome the issues of an
unstable generation process and the difficulty in ensuring generation quality. Lee et al. (2018a)
suggests that, for the successful detection of OOD samples, the generated outliers should encom-
pass and approach the low-density boundary within the distribution, which will be referred to as
near-OOD data in this paper. Synthesizing outliers directly in the visual space poses a challenge.
To obtain near-OOD data, visual data-based methods first require a feature extractor with strong
representation ability. Then, the data is mapped into the latent space using the feature extractor,
and low-likelihood embeddings are sampled based on the learned feature representation. However,
selecting low-likelihood embeddings remains challenging as these processes can easily introduce
errors, thereby limiting the performance of OOD detection (Kjærsgaard et al., 2021). Compared
to generating near-OOD data in the visual space, finding neighboring targets in the text space has
become easier thanks to advancements in language models (Chang et al., 2023). Moreover, natural
language is more readily comprehensible to humans compared to latent representations. Our insight
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is to transform the generation of outlier images directly into generating outliers from text using a
text-to-image diffusion model. There is a vast array of potential candidate objects that can provide
further information to aid in generating near-OOD data in the text space (Hendrycks et al., 2018).

3.1.1 CAPTURING AND TRANSFORMING SEMANTICS TO TEXT SPACE

To generate near OOD data, we focus on identifying boundary ID anchors in the text space, then we
explore the semantic features of ID data to guide the outlier generation process into the textual side.
To mining the semantic information in the visual space, we suggest introducing textual inversion
(Gal et al., 2022), which can capture high-level semantics and fine visual details to obtain a new
embedding in textual latent space using the Latent Diffusion Model (LDM) (Rombach et al., 2022).
Considering the optimization objective of the LDM, given an image x, we first use the image encoder
E to map x to the latent space z = E(x). Subsequently, the optimization objective can be viewed
as the process of the denoising network D learning to recover the data corrupted by the continuous
addition of Gaussian noise ϵ ∼ N (0, I). In other words, let Z0 = E(X) and Zt = αtZ

t−1 +
σtN (0, I), αt and σt can control the diffusion process, the training objective for the t-th step is

LLDM(t) = Ezt∼Zt,y∼Y,ϵ∼N (0,I)

[∥∥∥ϵ−D(zt, T (prompt(y)); t)
∥∥∥2
2

]
, (3)

where prompt(·) represents the prompt template for input labels and T is the text encoder.

The training objective Eq. 3 can also be seen as a form of reconstruction. During this training
process, the model learns to capture the essential features and information of the input data x,
effectively reconstructing or generating outputs that are faithful to the original data distribution,
under the guidance of the label y. Let Dy

ID be a subset of DTrain
ID consisting of data whose label is y.

To extract semantics and visual information from the ID data, the optimization objective Equation 3
can be interpreted as a reconstruction loss. To facilitate the identification of anchors for generating
near-OOD data, it is necessary to convert ID data with different labels y from the visual space to the
textual space. This conversion helps in generating appropriate near-OOD data for each class y. By
fixing the network parameters of D and T , and given input data x, we can reconstruct new textual
concepts s for label y that contain visual semantics from x:

sy = argmin
s

Ezt∼Zt
id|Yid=y,ϵ∼N (0,I)

[∥∥∥ϵ−D(zt, T (prompt(s)); t)
∥∥∥2
2

]
. (4)

To incorporate text category information as an aid, we initialize the optimization starting point of
sy to the corresponding word associated with label y (e.g. dog, automobile). By means of the
reconstruction process, the model captures the essential semantic features and characteristics of
the input data that belong to label y. The resultant pseudo-word sy represents a synthesis of the
semantic information extracted from the input data, providing a representation that encompasses the
significant aspects related to label y.

3.1.2 SYNTHESIZING SURROGATE OUTLIERS WITH PSEUDO-WORDS

Let S = {sy : y ∈ Y} be the set of concept pseudo-words. Given the new concept of pseudo-words
set S, which includes the visual semantics of ID data, the key step is to generate near-OOD data.
This generation process can provide model regularization and better separate ID and OOD data.
Recent studies have demonstrated that outliers that are closer to ID data can effectively improve the
feature distribution in the latent space (Hendrycks et al., 2018). By exposing the model to near-
OOD data during the training process, the model learns to differentiate between samples from ID
and OOD that are similar in nature. This training aids in developing a robust understanding of the
characteristics that distinguish unforeseen OOD data from the ID data distribution.

To generate proper near-OOD data, we first prepare a candidate set, denoted as C, based on a set
of pseudo-words S. We construct the candidate set C by gathering concept words from a set called
W , which consists of various concepts found in the open world. These concepts can be obtained
from a large-scale corpus, e.g., WordNet (Fellbaum, 1998). For each pseudo-word sy in S, we select
K candidate words with the aim of initially choosing specific targets that are distributed along the
boundaries of textual ID labels, i.e.,

Cy = TopK
w∈W

[
sim(T (prompt(sy)), T (prompt(w)))

]
, (5)
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where sim is cosine similarity. Then C = ∪y∈YCy .

Different from the pseudo-word sy learned from visual data, the concept word set W obtained from
a large-scale corpus can be seen as the novel OOD at the text level. Furthermore, through Eq. 5,
we can obtain near-OOD samples at the text level. In order to utilize text to guide the synthesis
of the near-OOD images, we need to consider finding near-OOD anchors relative to the ID data.
Specifically, for this purpose, we adopt an image encoder from CLIP, denoted as E ′, as it minimizes
the embedding distance between multi-modal features and aligns the text and visual latent space.
Based on the candidates from set C, we can obtain the anchors Cλ at the boundary of the ID data
Xid through Eq. 6. With the help of anchors, we can further concatenate diffusion model sampling
process to obtain near-OOD data, i.e.

Cλ =
{
c ∈ C : min

(x,y)∈DTrain
ID

percentileη
[
sim(T (prompt(c)), E ′(x))

]
≤ λ

}
, (6)

where percentile(·) is the percentile of the similarity distance but not the extreme distance to alleviate
noises interference and improve robustness (Efron, 1991), η is the distance tolerance, and λ is the
given threshold. Then, based on anchor set Cλ, we can synthesize latent noises with denoising
process of diffusion model (Rombach et al., 2022), i.e.,

zt ∼ N (zt−1;µ,Σ), (7)

where µ = µθ(z
t−1, T (prompt(c)); t) and Σ = Σθ(z

t−1, T (prompt(c)); t) are from diffusion
model. Lastly, we can obtain surrogate outlier images through x̃out = De(z

0), where De denotes
the decoder of diffusion model which can restore the image from the latent representation z0. By
performing a sampling process and generating M outliers on each anchor c ∈ Cλ, we can obtain the
synthesis near-OOD data Dout.

3.2 TRAINING DETECTION MODEL WITH SURROGATE OUTLIERS

With surrogate synthesis outliersDout, we regularize the model to transfer its detection capability to
unforeseen OOD cases. Following Wang et al. (2023), we consider the worst-case OOD performance
to measure the detection ability of model, which is denoted as the worst OOD regret (WOR): given
an OOD data space Dout satisfying that Dout ∈ Dout, WOR is

WOR(fθ) = sup
D∈Dout

[LOE(fθ;D)− inf
θ∈Θ
LOE(f

′
θ;D)], (8)

where LOE(fθ;D) is the OE risk w.r.t. model fθ and OOD dataD. According to Wang et al. (2023),
for some special OOD data space Dout, one can achieve WOR by using model perturbation, i.e.,

LOE(fθ+αP;Dout),

where P is the perturbation introduced by Wang et al. (2023). Then with the model perturbation,
the final optimization question is

min
θ∈Θ
L(fθ;DTrain

ID ,Dout) = LCE(fθ;DTrain
ID ) + γLOE(fθ+αP;Dout), (9)

where LCE is the cross-entropy risk w.r.t. model fθ and ID training data DTrain
ID . Our method DOG

is summarized in Algorithm 1.

4 EXPERIMENT RESULTS

This section conducts extensive experiments in OOD detection to validate the effectiveness of DOG.

4.1 EXPERIMENTAL SETUP

Datasets. We verify the effectiveness of our method DOG on standard CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009) benchmark and a large scale dataset ImageNet (Deng et al., 2009). For
OOD datasets, we test all models on several common OOD datasets widely adopted in the literature
(Sun et al., 2022). For the CIFAR cases, we employed SVHN (Netzer et al., 2011), iSUN (Xu et al.,
2015), LSUN-Crop (Yu et al., 2015), Texture (Cimpoi et al., 2014), and Places365 (Zhou et al.,
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Algorithm 1: DOG: Diffusion-Based Outlier Generation

Input : ID samples and ID classes from DTrain
ID , Diffusion Denoising Network D,

Text-Condition Encoder τθ, OOD Detection Model fθ
Output: OOD detection model fθ

1 Generate surrogate outliers
2 for y in Y do

3 sy ← argmins Ezt∼Zt
id|Yid=y,ϵ∼N (0,I)

[∥∥∥ϵ−D(zt, T (prompt(s)); t)
∥∥∥2
2

]
4 C ← Select top-k similar candidate word set with sy

// c ∈ C, x ∈ XID

5 Cλ =
{
c ∈ C : min(x,y)∈DTrain

ID
percentileη

[
sim(T (prompt(c)), E ′(x))

]
≤ λ

}
6 for t in T : 1 do
7 zt ← µθ(z

t−1, T (prompt(c)); t) + Σθ(z
t−1, T (prompt(c)); t)I

8 end
9 x̃out = De(z

0)
10 end
11 Fine-tune the OOD detection model fθ, using the outliers xout from Dout

12 for epoch in 1 : N do
13 Sample a batch of ID data and synthesis outliers
14 Update the network parameters with training objective L(fθ;DTrain

ID ,Dout)
15 end
16 return fθ

2017). For the ImageNet case, we employed Texture (Cimpoi et al., 2014), iNaturalist (Van Horn
et al., 2018), SUN (Xu et al., 2015), Places365 (Zhou et al., 2017). We report the performance (i.e.,
FPR95 and AUROC) regarding the OOD datasets as well as the average performance.

Baseline Methods. We compare our DOG with other different advanced methods in OOD detection.
For fine-tuning methods, we employed CSI (Tack et al., 2020), ConfGAN (Lee et al., 2018a), VOS
(Du et al., 2022), NPOS (Tao et al., 2023), OE (Hendrycks et al., 2018), Energy-OE (Liu et al.,
2020), ATOM (Chen et al., 2021), DOE (Wang et al., 2023), POEM (Ming et al., 2022a). We
adopt their suggested setups but unify the backbones for fairness. And for post-hoc methods, we
employed MSP (Hendrycks & Gimpel, 2016), Free Energy (Liu et al., 2020), ASH (Djurisic et al.,
2023), Mahalanobis (Lee et al., 2018b), KNN OOD (Sun et al., 2022).

Evaluation Metrics. The OOD detection performance of a detection model is evaluated via two
representative metrics, which are both threshold-independent (Davis & Goadrich, 2006): the false
positive rate (FPR95) of OOD samples when the true positive rate of ID samples is 95%; and the
area under the receiver operating characteristic curve (AUROC).

Model Setups. For CIFAR-10 and CIFAR-100 benchmarks, we follow (Liu et al., 2020) and em-
ploy the WRN-40-2 (Zagoruyko & Komodakis, 2016) as the backbone model. For the ImageNet
benchmark, we employ ResNet-50 (He et al., 2016) with well-trained parameters, which can be
downloaded from PyTorch repository following (Wang et al., 2023).

Experimental Details. The validation dataset is separated from the ID data, and hyper-parameters
are selected based on the validation set according to OOD detection performance. We use Stable
Diffusion v1.5 (Rombach et al., 2022) as our diffusion model for generating surrogate outliers.
And we adopt the ASH scoring (Djurisic et al., 2023) in OOD detection. For the surrogate outlier
synthesis part, we set K to 1000 and η to 0.05. To satisfy the requirements of outlier exposure,
we have assigned the value of parameter M as 1000 for both CIFAR-100 and ImageNet datasets.
This ensures that the number of synthetic outliers closely approximates the number of ID samples.
For CIFAR-10, we have generated 5000 surrogate outlier samples to ensure an adequate number
of outliers in comparison to the ID data. This enables the model to develop its OOD detection
capabilities, thereby facilitating its ability to effectively generalize to previously unseen OOD cases.
For the part of fine-tuning model with surrogate outliers, the coefficient of LOE γ is set to 1.0. For
CIFAR benchmarks, the number of epoch is set to 10 and the learning rate is adopted as 0.01. For
ImageNet benchmark, the number of epoch is set to 4 and the learning rate is adopted as 0.0001.
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Table 1: OOD detection results for CIFAR benchmarks. The baseline with ∗ added represents the
representative outlier exposure methods. And the baseline with † added represents the representative
outlier generation methods. Bold numbers are superior performances.

Method SVHN LSUN iSUN Textures Places365 Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR-10

Post-hoc Method
MSP 48.89 91.97 25.53 96.49 56.44 89.86 59.68 88.42 60.19 88.36 50.15 91.02

Free Energy 35.21 91.24 4.42 99.06 33.84 92.56 52.46 85.35 40.11 90.02 33.21 91.64
ASH 33.98 91.79 4.76 98.98 34.38 92.64 50.90 86.07 40.89 89.79 32.98 91.85

Mahalanobis 12.21 97.70 57.25 89.58 79.74 77.87 15.20 95.40 68.81 82.39 46.64 88.59
KNN 26.56 95.93 27.52 95.43 33.55 93.15 37.62 93.07 41.67 91.21 33.38 93.76

KNN+ 3.28 99.33 2.24 98.90 17.85 95.65 10.87 97.72 30.63 94.98 12.97 97.32

Fine-tuning Method
CSI 17.37 97.69 6.75 98.46 12.58 97.95 25.65 94.70 40.00 92.05 20.47 96.17

ConfGAN† 56.75 87.56 7.95 98.26 17.65 96.72 40.25 90.25 52.10 88.23 34.94 92.20
VOS† 36.55 93.30 9.98 98.03 28.93 94.25 52.83 85.74 39.56 89.71 33.57 92.21

NPOS† 6.18 98.90 4.47 98.77 14.03 97.35 22.52 95.57 34.76 93.61 16.39 96.84
OE∗ 2.36 99.27 1.15 99.68 2.48 99.34 5.35 98.88 11.99 97.23 4.67 98.88

Energy-OE∗ 0.97 99.54 1.00 99.15 2.32 99.27 3.42 99.18 9.57 97.44 3.46 98.91
ATOM∗ 1.00 99.59 0.61 99.53 2.15 99.40 2.52 99.10 7.93 97.27 2.84 98.97
DOE∗ 1.80 99.37 0.25 99.65 2.00 99.36 5.65 98.75 10.15 97.28 3.97 98.88

POEM∗ 1.20 99.53 0.80 99.10 1.47 99.26 2.93 99.13 7.65 97.35 2.81 98.87
DOG 3.70 99.33 1.30 99.63 0.65 99.71 2.65 99.23 4.55 98.92 2.57 99.36

CIFAR-100

Post-hoc Method
MSP 84.39 71.18 60.36 85.59 82.63 75.69 83.32 73.59 82.37 73.69 78.61 75.95

Free Energy 85.24 73.71 23.05 95.89 81.11 79.02 79.63 76.35 80.18 75.65 69.84 80.12
ASH 70.09 83.56 13.20 97.71 69.87 82.56 63.69 83.59 79.70 74.87 59.31 84.46

Mahalanobis 51.00 88.70 91.60 69.69 38.48 91.86 47.07 89.09 82.70 74.18 72.37 82.70
KNN 52.10 88.83 68.82 79.00 42.17 90.59 42.79 89.07 92.21 61.08 59.62 81.71

KNN+ 32.50 93.86 47.41 84.93 39.82 91.12 43.05 88.55 63.26 79.28 45.20 87.55

Fine-tuning Method
CSI 64.50 84.62 25.88 95.93 70.62 80.83 61.50 86.74 83.08 77.11 61.12 95.05

ConfGAN† 88.30 72.04 39.35 92.01 79.70 79.47 79.65 71.27 84.30 70.99 74.26 77.16
VOS† 78.06 92.59 40.40 92.90 85.77 70.20 82.46 77.22 82.31 75.47 73.80 91.67

NPOS† 15.77 96.18 27.61 93.21 87.33 72.37 34.89 92.67 87.25 65.59 50.57 84.00
OE∗ 46.73 90.54 16.30 96.98 47.97 88.43 50.39 88.27 54.30 87.11 43.14 90.27

Energy-OE∗ 35.34 94.74 16.27 97.25 33.21 93.25 46.13 90.62 50.45 90.04 36.28 93.18
ATOM∗ 24.80 95.15 17.83 96.76 47.83 91.06 44.86 91.80 53.92 88.88 37.84 92.73
DOE∗ 43.10 91.83 13.95 97.56 47.25 87.88 49.40 88.62 51.05 88.08 40.95 90.79

POEM∗ 22.27 96.28 13.66 97.52 42.46 91.97 45.94 90.42 49.50 90.21 34.77 93.28
DOG 37.80 92.49 21.10 96.60 17.50 96.47 16.30 96.20 21.65 95.31 22.87 95.41

4.2 MAIN EXPERIMENTAL RESULTS AND ANALYSIS

The main results are summarized in Table 1, where we present the detailed results across the real
OOD datasets. Firstly, the experimental results indicate that outlier exposure methods produce sig-
nificantly better outcomes than other fine-tuning methods, thereby validating the effectiveness of
OE methods. However, OE methods require the incorporation of additional surrogate OOD data,
which poses challenges in terms of data acquisition and selection. On the contrary, our proposed
DOG, which utilizes only ID data, and can be considered a new pipeline for outlier exposure, achiev-
ing state-of-the-art (SOTA) results compared to other representative OOD detection methods. In
specific, our method demonstrates average improvements of 2.10 and 0.48 in terms of FPR95 and
AUROC on the CIFAR-10 dataset, and average improvements of 20.27 and 5.14 on the CIFAR-100
dataset, when compared to conventional outlier exposure. In contrast to other advanced outlier meth-
ods such as POEM, DOG achieves better results without the need for introducing additional OOD
data. This is mainly because the performance of these outlier exposure methods is easily affected by
surrogate OOD data, which limits their further improvement. Furthermore, compared to other ad-
vanced outlier generation methods like VOE and NPOS, our DOG also demonstrates superior results.
It shows improvements of 31.00 and 13.82 on the CIFAR-10 dataset, and 50.93 and 27.70 on the
CIFAR-100 dataset in terms of FPR95. These results indicate the effectiveness and competitiveness
of our outlier synthesis strategy. We also evaluate all methods on the ImageNet dataset, with our
method DOG achieving the best performance. Detailed results can be found in Appendix D.1.

4.3 ABLATION STUDY

Other synthetic outlier strategies based on diffusion model. We set different outlier synthesis
strategies for comparison: (a) Adding Gaussian nosieN to the visual embeddings, and then generate
outliers by denoising from perturbed visual latents instead of Gaussian noise. (b) Adding Gaussian
nosieN to the category text embeddings, and then generate outliers with text embedding condition.
(c) Interpolating visual images from different ID classes which can be denoted as βzi + (1− β)zj .
(d) Interpolating category text embedding from different ID classes. (e) Using synonyms to generate
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Figure 3: (a) Different M correspond to different FPR95 on the CIFAR10 dataset. (b) Different M
correspond to different FPR95 on the CIFAR100 dataset. (c) T-SNE visualization of embeddings.

outliers directly with textual condition. The result is shown in Table 2. For (a), we perform the t-
step (t = 500) diffusion process and then obtain outliers via image reconstruction. For (b), we add
Gaussian noise (α = 0.3) to the text embedding to perturb it. For (c) and (d), we randomly select
β from {0.3, 0.4, ..., 0.7} to produce interpolation results. We don’t choose the values at either end
because that would skew the generation toward the current ID sample. For (e), we select the topk
(k = 1000) synonyms based on the current classes for text-conditional generation.

Table 2: OOD detection results for different outlier synthe-
sis strategies on CIFAR benchmarks.

Method CIFAR10 CIFAR100
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

(a) Visual Reconstruction 25.27 92.76 40.63 86.60
(b) Textual Perturbation 20.17 95.87 31.59 92.95
(c) Visual Interpolation 24.25 93.31 40.40 87.68
(d) Textual Interpolation 21.60 95.83 33.81 92.02
(e) Textual Near-OOD 17.30 96.48 29.96 94.09

DOG (Ours) 2.57 99.36 22.87 95.41

Experimental results show that
our DOG outperforms other diffu-
sion model-based outlier synthesis
strategies. Among those results,
(e) strategy which uses text classes
y to select near-OOD candidate
words, and then generate outliers
with diffusion model, also achieves
better performance compared to other
methods. This demonstrates the
effectiveness of the strategy of finding
anchors in text space to generate
outliers. However, OOD detection
model’s input ID data DTrain

ID , as images will have interference such as background information, so
using only text classes as guidance will lead to deviation of the generated results. Therefore, our
DOG achieves better results than all the above strategies, since we take into account both text classes
and image semantic information to generate near-OOD data.

Ablation on the number of synthesizing outliers M . The results are presented in Figure 3(a) and
3(b). We find that the model OOD detection performance is better when the value of M is set to
approximately or greater than the number of samples per class in the ID dataset. This ensures that
the outlier exposure can input diverse ID and outlier data to the model within each batch.

Visualization of embedding features. Figure 3(c) illustrates the visualization of ID embeddings
and synthesic outliers embeddings. According to Lee et al. (2018a), the model achieves better detec-
tion performance on near-OOD data, helping to generalize this capability to unseen OOD scenarios.
We confirm this in our visualization experiment. More ablation study results are in Appendix D.2.

5 CONCLUSION

In this paper, we propose a novel framework called DOG, which synthesizes surrogate outliers from
ID data using a large-scale pre-trained diffusion model. The near-OOD data generated by DOG can
be used to further fine-tune the detection model, enabling it to generalize its ability to detect OOD
to unforeseen scenarios. DOG can also serve as a new training pipeline for outlier exposure, elimi-
nating the need for the complex process of preparing proxy outlier data and avoiding the problem
of selecting a suitable proxy dataset. Additionally, DOG enables dynamically adjusting the surrogate
outlier data based on the OOD detection results to handle different outlier exposure situations. Com-
pared to other outlier generation methods, DOG converts the generation of outliers into text space,
facilitating analysis. Visual outliers are also easier to understand, allowing for dynamic adjustment
of the generated dataset to meet the fine-tuning needs of the OOD detection model.
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B RELATED WORK

OOD Detection Methods. OOD detection has received significant attention in recent years due to
the necessity for reliable predictions from models (Fang et al., 2022; Galil et al., 2022). Existing
methods for OOD detection can be mainly classified into post-hoc methods and fine-tuning methods
based on whether there is a need to adjust the model parameters. Moreover, fine-tuned methods
can be classified as the representation-based methods, OOD data generation methods and outlier
exposure methods (Yang et al., 2021). For the post-hoc methods, they believe a well-trained ID
classifier can already lead to effective OOD detection (Hendrycks & Gimpel, 2016), constructing
appropriate OOD score function to distinguish ID and OOD data. Some methods build OOD score
function based on the logit of the classifier output (Hendrycks & Gimpel, 2016; Liang et al., 2018a;
Liu et al., 2020; Sun et al., 2021; Wang et al., 2021), gradient (Liang et al., 2018b; Huang et al.,
2021; Igoe et al., 2022), and embedding feature (Sun et al., 2022; Lee et al., 2018b; Sastry & Oore,
2020).

Fine-tuning based methods consider that the training process can further adjust the latent space,
which is beneficial for the model to better separate ID and OOD in different scenarios. For the
representation-based methods, recent works has found that good feature representations are benefi-
cial for separating ID and OOD. Some approaches attempt to utilize data augmentation (Tack et al.,
2020; Sun et al., 2022), constative learning (Sehwag et al., 2020; Wang et al., 2022) and constraints
on embedding features (Ming et al., 2023; Wei et al., 2022) to achieve enhanced representation. The
adopted scoring functions in representation-based methods, however, can be complex. This com-
plexity may lead to an overestimation of the true effects of representation learning, necessitating
further studies. For OOD data generation methods, they try to use the existing ID data to obtain
the data near the boundary of the ID and the data far away from the ID by sampling in low-density
regions or distance metrics, and thus regularize the model to better separate the ID and OOD (Lee
et al., 2018a; Vernekar et al., 2019; Du et al., 2022; Tao et al., 2023). For outlier exposure methods,
they help the model training by introducing additional surrogate OOD data for detection in unseen
OOD scenarios. Some methods directly make the model learn from OOD data with low OOD score
predictions (Hendrycks et al., 2018; Liu et al., 2020). Some methods studies different sampling
strategies and regularization strategies (Van Amersfoort et al., 2020; Li & Vasconcelos, 2020; Chen
et al., 2021; Ming et al., 2022b). Compared with other fine-tuning methods, outlier detection shows
superior performance, but the quality and difficulty of obtaining surrogate OOD data largely hinders
its detection ability in the real world, which is a challenge addressed by our approach in this paper.

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have emerged
as the new state-of-the-art family of deep generative models, which not only ensure high-fidelity
results but also exhibit improved training stability compared to GAN (Goodfellow et al., 2014;
Yang et al., 2022). Current research on diffusion models is mostly based on three predominant
formulations, denoising diffusion probabilistic models (DDPM) (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Nichol & Dhariwal, 2021), score-based generative models (SGM) (Song & Ermon,
2019; 2020) and stochastic differential equations (SDE) (Song et al., 2021; Song & Ermon, 2020).
While ensuring high-fidelity generation results, some recent approaches begin to explore high-speed
sampling (Song et al., 2020; Lu et al., 2022a;b).

Diffusion models have been widely used in various fields. Specifically, in the field of computer
vision, it is used for super-resolution, repainting, image editing, (Meng et al., 2021; Rombach et al.,
2022; Saharia et al., 2022; Lugmayr et al., 2022) etc. In the multi-modal domain, diffusion models
are applied to text-to-image generation, text-to-audio generation, and text-to-3D generation (Avra-
hami et al., 2022; Gu et al., 2022; Nichol et al., 2022; Xu et al., 2023; Popov et al., 2021) etc. as a
technical support. Moreover, recent works exploit the powerful representational and generative ca-
pabilities of diffusion models as data augmentation, e.g. for image classification tasks (Azizi et al.,
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Figure 4: Visual reconstruction experiment visualization, which presents the generated outliers for
CIFAR benchmarks.

2023; Burg et al., 2023; Gowal et al., 2021), for medical image analysis (Rahman et al., 2023; Özbey
et al., 2023; Wu et al., 2023). In this paper, we utilize the dm method to generate surrogate OOD
data for training the model effectively to accurately distinguish between ID and OOD instances in
unseen OOD scenarios.

C VISUALIZATION

We contrast a number of different strategies for exploiting synthetic outliers based on diffusion
model. And we perform visual analysis of their synthesized outlier results separately.

C.1 VISUALIZATION OF VISUAL RECONSTRUCTION

By adding Gaussian noiseN to the visual embeddings, and generating denoised data from perturbed
visual latents instead of using Gaussian noise as z0, we can obtain outliers. The results are shown in
Figure 4. Specifically, we perform a t-step (t = 500) diffusion process and obtain outliers through
image reconstruction while reducing the weight of the text guidance.

According to the visualization results, several intriguing phenomena are observable. The outliers
generated by visual reconstruction resemble different image styles within the same category as the
ID data, rather than the newly categorized ones that indicate semantic shift.

C.2 VISUALIZATION OF ADDING NOISE TO TEXT CLASSES

By introducing Gaussian noise N to the embedded text categories T (prompt(y)) and generating
outliers through the process of text conditional generation, we perturb the text embeddings by adding
Gaussian noise N . The results are presented in Figure 5. It can be observed from the generated
outliers that the method of adding Gaussian noise to the text embeddings lacks stability. The addition
of a small noise disturbance to the partial text embedding leads to the generation of outliers with large
semantic deviation during the text-to-image generation process. However, some text embeddings are
not sensitive to noise perturbation, and therefore, they are unable to synthesize OOD data through
noise perturbation, e.g. frog and horse. Choosing the appropriate level of noise perturbation for all
ID text embeddings is challenging.

C.3 VISUALIZATION OF VISUAL INTERPOLATION

Interpolation using diffusion models has been widely employed in various tasks (Wang & Golland,
2023), e.g. video frame interpolation and customization. In this section, we utilize image interpo-
lation to synthesize outliers. Specifically, we implement linear interpolation (lerp) within the visual
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Figure 5: Experiments on adding Gaussian noise to text embeddings, which presents the generated
outliers for CIFAR benchmarks. The corresponding ID classes from top left to bottom right are dog,
deer, ship, automobile, bird, airplane, truck, horse, frog, and cat, respectively.

Figure 6: Experiments with visual space interpolation to generate outliers. From top to bottom
are the interpolation results of cat and deer, frog and bird, as well as airplane and automobile,
respectively.

latent space z = E(x). The results are presented in Figure 6. It can be observed that the quality of the
generated outliers decreases when there is a large visual semantic gap between the two interpolated
targets.
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Table 3: OOD detection results for ImageNet benchmark. The baseline with ∗ added represents the
representative outlier exposure methods. And the baseline with † added represents the representative
outlier generation methods. Bold numbers are superior performances.

Method Textures Places365 iNaturalist SUN Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

Post-hoc Method
MSP 66.58 80.03 74.15 78.97 72.72 77.19 78.70 75.15 73.04 77.84

Free Energy 52.84 86.36 70.64 81.67 73.98 75.97 76.92 78.08 68.60 80.52
ASH 15.93 96.00 63.08 82.43 52.05 83.67 71.68 77.71 50.68 85.35

Mahalanobis 40.52 91.41 97.10 53.11 96.15 53.62 96.95 52.74 82.68 62.72
KNN 26.54 93.49 78.64 76.82 75.78 69.51 74.30 78.85 63.82 79.66

Fine-tuning Method
ConfGAN† 68.74 78.74 77.40 77.24 72.67 78.29 80.73 73.88 74.88 77.03

VOS† 94.83 57.69 98.72 38.50 87.75 65.65 70.20 83.62 87.87 61.36
NPOS† 56.10 84.37 78.23 76.91 74.74 77.43 83.09 73.73 73.04 78.11

OE∗ 57.34 82.97 7.92 98.04 73.87 76.94 52.60 77.31 52.60 83.81
Energy-OE∗ 42.46 88.27 1.88 99.49 73.81 78.34 69.45 79.54 46.90 86.41

ATOM∗ 60.20 90.60 7.07 98.25 74.30 77.00 55.87 75.80 49.36 85.41
DOE∗ 35.11 92.15 0.72 99.79 72.55 78.00 59.06 85.67 41.86 88.90

POEM∗ 40.80 89.78 0.26 99.70 73.23 68.83 65.45 82.08 44.93 85.10
DOG 21.29 95.53 42.73 91.15 37.30 89.68 39.11 89.67 35.11 91.51

C.4 VISUALIZATION OF TEXTUAL INTERPOLATION

Different from visual interpolation experiments, text interpolation does not require the addi-
tion of noise and can be performed directly between text embeddings. Specifically, we utilize
βT (prompt(yi)) + (1 − β)T (prompt(yj)) to interpolate between embeddings of different text
categories. The results are presented in Figure 7. It can be observed that reliable outliers only occur
around intermediate values of the interpolated weights β. However, this strategy is not effective as
a reliable outlier synthesis strategy.

C.5 VISUALIZATION OF NEAR-OOD GENERATION OF TEXT

In this section, we conduct an experiment to translate the task of locating near-OOD data into text
space. We generate the near-OOD data by selecting near-synonyms of the current category text as
anchors on the text side. The results are presented in Figure 8. Specifically, we choose the top-k
(k = 1000) synonyms based on the current classes for text-conditional generation. This strategy
generates outliers by searching for similar embeddings in the text space in order to find appropriate
anchors. However, since visual images contain rich background information, the near-OOD anchors
searched by class words in the text space may be offset from the visual space.

D MORE EVALUATIONS

D.1 IMAGENET EVALUATIONS

We also conduct experiments on the ImageNet benchmarks, demonstrating the effectiveness of our
DOG when facing this very challenging OOD detection task. Due to the large semantic space and
complex image patterns, OOD detection on the ImageNet dataset is a challenging task (Huang &
Li, 2021). However, similar to the CIFAR benchmarks, our DOG method also demonstrates the
best detection performance among all the baseline methods considered. The results are presented in
Table 3.

D.2 MORE ABLATION EVALUATIONS

Ablation on k in process of selecting topk candidate set. We conducted experiments to explore
the effect of the value of the candidate word set k on OOD detection performance. The result is
presented in Figure 9.

A new pipeline as a kind of OE provides surrogate OOD data. We regard DOG as a new pipeline
for outlier exposure providing the generation of surrogate OOD data and combining with existing
outlier exposure methods. We selected the conventional and widely concerned outlier exposure
method OE (Hendrycks et al., 2018) and Energy-OE (Liu et al., 2020), as well as the method POEM
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Table 4: Results of the combination of our DOG and existing OE methods on CIFAR benchmarks.
Method SVHN LSUN iSUN Textures Places365 Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
CIFAR-100

OE 46.73 90.54 16.30 96.98 47.97 88.43 50.39 88.27 54.30 87.11 43.14 90.27
OE + DOG 44.50 85.46 34.66 92.29 5.39 98.58 43.81 91.20 48.59 89.23 35.39 91.35

Energy-OE 35.34 94.74 16.27 97.25 33.21 93.25 46.13 90.62 50.45 90.04 36.28 93.18
Energy-OE + DOG 24.50 95.07 41.39 91.09 50.16 88.65 18.07 94.93 16.60 96.34 30.14 93.22

POEM 22.27 96.28 13.66 97.52 42.46 91.97 45.94 90.42 49.50 90.21 34.77 93.28
POEM + DOG 41.85 91.79 35.75 92.75 26.85 92.96 19.80 95.63 23.90 93.52 29.63 93.33

(Ming et al., 2022b) which implements SOTA on both CIFAR10 and CIFAR100 benchmarks for
experiments.

E EXPERIMENTAL ENVIRONMENT

All experiments were conducted using four 3090Ti GPUs.

19



Under review as a conference paper at ICLR 2024

Figure 7: Experiments with text embedding interpolation to generate outliers. From left to right the
parameter of interpolation β is {0.1, 0.3, ..., 0.9}.
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(a) Outliers for class automobile (b) Outliers for class bird

(c) Outliers for class frog (d) Outliers for class truck

Figure 8: Visualization results for partial outliers of the CIFAR benchmarks.
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Figure 9: FPR95 values corresponding to different values of parameter k for CIFAR benchmarks.

21


	Introduction
	Preliminaries
	Methodology
	Surrogate Outlier Data Synthesis
	Capturing and transforming semantics to text space
	Synthesizing surrogate outliers with pseudo-words

	Training Detection Model with Surrogate Outliers

	Experiment Results
	Experimental Setup
	Main Experimental Results and Analysis
	Ablation Study

	Conclusion
	Ethics Statement
	Related Work
	Visualization
	Visualization of visual reconstruction
	Visualization of adding noise to text classes
	Visualization of visual interpolation
	Visualization of textual interpolation
	Visualization of near-OOD generation of text

	More Evaluations
	ImageNet Evaluations
	More Ablation Evaluations

	Experimental Environment

