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ABSTRACT

Deep neural networks have enabled improved image quality and fast inference
times for various inverse problems, including accelerated magnetic resonance
imaging (MRI) reconstruction. However, such models require large amounts of
fully-sampled ground truth data, which are difficult to curate and are sensitive
to distribution drifts. In this work, we propose applying physics-driven data
augmentations for consistency training that leverage our domain knowledge of
the forward MRI data acquisition process and MRI physics for improved data
efficiency and robustness to clinically-relevant distribution drifts. Our approach,
termed VORTEX, (1) demonstrates strong improvements over supervised baselines
with and without augmentation in robustness to signal-to-noise ratio change and
motion corruption in data-limited regimes; (2) considerably outperforms state-
of-the-art data augmentation techniques that are purely image-based on both in-
distribution and out-of-distribution data; and (3) enables composing heterogeneous
image-based and physics-driven augmentations.

1 INTRODUCTION

Magnetic resonance imaging (MRI) is a powerful medical imaging modality that enables noninvasive
visualization of anatomy and is a cornerstone for disease diagnostics. However, acquiring clinical
MRI data typically requires long scan durations (30+ minutes). To reduce these durations, MRI
data acquisition can be accelerated by undersampling the requisite spatial frequency measurements,
referred to as k-space measurements. Reconstructing these undersampled images without aliasing
artifacts from k-space measurements that are subsampled below the Nyquist rate – the minimum
sampling rate that fully describes a given signal – is an ill-posed problem in the Hadamard sense
(Hadamard). To address this challenge, previous methods utilized underlying image priors to constrain
the optimization – most notably enforcing sparsity in a transformation domain, in a process called
compressed sensing (Lustig et al., 2008). Nevertheless, these methods suffer from long reconstruction
times and can require parameter-specific tuning (Lustig et al., 2007; Akasaka et al., 2016).

Deep learning (DL) based accelerated MRI reconstruction methods have recently enabled higher
acceleration factors compared to traditional methods with fast reconstruction times and improved
image quality (Hammernik et al., 2018; Sandino et al., 2020a). However, these approaches rely
on large amounts of paired undersampled and fully-sampled reference data for training, which is
often costly or simply impossible to acquire in many imaging applications. Methods that achieve
state-of-the-art reconstruction performance still use large fully-sampled (supervised) datasets, with
only a handful of methods exploring approaches such as leveraging prospectively undersampled
(unsupervised) data (Chaudhari et al., 2021) or using image-based data augmentation schemes (Fabian
et al., 2021) to mitigate data paucity. Perhaps more concerning is that even some of the best DL-based
MR reconstruction methods are highly sensitive to clinically-relevant distribution drifts such as
scanner-induced drifts, patient-induced artifacts, anatomical changes, and forward model changes
(Darestani et al., 2021). Sensitivity to distribution drifts remains largely unexplored, with only a few
studies that have proposed solutions for simple forward model alterations such as undersampling
mask change at inference time (Gilton et al., 2021). Addressing sensitivities to clinically-relevant
distribution shifts is necessary to deploy DL reconstruction models clinically with confidence.
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Figure 1: VORTEX uses supervised and consistency paths for robust accelerated MRI reconstruction.

In this work, we demonstrate that leveraging domain knowledge of the forward MRI data acqui-
sition process and MRI physics through physics-driven, acquisition-based data augmentations for
consistency training enables building data-efficient networks that are robust to clinically-relevant
distribution drifts such as signal-to-noise ratio (SNR) and motion artifacts. Our proposal builds on
the consistency framework Noise2Recon that conducts joint reconstruction for supervised scans and
denoising for unsupervised scans (Desai et al., 2021a) by replacing the original consistency denoising
objective with a data augmentation pipeline. Specifically, we propose a semi-supervised consistency
training framework (described in Figure 1), termed VORTEX, that uses a data augmentation pipeline
to enforce invariance to physics-driven data augmentations of noise and motion, and equivariance to
image-based data augmentations of flipping, scaling, rotation, translation, and shearing. VORTEX al-
lows for curriculum learning based on the difficulty of physics-driven augmentations, and composing
heterogeneous augmentations. This leads to robustness to different families of perturbations at infer-
ence time without decreasing the reconstruction performance on non-perturbed, in-distribution data.
We show that VORTEX outperforms the state-of-the-art data augmentation scheme, MRAugment,
(Fabian et al., 2021) which solely relies on image-based data augmentations, on both in-distribution
data and simulated out-of-distribution (OOD) data. Additionally while MRAugment is constrained to
image augmentations to preserve noise statistics in the training data, we demonstrate that VORTEX
can relax this constraint and operate on a broad family of augmentations, including acquisition-based
augmentations, which inherently change the noise statistics of the training data. Our contributions in
this work include the following:
• We propose VORTEX, a semi-supervised consistency training framework for accelerated MRI

reconstruction that enables composing image-based data augmentations with physics-driven data
augmentations, which leverage our knowledge of both MRI physics and the forward model of the
MRI data acquisition process. We show that VORTEX improves data-efficiency and robustness.

• We demonstrate strong improvements over supervised baselines in robustness to clinically-relevant
distribution drifts including scanner-induced SNR change and patient-induced motion artifacts. No-
tably, we obtain +10.6 structural similarity (SSIM) and +5.3 complex PSNR (cPSNR) improvement
over supervised baselines on heavily motion-corrupted scans in label-scarce regimes.

• We improve over state-of-the-art data augmentation techniques for MRI reconstruction that are
purely image-based (Fabian et al., 2021). We achieve +6.1 SSIM and +0.2 cPSNR improvements
on in-distribution data, +12.5 SSIM and +7.8 cPSNR improvement on motion-corrupted data, and
+8.9 SSIM and +2.5 cPSNR improvement on noise-corrupted data.

• We conduct ablations comparing pixel-based and latent space consistency during training and
designing curricula for data augmentation difficulty.

Our code and all experimental configurations are publicly available at (blinded).
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2 RELATED WORK

Supervised accelerated MRI reconstruction methods map zero-filled images obtained from under-
sampled measurements to fully-sampled ground truth images using fully-convolutional networks
(e.g. U-Net (Ronneberger et al., 2015)) or unrolled networks modeling iterative proximal-update
optimization methods (Adler & Öktem, 2018; Aggarwal et al., 2019; Sandino et al., 2020a). Such
approaches rely on a large corpus of fully-sampled scans. Although lagging in performance with
supervised approaches, prior proposals (Chaudhari et al., 2021) have leveraged unsupervised data
including using generative adversarial networks (Lei et al., 2021; Cole et al., 2020), self-supervised
learning (Yaman et al., 2020), and dictionary learning (Lahiri et al., 2021). Fabian et al. (2021)
proposed an image-based data augmentation scheme to reduce dependence on supervised training
data. Several methods have explored building neural networks robust to distribution drifts for image
classification (Taori et al., 2020; Recht et al., 2019; Goel et al., 2020) and natural language processing
tasks (Miller et al., 2020; Gunel et al., 2021). For accelerated MRI reconstruction, Darestani et al.
(2021) recently demonstrated trained deep neural networks, un-trained networks (Darestani & Heckel,
2021), and traditional iterative approaches are sensitive to adversarial perturbations and distribution
drifts. However, unlike what we propose with consistency training, the authors did not explore how
to build robust neural networks to the discussed distribution drifts.

Consistency training was first proposed to include a form of denoising objective where the model
is trained to be invariant to noisy input examples (Miyato et al., 2019; Sajjadi et al., 2016; Clark
et al., 2018) or hidden representations (Bachman et al., 2014; Laine & Aila, 2017). These methods
primarily differed in the type of noise injection applied, including additive Gaussian noise, dropout
noise, and adversarial noise. Desai et al. (2021a) extended these methods to a consistency training
framework that performs joint MRI image reconstruction and denoising, where noise is applied to
undersampled k-space as additive complex-valued Gaussian noise. Compared to denoising-based
consistency, Xie et al. (2020) showed that using semantic-preserving data augmentation consistency
(RandAugment (Cubuk et al., 2020) for image tasks and back-translation for language tasks (Edunov
et al., 2018)) led to significant performance boosts. Chen et al. (2021) proposed an adversarial data
augmentation model that consists a set of photometric and geometric image transformations which
gets jointly optimized with a segmentation network during training and evaluated on cardiac and
prostate segmentation tasks. Motion correction for MRI is an active research area, as scans corrupted
by patient motion affect the diagnostic image quality and clinical outcomes (Chavhan et al., 2013;
Barker, 2000). Pawar et al. (2019) proposes a supervised DL method that learns to map simulated
motion-corrupted scans to clean scans as a post-processing method after reconstruction. Liu et al.
(2020) extends iterative application of image denoisers as imaging priors Romano et al. (2017) for
general artifact removal such as motion correction. Gan et al. (2021) extends this method by training
the model in the measurement domain without supervised data. However, these methods require
multiple measurements of the same object undergoing nonrigid deformation which is unrealistic in
most clinical settings. Shaw et al. (2020) generates realistic patient motion artefacts and uses them as
an augmentation method to train robust semantic segmentation methods.

An extended discussion on related work is available in Appendix B.

3 BACKGROUND AND PRELIMINARIES

3.1 ACCELERATED MULTI-COIL MRI RECONSTRUCTION

In MRI, measurements are acquired in the spatial frequency domain, referred to as k-space. In
this work, we consider the case of clinically-relevant accelerated multi-coil MRI acquisition where
multiple receiver coils are used to acquire spatially-localized k-space measurements modulated by
corresponding sensitivity maps. Sensitivity maps are generally unknown and vary per patient, and
thus, need to be estimated to perform reconstruction (Pruessmann et al., 1999). In accelerated MRI
reconstruction, the goal is to reduce scan times by decreasing the number of samples acquired in
k-space. The undersampling operation can be represented by a binary mask Ω that indexes acquired
samples in k-space. The forward problem for multi-coil accelerated MRI can be written as:

y = ΩFSx∗ + ε = A(x∗) + ε

where y is the measured signal in k-space, F is the discrete Fourier transform matrix, S is the
receiver coil sensitivity maps, x∗ is the ground-truth signal in image-space, and ε is additive complex
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Gaussian noise. A = ΩFS is the known forward operator during acquisition (see Appendix A for
notation). Note that this problem is ill-posed in the Hadamard sense (Hadamard) as we have fewer
measurements than variables to recover. It does not satisfy the three conditions of 1) existence of a
solution, 2) uniqueness, and 3) continuous dependence on measurements to be defined as well-posed.
This makes recovering the underlying image x∗ impossible to recover uniquely without an assumption
such as sparsity in some transformation domain as in compressed sensing. (Lustig et al., 2008).

3.2 DEFINITIONS

Equivariance. We simplify the precise definition of equivariance that requires group theory
(Celledoni et al., 2021) to denote fθ(t(x)) = t(fθ(x)) for all t ∈ T where T is the set of data
augmentation transformations. Intuitively, if a trained model fθ is equivariant to a transformation t,
then the transformation of the input directly corresponds to the transformation of the model output.

Invariance. Similarly, we simplify the definition of invariance to fθ(t(x)) = fθ(x) for all
t ∈ T where T is the the set of transformations we use for data augmentation. Intuitively, fθ is
invariant if its output does not change upon applying transformation t to the input. Details on how
these definitions motivate the structure of augmentations in VORTEX are provided in Appendix C.

4 METHODS

We propose VORTEX, a semi-supervised consistency training framework that integrates a generalized
data augmentation pipeline for accelerated MRI reconstruction (Fig. 1). We consider the setup with
dataset D that consists of (1) fully-sampled examples in k-space y(s) with corresponding supervised
reference ground truth images x(s), and (2) prospectively undersampled examples in k-space y(u)
without supervised references. fθ is the learned reconstruction model with the forward model A. A
pixel-wise `1 supervised loss Lsup is computed for examples with supervised references for y(s).
Undersampled examples y(u) are passed through the Augmentation Pipeline (see §4.1 for details).
We consider the case where there are considerably more unsupervised examples than supervised
examples, which is often observed in clinical practice.

Let TI be the set of transformations we want to be invariant to that consists of the physics-driven data
augmentations such as additive complex Gaussian noise and motion corruption (see §4.1.1). Similarly,
let set TE denote the transformations we want to be equivariant to that includes the image-based data
augmentations such as flipping, rotation, translation, scaling, and shearing (see §4.1.2). A pixel-wise
l1 consistency loss Lcons is computed between the model outputs of input undersampled examples
with and without augmentation, which is formulated differently based on whether we would like to
be invariant or equivariant to the given transformation. The overall training objective is the following:

LVORTEX =
∑
i

‖fθ(ysi , A)− xsi )‖1 + λLcons

where Lcons =

{
‖fθ(yui , A)− fθ(g(yui ), A)‖1, if g ∈ TI
‖g(fθ(y

u
i , A))− fθ(g(yui ), A)‖1, if g ∈ TE

4.1 GENERALIZED DATA AUGMENTATION PIPELINE

Our Augmentation Pipeline (Fig. 1) lets us compose image-based data augmentations that resemble
state-of-the-art computer vision data augmentations with the physics-driven, acquisition-based data
augmentations motivated by the MRI data acquisition forward model.

4.1.1 PHYSICS-DRIVEN DATA AUGMENTATIONS

Noise. Noise in MRI scans affects signal-to-noise (SNR) ratios and is modeled as a additive complex-
valued Gaussian distribution (explained in §3), occurring primarily due to thermal fluctuations in the
subject and due to receiver coils, magnetic field strength, and specific imaging parameters (Macovski,
1996). In accelerated MRI, noise is propagated through an undersampling mask and the underlying
signal, such that εi ∼ ΩFN (0, σ) for the ith example, where N is a zero-mean complex-valued
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Base Image Motion Noise
Image + Motion

+ Noise

Figure 2: Sample image-based, physics-driven (motion, noise), and composed (image + physics)
augmentations applied to a fully-sampled image. Motion and noise were simulated at difficulty levels
of α = 0.2 and σ = 0.2, respectively.

Gaussian distribution with standard deviation σ. Since noise is one of the most common MRI artifacts,
practical MRI reconstruction methods for clinical deployment should be robust to SNR variations.

Since we precisely know the noise generating process and the MRI data acquisition forward model,
we leverage that for consistency training. Specifically, we sample σ from a specified rangeR(σ) =
[σLN , σHN ) where LN (light noise) and HN (heavy noise) are chosen based on visual inspections
conditioned on clinical scans. We normalize each sampled σ with respect to the magnitude of the
image so that same relative change in SNR across scans is induced. We denote the operation of
adding noise to the k-space as gN , in which case the noise-augmented unsupervised example is given
by gN (y

(u)
i ) = y

(u)
i + εi. We provide an example of a noise-augmented scan in Figure 2.

Motion. Patient motion during long MRI scans can degrade image quality and is an unsolved problem
particularly affecting pediatric, elderly, and claustrophobic patients. While navigator sequence-based
approaches that densely sample low-resolution motion states during the scan are common for motion
correction, they require custom sequences that need to be carefully designed, often leading to
increased acquisition time, reduced SNR, and complicated reconstruction (Zaitsev et al., 2001). A
common example is rigid motion which occurs due to random patient movement and results in
considerable image ghosting artifacts especially in multi-shot MR imaging (Carter, 2011). Many
MRI acquisitions sample data over multiple shots where consecutive k-space lines are acquired in
separate excitations (Anderson & Gore, 1994). Therefore, motion across every shot manifests as
additional phase in k-space and as translation in image space. Thus, considering 2D-shots acquisitions,
one-dimensional translational motion artifacts can be modeled using random phase errors that alter
odd and even lines of k-space separately. Considering we know precisely how rigid motion can be
modeled in k-space, we leverage that for consistency training. We denote the phase error due to
motion for ith example by e−jφi that corresponds to a translational motion. We sample two random
numbers from the uniform distribution mo,me ∼ U(−1, 1) which is chosen from a specified range
R(α) = [αLM , αHM ) where α denotes the amplitude of the phase errors and LM (light motion)
and HM (heavy motion) are chosen based on visual inspections conditioned on clinical scans. Then,
for the kth line in k-space, the phase error is given as in the following:

φki =

{
παmo, if k is odd
παme, if k is even

We denote the operation of adding motion to the k-space as gM , in which case the motion-augmented
unsupervised example is given by gM (y

(u)
i ) = y

(u)
i e−jφi (example scan given in Fig 2).

4.1.2 IMAGE-BASED DATA AUGMENTATIONS

In the MR reconstruction task, data augmentations need to transform the target images and their
corresponding k-space and coil sensitivity measurements, in contrast to classification problems where
labels stay invariant with respect to the augmentations. Moreover, unlike physics-driven augmenta-
tions that occur in k-space, image-based augmentations occur in the image domain. Since the training
data initially exists as k-space measurements, we first transform it into the image domain using coil
sensitivity maps. We then apply a cascade of the image-based data augmentations to both the image
and the sensitivity maps. Image-based data augmentations include pixel-preserving augmentations
such as flipping, translation, arbitrary and 90 degree multiple rotations, translation, as well as isotropic
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and anisotropic scaling. Using the augmented image and transformed sensitivity maps, we run the
forward model A to generate the corresponding undersampled k-space measurements.

Composing Augmentations. Our Augmentation Pipeline allows for composing different combina-
tions of physics-driven and image-based data augmentations, with example composed augmentations
shown in Figure 2. It is important to note that composing multiple physics-driven augmentations
such as noise and motion corruption represents a real-world scenario as multiple artifacts can occur
simultaneously during MRI acquisition. Appendix C discusses augmentation composition in detail.

4.2 AUGMENTATION SCHEDULING

We adopt curriculum learning (Hacohen & Weinshall, 2019) for physics-driven data augmentations,
where we seek to schedule the task difficulty. Difficulty is denoted by σ, the standard deviation of
the additive zero-mean complex-valued Gaussian noise, and α, the amplitude of the phase errors
for motion. Note that this is in contrast to the MRAugment scheduling strategy, which schedules
the probability p of an augmentation. Concretely, for noise, we consider a time-varying range
R(σ(t)) = [σL, σH(t)), where t indexes the iteration number during training. The upper-bound
σH(t) increases monotonically to ensure task difficulty increases during training. We consider two
scheduling techniques β(t) such that σH(t) = σL + β(t)(σH − σL): (1) Linear: β(t) = t/M ,
and (2) Exponential: β(t) = 1−e−t/τ

1−e−M/τ , where M is the number of epochs until which task difficulty
increases and τ is the time-constant for exponential scheduling. After M epochs, training proceeds
with constant upper bound σH . Scheduling for motion is the same where σ is replaced with α, and
image-based data augmentations follow the scheduling strategy proposed in MRAugment as there is
no explicit sense of difficulty for that class of data augmentations. Figure 5 included in the Appendix
shows simulated β(t) for different curricula configurations.

5 EXPERIMENTS

5.1 SETUP

We evaluate our method using the publicly-available mridata 3D fast-spin-echo (FSE) multi-coil knee
dataset (Ong et al., 2018). 3D MRI scans were decoded into a hybrid k-space (x× ky × kz) using the
1D orthogonal inverse Fourier transform along the readout direction x. All methods reconstructed 2D
ky × kz slices. Sensitivity maps were estimated for each slice using JSENSE (Ying & Sheng, 2007).
2D Poission Disc undersampling masks were used for training and evaluation. Ns training scans
were randomly selected to be fully-sampled (supervised) examples while Nu scans were used to
simulate undersampled-only scans. All methods used 2D U-Net network with a complex-`1 training
objective both for supervised and for the consistency loss. We evaluated our reconstructions with two
image quality metrics: magnitude structural similarity (SSIM) (Wang et al., 2004) and complex peak
signal-to-noise ratio (cPSNR) in decibels (dB). SSIM has shown to be a more clinically-preferred
metric to cPSNR for quantifying perceptual quality of MRI reconstructions (Knoll et al., 2020).
Appendix D discusses the experimental setup in further detail, and Appendix F includes additional
experiments across all methods on the 2D fastMRI multi-coil brain dataset (Zbontar et al., 2018).

5.2 ROBUSTNESS TO CLINICALLY RELEVANT DISTRIBUTION DRIFTS

Unlike many other ML domains, the source of possible distribution drifts in accelerated MRI
reconstruction can be well characterized based on the known, physics-driven forward data acquisition
process. This enables accurate simulations of many of these distribution drifts. Here, we simulate
SNR and motion corruptions, two common and problematic artifacts, at inference time using models
described in Section 4.1.1 at 16x scan acceleration. Specifically, we use σ = 0.2 for light noise and
σ = 0.4 for heavy noise. Similarly, we use α = 0.2 for light motion and α = 0.4 for heavy motion.

In Table 1, we compare supervised baselines without and with the physics-based augmentations and
Noise2Recon to VORTEX. For the supervised training with augmentation methods, augmentation is
applied with probability p = 0.2 during training for noise, motion, and composition corresponding
to gN (gM (·)). For consistency-based approaches, we used λ = 0.1 for Lcons for noise, motion,
and composition. Both Aug (Motion) and VORTEX (Motion) models were trained with R(α) =
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Table 1: Average test results at 16x acceleration for in- and out-of-distribution data with SNR
and motion perturbations. The heavy difficulty configuration (R(σ) = [0.2, 0.5) for noise and
R(α) = [0.2, 0.5) for motion) was used for all physics-driven augmentations during consistency
training with 1:1 balanced sampling and augmentation curricula with highest validation cPSNR.

Perturbation Metric Supervised Aug (Motion) Aug (Noise) Aug (Motion+Noise) VORTEX (Motion) Noise2Recon VORTEX (Motion+Noise)

None SSIM 0.798 0.793 0.805 0.789 0.877 0.882 0.869
cPSNR (dB) 35.8 35.9 35.8 35.7 36.4 36.4 36.4

Motion (light) SSIM 0.809 0.793 0.799 0.785 0.867 0.854 0.854
cPSNR (dB) 33.6 35.1 34.1 35.0 35.8 32.8 35.4

Motion (heavy) SSIM 0.706 0.751 0.722 0.739 0.812 0.731 0.803
cPSNR (dB) 27.0 31.5 29.6 31.9 32.3 27.1 32.3

Noise (light) SSIM 0.830 0.786 0.778 0.761 0.857 0.854 0.840
cPSNR (dB) 33.8 33.7 34.2 34.2 34.0 34.8 34.8

Noise (heavy) SSIM 0.807 0.758 0.745 0.739 0.823 0.830 0.812
cPSNR (dB) 32.2 32.0 33.5 33.4 32.4 34.0 33.9

Figure 3: Example reconstructions for simulated scans with heavy motion (top) and heavy noise
(bottom). M and M+N correspond to motion and motion+noise augmentations, respectively. Su-
pervised, MRAugment, SSDU, and Noise2Recon amplify motion ghosting artifacts (blue arrow).
Supervised training with motion augmentations (Aug-M) reduces these artifacts, but still suffers from
artifacts (red arrow) and extensive blurring. VORTEX-M and VORTEX-M+N suppress these artifacts.
Methods without noise augmentations (Supervised, MRAugment, SSDU, Aug-M, VORTEX-M)
amplify image noise. VORTEX-M+N suppresses noise without over-blurring the image.

[0.2, 0.5), and both Aug (Noise) and Noise2Recon models were trained withR(σ) = [0.2, 0.5). Aug
(Motion+Noise) and VORTEX (Motion+Noise) setting also follow these ranges. We include the
results in the Appendix where smaller rangesR(α) = [0.1, 0.3) for motion andR(σ) = [0.1, 0.3) for
noise were used during training. We use a balanced data sampling approach where unsupervised and
supervised examples are sampled at a fixed ratio of 1 : 1 during training, and all consistency training
approaches used augmentation curricula with highest validation cPSNR as described in Section 4.2.
Results are shown with more unsupervised slices than supervised (1600 vs 320), which is a realistic
clinical scenario. We show results for different accelerations, training times and augmentation
curricula in the Appendices D and E.

We demonstrate a large improvement of +8.4 SSIM and +0.6 cPSNR with respect to the supervised
baseline for in-distribution data with VORTEX (Noise). The vanilla supervised augmentation-based
approaches (Aug (Motion), Aug (Noise), Aug (Motion+Noise)) fail to show any meaningful improve-
ment. We observe consistent improvements over both Supervised and vanilla augmentation baselines
for both light and heavy motion cases with an impressive improvement of +10.6 SSIM and +5.3
cPSNR with VORTEX (Motion) over Supervised for the heavy motion-corruption case at inference.
Similarly, we show considerable improvements over both the Supervised and vanilla augmentation
baselines with VORTEX (Noise) for both light and heavy noise cases with an improvement of +2.3
SSIM and +1.8 cPSNR for heavy noise-corruption case. We highlight that our proposed consistency-
based improvements are considerably larger than values reported in DL-based accelerated MRI
literature that use different architectures, loss functions, or data consistency schemes (Zbontar et al.,
2018; Hammernik et al., 2021). We show example reconstructions comparing our method, supervised
baseline, and standard augmentation-based approaches in Figure 3.
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Table 2: Average test results for in-distribution data and out-of-distribution data with heavy motion
and heavy noise perturbations. Physics augmentations are compositions of noise and motion in their
heavy training difficulty configurations.

Perturbation None Motion (heavy) Noise (heavy)

Model SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB)

Supervised 0.798 (0.038) 35.8 (0.351) 0.706 (0.048) 27.0 (0.779) 0.807 (0.015) 32.2 (0.278)
MRAugment 0.811 (0.043) 36.2 (0.533) 0.660 (0.040) 24.0 (0.954) 0.742 (0.005) 30.8 (0.293)
SSDU 0.787 (0.026) 34.9 (0.401) 0.734 (0.009) 31.9 (1.70) 0.716 (0.023) 32.5 (0.321)
Aug (Physics) 0.789 (0.045) 35.7 (0.359) 0.739 (0.010) 31.9 (2.35) 0.739 (0.051) 33.4 (0.282)
Aug (Image+Physics) 0.785 (0.050) 36.1 (0.531) 0.742 (0.022) 32.8 (2.36) 0.727 (0.051) 33.7 (0.435)
VORTEX (Image) 0.862 (0.030) 36.4 (0.335) 0.648 (0.080) 26.1 (0.678) 0.767 (0.016) 31.5 (0.172)
VORTEX (Physics) 0.872 (0.033) 36.4 (0.296) 0.785 (0.019) 31.8 (2.84) 0.817 (0.034) 33.9 (0.227)
VORTEX (Image+Physics) 0.861 (0.036) 36.4 (0.368) 0.777 (0.034) 31.1 (2.74) 0.831 (0.023) 33.3 (0.097)

Table 3: Ablation for consistency at pixel-level vs. latent space. LM: light motion; HM: heavy
motion

Model cPSNR (dB) SSIM cPSNR (dB) (LM) SSIM (LM) cPSNR (dB) (HM) SSIM (HM)

Supervised 35.8 0.798 33.6 0.809 27.1 0.706

Pixel-Level 36.4 0.873 35.9 0.866 33.2 0.828

R4 36.4 0.877 34.7 0.865 29.8 0.778
R3,R4 36.4 0.873 34.0 0.852 30.1 0.781
R2,R3,R4 36.3 0.873 34.4 0.854 29.5 0.769
R1,R2,R3,R4 36.3 0.875 34.7 0.864 30.3 0.775

5.3 VORTEX VS. BASELINES

We compare VORTEX performance for in- and out-of-distribution data at 16x acceleration to
supervised methods using both physics-driven and the state-of-the-art image-based MRAugment
augmentations, and to the state-of-the-art self-supervised via data undersampling (SSDU) recon-
struction method (Yaman et al., 2020). We describe SSDU method and our implementation in detail
in the Appendix D.2. OOD simulations of SNR change and motion corruption follow the setup
described in Section 5.2 where heavy motion (HM) corresponds to α = 0.4 phase error amplitude
and heavy noise (HN) corresponds to σ = 0.4 additive k-space zero-mean complex-valued Gaussian
noise. Physics augmentations listed in Table 2 correspond to the composition of noise and motion
augmentations in their heavy difficulty configurations during training (R(σ) = [0.2, 0.5) for noise
andR(α) = [0.2, 0.5) for motion). Consistency-weighting λ, augmentation probability p, balanced
data sampling ratio, and supervised and unsupervised data amounts are identical to Section 5.2. We
isolate the benefits of consistency training with VORTEX from the utility of the data augmenta-
tions (Aug) themselves by separately comparing Aug (Physics) and Aug (Image + Physics). Note
that MRAugment corresponds to Aug (Image), which is based on our own implementation and the
originally reported hyperparameters. See D.3.1 for hyperparameter details.

VORTEX (Physics) demonstrated substantial improvements of +7.4 SSIM and +0.6 cPSNR over the
Supervised baseline, +6.1 SSIM and +0.2 cPSNR over MRAugment, and +8.5 SSIM and +1.5 cPSNR
over SSDU for in-distribution data. As VORTEX (Image) also considerably improves over Supervised
and MRAugment, a dominant mechanism of the benefits is attributed to the consistency training even
for the in-distribution setting. For both heavy motion and heavy noise settings, including physics
augmentations is vital for robust performance as MRAugment, SSDU, and VORTEX (Image) perform
worse, even compared the Supervised baseline. For heavy motion, we observe an improvement of
+7.9 SSIM and +4.8 cPSNR over the Supervised and +12.5 SSIM and +7.8 cPSNR over MRAugment
with VORTEX (Physics). Similarly, for heavy noise, we show an improvement of +2.4 SSIM and
+1.1 cPSNR over the Supervised baseline and +8.9 SSIM and +2.5 cPSNR over MRAugment with
VORTEX (Image + Physics). We note that SSIM is clinically-preferred to cPSNR for quantifying
MRI perceptual quality (Zbontar et al., 2018).

The substantial performance gain with VORTEX in both in-distribution and OOD settings sug-
gests that the consistency training framework is amenable to both image-based and physics-driven,
acquisition-based augmentations. While conventional supervised training requires that all augmenta-
tions preserve the noise statistics of the training data, consistency training can relax this constraint
and allow for the use of acquisition-based augmentations (see Appendix B.1).
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5.4 ABLATIONS

We perform ablations to understand two design questions for key components in our framework: (1)
Can consistency be enforced at different points in the network; (2) How should example difficulty be
specified during training. All methods use the default configurations specified in Appendix D.3. To
evaluate each piece thoroughly, we consider augmentation and VORTEX approaches trained with
heavy motion perturbations. Additional ablation findings are detailed in Appendix E.

None LM LN
0.70

0.75

0.80

0.85

0.90

S
S
IM

base +SB +SB+curr

Figure 4: Ablation for balanced sam-
pling (SB) and augmentation curricula
(curr) in VORTEX (Motion).

Latent Space vs Pixel-level Consistency. We compare
enforcing consistency at the pixel-level output image ver-
sus learned latent representations at varying U-Net resolu-
tion levels. Let Rk be kth resolution level at which consis-
tency is enforced, where k ∈ {1, 2, 3, 4} since our U-Net
architecture had 4 pooling layers (see Appendix E for
details). We find that latent space consistency performed
similarly across all resolution levels, outperforming the Su-
pervised baseline on both in- and out-of-distribution data
(Table 3). For in-distribution data, latent space consistency
at any resolution level performed on par with pixel-level
consistency. However, for OOD data, it performed consid-
erably worse than pixel-level consistency, by at least 3.2
cPSNR and 4.7 SSIM under heavy motion. Although not
common in the consistency training literature, we find that
pixel-level consistency was a better technique for capturing the semantics of global distribution shifts
such as motion for accelerated MRI reconstruction, which might occur at the pixel-level.

Augmentation Scheduling. We seek to quantify the utility of scheduling augmentation difficulty in
VORTEX’s consistency branch (see §4.2). We evaluate linear and exponential scheduling functions
with different warm up schedules – 10%, 50%, and 100% of the training period. We show that
curricula methods outperformed non-curricula methods for both in-distribution and OOD evaluation
(Table 6 in the Appendix). However, no one curricula configuration outperformed others, which may
indicate that all curricula methods are feasible ways to schedule augmentations. Curriculum learning
is also compatible with the balanced sampling protocol proposed by Desai et al. (2021a), where
supervised and unsupervised examples are sampled at a fixed ratio during training. Incorporating
balanced sampling (SB) into training led to an increase in SSIM for both in-distribution and OOD
light motion and light noise evaluation configurations (Fig.4). Increase in SSIM may indicate that
curricula can help the network gradually learn useful representations without a mode collapse into
the trivial solution (i.e. image blurring), which is common for pixel-level losses.

6 CONCLUSION

We propose a semi-supervised consistency training framework VORTEX for accelerated MRI re-
construction that uses a generalized data augmentation pipeline for improved data-efficiency and
robustness to clinically relevant distribution drifts. VORTEX enforces invariance to physics-driven
data augmentations of noise and motion; enforces equivariance to image-based data augmentations of
flipping, scaling, rotation, translation, and shearing; enables composing data augmentations of differ-
ent types; and allows for curriculum learning based on the difficulty of physics-driven augmentations.
We demonstrate strong improvements compared to the fully-supervised augmentation baselines, and
the state-of-the-art data augmentation scheme MRAugment, on both in-distribution and OOD data.
Our framework is model-agnostic and could be used with any other MRI reconstruction models or
even for other image-to-image tasks with appropriate data augmentations. In future work, we plan
to extend our VORTEX physics-driven, acquisition-based augmentations to additional OOD MRI
artifacts and non-Cartesian undersampling patterns to work towards building robust DL-based MR
reconstruction models that can be safely deployed in clinics.
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A GLOSSARY

Table 4 provides the notation used in the paper.

Table 4: Summary of notation used in this work.
Notation Description

MRI forward model x, y Image, k-space measurements
y
(s)
i , y

(u)
i Fully-sampled (supervised) k-space, prospectively undersampled (unsupervised) k-space

Ω,F ,S Undersampling mask, fourier transform matrix, coil sensitivity maps
A The forward MRI acquisition operator
ε Additive complex-valued Gaussian noise

Augmentation transforms T Set of data transforms
TI , TE Set of invariant and equivariant data transforms
g, gE , gI Transform, equivariant transform, invariant transform
ḠE , ḠI Sequence of sampled invariant and equivariant data transforms
N (0,σ) Complex gaussian distribution with zero-mean, variance σ2

α Motion-induced phase error amplitude
φki Phase error for kth phase encode line in example i
R(·) Range
β(t) Difficulty scale
LM, HM Light motion (α=0.2), heavy motion (α=0.4)
LN, HN Light noise (σ=0.2), heavy noise (σ=0.4)

Model components Lsup, Lcons Supervised, consistency loss
and losses λ Consistency loss weight

Ri U-Net resolution level i

B EXTENDED RELATED WORK

In this section, we summarize the key differences between VORTEX and prior work in augmentations
(i.e. MRAugment) and in consistency training (i.e. Noise2Recon). Specifically, we highlight two
advantages of VORTEX:

1. Image-based and Acquisition-based Augmentations. VORTEX can relax the assumption
that augmentations must preserve the noise statistics of the data (Fabian et al., 2021). This
allows VORTEX to leverage both image-based and acquisition-based augmentations, which
do not preserve the noise statistics of the data.

2. Regularization Beyond Noise. VORTEX can leverage physics-driven augmentations be-
yond the standard denoising regularization used in prior work in both consistency (Desai
et al., 2021a) and pre-training (Romano et al., 2017). Thus, it may be feasible to extend
VORTEX to other relevant clinical artifacts while maintaining the regularization properties
of the well-studied denoising task.

B.1 VORTEX VS MRAUGMENT

MRAugment proposes a framework for applying image-based augmentations on fully-supervised
training data. This approach showed improved performance in data-limited settings, which may
suggest the family of image-based augmentations are helpful in reducing model overfitting. It also
suggests scheduling the likelihood of applying an augmentation can be helpful for reducing the
number of augmented examples in early stages of training.

Image vs Acquisition Augmentations. MRAugment focuses on the use of image-based aug-
mentations for supervised training. In VORTEX, both image-based and MRI acquisition-based
augmentations are used for semi-supervised consistency training to 1) reduce dependence on su-
pervised training data and 2) increase robustness to physics-driven perturbations that are frequently
observed during MRI acquisition.

Relaxing Assumption of Preserved Noise Statistics. MRAugment notes that the family of image-
based augmentations were selected to ensure that noise statistics of the training data were preserved.
However, this constraint excludes acquisition-based augmentations, particularly noise and motion,
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which are needed to build robustness to noise and motion artifacts in MRI. However, these acquisition-
based augmentations inherently change the effective noise floor (and thus SNR) of the scan, and thus
violate this constraint. We empirically validate this claim in supervised settings, where acquisition-
based augmentations perform worse than standard supervised training in in-distribution settings
(Table 1). This tradeoff between in-distribution performance and OOD robustness would preclude the
application of acquisition-based augmentations in practice.

However, with VORTEX, not only is this tradeoff mitigated but the performance in both in-distribution
and OOD settings is significantly improved (Table 9). This improved performance empirically
demonstrates that the assumption that augmentations must preserve noise statistics can be relaxed
in the VORTEX framework. Thus, both image-based and acquisition-based augmentations can
be leveraged simultaneously, which leads to improvements in performance over either family of
augmentations alone (Table 9).

Precomputing Coil Sensitivity Maps. Integrating coil sensitivity maps is standard clinical practice
to help constrain the optimization problem for MRI image reconstruction (Sandino et al., 2020b;
Robson et al., 2008; Roemer et al., 1990). MRAugment utilizes the end-to-end VarNet, which
learns to jointly estimate coil sensitivities and reconstruct images (Sriram et al., 2020). Thus, the
augmentation pipeline in MRAugment does not need to explicitly account for the effect of image-
based transformations on sensitivity maps. It also has the added benefit of optimzing sensitivity map
estimtion with respect to augmented data. In practice, precomputing coil sensitivities is feasible
and routine with sensitivity map estimation methods such as ESPIRiT (Uecker et al., 2014) and
JSENSE (Ying & Sheng, 2007). Additionally, precomputed maps are important in multi-coil datasets
where the number of coils are not constant across different scans, which is critical when patients with
heterogenous anatomies are being imaged (Desai et al., 2021b).

VORTEX utilizes precomputed sensitivity maps estimated from auto-calibration regions in each scan.
Because image-based augmentations are designed to emulate shifts in the imaging target, they also
impact the coil geometry and sensitivity maps that are estimated. In contrast to the MRAugment
sensitivity map formulation, which assumes sensitivity maps are fixed, VORTEX integrates physics-
based modeling to appropriately warp sensitivity maps based on image-based augmentations. Given
some equivariant image-based transform gE , the augmented image for coil i (x̃i) can be defined as

x̃i = gE(Si)gE(x)

Scheduling Augmentation Difficulty. MRAugment and VORTEX also different in the mechanism
of how augmentations are scheduled. MRAugment proposes an augmentation scheduling method
that schedules the probability of applying an augmentation. Thus, training can occur predominantly
on collected data in earlier stages of training and augmentations can help reduce overfitting at later.

VORTEX is designed to build robustness to OOD perturbations, where the extent (and, more generally,
difficulty) of these perturbations will be unknown at test time. In this framework, augmentations
must not only regularization method for improved performance on in-distribution data, but rather
appropriately model a separate distribution of data with respect to which the model can be trained.
Thus, the model must learn to jointly optimize for both in-distribution (default training data) and OOD
(perturbation-corrupt data) examples simultaneously. Intuitively, we need to design an augmentation
scheduling scheme that will allow the model to gradually learn to generalize to higher extents (more
difficult) perturbations over time while still ensuring examples from both distributions are sampled
for joint optimization. To ensure that augmentations are always applied but at different extents, we
propose a curriculum learning strategy for scheduling the difficulty of the augmentation.

B.2 VORTEX VS NOISE2RECON

Noise2Recon proposes a semi-supervised consistency based framework for joint denoising and recon-
struction. This approach showed improved performance in label-limited settings, where the training
dataset consists of both supervised and unsupervised data. VORTEX 1) extends this consistency
training paradigm to a broader family of acquisition-based perturbations, 2) exhaustively studies
how this framework can be leveraged for both image and acquisition-based augmentations, and 3)
proposes a curriculum learning strategy to gradually increase reconstruction difficulty.
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Robustness to Motion. Noise2Recon proposes a novel consistency framework for semi-supervised
MRI reconstruction but solely focuses on applications to noise artifacts. While denoising is a well-
known regularizer for inverse problems (Romano et al., 2017; Batson & Royer, 2019), many other
acquisition-related artifacts in MRI are commonplace. In VORTEX, we explore the utility of motion
augmentations as 1) a regularizer to improve robustness in label-limited settings and 2) a method
to increase robustness to OOD motion artifacts. We demonstrate that motion artifact removal is as
effective of a regularizer as denoising (Tables 1 and 2).

Composing Augmentations for Multi-Artifact Correction. Existing MRI artifact correc-
tion/removal methods, including Noise2Recon, separately handle reconstruction and artifact removal
tasks, are limited to correcting for a single artifact or require multiple unique workflows to correct
for different artifacts (Usman et al., 2020; Lu et al., 2009; Jin et al., 2017). However, in practice,
effects of multiple acquisition-related artifacts can be compounded even in accelerated MRI. Thus a
unified framework for removing these artifacts is desirable. VORTEX establishes a framework for
both image-based and acquisition-based augmentations that can be utilized to jointly reconstruction
and remove multiple artifacts with a single approach.

Curriculum Learning for Augmentations. VORTEX extends basic consistency training to in-
clude a scheduling protocol for increasing the difficulty of augmentations over the training cycle.
Results demonstrates that designing curricula for augmentations in the consistency framework can
lead to considerable performance improvements in OOD settings without losing performance among
in-distribution scans (Table 6). Such curricula can be helpful for joint optimization of both artifactual
and artifact-free images, particularly when example difficulty is extensive Bengio et al. (2009).

B.3 SUMMARY OF TECHNICAL CONTRIBUTIONS

In this work, we characterize the interface between physics-based MRI acquisition-motivated and
image-based augmentations to 1) reduce data dependency and 2) increase robustness to clinically-
relevant distribution shifts that are pervasive during MRI acquisition. We extend the semi-supervised
consistency framework in Noise2Recon to handle both acquisition and image based perturbations in a
way that is motivated by the physics-driven forward model of MRI acquisition. To ensure that we are
inclusive of a broader family of acquisition-based perturbations than was available in Noise2Recon,
we propose extending the semi-supervised consistency framework proposed to handle motion, a
common artifact in MRI. We exhaustively study the interaction between physics/acquisition based and
image based augmentations in both fully supervised training with augmentations and semi-supervised
training with the proposed consistency.

C EQUIVARIANT AND INVARIANT TRANSFORMS

We provide an extended discussion of the choice of and interaction between equivariant and invariant
transforms.

Choosing Equivariance or Invariance. It is important to note that, practically, specifying which
transforms the network should be equivariant or invariant to is a design choice and often task-
dependent. In the case of MRI, image-based augmentations proposed in MRAugment are meant to
simulate differences in patient positioning and spatial scan parameters (e.g. field-of-view, nominal
resolution). The differences are typically prescribed at scan time (i.e. scan parameters) or are
correctable prior to the scan. In contrast, motion and noise are perturbations that occur during
acquisition, and therefore cannot be corrected a priori. Thus, building networks that are invariant
to these perturbations are critical. Based on this paradigm of transforms in MRI, spatial image
transforms are classified as equivariant transforms while the physics-based transforms we propose
are classified as invariant transforms.

Composing Transforms (Extended). §4.1 introduces the intuition for equivariant and invariant
transformations. In this section, we formalize transforms from these families are composed.

Let g1, . . . , gK be an ordered sequence of unique transforms sampled from a set of transforms T .
Let ḠE , ḠI be the sequence of sampled equivariant and invariant transforms, respectively. Thus,
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ḠE = (gi if gi ∈ TE ∀ i = 1, . . . ,K) (similarly for ḠI ). Let GE and GI be the compositions of
each transform in ḠE , ḠI , respectively. Thus, GE = ḠE|ḠE | ◦ · · · ◦ ḠE1

(similarly for GI ).

As a design choice, we select all physics-driven, acquisition-related transforms to be in the family
of invariant transforms. This choice is made to ensure reconstructions are invariant to plausible
acquisition-related perturbations. Thus, the family of physics-driven transforms are synonymous with
the family of invariant transforms for our purposes.

Because signal from physics-driven perturbations (noise and motion) is sampled at acquisition,
these perturbations are applied after undersampling in the supervised augmentation methods, where
fully-sampled data is available.

D EXPERIMENTAL DETAILS

All code and experimental/data configurations are available at (blinded).

D.1 DATASET

In this section, we provide details for the two datasets used in this study: the mridata 3D FSE knee
dataset and the fastMRI multi-coil brain dataset.

D.1.1 MRIDATA 3D FSE KNEE DATASET

Dataset Splits. The mridata 3D FSE knee dataset consists of 6080 fully-Cartesian-sampled knee
slices (19 scans) from healthy participants. The dataset was randomly partitioned into 4480 slices (14
scans) for training, 640 slices (2 scans) for validation, and 960 slices (3 scans) for testing.

Simulating Data-Limited and Label-Limited Settings. In this study, we evaluate all methods
in the data-limited and label-limited regimes, where supervised examples are scarce compared to
unsupervised (undersampled) examples. To simulate this scenario, a subset of training scans are
retrospectively undersampled using fixed undersampling masks, resulting in unsupervised training
examples. To limit the total (supervised and unsupervised) amount of available training data, we train
with only 6 of the 14 training scans, where 1 scan is supervised and 5 scans are unsupervised.

K-space Hybridization and Sensitivity Maps. 3D FSE scans were acquired in 3D, resulting in
Fourier encoded signal along all dimensions (kx × ky × kz). Because the readout dimension kx is
fully-sampled in these scans, scans were decoded along the kx dimension, resulting in a hybridized
k-space as mentioned in §5.1. All sensitivity maps were estimated with JSENSE as implemented in
SigPy (Ong & Lustig, 2019), with a kernel width of 8 and a 20×20 center k-space auto-calibration
region.

Mask Generation. Scans for training and evaluation were undersampled using 2D Poisson Disc
undersampling, a compressed sensing-motivated pattern for 3D Cartesian imaging. Given an accelera-
tion rate R, undersampling masks were generated in the ky×kz dimensions for all scans such that the
number of pixels sampled would be approximately |ky||kz|R . To maintain consistency with generated
sensitivity maps, a 20×20 center k-space auto-calibration region was used when constructing under-
sampling masks for all examples. To simulate prospectively undersampled acquisitions, scans were
retrospectively undersampled with a fixed 2D Poisson Disc undersampling pattern (Bridson, 2007).
Following Cartesian undersampling convention, all ky × kz slices for a single scan are undersampled
with the identical 2D Poisson Disc mask. This procedure was used for both simulating prospectively
undersampled scans during training (i.e. unsupervised examples) and evaluation. All undersampling
masks are generated with an unique, fixed random seed for each scan to ensure reproducibility.

D.1.2 FASTMRI BRAIN MULTI-COIL DATASET

Dataset Splits. The distributed validation split of the fastMRI 2D brain multi-coil dataset was
divided into 757 scans for training, 207 scans for validation, and 414 scans for testing. To control
for confounding variables when comparing performance between reconstruction methods, all data
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splits were filtered to include only T2-weighted scans acquired at a 3T field strength, resulting in 266,
70, and 137 scans for training, validation, and testing, respectively. Data-limited and label-limited
training settings were simulated by limiting training data to 18 supervised and 36 unsupervised scans
and validation data to 50 scans.

Sensitivity Maps. Like for mridata, sensitivity maps were estimated using JSENSE with a kernel
width of 8 and calibration region of 12×12. This calibration region corresponds to the 4% auto-
calibration region used for 8x undersampling.

Mask Generation. Scans for training and evaluation were undersampled using 1D random under-
sampling, a compressed sensing-motivated pattern for 2D Cartesian imaging. Given an acceleration
rate R, undersampling masks were generated in the ky phase-encode dimension for all scans such
that the number of pixels sampled would be approximately |ky|R . Training and evaluation was con-
ducted at R=8 acceleration with a 4% auto-calibration region. Like in mridata, fixed undersampling
masks were generated to simulate prospectively undersampled data and for the testing data to ensure
reproduciblity.

D.2 BASELINES

We compared VORTEX to state-of-the-art supervised, supervised augmentation, and self-supervised
MRI reconstruction baselines. We provide an overview of these methods and their notation in the
main text.

Supervised. We compared VORTEX to standard supervised training without augmentations
(termed Supervised). In supervised training, fully-sampled scans are retrospectively undersam-
pled. The model is trained to reconstruct the fully-sampled scan from its undersampled counterpart.
Note, in supervised settings, only fully-sampled scans can be used for training. Any prospectively
undersampled (unsupervised) scans cannot be leveraged in this setup.

Supervised+Augmentation (Aug) and MRAugment. Supervised baselines with augmentation
(termed Aug) were trained with image and/or physics-based augmentations, which are denoted by
parentheses. Image-based augmentations were applied prior to the retrospective undersampling,
following the MRAugment protocol. Physics-based acquisition augmentations were applied after this
undersampling to model the MRI data acquisition process. For example Aug (Motion) indicates a
supervised method trained with motion augmentations. Image-based augmentations were identical to
those used in MRAugment. As such, Aug (Image) is equivalent to MRAugment, and is referred to as
such for readability.

SSDU. We also compared VORTEX to the state-of-the-art self-supervised learning via data un-
dersampling (SSDU) baseline (Yaman et al., 2020). This method was originally proposed for fully
unsupervised learning, in which all training scans are prospectively undersampled. We propose a
trivial extension to adapt it for the semi-supervised setting. In cases of prospectively undersampled
(unsupervised) data, the training protocol proposed in SSDU was used. Fully-sampled (supervised)
data was retrospectively undersampled using the undersampling method and acceleration for the
specified experiment. These simulated undersampled scans were used as inputs to the SSDU protocol.
Because the retrospective undersampling is done dynamically (i.e. each time a supervised example is
sampled), it may serve as a method of augmenting supervised scans.

Hyperparameters for all methods are provided in Appendix D.3.1.

D.3 TRAINING DETAILS

All training code is written in Python with PyTorch 1.6.

D.3.1 HYPERPARAMETERS

Architecture and Optimization. All models used a 2D U-Net architecture with (Ronneberger
et al., 2015) with 4 pooling layers. Convolutional block at depth d consisted of two convolutional
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Table 5: Data augmentation configuration for mridata 3D FSE knee dataset experiments. p is the
effective probability of applying an augmentation. In MRAugment, this is equivalent to the base
probability multiplied by the weighting factor. Acquisition-based augmentations were configured in
separate experiments at both light and heavy settings.

Kind Transform Parameters p

Image

H-Flip N/A 0.275
V-Flip N/A 0.275
k × 90◦ rotation k ∈ {2} 0.275
Rotation [-180◦, 180◦] 0.275
Translation [-10%, 10%] 0.55
Scale [0.75, 1.25] 0.55
Shear [-15◦, 15◦] 0.55

Acquisition Gaussian Noise σ=[0.1,0.3] (light)
σ=[0.2,0.5] (heavy) 0.2

Motion α=[0.1,0.3] (light)
α=[0.2,0.5] (heavy) 0.2

layers with 32d channels for d = {1, . . . , 5}. All models were trained with the Adam optimizer with
default parameters (β1=0.9, β2=0.999) and weight decay of 1e-4 for 200 epochs (Kingma & Ba,
2014; Loshchilov & Hutter, 2017). Training was conducted with an effective training batch size of 24
and learning rate η=1e-3. All models used VORTEX methods used 1:1 balanced sampling between
supervised and unsupervised examples (Desai et al., 2021a).

Aug Baselines and MRAugment. Supervised augmentation baselines were trained with image-
based and acquisition-based augmentations. Image-based augmentations for each dataset followed
the augmentation configuration provided in the MRAugment. With the mridata 3D FSE knee dataset,
integer rotations could only be conducted at 180 degrees due to the anisotropic matrix shape of the
ky × kz slice. Aug baselines using physics-driven acquisition-based augmentations used a maximum
probability of p = 0.2 as recommended by Desai et al. (2021a), and use the same range of σ for
noise and α for motion that are used in the corresponding VORTEX experiments. Augmentations,
their parameters, and their effective probabilities used for the mridata 3D FSE knee dataset are listed
in Table 5. All augmentation methods were trained with the exponential augmentation probability
scheduler with γ = 5 and a scheduling period equivalent to the training length as proposed by Fabian
et al. (2021).

SSDU. SSDU is sensitive to the loss function and masking extent (ρ). Thus, these hyperparameters
that should be optimized for different datasets. We sweeped through loss functions k-space `1, k-space
`1-`2, and image `1 and masking extent ρ = 0.2, 0.4, 0.6. Models with the highest validation cPSNR
were selected for all SSDU experiments. For the mridata 3D FSE knee dataset, the configuration
with loss function k-space `1 and ρ = 0.4 was used. For the fastMRI multi-coil brain dataset, the
configuration with `1-`2 loss in k-space and ρ = 0.2 was used.

Consistency Augmentations in VORTEX. Like Aug baselines, VORTEX was trained with com-
binations of image and physics-based augmentations. We use the same parenthetical nomenclature to
indicate the augmentation type used in the consistency branch (e.g. VORTEX (Motion) for motion
consistency). The family of image augmentations used for consistency in VORTEX were identical to
those used in MRAugment. Physics-based consistency augmentations were sampled from either the
light (R(·)=[0.1, 0.3)) or heavy (R(·)=[0.2, 0.5)) range during training.

D.4 EVALUATION

D.4.1 EVALUATION SETTINGS

We perform evaluation in both in-distribution and clinically-relevant, simulated OOD settings. In-
distribution evaluation consisted of evaluation on the test set described in D.1.
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Table 6: Comparison of different scheduling methods and warmup periods on the mridata knee multi-
coil dataset with heavy motion augmentations. All scheduling methods outperform non-scheduled
training (base). There is no advantage of a specific scheduling protocol, suggesting that some
curriculum is better than none.

Perturbation None Motion (light) Motion (heavy)

Curricula SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB)

None 0.861 36.4 0.855 35.8 0.819 33.2
Linear (20e) 0.866 36.4 0.862 35.8 0.828 33.3
Linear (100e) 0.877 36.3 0.871 35.8 0.822 32.6
Linear (200e) 0.869 36.4 0.865 35.8 0.817 32.7
Exp (20e, γ = 5) 0.865 36.4 0.857 35.9 0.822 33.4
Exp (100e, γ = 5) 0.864 36.3 0.857 35.8 0.812 33.2
Exp (200e, γ = 5) 0.877 36.4 0.867 35.8 0.812 32.3

Table 7: Impact of training duration on cPSNR of supervised methods without augmentations
(Supervised), supervised methods with motion augmentations (Aug (Motion)), MRAugment, and
VORTEX with motion consistency (VORTEX (Motion)). Training duration are percentages of the
full training duration (200 epochs). * indicates the default training configuration. Both supervised
augmentation methods and MRAugment are more sensitive to training time than Supervised or
VORTEX methods. Supervised underperforms Aug, MRAugment, and VORTEX. VORTEX achieves
highest performance and is insensitive to training duration relative to the other methods.

Perturbation

Model None Motion (light) Motion (heavy)

Supervised (10%) 35.0 33.3 27.4
Supervised (25%) 35.3 32.3 27.1
Supervised (50%) 35.5 32.0 26.4
Supervised (100%)* 35.8 33.6 27.0
Supervised (200%) 36.0 33.9 27.6
Supervised (300%) 36.0 33.9 27.6

MRAugment (10%) 35.4 32.3 26.0
MRAugment (25%) 35.8 31.5 25.1
MRAugment (50%) 36.0 31.5 24.3
MRAugment (100%) 36.2 31.8 24.0
MRAugment (200%) 36.3 32.2 24.3
MRAugment (300%) 36.4 33.4 25.0

Aug (Motion) (10%) 34.8 33.9 30.8
Aug (Motion) (25%) 35.3 34.5 31.4
Aug (Motion) (50%) 35.4 34.6 31.1
Aug (Motion) (100%)* 35.9 35.1 31.5
Aug (Motion) (200%) 36.0 35.1 30.8
Aug (Motion) (300%) 36.0 35.2 32.1

VORTEX (Motion) (10%) 36.2 35.5 32.4
VORTEX (Motion) (25%) 36.3 35.7 33.1
VORTEX (Motion) (50%) 36.4 35.8 33.2
VORTEX (Motion) (100%)* 36.4 35.8 33.2
VORTEX (Motion) (200%) 36.3 35.7 33.0
VORTEX (Motion) (300%) 36.3 35.7 33.0

For OOD evalution, we considered two critical settings that have been shown to affect image quality:
(1) decrease in SNR and (2) motion corruption. The extent of the distribution shift is synonymous
with the difficulty level for each perturbation (σ for noise, α for motion), where larger difficulty levels
indicate correspond to larger shifts. Thus, we define low and heavy noise and motion difficulty levels
for evaluation – low noise σ=0.2, heavy noise σ=0.4, low motion α=0.2, heavy motion alpha=0.4.
These values are selected based on visual inspection of clinical scans (see 4.1.1). Note, by definition
(σ = 0, α=0) corresponds to the in-distribution evaluation.
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Table 8: Ablation for acceleration — 12x vs 16x. Like in the 16x regime, VORTEX (Motion)
outperformed supervised methods, and MRAugment at 12x acceleration. This may suggest that
VORTEX is broadly applicable to different acceleration levels.

Perturbation None Motion (light) Motion (heavy)

Aug Range Model SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB)

N/A Supervised 12x 0.814 36.2 0.814 32.4 0.689 25.4
Supervised 16x 0.798 35.8 0.809 33.6 0.706 27.0

N/A MRAugment 12x 0.828 36.5 0.814 31.9 0.637 23.6
MRAugment 16x 0.811 36.2 0.793 31.8 0.660 24.0

N/A SSDU 12x 0.819 34.9 0.816 34.5 0.762 30.9
SSDU 16x 0.787 34.9 0.783 34.7 0.734 31.9

light Aug (Motion) 12x 0.811 36.1 0.807 35.3 0.765 31.3
Aug (Motion) 16x 0.802 35.6 0.793 34.7 0.739 30.4

heavy Aug (Motion) 12x 0.818 36.1 0.811 35.2 0.758 31.2
Aug (Motion) 16x 0.793 35.9 0.793 35.1 0.751 31.5

light VORTEX Motion 12x 0.881 36.8 0.875 36.1 0.815 32.1
VORTEX Motion 16x 0.882 36.4 0.875 35.7 0.813 31.5

heavy VORTEX Motion 12x 0.888 36.7 0.883 36.1 0.846 33.5
VORTEX Motion 16x 0.861 36.4 0.855 35.8 0.819 33.2

Given difficulty levels for motion and noise, each scan was perturbed by a noise or phase error
(motion) maps generated with a set difficulty level. These perturbations were fixed for each testing
scan to ensure reproducibiilty and identical perturbations in the test set across different experiments.

In the text, we refer to different evaluation configurations as perturbations. None indicates the
in-distribution setting. LN, HN, LM, HM correspond to light noise, heavy noise, light motion, and
heavy motion, respectively.

D.4.2 METRIC SELECTION

Conventional computational imaging uses magnitude metrics for quantifying image quality. However,
MRI images contain both magnitude and phase information (i.e. real and imaginary components).
Because phase-related errors may not be captured by magnitude metrics, we use a combination of
complex and magnitude metrics – complex PSNR (cPSNR) and magnitude SSIM metrics to quantify
image quality. Equation 1 defines the cPSNR formulation for complex-valued ground truth xref
and prediction xpred. || · ||2 corresponds to the complex-`2 norm and | · | denotes the magnitude of
complex-valued input. Additionally, SSIM has shown to be a better corollary for MRI reconstruction
quality compared to pSNR on magnitude images (Knoll et al., 2020). Thus, we use SSIM to quantify
magnitude image quality.

cPSNR (dB) = 20 log10

max |xref |
||xpred − xref ||2

(1)

By default, metrics were computed over the full 3D scan. An additional set of metrics were also
computed per reconstructed slice (termed slice metrics). Because different slices have different
extents of relevant anatomy, per-slice metrics can provide a more nuanced comparison of 2D slice
reconstructions among different methods. Statistical comparisons were conducted using Kruskal-
Wallis tests and corresponding Dunn posthoc tests with Bonferroni correction (α=0.05). All statistical
analyses were performed using the SciPy library.

E ABLATIONS

Pixel-level vs Latent Space Consistency Setup. For the kth resolution level, we enforce consis-
tency after the final convolution in the encoder, and after the transpose convolution in the decoder.
For k = 4, consistency is enforced at the bottleneck layer, after the convolution in the encoder. To
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Table 9: Slice metrics (mean [standard deviation]) on the mridata knee dataset. Asterisk (*) indicates
significant performance of VORTEX over all baselines (p <0.05).

Perturbation None Motion (heavy) Noise (heavy)

Model SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB)

Supervised 0.635 (0.133) 29.7 (3.65) 0.545 (0.117) 21.4 (2.53) 0.591 (0.139) 25.8 (2.87)
MRAugment 0.653 (0.130) 30.1 (3.48) 0.505 (0.106) 18.6 (2.34) 0.563 (0.128) 25.0 (2.83)
SSDU 0.621 (0.147) 28.9 (3.39) 0.564 (0.146) 25.9 (3.49) 0.528 (0.142) 26.7 (2.77)
Aug (Physics) 0.623 (0.144) 29.6 (3.63) 0.566 (0.136) 26.0 (3.78) 0.557 (0.144) 27.6 (3.05)
Aug (Image+Physics) 0.618 (0.136) 30.1 (3.38) 0.565 (0.134) 26.9 (3.79) 0.540 (0.134) 27.9 (2.81)
VORTEX (Image) 0.718 (0.125)* 30.4 (3.41) 0.499 (0.110) 20.6 (2.25) 0.584 (0.104) 25.8 (2.47)
VORTEX (Physics) 0.729 (0.138)* 30.3 (3.38) 0.628 (0.137)* 26.0 (3.76) 0.653 (0.143)* 28.1 (2.80)
VORTEX (Image+Physics) 0.716 (0.131)* 30.3 (3.39) 0.616 (0.130)* 25.3 (3.69) 0.658 (0.132)* 27.5 (2.73)

Table 10: Test performance (mean [standard deviation]) on the fastMRI multi-coil brain dataset at 8x
acceleration. Results are shown on both in-distribution data and different motion levels of α = 0.6,
α = 0.8, α = 1.0 for Supervised, SSDU, MRAugment, augmentation baselines, and VORTEX.

Perturbation None Motion (α = 0.6) Motion (α = 0.8) Motion (α = 1.0)

Model SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB) SSIM cPSNR (dB)

Supervised 0.851 (0.041) 30.1 (1.24) 0.652 (0.167) 19.0 (4.22) 0.585 (0.185) 16.5 (4.36) 0.564 (0.172) 14.8 (4.12)
SSDU 0.856 (0.036) 27.7 (1.26) 0.712 (0.177) 19.6 (4.29) 0.628 (0.209) 17.0 (4.60) 0.600 (0.197) 15.2 (4.40)
MRAugment 0.869 (0.033) 29.7 (1.31) 0.653 (0.166) 18.7 (4.18) 0.586 (0.191) 16.3 (4.33) 0.565 (0.181) 14.6 (4.09)
Aug (Motion,R(α) = [0.2, 0.5)) 0.836 (0.046) 28.4 (1.31) 0.695 (0.191) 21.3 (4.43) 0.618 (0.218) 18.4 (5.08) 0.594 (0.204) 16.4 (5.19)
Aug (Motion,R(α) = [0.5, 0.7)) 0.825 (0.044) 28.0 (1.40) 0.701 (0.186) 22.6 (4.00) 0.631 (0.218) 20.1 (4.73) 0.610 (0.206) 18.3 (4.68)
VORTEX (Image) 0.858 (0.035) 30.2 (1.30) 0.655 (0.166) 18.9 (4.22) 0.589 (0.190) 16.4 (4.33) 0.569 (0.178) 14.7 (4.11)
VORTEX (Image+Motion,R(α) = [0.5, 0.7)) 0.838 (0.041) 29.4 (1.45) 0.700 (0.139) 22.2 (3.31) 0.641 (0.156) 19.9 (3.95) 0.621 (0.147) 18.1 (4.15)
VORTEX (Motion,R(α) = [0.2, 0.5)) 0.839 (0.044) 29.7 (1.36) 0.726 (0.154) 23.3 (3.79) 0.664 (0.187) 20.1 (5.22) 0.649 (0.176) 17.8 (5.76)
VORTEX (Motion,R(α) = [0.5, 0.7)) 0.829 (0.046) 29.2 (1.44) 0.763 (0.085) 24.4 (2.83) 0.726 (0.104) 22.8 (3.31) 0.710 (0.100) 21.5 (3.25)

control for the impact of loss weighting, we normalize λ by the number of consistency losses that are
computed in latent space when consistency is enforced at multiple resolution levels Rk. We compare
these approaches in the case of light and heavy motion.
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Figure 5: Simulated augmentation dif-
ficulty scheduling over training period
of 200 epochs using linear and expo-
nential (exp) schedulers defined in §4.2.
Time constant for exponential schedul-
ing τ = M

γ where γ=5.

Training Time. We ablate the sensitivity of the perfor-
mance of supervised, augmentation, and VORTEX meth-
ods to training duration. To compute the performance
at different training duration, we select best checkpoints
(quantified by validation cPSNR) up to a given duration
and run evaluation using these weights. As all methods
were trained for 200 epochs, we compare the performance
at training times of 10% (20 epochs), 25% (50 epochs),
50% (100 epochs), and 100% (200 epochs). Supervised
methods were insensitive to training time, but considerably
underperformed both supervised augmentation (Aug) and
VORTEX (Table 7). Aug was sensitive to training time,
with changes in cPSNR of >1dB. VORTEX achieved the
highest performance across all metrics and evaluation se-
tups and was relatively insensitive to training duration.

Sensitivity to Acceleration Factors. We evaluated the
performance of VORTEX at different acceleration factors
in Table 8. At 12x acceleration, VORTEX trained with heavy motion recovered +6.1 SSIM and
+0.8 dB cPSNR compared to the Supervised baseline in the in-distribution setting. At the same
acceleration, VORTEX also outperformed the Supervised baseline by +15.7 SSIM and 8.1 dB cPSNR.
The stability of VORTEX at different accelerations may indicate that VORTEX is generalizable
across different acceleration extents.

F EXTENDED RESULTS

In this section, we provide results for the mridata dataset using slice metrics and for the fastMRI
multi-coil brain dataset (Zbontar et al., 2018).
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F.1 SLICE METRICS

Table 9 shows slice metrics of baselines and VORTEX on the mridata knee dataset. Among slice
metrics, VORTEX also outperforms all baselines in both in-distribution and OOD settings. In
particular, VORTEX significantly outperformed all baselines in SSIM in all evaluation settings
(p<0.05). This may indicate that VORTEX has higher fidelity in recovering image structure even in
OOD settings where perturbations can result in a considerable degradation in SSIM.

F.2 FASTMRI RESULTS

We compare VORTEX to Supervised, SSDU, Aug (Motion), and MRAugment baselines for in
distribution and OOD motion settings of different motion levels on the fastMRI multi-coil brain
dataset in Table 10 (Zbontar et al., 2018). Data preparation and experimental details follow the
description in Appendix D, and all experiments are conducted at 8x acceleration. We demonstrate
that VORTEX has comparable performance to baselines for in distribution, and outperforms SSDU
by +5.1 SSIM and +4.8 cPSNR, and MRAugment by +11.1 SSIM and +5.7 cPSNR on motion level
α = 0.6; SSDU by +9.8 SSIM and +5.8 cPSNR, and MRAugment by +14 SSIM and +6.5 cPSNR on
motion level α = 0.8; SSDU by +11 SSIM and +6.3 cPSNR, and MRAugment by +14.5 SSIM and
+6.9 cPSNR on motion level α = 1.0. This demonstrates that the effectiveness of VORTEX for both
in distribution and OOD data generalizes to 2D MRI sequences which implies broader clinical utility.
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