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Abstract

Computer-Aided Design (CAD) plays a foundational role in modern manufacturing
and product development, often requiring designers to modify or build upon existing
models. Converting 3D scans into parametric CAD representations—a process
known as CAD reverse engineering—remains a significant challenge due to the high
precision and structural complexity of CAD models. Existing deep learning-based
approaches typically fall into two categories: bottom-up, geometry-driven methods,
which often fail to produce fully parametric outputs, and top-down strategies, which
tend to overlook fine-grained geometric details. Moreover, current methods neglect
an essential aspect of CAD modeling: sketch-level constraints. In this work, we
introduce a novel approach to CAD reverse engineering inspired by how human
designers manually perform the task. Our method leverages multi-plane cross-
sections to extract 2D patterns and capture fine parametric details more effectively.
It enables the reconstruction of detailed and editable CAD models, outperforming
state-of-the-art methods and, for the first time, incorporating sketch constraints
directly into the reconstruction process.

1 Introduction

Computer-Aided Design (CAD) modeling, typically performed using specialized software [1, 2, 3],
plays a critical role in the development and manufacturing of real-world objects. In modern CAD
workflows, designers begin by creating 2D sketches composed of parametric curves (e.g., lines,
arcs, circles), which are further constrained by geometric relationships (e.g., coincident, tangent,
parallel) [4]. These sketches are then transformed into 3D geometry using operations such as extrusion,
revolution, and cutting. By following this sequential process, designers can construct 3D parametric
solids that accurately represent the intended object. A common and practical approach in CAD
workflows is to begin with a template of an existing object and adapt it to new design requirements.
However, existing real-world objects commonly do not have publicly available CAD models. In such
cases, a digital representation can be obtained through 3D scanning, which usually produces a 3D
mesh. While meshes capture the surface geometry of an object, they are unstructured and lack the
parametric information needed for further design and modification in CAD software. Consequently,
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Figure 1: MiCADangelo is a novel framework for CAD reverse-engineering that mimics human
design workflows. It analyzes 3D scans via 2D cross-sections to detect sketch planes, predict
constrained parametric sketches and optimize extrusions.

converting a 3D mesh into a parametric CAD model—an operation commonly referred to as CAD
reverse engineering—is a crucial step for enabling efficient design iteration and customization.

Today, CAD reverse engineering is typically carried out manually by designers using specialized
software [5]. As illustrated in the top part of Figure 1, the process generally involves the following
steps: (i) extracting a 2D cross-section of a specific part from the imported 3D scan; (ii) reconstructing
the contour of the section using parametric 2D curves and placing the CAD constraints to restrict
the modification; and (iii) applying CAD operations (e.g., extrusion) to the parametric sketch to
create a 3D solid model of the part. These steps are repeated for the remaining parts until the
entire 3D scan is reconstructed as a complete parametric CAD model within the software. While
this process allows for faster CAD modeling compared to creating models from scratch, it remains
tedious and demands CAD expertise. As a result, automating this process became an active research
area [6, 7, 8, 9, 10, 11, 12].

Automated 3D CAD reverse engineering has advanced from identifying parts in 3D scans [13, 14], to
fitting parametric primitives to scanned geometry [15, 16], and more recently, to predicting sequential
design step directly from point clouds [17, 9]. The latter approach is particularly valuable, as it
supports parametric reconstruction while preserving an editable design history. This advancement
has been enabled by the emergence of datasets such as DeepCAD [6] and Fusion 360 [18], which
provide sequences of 2D sketches and extrusion operations—commonly referred to as sketch-extrude
sequences. Several recent methods have explored learning the mapping from point clouds to sketch-
extrude sequences, which can be broadly categorized into: (i) top-down approaches [17, 9, 19], which
directly predict the parameters of the sketch-extrude sequence as a series of parametric values from
the input point cloud; and (ii) bottom-up approaches [8, 20, 7], which attempt to predict individual
extrusion cylinders that, when combined, closely approximate the target geometry. While top-down
approaches offer the advantage of producing fully parametric outputs that approximate ground-truth
sketch-extrude sequences, they often struggle to capture fine-grained details of the input geometry
frequently dominated by larger structures. In contrast, bottom-up approaches can better preserve local
geometrical details, but they lack full parametrization and do not integrate seamlessly into standard
CAD workflows [17]. Furthermore, to the best of our knowledge, none of these approaches consider
CAD sketch constraints which are a critical component of CAD modeling [4, 21].

In this work, we propose MiCADangelo, a solution for automating CAD reverse engineering by
emulating the way human designers approach the task. As illustrated in the bottom part of Figure.1,
MiCADangelo begins by analyzing the input scan through a series of 2D cross-sectional slices and
predicting key slices to serve as sketch planes. For each selected plane, closed loops are extracted
from the cross-section and converted into raster images, which are used to predict both the 2D
parametric curves and associated CAD sketch constraints. These constrained sketches are then
extruded via an optimization process that leverages the local mesh geometry around each loop. The
resulting extruded parts are ultimately merged to produce a structured, fully parametric CAD model.
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MiCADangelo offers the advantage of preserving fine-grained geometric details of the input scan
while generating fully parametric sketch-extrude sequences, including CAD constraints—an aspect
largely unexplored in 3D CAD reverse engineering.

Contributions The main contributions of this work can be summarized as follows:
1. We introduce a real-world CAD reverse engineering-inspired approach that can effectively

reconstruct fully parametric CAD models from 3D scans while preserving fine-grained
geometric details.

2. To the best of our knowledge, this is the first approach capable of reconstructing CAD
models from 3D scans while incorporating sketch constraints.

3. We conduct comprehensive experiments on publicly available benchmarks and demonstrate
that our method outperforms existing state-of-the-art techniques in CAD reverse engineering.

2 Related Work

3D CAD Reverse Engineering. Early approaches to CAD reconstruction rely on Constructive
Solid Geometry (CSG) representations [22, 23, 24, 25, 26, 27, 28], using Boolean operations over
primitives, but these are limited in capturing complex, real-world CAD structures. Other works target
Boundary Representation (BRep) reconstruction [29, 30, 18, 31], focusing on high-precision surface
and topology modeling. More recent efforts adopt sketch-extrude paradigms, which better reflect the
way CAD models are constructed in practice. Within this direction, geometry-grounded bottom-up
methods [20, 7, 8] estimate sketches and extrusion parameters from input scans, leveraging structural
cues from the geometry but often lacking full parametric editability and seamless integration in
CAD software [17]. Alternatively, language-based top-down methods [17, 19, 9] learn to generate
construction sequences, capturing design intent but struggling to preserve fine-grained geometric
fidelity. We propose a practical reverse engineering-inspired approach that reconstructs detailed
and editable CAD models with explicit sketch primitives and constraints, directly compatible with
standard CAD software.

Constrained Sketches in CAD. In CAD modeling, sketch primitives and their associated constraints
form the foundation of design intent [32, 33], as they govern how a design adapts when modified.
Parametric CAD sketch primitives (e.g., lines, arcs, circles) provide a flexible 2D interface for defining
shapes, while constraints (e.g., perpendicular, parallel, tangent) preserve geometric relationships,
allowing controlled variation without compromising the overall structure. When designers apply
constraints (e.g., orthogonality) to sketch primitives (e.g., two lines), any changes made to one
primitive are automatically adjusted to preserve these relationships. For example, if the parameters
of one line are modified, the other will update accordingly to maintain orthogonality. In a reverse
engineering context, it is highly desirable not only to infer accurate CAD geometry from input scans
but also to recover the underlying design intent, ensuring that the reconstructed model responds to
modifications in a manner consistent with how a designer would have originally constrained it. The
availability of large-scale CAD sketch datasets [34] has facilitated research in this area, with recent
work focusing on generative CAD sketch modeling [21, 4, 35], sketch image parameterization [36,
37, 38], and design intent inference [39, 40]. While these methods have achieved promising results
for 2D sketches, their effectiveness in 3D CAD modeling remains underexplored.

3 Preliminaries and Problem Statement

In this section, we provide the problem statement along with the preliminary definitions.
Definition 1 (Sketch Primitive). A sketch primitive p is a 2D entity uniquely defined by geomet-
ric parameters. We define the following 2D sketch primitives: Line: Defined by its start point
(xs, ys) ∈ R2 and end point (xe, ye) ∈ R2. Circle: Represented by its center (xc, yc) ∈ R2

and radius r ∈ R. Arc: A segment of a circle, specified by its start point (xs, ys) ∈ R2, mid-point
(xm, ym) ∈ R2, and end point (xe, ye) ∈ R2, all lying on the same circle.
Definition 2 (Sketch Constraint). A sketch constraint c = (pi,pj , ct) is defined by a constraint
type ct that specifies the relationship between two primitives pi and pj . The types of constraints
considered in this work are: coincident, concentric, equal, fix, horizontal, midpoint, normal, offset,
parallel, perpendicular, quadrant, tangent, and vertical. Note that some constraints are defined on a
single primitive such as vertical and horizontal.
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Figure 2: Overview of the method. MiCADangelo comprises three main components: Sketch Plane
Detection, Sketch Parameterization, and Differentiable Extrusion. The generated constrained sketches,
together with the optimized extrusion parameters, are assembled into the final parametric CAD model.

Definition 3 (Constrained Sketch). A constrained sketch K = (P, C) is defined by a set of np 2D
sketch primitives P = {pi}

np

i=1 and a set of nc sketch constraints C = {ci}nc
i=1.

Definition 4 (Sketch Plane). A sketch plane π is defined by an origin point o ∈ R3 and a normal
vector n ∈ R3, on which a sketch is defined and centered at o.
Definition 5 (3D Mesh). A 3D mesh is defined as M = (V,F) where V ⊂ R3 are vertices and
F ⊂ V3 are triangles formed by 3 vertices.
Definition 6 (Cross-section Slice). Given a 3D mesh M and a slicing plane π, a cross-section slice
S is formed by sets of line segments resulting from the intersection of the mesh triangles with π. This
slicing process naturally yields multiple connected components, each corresponding to a distinct set
of connected line segments. Formally, the cross-section slice S can be represented as a collection of
L line sets {Lj}Lj=1, where each line set composed of nl successive points {qi}nl

i=1 ∈ R3 is defined
as Lj = {(qi,qi+1) | i = 1, . . . , nl − 1}.
Definition 7 (Closed Loop). A closed loop L is a set of line segments connecting nl succes-
sive points {qi}nl

i=1 ∈ R3 forming a non-self-intersecting and enclosed region. It is defined as:
L = {(qi,qi+1) | i = 1, . . . , nl − 1} ∪ {(qnl

,q1)}. It is important to note that, in the context of
CAD models, the line sets forming the cross-section slice S defined in the above definition are usually
closed loops.
Definition 8 (Extrusion). An extrusion e = (π, t,v, h) is defined by a sketch plane π, an extrusion
type t, and extrusion parameters (v, h), where v ∈ R3 is the extrusion direction vector and h ∈ R is
the extrusion length. The extrusion operation extends a sketch K along v for a distance h, forming
a 3D solid. The extrusion type t specifies whether the operation creates material (new) or removes
material (cut).
Definition 9 (CAD Model Representation). A CAD model C is defined as the sequential combination
of ns sketch-extrude steps {(Ki, ei)}ns

i=1.

Problem Statement. Given an input 3D mesh M, the goal is to recover the sequence of
ns sketch-extrude steps reconstructing the CAD model C = {(Kj , ej)}ns

j=1. Each extrusion
ej = (πj , tj ,vj , hj) is defined by a sketch plane πj , an extrusion type tj , and extrusion pa-
rameters (vj , hj). Each constrained sketch Kj = (Pj , Cj) consists of 2D parametric primitives Pj

along with their associated CAD constraints Cj .

4 Proposed Method

4.1 Method Overview

As illustrated in Figure 1, MiCADangelo is inspired by the way human designers approach CAD
reverse engineering. Given an input mesh M obtained from a 3D scan, the key idea—mirroring human
intuition—is to identify the most relevant cross-section slices that enable accurate reconstruction of
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the original CAD model. To achieve this, MiCADangelo samples N equally-spaced slicing planes
{πi}Ni=1 along the x-, y-, and z-axes, producing a set of 2D cross-section slices {Si}Ni=1. These
slices are then converted into raster images and supplied with contextual embeddings before being
passed into a sketch plane detection network that identifies the most relevant slices Skey = {Si}

nkey

i=1
(Section 4.2). Once the key cross-section slices are identified—again following the logic used by
human designers—the next step is to predict the sketch primitives and their associated constraints
from these slices to obtain the corresponding constrained sketches. To achieve this, each key cross-
section slice is decomposed into separate closed loops {Lj}Lj=1. Each loop is converted into a raster
image and passed to a network for constrained sketch parameterization with the goal of inferring
the corresponding sketch primitives and constraints {Kj}Lj=1 (Section 4.3). After obtaining the
constrained sketches, a differentiable extrusion optimization is performed for each sketch Kj w.r.t the
input geometry of the mesh M to find out the corresponding extrusion parameters ej (Section 4.4).
Finally, the obtained extruded elements are assembled together to obtain the final CAD model. An
overview of the proposed method is illustrated in Figure 2.

4.2 Sketch Plane Detection Network

Given a set of cross-section slices {Si}Ni=1 extracted from the input mesh M, our goal is to identify a
subset of these as key sketch plane slices. Each slice Si is projected onto a 2D plane and normalized
to fit within a unit bounding box, which is subsequently rendered as a binary image Xi ∈ {0, 1}H×W .
The slice image Xi is passed through a convolutional ResNet34 encoder fenc : {0, 1}H×W → Rd

to produce a d-dimensional latent vector fi = fenc(Xi). In order to contextualize the embedding of
the different slices and maintain their spatial relationships, each slice is associated with a slice index
σi ∈ {0, . . . , N − 1}, axis identifier ai ∈ {0, 1, 2} for x-, y-, or z-axis, normalization parameters
ηi = (txi , t

y
i , si) ∈ R3 that correspond to the translation and the scale parameters of the normalization

process. These inputs are embedded into the latent space Rd,

ωpos
i = Wposyσi

, ωaxis
i = Waxisyai

, ωnorm
i = Wnormηi , (1)

where yσi
∈ {0, 1}N and yai

∈ {0, 1}3 are one-hot vectors for slice index and axis identifier,
Wpos ∈ Rd×N and Waxis ∈ Rd×3 are the corresponding learnable matrices, and Wnorm ∈ Rd×3 is a
linear projection of normalization parameters. The final embedding zi ∈ Rd is obtained as

zi = fi + ωi , (2)

where the contextual embedding is defined as ωi = ωpos
i + ωaxis

i + ωnorm
i . Next, the set of embedding

{zi}Ni=1 is fed into a multi-layer multi-head transformer encoder fplane : Rd → Rd to obtain a set of
richer embedding {hi}Ni=1 ∈ Rd as follows,

(h1, . . . ,hN ) = fplane(z1, . . . , zN ) . (3)

Each encoded slice embedding hi is passed through a binary classifier fkey : Rd → [0, 1] composed
of a linear layer and a sigmoid to predict the probability of being a key sketch plane as follows,

ŷkey
i = fkey(hi) . (4)

Note that the sketch plane detection network is trained by a binary cross-entropy loss using supervised
key sketch plane labels from the DeepCAD dataset [6]. The process of obtaining these labels is
explained in the supplementary. Finally, the subset Skey = {Si | ŷkey

i ≥ τ} is determined to be the set
of key slices with the corresponding planes πi, where τ is a fixed threshold set to 0.5.

4.3 Constrained Sketch Parameterization Network

Once the key cross-section slices Skey are obtained by the sketch plane detection network, the
goal of the constrained sketch parameterization network is to infer the constrained parametric
sketches {Kj}Lj=1 from the individual closed loops {Lj}Lj=1 of each key cross-section slice. For
each Si ∈ Skey, the set of resulting closed loops {Lj}Lj=1 are projected to 2D and rendered as
binary images {Xj}Lj=1. The constrained sketch parameterization network operates directly on these
rasterized loop images to infer the corresponding sketch primitives and geometric constraints. This
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approach enables to preserve fine-grained geometric details of the input mesh, which are essential for
accurate CAD reconstruction.

The design of the constrained sketch parameterization network is similar to the one introduced in [37].
Each image Xj ∈ {0, 1}H×W is then encoded by a convolutional encoder fenc : {0, 1}H×W → Rd

(same as the one used to encode the cross-section slices in Section 4.2), producing a latent feature
vector fj ∈ Rd. The latent vector is then passed to a transformer encoder-decoder floop : Rd →
Rde×np to obtain a set of embedding for np sketch primitives ζj ∈ Rde×np as follows,

ζj = floop(fj) . (5)

As in [37], the set of embedding is passed to two separate heads: a parameterization head
fprim : Rde×np → Qnp and a constraint prediction head fctr : Rde×np → Qnc , where Qnp

and Qnc denote the quantized space of np primitive values and nc constraint values, respectively.
These heads result in the parametric sketch primitives and their constraints as follows,

Pj = fprim(ζj) , Cj = fctr(ζj) . (6)

For further details on the quantization spaces of primitives and constraints, the design of the con-
strained sketch parameterization network, and the loss functions employed during training, readers
are referred to [37] as well as the supplementary materials for additional explanations. Due to the lack
of CAD constraint annotations in the DeepCAD dataset [6] and other 3D CAD modeling datasets, the
constrained sketch parameterization network is initially trained on the SketchGraphs dataset [34]. It is
then fine-tuned on an augmented version of SketchGraphs that includes added noise and synthetically
generated closed-loop images, enabling better adaptation to the characteristics of cross-sectional
slices. Note that both the sketch parameterization network and the sketch plane detection network
share the same encoder fenc. The encoder is initially trained as part of the sketch parameterization
network and then kept frozen during parameterization, while it is fine-tuned during the training of the
sketch plane detection network.

4.4 Differentiable Extrusion Optimization

For each constrained sketch Kj corresponding to a loop Lj within a key cross-section slice Si, the
goal of differentiable extrusion optimization is to recover the parameters of the extrusion ej that best
fits the resulting extruded solid to the 3D input mesh. As mentioned in Definition 8 of Section 3,
the extrusion is defined by ej = (πj , tj ,vj , hj), with πj denotes the sketch plane from which the
extrusion originates, tj ∈ {new, cut} specifies the extrusion type, and (vj , hj) represent the extrusion
direction and length, respectively.

The plane πj is determined by the key cross-section slice associated with the input sketch Kj and its
normal vector is used to define the direction of the extrusion vj . The extrusion type tj is assigned
based on the nesting hierarchy of the loop Lj within its corresponding cross-section slice Si. The
outermost loops are labeled as new extrusions, and the label alternates with each subsequent level
of nesting: a loop contained within a new extrusion loop is labeled as cut extrusion, a loop within a
cut extrusion loop is labeled as new extrusion, and this alternating pattern continues with increasing
depth. For loops labeled as new, the corresponding length hj is determined through an extrusion
optimization process. Loops labeled as cut are interpreted as infinite cuts.

Extrusion Length Optimization. To optimize over the extrusion length hj , we define a set of
extrusion vectors over the sketch Kj by sampling a set of nr 3D anchor points {rk}nr

k=1 ∈ R3 along
the loop boundary. Each anchor point is associated with a learnable scalar extrusion length hj ∈ R,
shared across the anchor points of the same loop. Each anchor point rk is mapped to an extrusion
vector ρk ∈ R3 along the direction of the extrusion vj with a length hj using the following function,

F : R3 × R3 → R3, F(rk, hjvj) := rk + hjvj = ρk . (7)

This results in a set of extrusion vectors {ρk}nr

k=1, each of them has its corresponding anchor point
rk as starting point and all of them sharing the same length and direction hj and vj . Next, a set of
nM points Q = {ql}nM

l=1 ∈ R3 are sampled on the input mesh M and the set of extrusion vectors
{ρu}

nr+nL+nkey

u=1 from each loop and each key cross-section slice are considered. The point-to-vector
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Figure 3: Qualitative comparison of of our method and that of [17] on DeepCAD and Fusion360.
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Figure 4: Qualitative comparison between our method and that of [17] on complex models containing
fine-grained geometric details.

distance d(ql, ρu) is then computed between each point ql and extrusion vector ρu to identify the
closest extrusion vector ρmin := argminu d(ql, ρu).

The total loss is defined as the mean squared distance over all sampled points, regularized by the
squared sum of extrusion lengths to avoid trivial solution. It is given by,

Lextr =
1

nM

nM∑
l=1

d(ql, ρmin)
2 + λ

∑
i,j

h2
j , (8)

where λ denotes a scaling factor for the regularization term, i refers to the detected key slice plane
and j refers to the individual sketch loop. The extrusion lengths hj are optimized jointly for all
the sketch loops over the detected key slice planes via gradient descent to minimize Lextr, thereby
adjusting the extrusion vectors ρu to best fit to the input mesh geometry.

5 Experiments

In this section, we detail the experimental setup and report results to evaluate the effectiveness of the
proposed MiCADangelo.
Datasets. We evaluate our method on the test sets of DeepCAD [6] and Fusion360 [18] datasets.
The sketch plane detection is trained on the train set of DeepCAD [6], while the constrained sketch
parameterization network is trained on the train set of the SketchGraphs [35] dataset and finetuned on
an augmented version of the dataset. Details on the processing of the datasets are in the supplementary.
Metrics. For 3D CAD reconstruction, median Chamfer Distance, Intersection over Union (IoU), me-
dian Edge Chamfer Distance (ECD) and Invalidity Ratio (IR) are used. For 2D sketches, image-level
sketch chamfer distance (SCD) is used. Additional metric details are provided in the supplementary.
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Table 1: Quantitative Results on DeepCAD and Fusion360 Datasets.

Method DeepCAD Test Set Fusion360 Test Set
Med. CD↓ IoU↑ IR↓ ECD↓ Med. CD↓ IoU↑ IR↓ ECD↓

DeepCAD [6] 9.64 46.7 7.1 – 89.2 39.9 25.2 –
Point2Cyl [8] 4.27 73.8 3.9 – 4.18 67.5 3.2 –
CAD-Diffuser [9] 3.02 74.3 1.5 – 3.85 63.2 1.7 –
CAD-SIGNet [17] 0.28 77.6 0.9 0.74 0.56 65.6 1.6 4.14
Ours 0.20 80.6 2.6 0.46 0.48 68.7 3.2 2.66

Implementation Details. Planes are preprocessed to ensure consistent normal directions along
the positive axes. The plane detection model is trained for 20 epochs on DeepCAD [6] with
lr = 1× 10−4. The constrained sketch parameterization model is trained on SketchGraphs [35] as
in [37] and finetuned for 50 epochs on synthetically generated, noise-augmented loops. We use 40
cross-sections per axis, each normalized to an image of size 128× 128. Normalization is performed
using 2D offsets and a scale factor corresponding to a unit bounding box. The transformer encoder of
the sketch plane detection comprises 4 layers and 4 attention heads, with an embedding dimension
of 256. The sketch parameterization network architecture is similar to [37]. For the extrusion
optimization, we run 200 iterations with a learning rate of 2× 10−4. AdamW is used as an optimizer
for all the experiments. More details are in the supplementary.

5.1 Comparison with state-of-the-art

The proposed method is compared with DeepCAD [6], CAD-Diffuser [9], Point2Cyl [8], and CAD-
SIGNet [17] on the DeepCAD and Fusion360 test sets. A quantitative comparison with these methods
is provided in Table 1. Across datasets, MiCADAngelo achieves superior reconstruction performance.
Note that low IR reported by the best performing [17] are enabled by test-time sampling, where
multiple CAD reconstruction candidates are generated and the best is selected. Without test-time
sampling, [17] yields an IR of 4.4 and 9.3 for DeepCAD and Fusion360, respectively. Figure 3
provides a qualitative comparison with [17].

Table 2: Quantitative results on complex models and on models with more than two extrusions.

Method Models with ≥ 4 Loops Models with > 2 Extrusions

Med. CD↓ IoU↑ IR↓ ECD↓ Med. CD↓ IoU↑ IR↓ ECD↓
CAD-SIGNet [17] 1.34 49.2 3.2 4.75 3.95 40.6 5.4 9.81
Ours 0.37 68.3 4.1 2.04 0.46 64.8 3.0 2.27

Our method consistently generates CAD models that closely resemble the ground-truth geometry
across a diverse range of samples. We also evaluate the performance of our method against [17] on a
subset of complex models with fine-grained details (containing 4 or more loops) and models with
more than 2 extrusions from DeepCAD. Results in Table 2 demonstrate that our methods significantly
outperforms [17] in preserving fine-grained geometric details and handling complex geometries.
More qualitative results on complex models are provided in Figure 4.

5.2 Impact of Constraints in 3D Reverse Engineering

Table 3: Quantitative results of deformation robust-
ness under sketch modifications

Method Med. CD↓ IoU↑ IR↓ ECD↓

CAD-SIGNet [17] 2.89 57.4 3.5 20.43
Ours 0.38 81.1 4.3 1.29

MiCADAngelo is the first CAD reverse engineer-
ing method to generate parametric constraints.
The proposed explicit modeling of the reverse
engineering pipeline enables sketch constraint
inference directly from rasterized sketch im-
ages, significantly reducing the solution space
compared to predicting constraints from point
clouds. To demonstrate the importance of con-
straint modeling in 3D CAD reconstruction, we
conduct an experiment analyzing how CAD re-
constructions produced by MiCADAngelo and [17] respond to sketch modifications similar to those
typically performed by CAD designers. Specifically, we introduce a small random displacement to
a point in the recovered sketch geometry and evaluate how this change affects the resulting solid
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Figure 5: Qualitative comparison of the impact of the constraints by transformations applied on
sketch points.

Table 4: Effect of contextual embeddings on plane
detection performance.

Contextual Emb. Precision Recall F1

✗ 0.317 0.292 0.296
✓ 0.894 0.864 0.870

Table 5: Plane detection performance across
datasets.

Dataset Precision Recall F1

DeepCAD 0.894 0.864 0.870
Fusion360 0.860 0.812 0.820
CC3D 0.803 0.790 0.777
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Figure 6: CD and ECD performance and inference
times as a function of the number of extrusion vectors.

geometry, comparing it to a constrained ground-truth model modified with the same displacement.
Due to unavailability of CAD constraints in DeepCAD and Fusion360 datasets, we form data for
this experiment by extruding 1k sketches with closed loops from the SketchGraphs dataset [34]. The
impact of the displacement on the solid geometry is computed by integration with the FreeCAD
API [3].

We compare our method to that of [17]. Note that the output representation of [17] generates
closed sketch loops by construction, which implicitly enforces coincident constraints between sketch
vertices. Results are reported in Table 3. MiCADAngelo reverse-engineered models closely match
the ground truth, even after random sketch modifications. As illustrated in Figure 5, due to effective
application of CAD sketch constraints, edits in our method propagate correctly through sketch
primitives, resulting in modified CAD models that retain structural consistency w.r.t the ground-truth.
In contrast, coincident constraints alone are insufficient to preserve overall geometry for [17] with
displacements leading to geometric distortions. Note that learning sketch constraints might also
impact sketch parameterization and the overall CAD reconstruction (e.g., inferring orthogonality
constraint can help in enforcing the parameters of the predicted lines to be orthogonal). While
constraints are not strictly necessary for sketch primitive parameterization, prior work [35] has
shown that jointly learning primitives and constraints benefits both tasks through shared structural
information. We leave further exploration of improved geometry with constraints to future work.

5.3 Additional Experiments
We include additional experiments conducted to further evaluate MiCADangelo.

Plane Detection. Table 4 ablates the effect of contextual embeddings in slice encoding. Incorporating
positional information to the geometric features of the cross-section leads to improved performance.
Table 5 shows robust plane detection performance with minimal drop in Fusion360 and CC3D
datasets.
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Figure 7: Qualitative comparison of the performance on the real-world scans from CC3D.

Table 6: Evaluation of sketch parameterization
on single-extrusion CAD models.

Method Avg. SCD

Davinci [37] 0.827
Ours 0.283

Constrained Sketch Parameterization. We eval-
uate our constrained sketch parameterization net-
work against the recent proposed [37]. To en-
sure that ground-truth sketches correspond to valid
cross-sections, this experiment is conducted on
single-extrusion models from the DeepCAD test
set. Due to fine-tuning on synthetically gener-
ated noisy closed loops, MiCADangelo outper-
forms [37].

Extrusion Optimization. Figure 6 reports differentiable extrusion performance for a varying number
of vectors. Performance improves steadily up to 8 vectors, with minimal impact on inference time.

Robustness to Real-world Scans. To evaluate performance on real imperfect scans, we include a
quantitative comparison on the challenging CC3D [41, 42] dataset. This cross-dataset evaluation
compares our method to that of [17], both trained on DeepCAD and evaluated on CC3D scans that
include realistic scanning artifacts, such as holes and misoriented normals. Results are shown in the
Table 7. The proposed MiCADangelo outperforms [17] in this in-the-wild setting, demonstrating
greater robustness to real-world noise. Figure 7 presents a qualitative evaluation on real-world 3D
scans from the CC3D [41, 42] dataset. The results demonstrate the robustness of our approach in
handling real-world artifacts and producing cleaner, more accurate CAD models compared to [17].

Table 7: Comparison between CADSIG-Net and our method on CC3D dataset.
Method Med. CD↓ IoU↑ IR↓ ECD↓

CADSIG-Net [17] 2.90 42.6 4.4 8.68
Ours 1.69 50.8 2.2 5.93

6 Conclusion
In this work we proposed MiCADAngelo, a novel CAD reverse engineering approach that transforms
3D scans into fully parametric CAD models. Our method is inspired by real-world CAD practices and
uniquely incorporates cross-sections and sketch primitives with constraints, enabling the preservation
of both high-level parametric structure and fine-grained geometric detail. Evaluation is performed on
standard benchmarks were our approach outperforms existing methods establishing a new state-of-
the-art in CAD model reconstruction from 3D scans.

Limitations. A detailed discussion on failure cases and limitations is provided in supplementary.
Among CAD operations, the proposed method only supports extrusion as in previous works [17, 20, 8].
Extrusions are currently defined based on sketch plane normals, which can be suboptimal for models
with non-axis-aligned extrusions. Note that such complex models are also challenging for [6, 9, 17].
The current method does not yet support complex sketch primitives such as B-splines. Future works
will address these limitations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims presented in the abstract and introduction accurately represent
the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 includes a discussion of the limitations, with a more detailed analysis
provided in the supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13



Answer: [NA]

Justification: The paper does not include any theoretical proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The detailed setting of the experiments are provided in Section 5 and the
supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The data used in this study is publicly available. Scripts for preprocessing
the data and extracting additional information used in our work will also be made publicly
accessible. However, the code for the method and training cannot currently be released under
an open-source license that permits use, modification, and distribution, due to constraints
related to the industrial collaboration under which this work was conducted. Nonetheless,
all necessary details for reproducing the results are thoroughly provided in the paper and the
accompanying supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides sufficient details on the training and testing procedures,
evaluation metrics, hyperparameters, and optimizer choice, enabling other researchers to
potentially reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments presented in the paper are computationally intensive. Further-
more, repeated training runs using the same hyperparameters showed no significant variation
in validation metrics.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper clearly states the compute resources used for the experiments and
the compute time of the method in Section 5 and the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: The paper aims to appropriately highlight the potential positive societal impact
in the problem introduction and its motivation. The authors do not anticipate any negative
consequences resulting from their work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The authors do not anticipate any potential risks associated with the release of
their method, data, or model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used in this work, including data and code, are properly cited within
the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The extended versions of the public datasets are clearly described in the paper
and the supplementary.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work did not involve human subjects or the use of crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work did not involve human subjects or the use of crowdsourcing.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The development of the method does not include any LLMs as a component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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