Under review as submission to TMLR

UltraEdit: Training-, Subject-, and Memory-Free Lifelong
Editing in Language Models

Anonymous authors
Paper under double-blind review

Abstract

Lifelong learning enables large language models (LLMs) to adapt to evolving information
by continually updating their internal knowledge. An ideal system should support efficient,
wide-ranging updates while preserving existing capabilities and ensuring reliable deployment.
Model editing stands out as a promising solution for this goal, offering a focused and efficient
way to revise a model’s internal knowledge. Although recent paradigms have made notable
progress, they often struggle to meet the demands of practical lifelong adaptation at scale. To
bridge this gap, we propose ULTRAEDIT, a training-, subject-, and memory-free approach that
is well-suited for ultra-scalable, real-world lifelong model editing. ULTRAEDIT fundamentally
differs from traditional paradigms by computing parameter shifts in one step using only
a hidden state and its gradient, making the approach simple yet efficient. To improve
scalability in lifelong settings, ULTRAEDIT employs a lifelong normalization strategy that
continuously updates feature statistics across turns, allowing it to adapt to distributional
shifts and maintain consistency over time. ULTRAEDIT achieves editing speeds more than 7 X
faster than the previous state-of-the-art method, while requiring 4 x less VR AM. This
makes it the only method currently capable of editing a 7B LLM on a 24GB consumer-grade
GPU. Furthermore, we construct ULTRAEDITBENCH, the largest dataset in the field to date
with over 2M editing pairs, and demonstrate that our method supports up to 2M edits while
maintaining high accuracy. Comprehensive experiments on five datasets and six models show
that ULTRAEDIT consistently achieves superior performance across diverse model editing
scenarios, taking a further step towards safe and scalable lifelong learning. We will release
the code and dataset upon acceptance.

1 Introduction

Lifelong learning (also known as continual learning (Shi et al., [2024; |Zheng et al., [2025b))) is essential for
enabling large language models (LLMs) to continuously adapt to evolving knowledge and real-world dynamics.
Despite its importance, scalable and reliable lifelong adaptation remains challenging in practice (Wu et al.|
2024al). Retraining is prohibitively expensive and slow, making it unsuitable for frequent updates (Chen
et al., [2023). Meanwhile, existing lifelong learning approaches often suffer from catastrophic forgetting (Qin
et all [2022; Hu et al., 2022), or depend on retrieval-augmented generation (RAG; |[Jimenez Gutierrez et al.
(2024); |Gutiérrez et al.| (2025)), which may potentially introduce conflicts between retrieved content and the
model’s internal knowledge (Xie et al.,2023). These limitations suggest that current paradigms may not fully
meet the demands of lifelong deployment, highlighting the need for more targeted and efficient mechanisms
for continual knowledge integration (Aljundi et al., 2019).

One promising solution is model editing (De Cao et all [2021; [Meng et al. 2023; [Yao et al., 2023; |Li
et al.l |2025a)), which enables targeted modifications to a model’s internal knowledge while leaving unrelated
information unaffected, making it especially suited for continual updates over time (Hartvigsen et al., |2023; [Hu
et al., [2024). Some methods enhance this process by training auxiliary networks (Mitchell et al., [2022a; [Tan,
et al., 12024 Zhang et all 2024b; |[Li et al. 2025b) to guide how model parameters are adjusted in response to
new information. Others rely on strong structural assumptions, such as subject-centric representations (Meng
et al., [2023; |Gupta et al.| 2024a} [Li et al., |2024) or carefully formatted input prompts (Zheng et al., |2023} |Chen
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Figure 1: (a) Average Efficacy and editing time of different solutions on 20K edits from ZsRE, evaluated
across GPT-J, Mistral, and LLaMA-3. (b) Variation in average Efficacy as edits accumulate. Dashed lines
represent performance on the ZsRE dataset across GPT-J, Mistral, and LLaMA-3, while solid lines represent

results on the WikiBigEdit dataset with LLaMA-3.
et al., 2024; Zhong et al., [2023b} |Youssef et al. [2025), which tie them to handcrafted data pipelines (Deng

et al. [2025; [Zhong et al., 2025} Su et al., 2025) and limit both generalization and practical feasibility.
In addition, many approaches depend on external memory (Mitchell et al. [2022bt [Yu et al., 2024} Wang|
to store edits separately from model parameters; while this localizes changes and avoids direct
parameter overwriting, it still requires training to update memory entries and introduces substantial overhead
that grows with the number of edits, thereby reducing scalability in large-scale or high-frequency editing
scenarios (Bi et al., 2024; [Zhang et al., 2025; [Liu et al, 2025). To address the issues mentioned above, we
propose ULTRAEDIT: a simple yet efficient training-, subject-, and memory-free method.

ULTRAEDIT introduces a lifelong normalization mechanism that continuously updates feature statistics during
editing. By continually adjusting the mean and variance of concatenated hidden states and gradients, the
method implicitly enforces a stable feature geometry that preconditions the least-squares system used for
parameter updates. This normalization acts as a form of online whitening: it equalizes feature scales, prevents
representation drift from amplifying update magnitudes, and reduces the risk of new edits overwriting
previously acquired knowledge. The entire procedure relies solely on simple linear algebra over editing
features and requires no iterative optimization or external memory structures. As a result, ULTRAEDIT
supports efficient and large-scale edits with strong stability and consistency, making it practical for real-world
deployment (Zheng et al) [2025a}; [Grimes et al. 2025 [furada et all 2025; [Huang et al., [2025). Existing
paradigms, by contrast, are prone to the Edit Collapse phenomenon (Yang et al., 2024b} Wang et al) [2025)),
which refers to a sharp decline in editing stability and effectiveness as the number of edits or editing turns
grows. As shown in Figure [[, ULTRAEDIT not only avoids this collapse but also achieves significantly faster
editing speeds while maintaining consistent performance in ultra-large-scale lifelong editing scenarios. A
comparison between ULTRAEDIT and other solutions is provided in Table

To evaluate our method at its full potential and push the boundaries of large-scale model editing, we introduce
our benchmark ULTRAEDITBENCH, a factual QA benchmark constructed from Wikidata triples, comprising
over 2 million complete editing pairs. In addition to this new benchmark, we evaluate the effectiveness and
scalability of ULTRAEDIT on four widely used model editing datasets, namely zsRE (Levy et al. 2017),
FEVER (Thorne et al., 2018)), WikiBigEdit (Thede et all |2025), and UnKE (Deng et al., 2025)), across six
diverse models including GPT (Wang & Komatsuzakil, [2021)), Mistral (Jiang et al.|, [2023]), LLaMA (Grattafiori
2024), Qwen (Yang et al., [2024a), Phi (Abdin et al} [2024), and Gemma (Team et all [2025). Our
results show that ULTRAEDIT achieves new state-of-the-art performance across most editing scenarios. In
addition to its strong empirical performance, ULTRAEDIT demonstrates remarkable efficiency: it achieves
over 7x faster editing speeds and uses less than one- fourth of the GPU memory compared to prior leading
baselines, as show in Figure|[l] (a) and Figure [2| Notably, it is the only method to date capable of reliably
editing a 7B-scale model on a standard 24GB consumer GPU, making it uniquely practical for real-world
deployment. Moreover, ULTRAEDIT demonstrates the ability to scale to 2 million edits while preserving
model stability, underscoring its promise for ultra-large-scale lifelong model editing. Our contributions are
four-fold:

o We identify and analyze the shortcomings of three dominant model editing paradigms under large-scale
lifelong settings, providing insights for developing more advanced editing methods.
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Table 1: Comparison between the ULTRAEDIT and three prevailing model
editing solutions. v indicates "yes" or well-supported, while Xdenotes "no"
ol or badly-supported.

~ Solution Training-free | Subject-free | Memory-free | Lifelong scalability
Locate-then-edit v X v X
” F— " e Memory-based X X X X
Figure 2: VRAM usage over the
Hypernetwork-based X v v X
course of 20K edits on the ZsRE yperenTarEhase
dataset using different methods ULTRAEDIT v v v v

with Mistral-7B.

e We propose ULTRAEDIT, a novel training-, subject-, and memory-free editing solution that performs
stable updates through lifelong normalization. ULTRAEDIT achieves over 7X faster editing and 4 X less
VRAM compared to previous state-of-the-art methods.

e We construct ULTRAEDITBENCH, currently the largest dataset for model editing, comprising more than 2
Million editing pairs to facilitate research on lifelong ultra-large-scale model editing.

¢ Comprehensive experiments on five benchmarks and six models, demonstrating ULTRAEDIT’s superior
performance and scalability to 2 Million edits.

2 Related Work

2.1 Lifelong Learning

Lifelong learning, also known as continual learning, aims to develop models that can continuously learn
from a stream of tasks while preserving knowledge acquired in earlier stages (De Lange et al., 2021; |Shi
et al.} 2024). The primary challenge lies in overcoming catastrophic forgetting, where new learning interferes
with previously acquired knowledge. To address this challenge, existing approaches generally fall into three
categories: regularization-based methods (Kirkpatrick et all |2017; [Zenke et al.l 2017), which focus on
preserving important parameters; replay-based methods (Rebufhi et al.l |2017; [Shin et al.l |2017)), which revisit
past information during training; and architecture-based methods (Rusu et al. 2016; Mallya & Lazebnik,
2018)), which dynamically adjust the model structure.

2.2 Model Editing Paradigm

Hypernetwork-based methods (Mitchell et al.l 2022a; |Tan et al., [2024} [Li et al., [2025b)) treat model
editing as a meta-learning problem by training a separate neural network to predict parameter shifts. This
auxiliary network operates independently from the base model and learns to project editing inputs into
effective weight updates. Once trained on a collection of edits, it enables quick application of new updates
without re-optimizing for each case. However, the hypernetwork remains fixed while the underlying model
continues to evolve as edits accumulate. This growing mismatch can lead to degraded editing performance
over time. Furthermore, the need for additional training data limits the practicality of these methods in
scenarios requiring rapid or continual updates.

Locate-then-edit methods (Dai et all |2022; [Meng et al.l 2023; Wang et al., |2024a; |Gupta et al., |2024b;
Fang et al.| 2025; Pan et all 2025)) rely on the presence of an explicit subject or entity in the input to
identify which internal components of the model are primarily responsible for storing the corresponding
piece of knowledge. They then apply targeted perturbations, typically through computationally intensive
iterative optimization, to enforce the desired output while minimizing side effects on unrelated behaviors and
representations. Although effective for isolated edits, these methods often become unstable in lifelong settings,
as repeated updates to overlapping parameters can accumulate and lead to interference or degradation of
previously edited knowledge.

Memory-based approaches (Dong et al., [2022; Mitchell et al.l 2022b; [Zheng et al. 2023; |Hartvigsen et al.
2023} [Yu et al., [2024; |Wang et al., [2024b; |Jiang et al.} |2024) enhance the model with an external memory
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Figure 3: This figure illustrates the lifelong editing workflow of ULTRAEDIT, where parameter shifts are
applied iteratively across turns using a lifelong normalization mechanism that maintains running statistics of
editing-instance features to ensure stable and consistent model behavior over time.

that stores edits separately from the core parameters. New knowledge is incorporated by adding or modifying
memory entries, which localizes changes and minimizes side effects on the base model. However, these
methods still require training to update memory representations or routing, and inference must be rerouted
through the memory. In addition, they maintain one entry per edit, causing memory consumption to grow
linearly with the number of edits, which limits their practicality in lifelong model editing with high-frequency
or large-scale updates.

3 Methodology

3.1 Preliminary

We consider a pre-trained language model fy : X — Y with parameters 6. Model editing is the task of
modifying this model’s parameters to change its behavior on a specific input while leaving the rest of its
behavior intact. Formally, an editing instance is a pair (e, ye) € X X ), where . is an edit query and y, is
the ground-truth output for that input. The goal is to find a parameter set §’ such that the edited model
for produces the desired output y. for the edit query z. (Efficacy). In addition, the model should respond
appropriately to a set of equivalent queries £(z.) C X, which includes semantically similar variations of the
original query (Generalization), while ensuring that its behavior on a set of unrelated queries U(z.) C X,
which are not associated with the edited knowledge, remains unaffected (Specificity).

In a lifelong model editing scenario, the model is updated iteratively across a sequence of editing turns. At
each turn ¢, n editing instances {(xﬁt’l), yém)) »_, is applied to the current model fy:-1), resulting in a new
model fyu. Each turn of edits is performed on the model that has already incorporated all previous edits,

making stability across turns critically important.

3.2 UltraEdit

Motivation A central challenge in lifelong editing is to update model parameters in a way that is both
targeted and stable. Prior paradigms highlight this trade-off in different ways: hypernetwork-based methods
generate parameter updates via an auxiliary network, but they require costly pretraining and often generalize
poorly; locate-then-edit methods directly modify causal mediators, typically identified using the subject entity
in the editing instance, which provides precision but relies on per-case localization and iterative optimization;
and memory-based approaches preserve past edits for reuse, yet their external memory structures inevitably
expand and become increasingly expensive to maintain. These limitations make it difficult to support scalable,
high-frequency updates in real-world lifelong learning scenarios. ULTRAEDIT addresses this challenge by
exploiting intrinsic signals already present in each editing instance and combining them with closed-form
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Algorithm 1: ULTRAEDIT

Input: Model fy, editing instances {(z;,y;)}",, editable modules M
Output: Edited model fp = fo + {Ab0m}mem

foreach instance (z;,y;) do

Run forward pass to extract hidden state h; at each module m € M;
Run backward pass to compute gradient Vy; at each module;
Concatenate editing feature: z; < [h; || Vyil;

Update running mean pu, variance o using lifelong rules;

Cache z; for each module;

foreach module m € M do

Load cached feature vectors {z;}; for module m;
Zi [,

Normalize: Z; <

N o+te’
Spht: [hl || 171] — ZAfi;
Compute scaled update: v; = —n - |hs||? - ¥;;

Stack H = [h] ..., b, 1T, V < [o] .00 ] T
Compute optimal closed-form solution: Af,, « (H'H +1)"'HV;
Apply: 0], + 0., + Ab,;

return Post-edited model for

optimization and lifelong normalization. This lightweight and training-free design avoids external memory or
iterative procedures, while ensuring edits can be applied efficiently and consistently across long trajectories.

Principle At each editing turn ¢, ULTRAEDIT processes a batch of n editing instances by extracting two
complementary signals from a designated editable module (e.g., a transformer feedforward layer). A forward
hook records the hidden state h; € R? at the token position corresponding to the ground-truth answer (the
unmasked label position), which specifies where the target knowledge is represented in the model. This
hidden state anchors the edit to the correct semantic subspace and provides a coordinate system for locating
the desired modification, and does not introduce information leakage, as the label is explicitly part of the
editing target (Li et al., [2025b; |Fang et al. 2025). In parallel, a backward hook obtains the gradient vector
Vy; € RY with respect to the same ground-truth output, derived from the supervised loss. This gradient
indicates how the model’s parameters should move to internalize the desired knowledge, thus encoding the
direction of change required by the editing constraint. By concatenating these two signals, we construct a
unified editing feature z; = [h; || V] € R4 that simultaneously encodes the location (via hidden state) and
direction (via gradient) of the update. This combination is crucial: the hidden state alone cannot determine
how the model should change, and gradients alone lack information about the representational subspace
in which the change should occur. Their union therefore provides a complete minimal sufficient statistic
for closed-form estimation and enables the method to generate parameter shifts without auxiliary training
or iterative optimization. This feature representation also forms the basis for the lifelong normalization
mechanism described below.

Design Building on the joint feature z; = [h; || Vy;], we introduce a lifelong normalization mechanism
that co-normalizes hidden states and gradients across editing turns. In lifelong editing, the distributions of
hidden activations and gradients inevitably drift as each edit alters the model’s internal representations (Tan
et al |2024). Without correction, this drift produces inconsistent feature scales, ill-conditioned least-squares
systems, and unstable or interfering updates over long trajectories. To address this challenge, we maintain
running statistics (i, o) over all past editing features and normalize each new instance as follows:

R zi — i
2; = Norm(z;) = , 1
= Nom(z) = 21— 1)
where 1 and o are the running mean and standard deviation, and ¢ is a small constant for numerical stability.
This normalization plays a role analogous to whitening or preconditioning: it stabilizes the effective learning
rate, ensures comparability of features across turns, and preserves a well-conditioned geometry for subsequent
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parameter estimation. Crucially, because hidden states and gradients are normalized jointly, their relative
scaling remains stable, preventing one signal from dominating the other as the model evolves.
At each editing turn ¢, let {z;}7; denote the concatenated feature vectors from n editing instances. The

. . -1 n ) 1 n Y .
turn-wise mean and variance are computed as z = - > " | z; and Var(z) = - > ", (2; — 2)*, respectively. We

then compute the difference § = z — p, accumulate squared deviations with s? < s2 4+ n - Var(z) + ]\J,an 62,
and update the sample count as N < N + n.
The running mean and standard deviation are updated via:
n
— — 2
PRt N0 ®

52
JH”—N—&—n—l—i—s' (3)

At the first turn, since no prior statistics exist, we initialize the running mean and standard deviation as
to = z and o¢ = /Var(z) + .

After normalization, the vector 2; € R4+ is split into two components:
[hi || 3] = 2, (4)

where h; € R? is the normalized hidden state, and ; € RY the normalized gradient value.

To adaptively scale the influence of each editing sample, following (Mitchell et al. 2022a; Tan et al., 2024}
Li et al., [2025b]), we employ a scaling mechanism based on the magnitude of its normalized hidden state.
Specifically, for each sample 4, the scaled update direction is computed as:

vi = —n - |hqll® - o, (5)

where 7 is a global scaling factor analogous to a learning rate. The scaling reflects the saliency of the
hidden representation and determines the strength of the corresponding edit. The multiplicative factor ||l~zl||2
adaptively scales the update according to the saliency of the hidden representation, ensuring that edits are
strongest where the model already encodes the target concept. This mechanism further reduces interference
by down-weighting noisy or weakly relevant gradients.

Let H € R™*4 be the matrix of unnormalized hidden state and V € R™*¢" the matrix of scaled update vectors
v;. The final parameter shift is obtained by solving a regularized least-squares problem that minimizes both
the reconstruction error and the update norm:

min [HA0 — V| + [|A0)?, (6)

where ' € R¥?" s the target weight perturbation. The optimal closed-form solution is given by:
AN=H"H+D)'H'V. (7)

This solution yields the minimum-norm update that best satisfies all editing constraints simultaneously.
Geometrically, the projection induced by (H"H + I)~'H T aligns updates with the subspace spanned by
hidden activations, suppressing components that would conflict with earlier edits and thereby mitigating
interference. Combined with lifelong normalization, which keeps this geometry well-conditioned across turns,
this projection-based update mechanism ensures that edits remain targeted, stable, and compatible throughout
long editing sequences. The resulting edited model parameters are obtained by directly applying the shift,
ie., 8/ = 0 + Af, thereby completing the model editing process.
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Theoretical Justification We provide a theoretical justification for why our Lifelong Normalization
serves as a sufficient mathematical proxy for the explicit covariance preservation (Cp) used in Locate-then-
Edit methods like MEMIT and AlphaEdit. MEMIT formulates model editing as a constrained least-squares
problem, relying on the uncentered covariance matrix Cy of the pre-trained keys, denoted as K, to minimize
interference. (Here, K represents the input keys to the layer in MEMIT’s formulation, which corresponds
directly to the hidden states H in our notation.) Geometrically, Cj acts as a metric tensor in the update
formula A « (Co + KK ")~!, effectively defining the Mahalanobis distance within the parameter space.
This mechanism penalizes deviations along the principal components of Cy, which correspond to directions
of high variance where the model possesses rich knowledge, thereby forcing the update vector A into the
null space or low-variance directions of the old knowledge.

Lifelong Normalization addresses the computational bottleneck of explicit covariance calculation by
dynamically maintaining first- and second-order statistics to perform a standardization transformation.
Specifically, we implement a joint normalization on the combined vector of hidden states and error gradients,
denoted as z = [h || Vy]. This acts as an online preconditioning mechanism that stabilizes the spectral
properties of the feature covariance matrix. By centering and scaling this joint distribution, the process
effectively whitens the feature space H, ensuring that the condition number x(H " H + I) remains bounded
despite the distributional drift inherent in lifelong learning. Originally based on limited samples, the running
statistics (u, o) progressively converge to a robust representation of the global feature distribution. The
key geometric significance of this distributional transformation is that it implicitly reshapes the covariance
matrix of old knowledge Cy into an approximate identity matrix, Co ~ I. This whitening transformation
establishes a direct mathematical equivalence, causing the complex Generalized Least Squares (GLS)
problem in MEMIT to degenerate into a computationally efficient Ordinary Least Squares (OLS) problem
within the normalized space. Substituting the whitened unit covariance Co ~ I into MEMIT’s analytical
solution logic naturally simplifies the regularization term (Cy + KK ")~!, where K is now replaced by the
normalized hidden states H, into the form (I + HH)~! adopted by ULTRAEDIT (Eq. 7). Theoretical
analysis reveals that this mature calibration prevents anisotropy in the effective Hessian, guaranteeing that
parameter updates approximate an orthogonal projection onto the active subspace rather than projecting
non-orthogonally into the null space of prior knowledge. Therefore, ULTRAEDIT minimizes the spectral norm
of perturbations on unrelated subspaces, effectively serving as a surrogate for the weighted orthogonality of
MEMIT and ensuring resistance to cumulative interference as statistical estimation matures.

ULTRAEDIT’s complete pipeline is illustrated in Figure [3] and the pseudocode of the ULTRAEDIT editing
procedure in one turn is provided in Algorithm |1l The practical applicability of ULTRAEDIT is discussed in
the real-world lifelong application statement provided in the Appendix [A]

4 Experiments

4.1 UltraEditBench-2M Construction

We construct ULTRAEDITBENCH using entity—relation—object triples from the Wikidata5M (Wang et al.l |2021])
knowledge base. For each triple, we treat the object as the ground-truth answer and use the GPT-40-mini
model in a zero-shot setting to generate corresponding factual questions based on the subject and relation.
To promote linguistic diversity, we apply constraints on question length and phrasing during generation.
To ensure data quality, we perform random spot checks on a subset of samples to verify factual accuracy,
linguistic fluency, and alignment between questions and answers.

To support evaluation across key dimensions, the dataset is divided into three sample types:

o Editing instances require the subject entity to appear in the question. This design aligns with
the assumptions of many subject-dependent editing methods, which rely on identifying subject-centric
representations to apply updates. While ULTRAEDIT does not require this constraint, we include it to
ensure compatibility with prior paradigms and enable consistent evaluation of Efficacy.

¢ Equivalent instances are paraphrased variants of the editing instances that share the same answers. They
evaluate Generalization, which measures whether the edit transfers to semantically equivalent rephrasings.
We do not enforce whether the subject entity appears in the question.
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Table 2: Results on three datasets across three models and bold values indicate the best
results. Eff. denotes Efficacy, Gen. denotes Generalization, and Spe. denotes Speci-
ficity. A indicates the performance difference between ULTRAEDIT and the previous best
method. ULTRAEDIT denotes results under the same number of edits as other baseline methods, while

ULTRAEDIT* represents performance in an ultra-large-scale editing scenario. Please refer to Section for

specific configuration details.

\ ZsRE \ FEVER \ WikiBigEdit
Method
‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe. Personas Reasoning
GPT-J
FT 15.11 13.55 2.61 14.02 13.98 9.26 21.90 17.56 8.47 13.91 9.24
WISE 34.13 33.14 26.81 93.95 92.86 57.03 49.88 45.39 30.00 40.52 21.01
AlphaEdit 50.23 43.31 12.54 1.89 1.87 1.85 69.66 55.03 21.20 42.60 0.07
RLEdit 73.34 68.93 22.00 14.26 13.74 14.11 66.18 60.97 32.20 55.78 25.94
ULTRAEDIT 78.03 72.42 27.05 97.45 96.37 79.72 73.84  66.57 37.17 56.90 29.27
ULTRAEDIT* 72.95 68.68 25.91 97.89 96.73 79.85 66.46 60.54 47.90 51.73
A +4.69 +3.49 4024 | +3.94 +3.87  +22.82 | +4.18 +5.60  415.70 +1.12 +3.33
Mistral-7B-v0.3
FT 13.69 12.43 19.87 23.80 23.37 16.30 13.77 14.86 11.84 11.55 7.51
WISE 34.01 32.61 46.05 81.95 76.94 40.37 37.31 33.44 11.61 27.44 8.95
AlphaEdit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RLEdit 72.57 68.87 23.17 92.35 91.39 71.85 57.55 52.47 28.78 49.21 22.41
ULTRAEDIT 85.30 80.80 47.38 97.87 96.09 84.29 76.00 70.15 46.09 62.27 35.80
ULTRAEDIT* 81.13 76.78  48.06 | 98.23 96.97 83.43 71.78 65.63 55.40 56.11 =
A +12.73  +11.93 +2.01 +5.88 +5.58  +12.44 | +18.45 +17.68 +26.62 +13.06 +13.39
LLaMA-3-8B-Instruct
FT 12.24 10.97 9.06 16.21 13.08 5.01 13.00 11.70 6.75 11.02 4.38
WISE 40.94 40.27 37.40 86.38 86.36 72.08 34.07 32.26 28.91 29.55 21.19
AlphaEdit 74.34 67.85 22.94 6.39 6.14 2.72 63.24 54.68 20.17 42.58 0.01
RLEdit 91.34 89.68 41.94 94.03 90.67 68.71 75.35 70.00 37.21 65.55 28.13
ULTRAEDIT 90.07 87.36  49.51 95.39 91.93 67.14 79.60 73.49 48.51 66.55 35.64
ULTRAEDIT* 87.80 85.48 46.74 97.18 94.64 68.62 68.99 63.59 52.28 55.04 -
A -1.27 -2.32 +7.57 | [ +3.15 +3.97 -3.46 +4.25 +3.49  +15.07 +1.00 +7.51

e Unrelated instances contain questions unrelated to the editing fact and are used to assess Specificity,
that is, whether unrelated knowledge remains unaffected after editing. We do not enforce whether the
subject entity appears in the question.

For all three types, the answer is explicitly excluded from the question to prevent lexical leakage and ensure
that models must rely on internal knowledge rather than surface patterns. ULTRAEDITBENCH comprises
over 2 million complete editing pairs, each containing an editing instance, an equivalent instance, and an
unrelated instance. This construction enables ULTRAEDITBENCH to serve as a comprehensive and controlled
benchmark for evaluating the precision, generalization, and safety of lifelong model editing methods. And for
more details, please refer to Appendix

4.2 Experiment Setup

Dataset & Model We evaluate the effectiveness and scalability of ULTRAEDIT across five model editing
benchmarks: ZsRE, FEVER, WikiBigEdit, UnKE (unstructured long-text data) and our newly constructed
ULTRAEDITBENCH, on a diverse set of open-source models, including GPT-J, Mistral-7B-v0.3, LLaMA-3-8B-
Instruct, Qwen2.5-7B-Instruct, Phi-4-14B, and Gemma-3-27B-it. Detailed descriptions of each dataset, along
with their corresponding metrics, are provided in Appendix
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Table 3: Results on ULTRAEDITBENCH across four models.

ULTRAEDITBENCH

‘ GPT-J ‘ Mistral-7B-v0.3 ‘ LLaMA-3-8B-Instruct ‘ Qwen2.5-7B-Instruct
Method

‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe.
FT 22.03 17.61 19.60 0.06 0.36 0.07 13.50 11.92 10.18 13.20 10.53 10.27
WISE 52.51 47.88 47.50 47.21 44.55 39.13 42.27 41.65 39.79 - - -
AlphaEdit 22.19 12.09 6.88 0.00 0.00 0.00 4.51 3.16 2.78 17.44 8.01 5.42
RLEdit 81.42 75.35 62.13 76.50 70.68 61.29 85.69 81.88 65.64 47.08 38.76 39.27
ULTRAEDIT 84.03 76.62 64.03 83.71 77.30 67.26 85.70 81.28 68.73 79.01 71.45 64.10
ULTRAEDIT* 81.65 76.80 76.44 81.70 77.25 77.09 83.45 79.11 78.05 80.70 75.78 76.01
A +2.61 +1.45 +14.31 +7.21 +6.62 +15.80 +0.01 -0.60 +12.41 +33.62  +37.02 +36.44

Baseline We compare ULTRAEDIT against a comprehensive set of baselines, including Finetune (FT),
WISE (Wang et al., [2024b)), AlphaEdit (Fang et al., 2025), RLEdit (Li et al., 2025b)), among others. We
exclude AnyEdit (Jiang et al 2025) since it is not designed for lifelong editing. Following (Fang et al., 2025;
Li et al., [2025b), all methods are evaluated under a consistent setting where each turn includes 100 samples,
except for WISE, which is specifically designed to edit one sample per turn. For evaluation protocols, we follow
mainstream methods (Fang et al.| 2025} [Li et al.| |2025b) by adopting Exact Match as the primary evaluation
metric. In addition, we employ WILD (LLM-as-judge) (Yang et al [2025) as a complementary evaluation.
Further clarifications regarding the evaluation protocols are provided in the Appendix Comprehensive
information on all baseline methods is provided in Appendix [B:2] and hyperparameter configurations are
presented in Appendix [B4]

4.3 Overall Results

We report the performance of ULTRAEDIT alongside the strongest representative methods from each editing
paradigm across multiple benchmarks and models. As shown in Table [2| and [3] ULTRAEDIT* is evaluated on
100K edits for ZsRE and FEVER, 500K for WikiBigEdit, and 2M for ULTRAEDITBENCH, whereas all other
methods are evaluated on 20K edits for ZsRE, FEVER, and ULTRAEDITBENCH, and 17K for WikiBigEdit.
ULTRAEDIT consistently leads across standard metrics including Efficacy, Generalization, and Specificity,
as well as two newly introduced metrics, Personas and Multi-hop Reasoning, outperforming all baselines in
nearly every setting. This holds true under both the Exact Match and LLM-as-judge evaluation frameworks,
for both instruct-tuned and base models, and across diverse data structures of real-world editing instances.
Full results for all baseline methods are provided in Appendix Due to the fact that most existing
methods are several hundred times slower than ULTRAEDIT, and some require additional training data,
scaling them to larger numbers of edits is computationally impractical. Figure b) shows that existing
methods degrade as the number of edits grows, indicating poor scalability to ultra-large editing. In contrast,
ULTRAEDIT remains robust and stable, sustaining millions of updates in lifelong settings. For instance,
on LLaMA-3-8B-Instruct with ZsRE, it maintains near-standard performance across all metrics with only
a slight drop under a 5x larger edit load. These results confirm that ULTRAEDIT combines high-quality
knowledge injection with long-term stability, providing a practical and scalable solution for real-world model
editing. Further discussion of failure scenarios can be found in Section in Appendix .

5 Analysis
5.1 Ablation Study

To assess the contribution of each component in ULTRAEDIT, we conduct an ablation study on 20K editing
instances from the ZsRE dataset , with results averaged across three backbone models as shown in Table [4]
When the lifelong normalization mechanism is entirely removed, we observe a drastic drop in both efficacy and
generalization, underscoring the importance of aligning feature distributions across modules during editing.
To further assess its effectiveness, we apply lifelong normalization to a randomly selected 25%, 50%, and 75%
subset of the editable modules.

The results show a clear upward trend in performance with increasing normalization coverage, in-
dicating cumulative and global benefits. Freezing the normalization statistics by disabling online
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updates during editing causes a catastrophic collapse in all metrics, demonstrating that dynamic
calibration of activation statistics is essential for stability and consistent editing across batches.

Table 4: Ablation study of ULTRAEDIT. Blue numbers indicate
a decrease, while Red numbers indicate an increase compared to
the full method.

In addition, we ablate the original norm-
based scaling coefficient ||&;||? by replac-
ing it with a direction-based inner prod-
uct k; - k;. While both schemes involve  variant Efficacy  Generalization Specificity
inner products, our norm-based formula-

K . Original 84.47 80.19 41.31
th%l more falthfully captures pfer—san'lple w/o lifelong normalization — 36.15) 48.32 35.25] 44.94 38.14) 3.17
saliency, whereas the alternative mixes o501 e norm 77.38) 7.00 72.68) 7.51 42.401 1.00
magnitude and alignment, resulting in ;560 11 0dule norm 80.81 3.66 76.07) 4.12 42.37+ 1.06
less stable modulation across edits. Over- w/ 75% module norm 83.64 0.83 79.224 0.97 41.64+1 0.33
all, the ablation results confirm that both w/o normalization update  1.11| 83.36 1.02} 79.17 0.07) 41.24
lifelong normalization and its dynamic up- /. & 74.27 10.20 70.23) 9.96 42.181 0.87

dating mechanism are critical for ensuring
stable, accurate, and ultra-scalable edit-
ing.

5.2 Lifelong Scalability

ULTRAEDIT is designed not only for editing accuracy but also for long-term scalability. As shown in Figure
b) and Figure [4] it maintains strong performance across three key metrics—even as the number of edits
increases. As shown in Figure b) and Figure |4] it maintains strong performance across three key metrics
as the number of edits increases. This robustness comes from a simple yet effective lifelong normalization
strategy that dynamically calibrates internal feature distributions as the model evolves. Unlike many existing
methods that degrade much earlier, ULTRAEDIT exhibits progressive stabilization: as edits accumulate, its
normalization mechanism regularizes the feature space and improves performance until reaching saturation.
By continually adapting to the model’s current state without requiring retraining, ULTRAEDIT is particularly
well-suited for real-world, lifelong editing scenarios that demand frequent and ongoing updates. Additionally,
ULTRAEDIT scales effectively to models with substantially larger parameter sizes. It preserves editing
accuracy on both standard language models such as Phi-4-14B and more complex multimodal models like
Gemma-3-27B, as shown in Figure f] And full scalability evaluation is provided in Appendix [C.2}
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Figure 4: Variation in average generalization and Figure 5: Efficacy of lifelong editing on Phi-4-14B and
specificity as edits accumulate. Gemma-3-27B.

5.3 Impact on the General Ability of Post-Edited Models

We evaluate how lifelong editing affects the general ability of post-edited models on four representative
benchmarks: SST (Socher et al., |2013]), MMLU (Hendrycks et al.| [2021), MRPC (Dolan & Brockett, 2005]),
and NLI (Williams et al., 2018). Results for the original unedited model (Vanilla), AlphaEdit, WISE, RLEdit,
and ULTRAEDIT are shown in Figure[] We observe that as the number of edits increases, methods such as
AlphaEdit and finetuning significantly degrade the general ability of post-edited models across all benchmarks,
suggesting cumulative interference in the lifelong setting. WISE shows relatively stable performance by
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Figure 6: Performance of post-edited LLaMA-3 (20K ZsRE edits) across various benchmarks.

storing edits in an external memory component, trading additional memory for reduced interference with the
base model. RLEdit causes notable degradation on NLI but remains more stable on other benchmarks. In
contrast, ULTRAEDIT consistently preserves the model’s general abilities even after 20K edits, showing almost
no deviation from the vanilla baseline across tasks. These findings confirm that ULTRAEDIT introduces the
least interference to general capabilities and does not increase the risk of hallucinations, making it well-suited
for lifelong model editing.

In addition, ULTRAEDIT leads to improved performance on MRPC. We attribute this gain to Lifelong
Normalization acting as a beneficial regularizer. Theoretically, by dynamically calibrating the first- and
second-order statistics (u, o) of hidden states, our method prevents the feature distribution from deviating off
the pre-trained manifold, thereby mitigating representation collapse often caused by cumulative parameter
shifts. Furthermore, since robust editing requires the model to generalize across paraphrased inputs (Eq.(9)),
the optimization implicitly enforces semantic invariance by minimizing the distance between representations
of semantically equivalent sentences. This objective is well aligned with the MRPC task (paraphrase
detection), sharpening the model’s discriminative boundary for semantic similarity.

For a detailed comparison with other baseline methods, as well as comprehensive description of four
benchmarks, please refer to Appendix

6 Conclusion

We present ULTRAEDIT, a fast, stable, and scalable approach to lifelong model editing without additional
training, subject reliance, or external memory. Through lifelong normalization, it adapts to evolving model
states while maintaining high precision across editing turns. Experiments show that ULTRAEDIT achieves
over 7x faster editing with less than one-fourth the VRAM of prior methods, and supports up to 2M edits
with stable performance. These efficiency gains make lifelong editing feasible at ultra-large scale and broadly
accessible, lowering barriers and enabling wider community participation. To support further research,
we release ULTRAEDITBENCH, the largest benchmark to date, with over 2M editing pairs for evaluating
ultra-scale, lifelong scenarios.

7 Limitation

Owing to limited computational resources and the scale of certain datasets, we were unable to scale all
baselines to ultra-large lifelong editing settings or to models with substantially larger parameter counts.
Furthermore, the use of LLM-as-a-judge incurs considerable API expenses, so we restricted such evaluations to
the ZsRE dataset. As a result, we did not evaluate the performance of post-edited models under larger-scale
conditions (e.g., after 2M edits).

References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical report. arXiv
preprint arXiv:2412.08905, 2024.

11



Under review as submission to TMLR

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin, and Lucas
Page-Caccia. Online continual learning with maximal interfered retrieval. Proc. of NeurIPS, 2019.

Baolong Bi, Shenghua Liu, Yiwei Wang, Lingrui Mei, Hongcheng Gao, Junfeng Fang, and Xueqi Cheng.
Struedit: Structured outputs enable the fast and accurate knowledge editing for large language models.
arXiv preprint arXiw:2409.10132, 2024.

Qizhou Chen, Taolin Zhang, Xiaofeng He, Dongyang Li, Chengyu Wang, Longtao Huang, et al. Lifelong
knowledge editing for llms with retrieval-augmented continuous prompt learning. In Proc. of EMNLP,
2024.

Yihong Chen, Kelly Marchisio, Roberta Raileanu, David Adelani, Pontus Lars Erik Saito Stenetorp, Sebastian
Riedel, and Mikel Artetxe. Improving language plasticity via pretraining with active forgetting. Proc. of
NeurIPS, 2023.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in pretrained
transformers. In Proc. of ACL, 2022.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In Proc. of
EMNLP, 2021.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. TPAMI,
2021.

Jingcheng Deng, Zihao Wei, Liang Pang, Hanxing Ding, Huawei Shen, and Xueqi Cheng. Everything is
editable: Extend knowledge editing to unstructured data in large language models. In Proc. of ICLR, 2025.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In Proc. of
IWP, 2005.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei Li. Calibrating factual knowledge
in pretrained language models. In Findings of EMNLP, 2022.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and Tat-Seng
Chua. Alphaedit: Null-space constrained model editing for language models. In Proc. of ICLR, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Keltin Grimes, Marco Christiani, David Shriver, and Marissa Catherine Connor. Concept-ROT: Poisoning
concepts in large language models with model editing. In Proc. of ICLR, 2025.

Akshat Gupta, Sidharth Baskaran, and Gopala Anumanchipalli. Rebuilding rome: Resolving model collapse
during sequential model editing. In Proc. of EMNLP, 2024a.

Akshat Gupta, Dev Sajnani, and Gopala Anumanchipalli. A unified framework for model editing. In Findings
of EMNLP, 2024b.

Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory: Non-
parametric continual learning for large language models. arXiv preprint arXiv:2502.14802, 2025.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi. Aging with
grace: Lifelong model editing with discrete key-value adaptors. Proc. of NeurIPS, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding. In Proc. of ICLR, 2021.

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Wilke: Wise-layer knowledge editor for
lifelong knowledge editing. In Findings of ACL, 2024.

12



Under review as submission to TMLR

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. In Proc. of ICLR, 2022.

Baixiang Huang, Canyu Chen, Xiongxiao Xu, Ali Payani, and Kai Shu. Can knowledge editing really correct
hallucinations? In Proc. of ICLR, 2025.

Leonardo Turada, Marco Ciccone, and Tatiana Tommasi. Efficient model editing with task-localized sparse
fine-tuning. In Proc. of ICLR, 2025.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

Houcheng Jiang, Junfeng Fang, Ningyu Zhang, Guojun Ma, Mingyang Wan, Xiang Wang, Xiangnan He, and
Tat-seng Chua. Anyedit: Edit any knowledge encoded in language models. Proc. of ICML, 2025.

Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong, Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang,
Lifeng Shang, Ruiming Tang, et al. Learning to edit: Aligning llms with knowledge editing. In Proc. of
ACL, 2024.

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobiologically
inspired long-term memory for large language models. In Proc. of NeurlPS, 2024.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. PNAS, 2017.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via reading
comprehension. In Proc. of CoNLL, 2017.

Hongkang Li, Yihua Zhang, Shuai Zhang, Pin-Yu Chen, Sijia Liu, and Meng Wang. When is task vector
provably effective for model editing? a generalization analysis of nonlinear transformers. In Proc. of ICLR,
2025a.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model editing in a
transformer. In Proc. of AAAIL 2024.

Zherui Li, Houcheng Jiang, Hao Chen, Baolong Bi, Zhenhong Zhou, Fei Sun, Junfeng Fang, and Xiang Wang.
Reinforced lifelong editing for language models. In Proc. of ICML, 2025b.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

Tianci Liu, Ruirui Li, Yunzhe Qi, Hui Liu, Xianfeng Tang, Tianqgi Zheng, Qingyu Yin, Monica Xiao Cheng,
Jun Huan, Haoyu Wang, and Jing Gao. Unlocking efficient, scalable, and continual knowledge editing with
basis-level representation fine-tuning. In Proc. of ICLR, 2025.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning.
In Proc. of CVPR, 2018.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in
gpt. Proc. of NeurIPS, 2022.

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David Bau. Mass-editing memory
in a transformer. In Proc. of ICLR, 2023.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast model editing
at scale. In Proc. of ICLR, 2022a.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-based
model editing at scale. In Proc. of ICML, 2022b.

13



Under review as submission to TMLR

Haowen Pan, Xiaozhi Wang, Yixin Cao, Zenglin Shi, Xun Yang, Juanzi Li, and Meng Wang. Precise
localization of memories: A fine-grained neuron-level knowledge editing technique for LLMs. In Proc. of
ICLR, 2025.

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Elle: Efficient
lifelong pre-training for emerging data. In Findings of ACL, 2022.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proc. of CVPR, 2017.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng Wang, Sayna Ebrahimi,
and Hao Wang. Continual learning of large language models: A comprehensive survey. arXiv preprint
arXiw:2404.16789, 2024.

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim. Continual learning with deep generative replay.
Proc. of NeurIPS, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
Proc. of EMNLP, 2013.

Zian Su, Ziyang Huang, Kaiyuan Zhang, and Xiangyu Zhang. pke: Matryoshka unstructured knowledge
editing of large language models. arXiv preprint arXiv:2504.01196, 2025.

Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta learning. In Proc.
of ICLR, 2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah
Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviére, et al. Gemma 3 technical report. arXiv
preprint arXiv:2503.19786, 2025.

Lukas Thede, Karsten Roth, Matthias Bethge, Zeynep Akata, and Tom Hartvigsen. Understanding the limits
of lifelong knowledge editing in llms. arXiv preprint arXiv:2505.05683, 2025.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-scale dataset
for fact extraction and verification. In Proc. of NAACL, 2018.

Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language model, 2021.

Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi, Shumin Deng, Yunzhi Yao, Qishen Zhang, Linyi Yang,
Jindong Wang, and Huajun Chen. Detoxifying large language models via knowledge editing. In Proc. of
ACL, 2024a.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Huajun
Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large language models. Proc.
of NeurIPS, 2024b.

Pinzheng Wang, Zecheng Tang, Keyan Zhou, Juntao Li, Qiaoming Zhu, and Min Zhang. Revealing and
mitigating over-attention in knowledge editing. In Proc. of ICLR, 2025.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. Kepler:
A unified model for knowledge embedding and pre-trained language representation. Transactions of ACL,
2021.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In Proc. of NAACL, 2018.

14



Under review as submission to TMLR

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gholamreza Haffari. Continual
learning for large language models: A survey. arXiv preprint arXiv:2402.01364, 2024a.

Xiaobao Wu, Liangming Pan, William Yang Wang, and Luu Anh Tuan. Akew: Assessing knowledge editing
in the wild. In Proc. of EMNLP, 2024b.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. Adaptive chameleon or stubborn sloth: Revealing
the behavior of large language models in knowledge conflicts. In Proc. of ICLR, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024a.

Wanli Yang, Fei Sun, Xinyu Ma, Xun Liu, Dawei Yin, and Xueqi Cheng. The butterfly effect of model editing:
Few edits can trigger large language models collapse. In Findings of ACL, 2024b.

Wanli Yang, Fei Sun, Jiajun Tan, Xinyu Ma, Qi Cao, Dawei Yin, Huawei Shen, and Xueqi Cheng. The
mirage of model editing: Revisiting evaluation in the wild. arXiv preprint arXiv:2502.11177, 2025.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. Editing large language models: Problems, methods, and opportunities. In Proc. of EMNLP, 2023.

Paul Youssef, Zhixue Zhao, Jorg Schlotterer, and Christin Seifert. How to make llms forget: On reversing
in-context knowledge edits. In Proc. of NAACL, 2025.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed dynamic
lora. In Proc. of AAAI 2024.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In Proc.
of ICML, 2017.

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Shu Wu, Pengjie Ren, and Zhumin Chen. Uncovering overfitting in
large language model editing. In Proc. of ICLR, 2025.

Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou, Xi Chen,
and Huajun Chen. Instructedit: instruction-based knowledge editing for large language models. In Proc.
of IJCAI 2024a.

Taolin Zhang, Qizhou Chen, Dongyang Li, Chengyu Wang, Xiaofeng He, Longtao Huang, Jun Huang, et al.
Dafnet: Dynamic auxiliary fusion for sequential model editing in large language models. In Findings of
ACL, 2024b.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can we edit
factual knowledge by in-context learning? In Proc. of EMNLP, 2023.

Hongling Zheng, Li Shen, Anke Tang, Yong Luo, Han Hu, Bo Du, Yonggang Wen, and Dacheng Tao. Learning
from models beyond fine-tuning. Nature Machine Intelligence, 2025a.

Junhao Zheng, Shengjie Qiu, Chengming Shi, and Qianli Ma. Towards lifelong learning of large language
models: A survey. ACM Computing Surveys, 2025b.

Shaochen Zhong, Yifan Lu, Lize Shao, Bhargav Bhushanam, Xiaocong Du, Yixin Wan, Yucheng Shi, Daochen
Zha, Yiwei Wang, Ninghao Liu, Kaixiong Zhou, Shuai Xu, Kai-Wei Chang, Louis Feng, Vipin Chaudhary,
and Xia Hu. MQuAKE-remastered: Multi-hop knowledge editing can only be advanced with reliable
evaluations. In Proc. of ICLR, 2025.

Zexuan Zhong, Zhengxuan Wu, Christopher D Manning, Christopher Potts, and Danqi Chen. Mquake:
Assessing knowledge editing in language models via multi-hop questions. In Proc. of EMNLP, 2023a.

Zexuan Zhong, Zhengxuan Wu, Christopher D Manning, Christopher Potts, and Danqi Chen. Mquake:
Assessing knowledge editing in language models via multi-hop questions. In Proc. of EMNLP, 2023b.

15



Under review as submission to TMLR

Appendix

The appendix includes the following sections:

e Section Statements.

Section Implementation Details of Experiment.

Section Full Experiment Results.
« Section [D} Case Study.

A Statement

A.1 Real-World Lifelong Application Statement

ULTRAEDIT strictly adheres to a lifelong editing setting, where updates arrive sequentially and NO future
edits are known in advance. The proposed lifelong normalization mechanism does not need to aggregate
statistics across all editing turns; instead, it incrementally accumulates feature statistics from previously
observed samples up to the current turn using a causal running average, without ever accessing future data.
Importantly, each editing turn only requires the statistics from the last turn, which are then updated iteratively,
rather than storing or recomputing information from all past samples. As detailed in equation [I}-equation
in Section the normalization statistics u and o are computed in a running fashion and updated after
each editing turn based on observed feature vectors.

A.2 Ethical Considerations

While ULTRAEDIT democratizes the ability to maintain LLMs on consumer hardware, this efficiency also
lowers the barrier for malicious actors to inject misinformation or compromise safety alignment at scale.
To mitigate these risks, we recommend adopting Integrity Verification mechanisms, such as cryptographic
hashing (e.g., SHA-256) and digital signatures, to ensure model provenance and detect unauthorized
alterations. Furthermore, we advocate for Defensive Editing, where the efficiency of ULTRAEDIT is
leveraged to rapidly patch discovered vulnerabilities or reverse malicious injections, thereby serving as a
countermeasure against model poisoning.
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B Implementation Details

B.1 Dataset and Metrics

ZsRE (Zero-shot Relation Extraction) dataset (Levy et al., |2017)) is a widely adopted benchmark for
evaluating factual consistency and knowledge editing in language models. Each example in the dataset
comprises a question—answer pair that encapsulates a factual relation. To facilitate comprehensive assessment
of model editing capabilities, the dataset is augmented with two types of auxiliary samples: (1) paraphrased
variants of the original question, which test the model’s ability to generalize the update, and (2) unrelated
but structurally similar questions, which assess the specificity of the edit by ensuring unrelated knowledge
remains unaffected. This design enables precise evaluation of editing accuracy, generalization to rephrased
inputs, and the preservation of unrelated facts, making ZsRE particularly well-suited for controlled knowledge
update tasks. The dataset contains a total of 178,196 examples.

Following prior work (Meng et al.l [2023} |Fang et al., 2025; |Li et al., 2025b), we evaluate various model editing
approaches on ZsRE using standard metrics. Given a large language model fy, a target editing pair (z¢, y°),
its paraphrased equivalent ¢ , and a set of unrelated knowledge pairs (z*,y"), we assess the following three
metrics:

Efficacy (Eff.) measures whether the model correctly incorporates the edit by verifying if the top-1 prediction
for the edited input x¢ matches the target label y©:

E {ye — argmaxPy, (¢ | we)} . (®)
y/

Generalization (Gen.) evaluates whether the model successfully generalizes the edit to paraphrased forms of
the input, by checking if the top-1 prediction for ¢ remains consistent with y°:

E {ye = argmax Py, (v’ | a:e,)} . (9)
y/

Specificity (Spe.) assesses the model’s ability to retain unrelated knowledge by ensuring the top-1 prediction
for each unrelated input z* continues to match its original label y*:

E {y“ = argmax Py, (' | x“)} . (10)
y/

FEVER (Fact Extraction and VERification) dataset (Thorne et al.| [2018) is a large-scale benchmark designed
for evaluating factual consistency and claim verification in natural language. Each example comprises a
natural language claim accompanied by a label (Supported, Refuted, or Not Enough Information) determined
based on evidence retrieved from Wikipedia. The claims are either directly extracted from Wikipedia or are
semantically modified versions of actual content, while the supporting evidence may span multiple sentences
or even multiple documents. This setup enables fine-grained assessment of a model’s ability to confirm, reject,
or abstain from factual assertions. The dataset contains a total of 114,422 examples. For consistency in
evaluation, we adopt the same metric definitions used in ZsRE.

WikiBigEdit (Thede et al., [2025)) is a large-scale benchmark designed for lifelong knowledge editing. The
dataset contains a total of 506,035 editing pairs, all derived from real-world Wikidata revisions collected across
eight time steps over a six-month period. To support comprehensive evaluation, WikiBigEdit defines five core
metrics: Update, Rephrase, Locality, Personas, and Multi-hop Reasoning. Among them, Update, Rephrase, and
Locality correspond closely to the standard editing criteria of Efficacy, Generalization, and Specificity, and are
evaluated using the same methodology as in ZsRE. Personas and Multi-hop Reasoning extend the evaluation
scope to identity conditioning and complex reasoning, respectively. A total of 490,519 examples support the
first four metrics, while 17,541 are specifically annotated for multi-hop reasoning, enabling focused evaluation
of a model’s ability to handle compositional queries and long-range dependencies. Reflecting realistic and
evolving knowledge dynamics, WikiBigEdit supports iterative assessment of a model’s capacity to incorporate
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factual updates over time. Constructed via an automated data pipeline, the benchmark is continuously
expandable as new Wikidata edits become available. Specifically, Personas evaluates whether the model
correctly answers identity-conditioned prompts zP, while Multi-hop Reasoning measures the model’s ability
to resolve compositional or chained queries ™. Their accuracy is computed as:

Personas: E {yp = argmax Py, (' | xp)} , (11)
y/

Multi-hop Reasoning: E {ym = argmax Py, (v | acm)} ) (12)
y/

ULTRAEDITBENCH comprises 2,008,326 editing pairs and adheres to the model editing evaluation framework
established in ZsRE. Inference results on different models across all datasets, including ULTRAEDITBENCH
are shown in Table [5] The results indicate that the knowledge in ULTRAEDITBENCH aligns well with the
requirements of model editing tasks. The diversity verification of ULTRAEDITBENCH is presented in Tables [G]
[l and 8] The average prompt length is 11.29 tokens per sentence, and the Hapax Legomena Ratio reaches
56.45%. Together, these results demonstrate the overall diversity of the dataset.

Table 5: Inference results on pre-edited models. ZsRE, FEVER, and ULTRAEDITBENCH use 20K edits, while
WikiBigEdit uses 17K.

| ZsRE | FEVER | WikiBigEdit |  UnrraEpirBencn
Model
‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe. Personas Reasoning ‘ Eff. Gen. Spe.
GPT-J 27.22 26.42 27.33 9.61 9.68 15.90 29.97 29.08 32.58 26.46 21.81 22.01 21.47 22.20
Mistral-7B-v0.3 44.46 43.55 48.08 0.41 0.50 1.98 39.14 38.21 41.62 35.54 29.93 30.83 29.94 31.11
LLaMA-3-8B-Instruct 36.76 35.83 38.93 0.02 0.02 0.26 24.92 35.46 38.87 32.70 26.42 27.29 26.40 27.24
Qwen2.5-7B-Instruct 34.32 33.39 38.06 0.57 0.60 2.17 30.97 30.40 34.50 28.43 22.09 26.03 25.22 26.35

Table 6: Domain diversity of ULTRAEDITBENCH

Type Person Organization = Geography  History  Society = Technology Arts Politcs  Culture Others

Rate 45.13% 13.21% 6.67% 2.88% 1.27% 0.25% 0.17% 0.05% 0.01% 30.36%

Table 7: Languages of subjects in ULTRAEDITBENCH.

Type English German Italian French Indonesian  Spanish  Tagalog/Filipino  Welsh  Finnish  Dutch Others

Rate 31.78% 7.82% 5.74% 4.52% 4.16% 3.46% 2.75% 2.57% 2.53% 2.36% 32.30%

Table 8: Answer length in ULTRAEDITBENCH.

Length 1 2 3 4 5 6 7 8 9 10

Rate 33.66%  36.53% 17.85% 6.12%  3.38% 1.27% 0.55% 0.31% 0.16% 0.07%

UnKE (Deng et al., 2025|) consists of 1,000 unstructured long-text samples, but it only provides editing
instances and equivalent instances. To construct a more comprehensive benchmark, we take another 1,000
samples from the long-text dataset AKEW (Wu et al., 2024b) as unrelated instances and combine them
with UnKE, forming the final UnKE dataset. In addition to the standard metrics of efficacy, generalization,
and specificity, we also adopt BERTScore and ROUGE-L from UnKE as two additional evaluation metrics.
BERTScore measures the semantic similarity between the generated output §° and the target y® by computing
token-level cosine similarities in the embedding space:

1 1 1
BERTScore(y*,9°) = 5 | == max cos(¢, ) + —— Z max cos(r, ¢) | . (13)
ANERIE ] 2
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c and r denote token embeddings from the generated output §¢ and the target y©, respectively. For each
token ¢ in §°, we find the most similar token r in y© (by cosine similarity), and vice versa. The final score
averages these two directions, capturing both precision- and recall-oriented matching.

ROUGE-L evaluates the longest common subsequence (LCS) between the generated output §¢ and the target
y¢. Let LC'S(y¢, §°) be their longest common subsequence length, then:

LCS(y°,9°)

LOSW0°) o 2, (14)

res = =g

(1+ %) Pres - Rres

ROUGE-L(y%, 9°¢) =
(", 9") Rics + % Pres

B=1. (15)

Datasets such as Counterfact (Meng et al., 2022), MQuUAKE (Zhong et al.| 2023a), KnowEdit (Zhang et al.
2024a)), and QAEdit (Yang et al., [2025)) are excluded from our evaluation, due to their limited scale to support
meaningful large-scale lifelong model editing.

We follow the LLM-as-judge template from (Yang et al.;|2025)), as shown in Table@ For evaluation, we employ
DeepSeek-V3.1 (Non-thinking Mode) (Liu et al., |2024) as the third-party model, with outputs truncated to
512 tokens.
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Table 9: LLM-as-judge template

Your job is to look at a question, a gold target, and a predicted answer, and then assign a
— grade of either ["CORRECT", "INCORRECT"].

The following are examples of CORRECT predicted answers.

Question: What are the names of Barack Obama's children?

Gold target: Malia Obama and Sasha Obama

Predicted answer 1: sasha and malia obama

Predicted answer 2: Malia and Sasha Obama are the names of Barack Obama's children.
These predicted answers are all CORRECT because:

- They fully contain the important information in the gold target.

- They do not contain any information that contradicts the gold target.

The following are examples of INCORRECT predicted answers.

Question: What are the names of Barack Obama's children?

Gold target: Malia and Sasha

Predicted answer 1: Malia.

Predicted answer 2: Malia, Sasha, and Susan.

Predicted answer 3: Malia and Sasha, Malia and Sasha, Malia and Sasha, Malia and Sasha

< (repeated answer)

These predicted answers are all INCORRECT because:

- A factual statement in the answer contradicts the gold target or contain repeated answer.

Here is a sample. Simply reply with either CORRECT or INCORRECT.

Question: {question}
Gold target: {target}
Predicted answer: {predicted_answer}

According to the gold target, please grade the predicted answer of this question as one of:
A: CORRECT
B: INCORRECT

Just return the letters "A" or "B", with no text around it.
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B.2 Description of Baselines

FT (Fine-Tuning) in model editing refers to the process of updating a pre-trained language model’s
parameters by optimizing them on a small set of new data containing the desired knowledge. This approach
aims to adjust the model’s behavior to reflect updated or corrected information without retraining the model
from scratch. In the context of model editing, fine-tuning typically involves minimizing a loss function
such as cross-entropy on carefully selected inputs and targets related to the editing fact, while optionally
applying regularization to avoid catastrophic forgetting. Despite its simplicity and effectiveness, FT can lead
to unintended changes in the model’s general abilities or interfere with unrelated knowledge, especially when
used repeatedly or with large learning rates.

MEND enables efficient post-hoc editing of large pre-trained models using only a single input-output pair by
training lightweight auxiliary networks that transform standard fine-tuning gradients into localized, low-rank
parameter updates. MEND leverages the inherent rank-1 structure of gradients in neural networks to map
input activations and output deltas through a small MLP, producing edits that are reliable, local, generalizable,
and scalable to models with over 10 billion parameters, all without retraining or modifying the original
model’s predictions on unrelated inputs.

MEMIT modifies factual associations in language models by identifying and updating critical MLP layers
responsible for knowledge recall, computing target hidden states for new facts, and applying analytically
derived weight updates that distribute edits across multiple layers. The method treats MLPs as linear
associative memories and performs batch updates to insert new associations while preserving previously
stored information, enabling efficient memory editing within the model’s internal structure.

MALMEN is a scalable hypernetwork-based method for editing large language models, which addresses
the limitations of MEND by formulating parameter shift aggregation as a least squares problem solved via
the normal equation to prevent cancellation effects, and decoupling the training of the hyper-network and
language model to support arbitrary batch sizes, enabling efficient and memory-economic editing of thousands
of facts while maintaining strong locality and generalization.

RECT introduces a regularization-based approach to model editing that constrains the complexity of edit
updates by preserving only the top-k% of weight changes based on their relative change magnitude, thereby
mitigating overfitting and protecting the model’s general abilities. By identifying and retaining the most
impactful parameter updates while zeroing out less significant ones, RECT reduces interference with original
model knowledge and avoids degradation across downstream tasks. This method ensures that the edited model
maintains a balance between incorporating new factual information and preserving its overall performance.

WISE proposes a dual-parametric memory approach for lifelong model editing, where pretrained knowledge
is kept in a main memory and all edits are stored in a separate side memory, which is a copy of a Transformer
layer’s value matrix. To determine which memory to use at inference, WISE employs a routing mechanism
based on activation differences, directing queries to side memory if they relate to edited knowledge. To handle
continuous edits without conflict, WISE introduces a knowledge sharding technique that stores different edits
in randomly masked subspaces of the side memory, and then merges these using Ties-Merge to maintain
consistency. This design allows WISE to achieve high reliability, generalization, and locality simultaneously,
overcoming the limitations of traditional long-term or working memory editing methods.

PRUNE introduces a plug-and-play framework for sequential model editing by restraining the condition
number of the edited matrix, which is identified as the main factor causing degradation in general abilities
during repeated edits. It operates by analyzing the singular value decomposition of accumulated edit updates
and selectively reducing excessively large singular values through a restraint function, thereby minimizing
perturbations to the model’s original knowledge associations while preserving the newly injected information.
This method reduces overfitting from edit accumulation and maintains model stability without interfering
with editing efficacy, making it compatible with various existing editing approaches.

AlphaEdit introduces a null-space constrained knowledge editing approach by projecting parameter perturba-
tions onto the null space of preserved knowledge, ensuring updates do not interfere with existing information.
This projection allows the editing process to focus solely on updating target knowledge without trade-offs,
eliminating the need for additional constraints in the optimization objective. The method achieves substantial
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improvements in editing performance and generalization with minimal implementation overhead, maintaining
the integrity of preserved knowledge and the model’s overall capabilities during sequential edits.

RLEdit formulates lifelong model editing as a reinforcement learning problem by treating the hypernetwork
as an agent that generates parameter updates based on the current state of the language model and input
knowledge, where the update is considered an action and the editing performance defines the reward. It
trains the hypernetwork offline using accumulated rewards across a sequence of edits, incorporating a reward
function that balances knowledge injection, preservation of unrelated information, memory backtracking
for prior edits, and regularization to constrain update magnitude. This design enables the hypernetwork to
adaptively produce edits that are compatible with dynamically evolving model parameters over long editing
trajectories.

B.3 Evaluation Statement

We evaluate the model after completing all editing turns and compute the metrics on the entire set of edited
samples at once, rather than reporting per-turn performance. This evaluation protocol ensures that the
reported results reflect the final performance of the model after lifelong editing, rather than the transient
performance at individual turns. Consequently, our evaluation setting is both fair and consistent with the
true goal of lifelong editing.
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B.4 Hyperparameter Setting

All experiments are conducted on a single NVIDIA A800 GPU, and ULTRAEDIT introduces only two
hyperparameters: the learning rate n and the editable module. In all settings, 7 is set to le-6. Regarding the
selection of editable modules, we strictly follow the parameter settings used in RLEdit for fair comparison.
For WikiBigEdit and ULTRAEDITBENCH, which are not used in their work, the editable modules are aligned
with those used for ZsRE. The details of the editable modules are shown in Table [I0} where the numbers
indicate the corresponding layer indices.

Table 10: Editable Module settings of ULTRAEDIT across different models and datasets

Dataset Model Editable Module
GPT-J [18-26].mlp.fc_ out
7<RE Mistral-7B-v0.3 [29, 30].mlp.down_ proj

LLaMA-3-8B-Instruct  [11-15].mlp.gate_proj, [18-24].mlp.up_ proj
Qwen2.5-7B-Instruct  [18-26].mlp.gate_ proj,[18-26].mlp.up_ proj

GPT-J [25,26].mlp.fc_out
FEVER Mistral-7B-v0.3 [29, 30].mlp.down_ proj
LLaMA-3-8B-Instruct  [22-30].mlp.gate_ proj, [22-30].mlp.up_ proj
Qwen2.5-7B-Instruct  [18-26].mlp.gate_ proj,[18-26].mlp.up_ proj
GPT-J [19-26].mlp.fc_out
Mistral-7B-v0.3 [29, 30].mlp.down_ proj
R . LLaMA-3-8B-Instruct [11-15].mlp.gate_ proj, [18-24].mlp.up_ proj
WikiBighdit Qwen2.5-7B-Instruct  [19-26].mlp.gate_proj,[19-26].mlp.up_ proj
Phi-4-14B [30-38].mlp.down__proj
Gemma-3-27B-it [52-60].mlp.gate_ proj,[52-60].mlp.up_ proj
GPT-J [18-26].mlp.fc_out
Mistral-7B-v0.3 [29, 30].mlp.down_ proj

ULTRAEDITBENCH LLaMA-3-8B-Instruct [11-15].mlp.gate_proj, [18-24].mlp.up_ proj
Qwen2.5-7B-Instruct  [18-26].mlp.gate_ proj,[18-26].mlp.up_ proj

Phi-4-14B [30-38].mlp.down__proj
Gemma-3-27B-it [62-60].mlp.gate_ proj,[52-60].mlp.up_ proj
GPT-J [18-26].mlp.fc_ out
Mistral-7B-v0.3 [29, 30].mlp.down__proj
UnKE LLaMA-3-8B-Instruct  [11-15].mlp.gate_ proj, [18-24].mlp.up_ proj

Qwen2.5-7B-Instruct  [18-26].mlp.gate_ proj,[18-26].mlp.up_ proj

For methods that require additional training data, such as MEND, MALMEN, RLEdit and WISE, we follow
the experimental setup described in RLEdit. Specifically, for the ZsRE and FEVER datasets, the training
set for MEND and MALMEN contains the total number of samples excluding the editing examples. For
large-scale datasets like WikiBigEdit and ULTRAEDITBENCH, the size of the training set is equal to the
number of editing examples. In all RLEdit and WISE experiments, the training and editing set sizes are
always matched.

C Full Experimental Results

C.1 Extended Baseline Comparison

This section presents a comprehensive comparison of ULTRAEDIT against baseline methods across five datasets
and four model architectures. Results on UnKE are reported in Tables [[1] and [I2] while Table [I3] presents
the evaluation on zsRE using LLM-as-judge. Detailed results in Tables [[4] [I5] and [T6] further highlight the
strong performance of ULTRAEDIT across diverse editing scenarios.
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Table 11: Results across GPT-J and Mistral on UnKE. "*" indicates results from editing 1,000 instances; all
others are based on 500 instances.

UnKE
GPT-J Mistral-7B-v0.3

Method

‘ Eff. Gen. Spe. Bert Score Rouge-L ‘ Eff. Gen. Spe. Bert Score Rouge-L
FT 46.93 46.49 50.49 51.02 11.85 70.87 70.43 70.85 70.95 13.39
WISE 91.26 89.81 65.07 85.60 42.01 89.77 88.78 70.68 79.61 35.64
AlphaEdit 75.96 63.20 77.19 78.83 35.60 81.39 76.78 78.40 82.90 39.49
RLEdit 86.53 84.94 56.35 79.97 33.68 46.63 44.35 15.29 33.80 6.93
ULTRAEDIT 91.34 89.84 64.53 81.27 36.43 92.94 90.46 65.89 74.68 30.09
ULTRAEDIT* 92.49 91.15 65.93 83.02 43.28 62.79 61.72 38.06 46.69 7.04
A +1.23 +1.34 -11.26 -2.58 +1.27 +3.17 +1.68 -12.51 -8.22 -9.40

Table 12: Results across LLaMA-3 and Qwen2.5 on UnKE.
UnKE

‘ LLaMA-3-8B-Instruct ‘ Qwen2.5-7B-Instruct
Method

‘ Eff. Gen. Spe. Bert Score Rouge-L ‘ Eff. Gen. Spe. Bert Score Rouge-L
FT 67.09 66.39 67.31 64.65 6.89 45.72 45.44 32.55 47.67 12.12
WISE 83.95 82.93 58.08 80.43 32.02 - - - - -
AlphaEdit 71.07 68.31 69.17 81.39 37.37 39.98 37.78 25.14 64.72 23.36
RLEdit 91.91 91.03 62.23 85.76 56.78 92.65 91.59 63.17 84.03 51.68
ULTRAEDIT 93.05 91.43 65.62 84.29 45.33 86.39 84.33 61.11 81.14 32.22
ULTRAEDIT* 94.09 92.68 73.64 85.84 50.92 88.84 87.01 72.17 82.02 36.31
A +2.18  +4+1.65  +4.47 +0.08 -5.86 -3.81 -4.58 +9.00 -2.01 -15.37

Table 13: Evaluation on zsRE using LLM-as-judge across three models. We exclude GPT-J due to its limited
capability in instruction-shot.

| Mistral-7B-v0.3 | LLaMA-3-8B-Instruct | Qwen2.5-7B-Instruct
Method
| Eff. Gen. Spe. | Eff. Gen. Spe. | Eff. Gen. Spe.
FT 0.18 0.22 0.14 0.03 0.02 0.00 0.43 0.29 0.10
WISE 0.90 1.03 0.13 8.90 8.40 12.23 - - -
AlphaEdit 0.00 0.00 0.00 58.47 56.36 24.64 0.08 0.08 0.00
RLEdit 7.75 5.50 0.00 47.09 44.31 24.46 17.11 15.67 15.52
ULTRAEDIT 24.49 21.97 19.95 52.85 49.77 40.13 32.65 30.45 33.60
A +16.74 +16.47 +19.81 -5.62 -6.59 +15.49 +15.54 +14.78 +18.08
Table 14: Extended results across four models on ULTRAEDITBENCH.
ULTRAEDITBENCH

‘ GPT-J ‘ Mistral-7B-v0.3 ‘ LLaMA-3-8B-Instruct ‘ Qwen2.5-7B-Instruct
Method

‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe.
MEND 1.71 1.71 1.83 0.00 0.00 0.00 0.00 0.00 0.00 3.48 3.45 3.43
MEMIT 0.25 0.18 0.20 0.00 0.00 0.00 0.74 0.45 0.21 0.82 0.32 0.69
MALMEN 0.76 0.48 0.78 2.42 2.48 3.47 40.64 34.18 37.29 4.36 3.48 4.38
RECT 0.09 0.06 0.08 0.00 0.00 0.00 0.55 0.09 0.00 1.86 1.55 1.84
PRUNE 0.32 0.27 0.28 0.00 0.00 0.00 1.21 0.85 0.32 0.27 0.06 0.14
UrLTRAEDIT 84.03 76.62 64.03 83.71 77.30 67.26 85.70 81.28 68.73 79.01 71.45 64.10
ULTRAEDIT* 81.65 76.80 76.44 81.70 77.25 77.09 83.45 79.11 78.05 80.70 75.78 76.01
A +82.32 +75.09 +74.61 +81.29 —+74.82 +73.62 +45.06 +47.10 +40.76 —+76.34 +72.30 —+71.63

24



Under review as submission to TMLR

Table 15: Extended results on three datasets across three models.

\ ZsRE \ FEVER \ WikiBigEdit
Method

‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe. Personas Reasoning

GPT-J
MEND 2.52 2.55 0.19 52.80 51.44 45.42 0.02 0.01 0.02 0.02 0.02
MEMIT 0.00 0.00 0.00 5.54 5.03 5.46 1.59 1.59 0.50 0.80 0.00
MALMEN 0.02 0.01 0.02 1.33 1.25 2.92 0.00 0.01 0.01 0.00 0.00
RECT 0.03 0.03 0.12 18.12 18.08 12.27 2.13 1.99 0.59 2.06 0.00
PRUNE 0.00 0.00 0.01 5.25 4.72 5.20 2.36 2.32 1.01 1.86 0.00
ULTRAEDIT 78.03 72.42 27.05 97.45 96.37 79.72 73.84 66.57 37.17 56.90 29.27
ULTRAEDIT* 72.95 68.68 25.91 97.89 96.73 79.85 66.46 60.54 47.90 51.73 -
A +75.561 4+69.87 +26.86 | +45.09 +45.29 +34.43 | +71.48 +64.25 +46.89 +54.84 +29.25
Mistral-7B-v0.3
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00
MEMIT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MALMEN 0.00 0.00 0.00 18.42 17.43 12.09 0.00 0.00 0.01 0.00 0.00
RECT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PRUNE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ULTRAEDIT 85.30 80.80 47.38 97.87 96.09 84.29 76.00 70.15 46.09 62.27 35.80
ULTRAEDIT* 81.13 76.78 48.06 98.23 96.97 83.43 71.78 65.63 55.40 56.11 -
A +85.30 +80.80 +48.06 | +79.81 +79.54 +72.20 | +75.99 +70.15 +55.39 +62.26 +35.80
LLaMA-3-8B-Instruct
MEND 0.00 0.00 0.00 36.19 36.19 24.31 0.01 0.01 0.10 0.01 0.00
MEMIT 0.14 0.14 1.40 0.02 0.02 0.02 0.02 0.02 0.09 0.02 0.00
MALMEN 0.20 0.12 0.09 94.50 91.26 67.76 0.00 0.00 0.00 0.00 0.00
RECT 0.00 0.00 0.00 0.01 0.00 0.00 0.21 0.24 0.06 0.29 0.00
PRUNE 0.00 0.00 0.24 0.02 0.02 0.00 0.02 0.02 0.09 0.02 0.00
ULTRAEDIT 90.07 87.36 49.51 95.39 91.93 67.14 79.60 73.49 48.51 66.55 35.64
ULTRAEDIT* 87.80 85.48 46.74 97.18 94.64 68.62 68.99 63.59 52.28 55.04 -
A +89.87 +87.22 +48.11 +2.68 +3.38 +0.86 +79.39 +73.25 +52.18 +66.26 +35.64
Table 16: Results on three datasets across Qwen2.5.
Qwen2.5-7B-Instruct

\ ZsRE \ FEVER \ WikiBigEdit
Method

‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe. ‘ Eff. Gen. Spe. Personas Reasoning
FT 14.02  10.91 3.39 26.09 24.62 21.36 10.35 7.59 3.68 5.55 5.84
MEND 15.00 14.41 0.47 76.43 77.66 40.39 0.00 0.00 0.00 0.00 0.00
MEMIT 0.02 0.02 0.17 0.08 0.12 0.15 0.54 0.33 0.38 0.32 0.00
MALMEN 0.00 0.00 0.00 0.06 0.06 0.07 0.06 0.02 0.02 0.00 0.00
RECT 0.00 0.00 0.00 3.36 3.10 3.20 2.34 2.29 0.83 0.78 0.00
PRUNE 0.01 0.02 0.07 0.08 0.15 0.11 2.34 2.34 0.97 1.37 0.00
AlphaEdit 16.32 13.96 1.66 32.78 31.19 22.12 20.31 15.49 2.17 9.01 0.23
RLEdit 84.70 82.79  38.26 0.00 0.00 0.00 2.83 1.81 0.43 1.45 0.39
ULTRAEDIT 82.03  77.08 45.51 97.97 93.91 68.86 73.37  65.86 45.12 54.65 32.74
ULTRAEDIT* | 78.39  74.72  49.27 97.49 94.83  68.99 66.34 60.42 51.74 50.53 =
A -2.67  -5.71  +11.01 | +21.54 +17.17 +28.60 | +53.06 +50.37 +48.06 +45.64 +26.90
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C.2 Supplementary Lifelong Scalability Evaluation

Figure [7] shows a comparison of ULTRAEDIT and baseline methods as the number of edits gradually increases.
The results demonstrate that ULTRAEDIT maintains stable performance, highlighting its lifelong scalability
with respect to the number of edits.
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Figure 7: Performance comparison of different baselines as ZsRE edits accumulate in LLaMA-3.

The Generalization and Specificity performance of ULTRAEDIT on larger-parameter models is shown in
Figure |8] demonstrating the method’s scalability with respect to model size.
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Figure 8: Generalization and Specificity of lifelong editing on Phi-4-14B and Gemma-3-27B.

C.3 Additional Results on Post-Edited Model Evaluation

We begin by introducing the four evaluation benchmarks used in our study:

SST (Stanford Sentiment Treebank) is a sentiment analysis benchmark composed of movie reviews annotated
with fine-grained sentiment labels. It evaluates a model’s ability to capture subtle emotional cues in natural
language.

MMLU (Massive Multitask Language Understanding) is a comprehensive benchmark spanning a wide range
of academic and professional subjects. It assesses a model’s general knowledge and reasoning ability across
diverse domains.
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MRPC (Microsoft Research Paraphrase Corpus) contains sentence pairs annotated for semantic equivalence.
This benchmark tests whether a model can accurately identify paraphrases, reflecting its understanding of
meaning preservation.

NLI (Natural Language Inference) tasks involve determining the logical relationship between a premise and
a hypothesis, namely entailment, contradiction, or neutrality. They evaluate a model’s capacity for logical

reasoning and inference.

Figure [0] provides a full comparison between ULTRAEDIT and baselines, further confirming its minimal effect

on the model’s inherent abilities.
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Figure 9: Performance of post-edited LLaMA-3 (20K ZsRE edits) across various benchmark.

C.4 Failure Scenarios of Gradient-based Localization

Due to structural bias, where gradients disproportionately concentrate on functional tokens (e.g., punctuation
or the last token) rather than the semantic subject (often referred to as "attention sinks"); and second,
in cases of spurious correlations, where the model relies on non-causal shortcut features (e.g., a specific
adjective) to predict the answer, leading gradients to misidentify the editing target. In contrast, explicit
masking avoids these distractions by forcibly anchoring updates to the subject, though it requires the
restrictive assumption of known subject boundaries.

D Case study
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Table 17: Case study of applying ULTRAEDIT to LLaMA3-8B on ULTRAEDITBENCH.V indicates the post-
edited output exactly matches the ground-truth answer, while X denotes mismatch.

Prompt Pre-edited Output Ground truth Post-edited Output
What is the country of citizenshi

. Y P Oliviergium belgie belgie v
for Olivier Renard?
What type of place is mechanics-

. P P Mechanics community community v
ville, delaware?
What type of ecological system . . .
Goine riverine riverine v/

does goobang creek belong to?
What is the profession of shamsula-

! Y ot st Shician Politician Politician v/

nuar nasarah?

What type of sport was featured du-

ring the 2003 Canadian Open?

The volleyball

indoor tennis

indoor tennis v

What is the place of birth of jyotsna

radhakrishnan?

Jwaitali

kuwet

malwet X

Which location shares a border with

guipronvel?

Guzguer

plouguin

Saintouguin X
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