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ABSTRACT

Transformers have showcased superior performance across a variety of real-world
applications, particularly leading to unparalleled successes of large foundation
models. However, the overall computation and memory loads of these large mod-
els trained on web-scale datasets are considerably increasing, calling for more
efficient learning methods. In this work, we step towards this direction by explor-
ing the architectural limitation and redundancy of Transformers via investigating
the ranks of attention score matrices. On one hand, extensive experiments are
conducted on various model configurations (model dimensions, heads, layers, etc)
and data distributions (both synthetic and real-world datasets with varied sequence
lengths), uncovering two key properties: The attention rank is eventually upper
bounded (limitation) and gets saturated (redundancy), as the head dimension dj,
increases. We call them the low-rank barrier and model-reduction effect, respec-
tively. Most importantly, the redundancy appears that both the attention rank and
learning performance simultaneously get marginal enhancements when increas-
ing modeling parameters. On the other hand, we provide rigorous demonstrations
for these observations under idealized settings through a fine-grained mathemati-
cal analysis, highlighting (i) a consistent theoretical upper bound (=~ 0.63n, n: the
sequence length) on the attention rank (regardless of dj) given random weights;
(ii) a critical position of the rank saturation (d;, = (logn)). These results con-
tribute to the principled understanding and assessment of Transformers’ model
capacity and efficiency, and are also successfully verified in practical applications
such as multi-head latent attention (MLA) applied in DeepSeek-V3.

1 INTRODUCTION

In recent years, Transformer-based neural network models have reshaped the landscape of machine
learning, demonstrating unparalleled successes across a myriad of applications including natural
language processing (NLP) (Vaswani et al., 2017} Devlin et al., 2019} Raftel et al., [2020; Radford
et al., 2018} Rae et al., [2021} |Dehghani et al.l 2023; [Touvron et al., 2023} Liu et al., 2019; Hao
et al., 2020; Liu et al., 2021} |Yuan et al., [2022), computer vision (CV) (Chen et al., 2021bj; Wang
et al.| 2022} [Liang et al., 2021} |Lu et al.| 2022} Zhu et al., 2021; [Wang et al., |2021), audios (Sung
et al., 2022; [Tsimpoukelli et al., 2021} |Li et al.l [2022), interdisciplinary sciences (Jumper et al.,
2021)), and so on. The core architecture module, anchored by the so-called attention mechanism, has
been proved as a cornerstone particularly in capturing sequential relationships with intricacies and
nuances.
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Figure 1: A typical phenomenon of the attention rank of an initialized Transformer for different
head dimensions dj. One can observe that the attention rank gets saturated when increasing head
dimensions. More importantly, this pattern of diminishing returns also consistently appears for the
learning performance, where the test accuracy simultaneously gets marginal enhancements when
increasing head dimensions (see Figure@ and |3'_5p

Mathematically, the central attention mechanism is designed to weigh the significance and correla-
tions of input sequences via, e.g. inner products between trainable transformations on inputs (e.g.
tokens), which is formulated as the attention score matrices. As a fundamental algebra concept, the
matrix rank is supposed to impact the capacity (expressive ability) and learning performance of the
attention mechanism and hence Transformer models. Particularly, an important phenomenon called
the low-rank bottleneck is uncovered by numerous recent works (Kanai et al., 2018} [Bhojanapalli
et all 2020; [Dong et all, 2021} [Lin et al.} 2022), and several Transformer-based variants aim to re-
duce the computational and memory overheads of modeling long sequences from the perspective
of attention ranks (Chen et al. [2021a} Wang et all, 2020; [Hu et al 2022} [Guo et all, [2019;
2022). However, these studies in general (i) are insufficient to quantitatively characterize the
attention rank’s limitation (i.e. deriving low-rank upper bounds); (ii) lack theoretical analysis of the
attention rank’s redundancy (i.e. model-reduction effect). Based on (i), (ii) is straightforwardly ap-
plicable in practice, particularly in the current era of large foundation models, where the pre-training
efficiency on notably large models on web-scale datasets turns out a remarkable problem.

In this work, we make an initial step towards this direction by studying the limitation and redun-
dancy of general Transformers from the perspective of attention ranks. Figure [I] shows a typical
experimental observation in the present work, focusing on the variation of attention ranks with re-
spect to the pivotal head dimension (d;,). We observe that: (i) The attention rank increases with the
head dimension. As dj, increases within relatively small values, the increment of attention ranks is
significant; (ii) For appropriately large values of dj,, further increases in dj, lead to a diminishing
return in the enhancement of attention ranks, with an ultimate upper bound of approximately 0.63n,
which is away from the full rank n (n: sequence length and attention matrix size).

Extensive experiments are performed, which consistently demonstrate these observations across var-
ious model and data settings, including varied model dimensions, different heads and layers, a vari-
ety of data distributions with increasing sequence lengths for both synthetic and real-world datasets.
Theoretically, a fine-grained mathematical analysis is provided to rigorously support these experi-
mental observations in a quantitative manner, including that (i) the attention rank has a consistent
theoretical upper bound (= 0.63n) for any dj, which shows the existence of the low-rank barrier (n
is the full-rank); (i) when d;, = Q(logn), the attention rank gets saturated in the sense that further
increasing the head dimension leads to diminishing rank enhancement. This study focuses on the
model biases inherently in Transformer models, and the developed results not only shed light on the
internal dynamics of Transformers, but also provide new insights to evaluate the model capacity and
efficiency.

Our main contributions are summarized as follows:
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1. Empirically, under extensive settings for general Transformer models and real-world
datasets, it is shown that as the head dimension d;, increases, the attention rank rises as
expected, but the increment slows down significantly and eventually gets saturated, with-
out reaching the full-rank (for appropriately large d;,). More importantly, both the attention
rank and learning performance simultaneously get marginal enhancements when increasing
modeling parameters, implying principled model redundancy.

2. Theoretically, given random weights, mathematical estimates are established on the barrier
of attention ranks, with an upper bound of approximately 0.63n (aligned with experimen-
tal observations). Moreover, after the critical position d, = €(logn) (also numerically
verified), the attention rank gets saturated with negligible increments even by significantly
increasing head dimensions.

The rest of this paper is organized as follows. Section [2| provides fundamental observations with
various experiments and ablation studies. Section [3]includes the fine-grained mathematical analysis
on the attention rank. Section [ further verifies the developed results on real-world datasets. In
Section[5] we discuss the related work centering around the attention rank. All the details of proofs
and supplementary experiments can be found in the appendix.

Notations Throughout this paper, we use normal letters to denote scalars. Boldfaced lower-
case/capital letters are reserved for vectors/matrices. Let [n] := {1,2,...,n} for n € Nj.

Let [[x][, := (O, |xi|p)l/p be the ¢P-norm for x € R™ and p € [1,00], and ||A|f :=

1/2
(ZZI > a%) be the Frobenius norm for A € R™*". Denote the standard basis of R"™

by {e;}, i.e., e; is the vector of all zeros except that the i-th position is 1. Let 0,, € R™ be
the vector of all zeros. For a probability space (€2, F,P), the probability of a measurable event
E € Fis P(E). Let N(pu,X) be the multivariate normal distribution defined on R", where
p € R is the expectation and 3 € R™*™ is the covariance. We use the big-O/big-Omega notation
f(n) = O(g(n))/f(n) = Q(g(n)) to represent that f is bounded above/below by g asymptotically,
i.e., there exists ¢ > 0,n¢ € Ny such that f(n) < cg(n)/f(n) > cg(n) for any n > ng.

For Transformers, let X = [x1, X2, . .. ,xn]T € R"*4 denote the input sequence with the length n
and dimension d. We use h to represent the number of attention heads and d, as the head dimension
(typically, d = h x dy). For head i € [h], let KV Q") V() ¢ R™*dr be the key, query, and value
matrices, and W,(CZ) , Wz(f), Wg) € R¥¥4r are the corresponding weight matrices. When focusing on
a single head, we drop the superscripts and define the key-query pair as (K, Q) = (XW;,XW,)
with trainable parameters 6 := (W, W) € R4*dn x R4Xdn where the rows are k; = x,] W}, and
q] =x; W, fori =1,2,...,n. The attention matrix is Attn(X;#) := softmax (QK'/T) €
R™*" with the temperature 7" > 0.

2  MOTIVATING SIMULATIONS

In this section, we provide detailed experiments on general Transformers in various settings to ex-
amine the rank of attention matrices. To facilitate comparisons and analysis, we report the ratio of
attention ranks over sequence lengths (rank /seq len) rather than the absolute rank values to eliminate
the interference caused by varied sizes of attention matrices across different sequence lengths.

2.1 BASIC PHENOMENA

First, we test general Transformer models to examine the variations of their attention ranks given
various head dimensions.

Setup. We use a standard one-layer Transformer encoder block with dy04e1 = d = 384 and a feed-
forward hidden dimension of 512, and select the head dimension d}, € {2,4, 8,16, 32,64, 96, 192}.
The trainable weights are i.i.d. initialized using a standard normal distribution N'(0,1). We also
generate random matrices with i.i.d. entries following N'(0, 1) with a shape of (n, b, d), where the
sequence length n is set as 100, the batch size b is 32 and the data dimension d is 384. Subsequently,
we record the mean and standard deviation of all attention matrices for every dj,.
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Figure 2: The consistent pattern of attention ranks across varied experimental conditions: (a) dif-
ferent sequence lengths (25, 50, 100 and 200); (b) different real-world datasets (CIFAR-10/100
(Krizhevsky et al.l [2009), and SVHN (Netzer et al., 2011))); (c) different types of (synthetic) data
distributions and non-i.i.d. cases.

Rank Calculation. There are several equivalent definitions of the matrix rank in algebra. For nu-
merical computation, the rank is usually calculated via singular value decomposition (SVD), i.e.,
the rank equals to the number of non-zero singular values. In practice, due to the numerical pre-
cision limitation and round-off errors, this procedure often requires a relaxation, where a tolerance
threshold e is applied to yield the so-called numerical matrix rank. That is, rank(A, €) equals to the
number of singular values no less than €. Here, we set the tolerance threshold as € = 108,

Observations. The experimental results (which is visualized in Figure [T) illustrate a clear rela-
tionship between the head dimension d;, and Rank / Seq Len. For relatively small values of dj,
the attention matrix exhibits a low rank, which increases normally as dj, increases (i.e. successive
increases in ranks are relatively large from dj, = 2 to d;, = 16). However, for appropriately large
values of dj,, further increases in dj, lead to diminishing increments of attention ranks, with a final
barrier of approximately 0.63n < n (n: the full-rank). This diminishing return pattern is evident
in the data: While Rank / Seq Len increases by around 0.10 from d;, = 8 to d;, = 16, as dj, further
rises to 192, the increment in Rank / Seq Len reduces to around 0.01, suggesting a more signif-
icant plateauing effect at higher dj, levels. Additionally, the variances in Rank / Seq Len exhibit
slight fluctuations across different d;, values but remain relatively low, demonstrating the stability of
experimental results. The observations are summarized as follows.

* The attention rank increases with the head dimension d;,. When d;, increases within rela-
tively small values, there is a notable rise in the attention rank.

* When d}, is appropriately large, further increases in dj, result in only marginal increments
of attention ranks, which is capped at around 0.63n < n (the full-rank).

2.2 ABLATION STUDIES ON DATASETS

Sequence Lengths. We examine the influence of sequence lengths on attention ranks by vary-
ing lengths in {25, 50, 100, 200}. To ensure a comprehensive investigation, we test a refined set
of head dimensions (d, € {2,4,8,16,32,48,64,80,96}) and increase the model dimension to
dmodet = 960. The other configurations remain the same as those outlined in Section The re-
sults summarized in Table [T| and Figure 2a] show the ratio of attention ranks over sequence lengths
(Rank/Seq Len) versus head dimensions (dy) for different sequence lengths. Despite of varied se-
quence lengths, all curves exhibit consistent patterns: attention ranks increase with head dimensions
but eventually saturate at approximately 0.63n. Notably, as highlighted in Table[T} the required head
dimensions for the saturation of attention ranks exhibit a linear increase with doubling sequence
lengths, with saturation points occurring at progressively larger head dimensions. This suggests
a logarithmic dependency (d;, = Q(logn)) aligned with by our theoretical analysis (Section ,
further confirming the robustness of our findings in Section

Real-World Datasets. In Figure[2b] we show that the above findings (in Section[2.T)) that attention
ranks are capped and get saturated are consistent across diverse visual recognition tasks, including
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CIFAR-10, CIFAR-100, and SVHN datasets. Despite of different characteristics and complexities
of theses datasets, similar curves of attention ranks versus head dimensions are observed, further
validating the generalizability of our findings.

Data Distributions. We also investigate attention ranks for different types of (synthetic) data dis-
tributions with scales, including A (0, 1), A'(0, 100), &(—1, 1) and ¢/ (—100,100), and consistent
phenomena irrespective of distributions are observed. For comprehensive discussions and detailed
experimental reports, refer to Appendix Figure [2c| shows that similar patterns hold for var-
ious non-i.i.d. and mixed distributions. The rand_randn line represents tensors where half of
the elements are sampled from a uniform distribution and the other half from a Gaussian distri-
bution, while the rand_double_exponential line denotes tensors where half of the elements
are sampled from a uniform distribution and the other half from a double exponential distribution.
These results verify the generalizability of attention rank patterns across diverse data conditions,
underscoring the robustness of our findings w.r.t. data distributions.

Table 1: Attention ranks versus sequence lengths. The highlighted boldface statistics are set ac-
cording to the “Improvement” column: when the improvement drops less than or around 0.01 for
the first time at a certain row, we set the above one row as the critical position of d; where the
saturation of attention ranks begins to occur. One can observe that as the sequence length doubles,
the required head dimension to reach the saturation increases linearly, potentially implying certain
log-dependence.

\ Seq Len =25 Seq Len = 50 Seq Len = 100 Seq Len = 200
dy, | Rank/SeqLen Improvement | Rank/SeqLen Improvement | Rank/SeqLen Improvement | Rank/SeqLen Improvement

2 | 0.250 £ 0.051 - 0.158 £ 0.029 - 0.096 £ 0.019 - 0.055 £ 0.011 -

4 | 0.422 £0.061 +0.172 0.324 £0.044 +0.166 0.240 £ 0.032 +0.144 0.1724+0.019 +0.117
8 | 0.53040.068 +0.108 0.459 £ 0.047 +0.135 0.391 £0.035 +0.151 0.323 £ 0.025 +0.151
16 | 0.606 + 0.055 +0.076 0.536 £ 0.052 +0.077 0.498 £ 0.029 +0.107 0.443 £+ 0.026 +0.120
32 | 0.612 %+ 0.066 +0.006 0.593 £ 0.045 +0.057 0.571 £0.031 +0.073 0.525 £ 0.023 +0.082
48 | 0.618 +0.048 +0.006 0.601 £0.033 +0.008 0.594 £ 0.034 +0.023 0.554 +0.018 +0.029
64 | 0.621 £ 0.060 +0.003 0.612 £ 0.057 +0.011 0.606 £ 0.038 +0.012 0.579 £ 0.021 +0.025
80 | 0.623 £0.071 +0.002 0.615 £ 0.054 +0.003 0.609 £ 0.049 +0.003 0.592 £ 0.018 +0.013
96 | 0.625 £ 0.058 +0.002 0.622 £ 0.058 +0.007 0.611 £0.034 +0.002 0.597 £ 0.020 +0.005

2.3 ABLATION STUDIES ON HYPERPARAMETERS

Model Dimensions. We first investigate the effect of different model dimensions dpeger €
{384,768, 1152, 1536}, maintaining other configurations specified in Section The results (pro-
vided in Appendix align with Figure[I] indicating a robust and consistent pattern of attention
ranks across varied model dimensions.

Softmax Temperatures. We test the softmax temperature 7 € {107°,1073,107%, 1} to assess
its effect on the attention rank. Similarly, the outcomes (detailed in Appendix [B.2) also exhibit a
robust and consistent pattern of attention ranks across different softmax temperatures.

Transformers’ Layers. To study the attention ranks in different layers, we test a 8-layer Trans-
former. The results (elaborated in Appendix [B.3) also similarly reveal a consistent pattern among
different layers.

3 THEORETICAL ANALYSIS

In this section, we provide the fine-grained mathematical analysis to demonstrate rigorously the ex-
perimental results reported in Section[2] i.e. the existence of the low-rank barrier and rank-saturation
effect.

3.1 MAIN RESULTS

Our goal to theoretically characterize the low-rank barrier and rank-saturation effect can be formu-
lated as follows. That is, (i) there exists a non-trivial upper bound (= 0.63n) of the attention rank (i.e.
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rank (Attn(X;0))) in expectation regardless of the head dimension dj,; (ii) rank (Attn(X;0))
gets saturated when dj, = Q(logn).

For convenience, we focus on the low-temperature case (i.e. 7' > 0 appropriately small) associated
with the “hardmax” activation. Note that although we employ this setup for theoretical simplicity,
the hardmax activation is occasionally used in applications for computational efficiency. See com-
puter vision (CV) examples in (Elsayed et al., 2019; |Papadopoulos et al., [2021) for more details.
When T" > 0 is appropriately small, it holds that

XW, W/XT
softmax (qu) ~ hardmax (XWqW,:XT) , (1)
where the maximum is taken in a row-wise sense: for a matrix A = [a;;] € R™*7,

e/ hardmax(A) := ey, with k; := arg max;¢,] ai;.

Remark 1. Numerically, we have demonstrated in Figure 5b that the attention rank of Transformers
is robust to variations in softmax temperatures, as least in the range between low temperatures
(hardmax) and normal temperatures (softmax). In this work, all the experiments are performed for
normal temperatures, obtaining results consistent with the following theory.

We have the following main theorem to estimate the (averaged) rank of (). The derived upper bound
(proofs deferred to Appendix [A) coincides perfectly with the experimental results in Figure[I]
Theorem 1. Let the parameters W ¢, W, be Gaussian random matrices, i.e., the entries of W 4, Wy,
are independent N'(0,1) random variables. Assume that the input sequence X satisfies XX =
I, + E with E = [E;;] € R™" satisfying |E;;| < € = o(1/(n2(d + dy))) (Vi,j € [n)], ie.
almost orthonormality of inputs). Then for any n € N appropriately large, d > n, and § > 0
appropriately small, we have

Ew, w, [rank (hardmax (XWqW,IXT) ,5)}

< (1 —exp(—=1))n+ O(1) =~ 0.63n,

where rank(A, §) equals to the number of singular values (of A) no less than § (i.e. numerical

rank). Furthermore, the left hand side of (2)) is approximately independent of the head dimension dj,
when dj, = Q(logn).

2

The proof of Theorem|[T]is deferred to Appendix[A] It is worthwhile to note that almost orthonormal-
ity leads to exponentially many “basis” vectors (rather than linear for exact orthonormality) owing
to Johnson—Lindenstrauss lemma.

Remark 2. The assumption that the input sequence is almost orthonormal might seem stringent at
the first glance. However, in practical scenarios, particularly in high-dimensional spaces (d > 1),
the (embedding) vectors (i.e. X; here) representing different tokens can be almost orthogonal, if
they are modeled using independent and isotropic Gaussian random vectors (Vershynin, 2018). This
assumption is also proposed by |Tian et al.|(2024)) to theoretically analyze the training dynamics of
Transformers. According to|Tian et al.|(2024)), the almost orthogonality even holds during the train-
ing process (for large pre-trained models such as Pythia, BERT, OPT, LLaMA and ViT of different
sizes). We also numerically verify the orthonormality by ourselves in Appendix [B.3| (Figure [6) on
both synthetic and real-world datasets.

Remark 3. Note that the hardmax operator is invariant under the positive scaling:
hardmax(cA) = hardmax(A) for any ¢ > 0. Consequently, Theorem [I| remains valid even in
cases where input sequences are not normalized.

Low-Rank Bottleneck on Approximation. According to Eckart-Young theorem (Eckart &

Young, [1936), there exists a lower bound corresponding to the spectral regularity, a.k.a. low-rank

approximation problem. For instance, given the target matrix A € R™*"™ with singular values o1 >

cee > Op > Opry1 = -0 = 0y = 0 (le. rank(A) = n/ € (0.63n,n]), based on Eckart—Young

n’ €

theorem and Theorem , we have ||hardmax (QKT) — AH? > o2 >
i=rank(hardmax(QKT))+1

’ /

n €
0?2~ > o2 > 0forany n € Ny appropriately large, where > represents

i=(1—exp(—1))n+0(1) i=0.63n
“no less than” in expectation. One can expect that this lower bound implies a large gap of low-rank
approximation if the spectrum of A (i.e. {o;},) decays slowly (e.g. A has a full rank n).

n
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3.2 DISCUSSIONS

In this section, we revisit the experimental results in Section 2] and compare them with the developed
theoretical results in Section Comparing the estimate and the bound d, = Q(logn) in
Theorem [Iwith the observations in Section [2] we obtain the consistency between our theoretical
results and simulation outcomes.

First, considering Figure [I] (and Figure [5a] [5b] and Table [T| (and Table [2), we note that under
various settings (such as different model dimensions, softmax temperatures, model depths, sequence
lengths and data distributions), the attention rank increases with the head dimension dj,, yet it con-
verges towards the upper bound predicted by the estimate (2)). Furthermore, the incremental growth
of the attention rank significantly diminishes with a uniform increase in dj, indicating an obvious
trend towards the saturation.

Second, we focus on Table E} Based on the highlighted boldface statistics, it is evident that for
doubled sequence lengths, a distinct linear increment trend of head dimensions for rank saturation
is observed. For instance, at the sequence length of n = 25, the saturation occurs at d, = 16; for
sequence lengths of n = 50, 100, 200, the critical saturation positions are identified at d;, = 32, 48
and 64, respectively. This finding quantitatively aligns with the theoretical estimate dj, = Q(logn).

4 REAL-WORLD EXPERIMENTS: MODEL-REDUCTION

In this section, we further verify our previous findings through simulations on real-world datasets.
In theory, the upper bound is derived for every single head. For the multiple heads case, we aim
to emphasize the saturation or model-reduction effect via numerical simulations. That is, despite
that one can increase the overall rank by concatenation in multiple-head attention, the low-rank
saturation of every single head still leads to an inefficiency issue: As is shown later, both the attention
rank and model performance consistently get marginal enhancements when increasing parameters,
implying the principled model redundancy. This gives chances for the optimal configuration of
hyper-parameters: In practical applications, one may check the saturation situation of attention ranks
before training, and set the optimal number of parameters as where the rank first gets saturated.

4.1 REAL-WORLD EXPERIMENTS ON NLP TASKS

The experiments focus on evaluating the performance of Transformers on text classification tasks
using the IMDB dataset (Maas et al., 2011). In this section, we fix the number of heads, and then
vary the head dimension dj, € {2, 3,4, 8,16}, which deviates from the conventional constraint d =
h x dj. With this configuration, we can directly observe the relationship between head dimensions,
and both model performance and attention rank saturation:

1. In Figure [3[a), it is shown that the learning accuracy increases significantly as dj, grows
within relatively small values. However, this improvement plateaus once d;, becomes ap-
propriately large, reflecting diminishing marginal returns with further parameter expan-
sions. The optimal configuration occurs at d; = 8 (right before the marginal improve-
ment).

2. Notably, the corresponding attention ranksﬂ in Figure b) exhibit similar saturation behav-
iors when dj, > dj; = 8, which aligns with the saturated trends of learning performance ob-
served in Figure [3[a). This correlation between attention rank saturation and performance
plateauing validates our theoretical analysis of the model-reduction effect in practice.

3. To further study the effect of input sizes and Transformer layers on attention ranks, we
examine rank saturation at different Transformer layers for varied embedding dimensions
within {32, 128,256,512} on the IMDB dataset. Figures [3|c) and [3[d) show the experi-
mental results for the first and second layers, respectively. The results consistently demon-
strate that rank saturation appears across different Transformer layers as the input em-
bedding dimension varies, reinforcing our findings on the fundamental nature of model-
reduction.

!'The ranks in Figure b) are calculated for the first-layer attention matrices at initialization, computed on
mini-batches of IMDB tokens and averaged over multiple runs with varied random seeds.
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Figure 3: Real-world experiments on the IMDB dataset for varied head dimensions (with the number
of heads fixed). (a), (b): both learning performance and attention ranks consistently get diminishing
returns; (c), (d): rank saturation across varied embedding dimensions at different Transformer layers.

Remark 4. The findings necessitate and support the usage of multi-head latent attention (MLA;
(Liu et al.||2024a)) that applies low-rank input embeddings corresponding to relatively small head
dimensions. This approach has been successfully verified to reduce memory usage while maintaining
performance in DeepSeek-V3 (Liu et al.| | 2024D)), thereby enhancing the modeling and learning

efficiency.

4.2 REAL-WORLD EXPERIMENTS ON CV TASKS

The experiments focus on evaluating the performance of Vision Transformers (ViTs; (Dosovitskiy
et al.,[2021)) on image classification tasks using the CIFAR-10 dataset.

To include more cases, here we instead fix the model dimension dpoge1 = d, and vary the number
of heads h (and consequently the head dimension dj) following the equation d = h X dj, which is
default in practical applications.

The model-reduction based explanation can be as follows. With the above constraint, a smaller
number of heads h results in a larger head dimension dj, potentially exceeding the critical head
dimension to achieve the rank saturation for each head. Namely, most of the heads may have reached
the saturation point, leading to the redundancy in modeling parameters. On the contrary, as the
number of heads increases, the Transformer model with reduced head dimensions gradually avoids
rank saturation (and potential parameter redundancy), leading to more portions of “effective” ranks
for modeling, which yields improved experimental results.

These arguments are numerically supported by jointly examining Figure [4al and Figure Fig-
ure [a] shows that increasing the number of heads (h = 1,2,4,8) benefits the model’s perfor-
mance in general, while the attention ranksﬂ get saturated at the corresponding head dimension
dp, = 384,192, 96, 48 (diodel = 384) in Figure The results show that under these configurations,
the saturated attention ranks lead to the fact that appropriately decreasing d;, will not affect the
expressive ability of each head, and the model performance will instead improve from an increase
in the number of heads. For experiments on more datasets and the head-fixed regime (similar to
Section[4.T)), see Appendix [C.2]and Appendix [C.3|for details.

5 RELATED WORK

The rank of attention matrices in Transformers has attracted extensive research (Kanai et al., 2018}
Bhojanapalli et al.l 2020; |Dong et al.,|2021} [Lin et al.,|2022). Bhojanapalli et al.|(2020) identified a
restriction from the low-rank bottleneck in attention heads, showing that low-rank attention cannot
capture certain contexts. They attributed this to the proportional relationship between the number
of heads and head size in standard architectures. [Dong et al.| (2021) offered a new perspective on
self-attention networks, demonstrating that without skip connections and multi-layer perceptrons
(MLPs), outputs quickly degenerate to a rank-1 matrix, causing pure attention to lose expressive
power exponentially with depth.

The ranks in Figure 4b|are calculated for the first-layer attention matrices on a mini-batch of CIFAR-10
images, averaged over both all heads and multiple varied random seeds.
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Figure 4: Real-world experiments on the CIFAR-10 dataset for varied number of heads (with model
dimensions fixed). (a): model performance improves as the number of heads increases; (b): attention
ranks get saturated. The results show that as the number of heads increases, Transformers with
reduced head dimensions gradually avoid rank saturation, leading to more portions of “effective”
ranks for modeling and hence improved performance.

Meanwhile, Transformer variants have sought to overcome computational and memory bottlenecks
(Chen et al., [2021a; [Wang et al., [2020; [Hu et al., |2022; (Guo et al., [2019; [Lin et al., 2022). For
example, Wang et al.| (2020) showed that self-attention complexity can be reduced using low-rank
approximations. |Guo et al.|(2019) imposed low-rank constraints that improved performance on
certain tasks. [Chen et al.| (2021a)) reported that sparse and low-rank approximations are effective
under different conditions, with combined approaches outperforming either method alone.

Another direction focuses on computational efficiency, such as KDEformer (Zandieh et al.| [2023)
and HyperAttention (Han et al.,2024). These methods approximate attention matrices by replacing
full multiplications with smaller sub-matrix operations, where ranks depend on matrix spectra. Fu-
ture work may extend these ideas using the inductive biases identified here, to design more efficient
algorithms under the low-rank barrier and rank saturation.

Compared with these studies, our work investigates the ranks of attention score matrices in Trans-
formers and provides two insights: attention rank increases with head dimension but has an upper
limit (low-rank barrier), and a model-reduction effect emerges. These findings are consistently
validated across models and datasets, and supported by theoretical analysis.

6 CONCLUSION

In this work, we conduct a comprehensive study of the rank of attention matrices in Transformers,
combining theoretical analysis with empirical evidence. Theoretically, we establish a strict upper
bound on attention rank that is significantly lower than full rank, indicating the presence of a low-
rank barrier. We also show that when head dimensions are small relative to sequence length, the
attention rank saturates, suggesting that further parameter increases yield diminishing performance
gains (model-reduction effect).

Experimentally, we validate these findings through extensive simulations across diverse model ar-
chitectures and real-world datasets. The results confirm the robustness of our theory in practical
settings. The identified relationship between head dimensions, attention rank, and model perfor-
mance offers a clearer understanding of Transformer models’ capacity and efficiency.
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A PROOFS

In this section, we provide all the missing proofs. To prove the main theorem (Theorem [I)), we
first analyze the setting where input sequences are exactly orthonormal (Section [A.T). Then, we
extend the above analysis to the almost orthonormality setting via approximation procedures and
stability/perturbation analysis (Section|A.2)).

A.1 ANALYSIS UNDER ORTHONORMALITY

The proof entails a detailed analysis of matrix operations, probability transforms, and infinitesimal
order estimation. Specifically, the proof sketch proceeds as follows:

» First, given the orthonormal nature of input sequences, according to Lemma [4] one can
derive that different rows of XWqW,—JXT are independent, and these rows are identically
distributed as A/'(0,,, KK ), conditioned on any fixed Gaussian random matrix W.

* Then, note that applying the hardmax operation to individual rows is analogous to solving
an elementary birthday problem (refer to Lemma 3), which reduces the original problem as
counting columns with all zeros.

* Finally, the estimate is further refined based on Lemma [2} and completed by applying the
AM-GM inequality, which indicates the equality when all probabilities are equal.

To begin with, the key approximation (T) is due to the following lemma, which characterizes the gap

between the softmax function and its “hard” version.

Lemma 1. Leta = [ay, a2, - ,a,]" € R™ withi* := argmaxa; and i"* := arg max a;, and
1€[n] i€[n] AL

hardmax(a) := e;+. Assume that § := a;» — ay~ > 0 (i.e., the maximum is unique). Then for any

T > 0, we have

A, s(T) = ||softmax(a/T") — hardmax(a)||,
<2(n—1)exp(—0/T). 3)

That is, A, 5(T') converges to 0 exponentially fast as T — 0.

13
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Proof. 1t is straightforward to have

B _exp(ai/T)
Ans(T) = ;ﬂ* >oi—yexp(a;/T)
1 Sxp(ai*/T)

> exp(a;/T)
Zie[n],i;éi* exp(a; /T
Zie[n],i;ﬁi* exp(a;/T) + exp(a;+ /T)

<2 Z exp((a; —a;)/T)

=2

i€[n],i£i*
< 2(n — 1) exp((ai~ —a+)/T)
=2(n—1)exp(—4/T). @

This gives limp_,o+ A, 5(7) = 0, and the rate is exponentially fast. The proof is completed. [

Before we prove the low-rank barrier and model-reduction effect of (T), the following lemmas are
useful.

Lemma 2. Forany n € Ny, define 6,,(p) := exp(—pn) — (1 — p)™, p € [0, +00). Then we have
1

On(p) < p*nexp(—p(n — 1) 5)
1,2
§p ) = 1?
< {26xp(—2) (nil + (njl)2> , n>2 (6)
Proof. Note that a} — alf = (a1 — ag) Yp_g a '~ ak for any a1, as € R, we have
dn(p) = (exp(—p))" — (1 —p)" @)
= [exp(—p) — (1 = p)]
n—1
x> (exp(—p))" " F(1 - p)t. )
k=0

Let g1(p) := exp(—p) — (1 —p), g2(p) := exp(—p) — (1 —p+p*/2) = g1(p) —p*/2. p € [0, +0),

91(p) = —exp(—p) +1>0 9)

=g1(p) > g1(0) =0, (10)

93(p) = —exp(—p) +1—p=—gi1(p) <0 (11)

= g2(p) < g2(0) =0, (12)

which gives
51(p) = g1(p) < 1°/2, (13)
1 n—1
on(p) < 51?2 kz:%(exp(—p))"_l *(exp(—p))* (14)
= %an(exp(—p))"*l, n>2. (15)

Forany n € Ny, n > 2 let hy(p) := p2(exp(—p))" % p € [0,+00), we get h/,(p) =
p(exp(—p))" (2 — p(n — 1)), hence

h.(p)=0=p=0orp=2/(n—1) (16)
= hn(p) < hn(2/(n - 1)) (17)
_ 4dexp(—2)
e o
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Therefore, for n > 2, we obtain

1
2exp(—2)n
12 (20)
1 1
= 2exp(—2) (n—l + (n—1)2> , 1)
which completes the proof. O

Lemma 3. For a random matrix A = [a;;] € R"*" with independent rows, let p;; := P({a;; =
max e[y @ijr }). Then the expectation number of columns with all zeros in hardmax(A.) is

11 - pip) (22)

n
=1:=1

J
Proof. For j = 1,2,...,n, define the random variable

1, hardmax(A)e; = 0,,
X; = {0 (Ae; (23)

hardmax(A)e; # 0,,.

By independence, we get

P{X,;,=1})=P ( - {e/ hardmax(A)e; = 0})

1=

= HIP’ ({e/hardmax(A)e; = 0})

=1 = pis). (24)

E Y X =) E[X]] (25)
j=1 j=1
j=1
=Y T[-piy, 27)
j=li=1
which completes the proof. O

The required independence in Lemma [3is provided by the following lemma.

Lemma 4. ((Vershynin| |2018), Exercise 3.3.6) Let G € R"™*"™ be a Gaussian random matrix, i.e.
the entries of G are independent N (0,1) random variables. Let u,v € R"™ be unit orthogonal
vectors. Then, Gu and Gv are independent N'(0,,,1,,,) random vectors.

Proof. First, we show that Gu, Gv are both N'(0,,,1,,) random vectors. This is straightforward
since Ge; ~ N (0,,,L,) gives u,;Ge; ~ N (0,,, u?Im), and {u;Ge;}}_; is a collection of inde-

pendent Gaussian vectors. Hence Gu = -7, u;Ge; ~ N (0, [[u][3L,,).

Next, we show the independence of Gu and Gv. Equivalently, we are supposed to prove that e/ Gu
and e;, Gv are independent random variables for any i,i’ € [n]. Fori # ', (¢; G)u and (e] G)v
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are independent random variables since G has independent rows. Therefore, the problem is reduced
as the independence of g "u and g v for g ~ A(0,,,1,,). Notice that

[u,v]"g ~ N (0o, [u,v] "I, [u,v]) (28)
= N(02,15), (29)
which completes the proof. O

Now we are ready to prove the main theorem given the exact orthonormality condition.

Theorem 2. ( Theorem under orthonormality) Let the parameters W ;, W, be Gaussian random
matrices, i.e., the entries of W ,, Wy, are independent N (0, 1) random variables. Assume that the
input sequence X satisfies XX = 1,,. Then for any n € N, n > 2, we have

Ew, w, [rank (hardmax (XW,W,;X"))] (30)
< (1 —exp(=1))n + 2exp(—2)[1 + 1/(n — 1)) (31)
~ (1 —exp(—1))n (32)
~0.63n, n appropriately large. (33)

T

Proof. According to Lemma| since x; x; = d;; (Kronecker symbol), i,j = 1,2,--- ,n, one can

deduce that {q;}j-; = {W, x;}/_, is a collection of independent N (0g,,,I4,) random vectors.
For any fixed Gaussian random matrix Wy,

(e] XW,W/X")T =Kq; ~N(0,,KK"), (34)

which is also independent across different ¢’s. That is to say, the rows of XVVqWTXT are indepen-
dent and identically distributed as NV'(0,,, KK ). Therefore, according to Lemma the expectation
number of columns with all zeros in hardmax(XW, W] X ) is

n

S TIa-r) =S TI0-p) (35)

j=11i=1 j=11i=1
=> (1—p)" (36)
j=1
Hence, we have
%]qu [rank (hardmax (XW, W/ X"))]

<1-

> (1—p)™ (37)
j=1

3=

Note that [p1,p2,- -+, ps] is a probability vector, i.e. Z?:l p; =1, p; > 0forany j € [n], and

exp(—p) > 1 —p > 0 forany p € [0,1], we get §,,(p) = exp(—pn) — (1 — p)™ > 0 for any
p € [0, 1]. Therefore, by Lemma we have
1 n
~ 2 11 =p))" = exp(—p;n)|
j=1
1 n
= ﬁ Z(Sn(pj)
j=1
<2exp(—2) ! + ! n>2 (38)
=2 n—1' m-1z) "="
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which gives

n

. > (1—p)" = %ZGXP (=pjn)

3

n

+IZ 1—])3) —eXp( —pin )]

\Y
—
]
¥
ke
[
3
2

— 2exp(—2) (ni 1T (n —1 1)2>
=exp (—1)

~ 9exp(~2) <n " - e 1)2) (39)

for n > 2, where the AM-GM inequality is applied, and the equality holds if and only if p; = p2 =
= pn. Hence, the right hand side of (37) < 1 —exp (—1) +2exp(—2)[1/(n — 1)+ 1/(n—1)?]
Smce the estimate holds for any fixed Gaussian random matrix Wy, the proof is completed. O

A.2 PERTURBATION ANALYSIS

In this section, we extend Theorem []to the required almost orthonormality setting, where the input
sequence X € R"* satisfies XX = I,, + E, with E = [E;;] € R"*" satisfying |E;;| < ¢ < 1
for any i, j € [n]. We adopt the following approximation procedure:

1. Approximate the almost orthonormal input sequence with the exactly orthonormal se-
quence.
2. Bound the difference between attention products.

3. The desired results follow based on the stability and perturbation analysis.

(1) The first step is to approximate X with orthonormal matrices

min P —XT|F, (40)
PcRidxn. PTP=I,,

which can be explicitly solved in a closed form as follows.

Lemma S. Assume d > n. Let XT = USVT be the singular value decomposition (SVD) of
X1, where U € R¥>4 gqnd V € R™ "™ gre orthonormal and collect the singular vectors, 3 =

[%T 8] € R¥>" with 3, = diag(oy, 02, ,0,) collecting the singular values (o > o5 >

>0, >0,r= rank(f() < n). Then we have
P-X"
wg,_mn [P-XTr
=U, V', (41)

3This is also called the orthogonal procrustes problem (Gower & Dijksterhuis, 2004).
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where Uy := U [Ig } € R denotes the first n columns of U. Furthermore, if the input sequence

X € R™*4 js almost orthonormal such that XX = 1, + E with E = [E;;] € R™ " satisfying
|Eij| < e=o0(1/n?) (i, j € [n]), then r = rank(X) = n, and we have the following estimate
ULVT =X ||p < en? = o(1). 42)

Proof. First, we can derive that

ar min P-X"
5, [P-XT

— argPERdX%lTP:In trace(P—X")T(P -XT))

= arg min trace(P"P — P'XT
PeRéxn: PTP=I,
~XP +XXT)
= arg max trace(XP)
PcRéxn: PTP=I,
= arg max trace(XT - UTPV). (43)

PERdxn: PTP=I,
Let S := U'PV = [3;;] € R¥" then S'S = VIPTUU'PV = I,,, which yields 1 =
ijl szi > SZ for any i € [n]. Therefore, note that

trace ET S) ZUz ii 44)

< Zoi|5ii| < Za (45)
=1 =1

and the equality holds when S;; = 1 for any ¢ € [r], we deduce that

arg max trace(X " - 8)
SeRdxn; STS=1I,
L,
_ { ; ] | (46)
Combining with (3, we equivalently obtain
arg min P —XT|%

PeRIxn: PTP=I,
= arg max trace(X ' - UTPV)
PeRdxn: PTP=I,

=U [I(ﬂ vi=U,VT, (47)

which proves . To prove , note that o7 is the i-th eigenvalue of XXT, according to Weyl’s
theorem, we have

o7 = 1] < XX = L,[|s 48)
= [|E[l2, i€ n]. (49)
Since
E|2 = max Ez|/2 50
B3 = max _ [[Ba3 (50)
= max E;. - z|? on
zGR":HzHQ:lz| ’ ‘

< max E;i.|3lz3 (52)

s Zn 1311211
= |E|% < 62712 (53)
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where E; . denotes the i-th row of E, we get
|07 =1 < en=o(1/v/n), i€ [n], (54)
leading to o; > 0 for any ¢ € [n], and hence X has the full rank r = rank(X) = n. Therefore

[0V = XTI
2

0
| [&]- %]

0 0 ”
n 1— 2
Z 1—01\2 Z ||1+;|2 (55)
Z = =o(1), (56)

which completes the proof. O

U [I} Vi —uUxv'’

F
2

| N

(ii) As the second step, the difference between attention products can be further bounded as follows.

Lemma 6. Let X := VU] with V, U, defined in Lemmal 5| Under the same conditions in Lemma
E] and further assume € = o(1/(n? (d + dy,))) we have the following estimates:

1. For anyt > 0, with probability at least (1 — 2 exp (—t2))?, it holds that
[XW, WX — XW, WX,
Sen?(d+dy + %) = o(1). (57)

2. Ew, w,|[XW,W/[XT - XW, W] XT||y < en?(d + dn) = o(1).
Here, < hides positive absolute constants.

3
2

Proof. Let P := X — X. According to Lemma we have |P||p < en

= o(1). Then, we can
derive that

||XVVqVVIIXT - XWqWIIXT||2
= [[XW,W, X" — (X +P)W, W[ (X +P)"|>
= PW,W/ X" + XW, W P
+PW, W, P,
< 2[[P[l2[ W [l W21 X]]2
+ P IWoll2[Well2. (58)
Note that [Pz < ||P||r < en? = o(1), | X2 = [|[U1ll2 = |[I.]l2 = 1, the remaining task is to
estimate ||[W/||2 for any Gaussian random matrix W (i.e., the entries of W are independent A/ (0, 1)

random variables). According to Theorem 4.4.5, Exercise 4.4.6 and Example 2.5.8 by |Vershynin
(2018), we have for any ¢ > 0,

IWll2 < Vd + v/dy + 1, (59)
with probability at least 1 — 2 exp (—t2), (60)

where < hides positive absolute constants, and

E|W|, < Vd+ \/dp. (61)
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Combining with (58], we have for any ¢ > 0,
IXW, WX~ XW, WX
< 2[|P[2[[Wll2 Will2]1X]l2
+ P W2 W2
< (en? + En®)(Vd + /dy, +1)°
Seni(d+dy, + %) = o(1), (62)
with probability at least (1 — 2 exp (—t2))?, and
Ew, w, | XW,W! X" - XW,W/XT|,
< 2[[Pll2[ Xl - Ew, [[Wql[2
Ew, [[Wil2 + P[5 - Ew, W2

‘Ew, Wkl
< (en® + &) (Vi + /dp)? (63)
S en?(d+dp) = o(1), (64)
which completes the proof. O

(iii) The third step is to apply the stability and perturbation analysis.

Proposition 1. (Stability of numerical ranks) Let 0,,;, # 0 denote the minimal non-zero sin-
gular value of a matrix A. Then for any perturbation P with |P|l2 < 0uin/3 and any 6 €
(Omin/ 35 20min/ 3], we have

rank(A, J) = rank(A + P,J). (65)

Proof. By definition, the numerical rank rank (A, 0) equals to the number of singular values (of A)
no less than §. Therefore, for any § € (0, omin], rank(A, §) equals to the number of non-zero singu-
lar values of A. Let {o;} and {5;} be the singular values of A and A + P, respectively. According
to Weyl’s theorem, we have |0; — &;| < ||P|l2 < 0min/3. Then for any 6 € (0min/3, 20min/3], the
perturbation of non-zero singular values satisfies &; > 0; — Omin/3 > Omin — Omin/3 > 0, which
is selected for counting the numerical rank, and the perturbation of zero singular values satisfies
F; < omin/3 < §, which is not selected for counting the numerical rank. That is, rank(A + P, d)
still equals to the number of non-zero singular values of A, hence the desired result follows. O

Further Perturbation Analysis. The subsequent analysis is similar, since all the remaining op-
erations (activation, numerical rank and expectation) are stable. In fact, both the activation and
expectation are continuous with respect to perturbations of inputs, and so does the numerical rank
due to Proposition [T} Therefore, the derived upper bounds in Theorem [2] still hold for almost or-
thonormal input sequences.

A.3 THE MODEL-REDUCTION EFFECT

In fact, the attention rank (the left hand side of (2)) reaches saturation when continuously increasing
the head dimension dj,, provided an appropriate scaling (e.g. 1/+/dy). Recall that the rows of
XW, W/ X" = QK" are independent and identically distributed as N'(0,,, KK "), according to
Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, [1984), we have

e/ KK e; = k/k; (66)
=x, W, W/ x; (67)
~ dpx] x; (68)

with high probabilities when d;, = Q(log n), which gives

e, QK /\/d, ~ N(0,, KK /dy)

69
~N(0,,XX"), dy=Q(logn). )

20



Under review as a conference paper at ICLR 2026

Table 2: The attention ranks for different data distributions: A(0,1), N(0,100), #(—1,1) and
U(—100,100). Note that the normal distributions correspond with the practical NLP applications
where input tokens are initially embedded with Gaussian distributions. Here, dj, represents the head
dimension. The “Rank / Seq Len” is the ratio of attention ranks over sequence lengths, with the
standard deviation denoted by £. The “Improvement” column summarizes the successive increases
in the “Rank / Seq Len” column compared to the previous row.

dp, N(0,1) N(0,100) U-1,1) U(—100, 100)
Rank / Seq Len  Improvement Rank /Seq Len Improvement Rank / Seq Len  Improvement Rank / Seq Len  Improvement

2 0.11 £ 0.023 - 0.10 £ 0.014 - 0.17+0.039 - 0.09 £+ 0.016 -

4 0.25 £ 0.032 +0.14 0.23 £0.029 +0.12 0.30 £0.038 +0.13 0.23 £0.027 +0.14

8 0.40 £ 0.035 +0.15 0.41 £+ 0.034 +0.18 0.45 £ 0.036 +0.15 0.38 £ 0.028 +0.15

16 | 0.51+0.033 +0.11 0.52 4+ 0.036 +0.11 0.56 £ 0.033 +0.11 0.49 £ 0.035 +0.11

32 | 0.57+0.033 +0.06 0.57 +0.038 +0.05 0.63 4 0.028 +0.07 0.56 4 0.031 +0.07

64 | 0.60 £0.032 +0.03 0.61 4 0.032 +0.04 0.64 4 0.028 +0.01 0.59 4 0.012 +0.03

96 0.61 £ 0.036 +0.01 0.61 £0.018 +0.00 0.64 £ 0.008 +0.00 0.60 £ 0.050 +0.01

Due to the (positive) scaling-invariant property of hardmax, we approximately deduce that the
attention rank (the left hand side of ) only depends on X (and hence n, d), i.e.

rank (hardmax (XW, W/ X)) (70)
=rank (hardmax (QKT/ \/@) ) (71)
& rank (hardmax (rows of A/(0,,, XXT))) , (72)

when d;, = Q(logn), where ~ represents the approximation in distribution. That is, increasing the
head dimension beyond a certain threshold, specifically after dj = Q(logn), results in a limited
impact on the attention rank,

which is eventually influenced by n and d.

This phenomenon can be understood as a manifestation of the model-reduction effect: selecting
the critical configuration di = Q(logn) achieves optimal model efficiency, since further increasing
parameters leads to diminishing marginal utility.

Remark 5. For the constants involved in dn, = $(logn), according to Johnson-Lindenstrauss
lemma, it is of order 1/€2, where € is the gap tolerance between the products of projected vectors
and original vectors (i.e. the error of “~” in (66)). Additionally, there are universal constants
related to § (probability tolerance) and methods of projections. That is, for requirements of higher
probabilities (smaller 0), the universal constants are larger; for nonlinear projections instead of
linear random projections used here, the universal constants can be potentially smaller.

)
Y
o
s

)
=

o
W
o
[

)
W
Rank / Seq Len

Rank / Seq Len
Rank / Seq Len

—e— Layer1
—e— Layer2
Layer 4

—o— dimover = 384
—o— pnoger = 768
o1 Amoger = 1152
—o— dmover = 1536 —— T=1 —e— Layer8

0075 20 40 6 80 100 0075 20 40 6 80 100 0075 20 80 100

0 0 0
Head Dimension (dp) Head Dimension (dp) Head Dimension (dp)

(a) The attention ranks across dif- (b) Attention ranks across various (c) Attention ranks across different
ferent model dimensions. softmax temperatures. Transformer layers.

Figure 5: Attention analysis across different configurations.

B FURTHER DETAILS OF ABLATION STUDIES

We conduct ablation studies on both model hyper-parameters and data distributions.
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B.1 EFFECT OF MODEL DIMENSIONS

In this section, we study the effect of model dimensions on the attention rank of Transformers.
We test for different dimensions dpogel € {384, 768, 1152, 1536}, maintaining other configurations
specified in Section The results illustrated in Figure [5a] align with the phenomena observed in
Figure [I] indicating a robust and consistent pattern of attention ranks across varied model dimen-
sions.

B.2 EFFECT OF SOFTMAX TEMPERATURES

In this section, we investigate the impact of softmax temperatures on the attention rank of Trans-
former models. We test for different temperatures 7 € {107°,1073,1071, 1}, and all the other
configurations remain the same as those of Section

The softmax temperature is an important factor that influences the sharpness of the attention distri-
bution. Lower temperatures lead to more concentrated attention distributions, effectively pushing
the softmax activation towards the hardmax activation. Conversely, higher temperatures yield more
uniform attention distributions. Despite of these differences, our results show consistent patterns of
attention ranks across all tested temperatures. This consistency, as is depicted in Figure[Sb] suggests
that the attention rank of Transformers is robust to variations in softmax temperatures.

B.3 EFFECT OF TRANSFORMERS’ LAYERS

In this section, we detail the influence of Transformers’ layers on the attention rank. The experiment
utilizes a model configuration with 8 layers to examine the attention rank’s behavior across layers,
and the other configurations are consistent with Section

The results shown in Figure [Sc| exhibit a noticeable trend: with the increase of depth, the attention
mechanism tends to show a more pronounced low-rank behavior. This trend is particularly evident
in the deeper layers of the Transformer, suggesting that the model depth significantly influences the
dynamics of attention ranks.

B.4 EFFECT OF DATA DISTRIBUTIONS

For a comprehensive analysis of the impact of data distributions on the attention rank of Transform-
ers, we numerically study a range of data distributions including normal distributions A'(0, 1) and
N(0,100), as well as uniform distributions ¢ (—1,1) and ¢ (—100,100). These distributions are
selected to mimic common scenarios in NLP applications, where input tokens are typically embed-
ded using Gaussian distributions. The model configurations used in these experiments are consistent
with Section 2.11

Our findings reveal the remarkable robustness of the attention rank with respect to data distributions,
as is evidenced by consistent patterns of attention ranks across all tested data distributions in Table[2]
It is particularly notable for the normal distributions (A/(0, 1) and A/(0, 100)), which show similar
patterns of attention ranks and imply that the initial Gaussian embeddings of input tokens do not
significantly influence the attention mechanism’s efficacy. The uniform distributions Z/(—1, 1) and
U(—100,100) follow the same trend, reinforcing the model’s insensitivity to the nature of data
distributions. These results underscore the robustness of Transformer models to variations in data
distributions, which is a crucial factor for real-world applications.

B.5 NUMERICAL VERIFICATIONS ON THE ORTHONORMALITY

To validate the orthonormality assumption used in our theoretical analysis, we conduct numerical
experiments to measure the orthogonality of input sequences across different datasets and dimen-
sions.

We use the mean Frobenius norm as the orthogonality measure for tensors with various dimensions.
Specifically, we compute — || — || , where 7 is the sequence length, () denotes the cosine similar-
ity matrix between input tokens, and I is the identity matrix. Lower mean Frobenius norms indicate
that the tokens in the tensor are more orthonormal, which aligns with our theoretical assumptions.
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The experiments are conducted on both synthetic Gaussian random data and real-world datasets
including CIFAR-10 and CIFAR-100 (after passing through an initialized embedding layer). As
shown in Figure [6] both Gaussian random data and the real-world datasets exhibit relatively small
mean Frobenius norms across different head dimensions dj,. This observation confirms that the input
sequences are indeed nearly orthonormal in practice, validating the orthonormality assumption un-
derlying our theoretical analysis. These results demonstrate that the almost orthonormal condition is
not merely a theoretical convenience but reflects actual properties of embedded data in Transformer
models, thereby supporting the practical relevance of our theoretical findings.

0.0014 —e— Gaussian Random Data
—=— CIFAR-10 Data

0.0012 CIFAR-100 Data

0.0010
0.0008

0.0006

Mean Frobenius Norm

0.0004

0.0002

0.0000

0 100 200 300 400 500
Head Dimension (dp)

Figure 6: Orthogonality measure across different dimensions for Gaussian random, CIFAR-10, and
CIFAR-100 data.

C FURTHER DETAILS ON REAL-WORLD EXPERIMENTS

C.1 DETAILED EXPERIMENTAL SETUP

For the computer vision (CV) experiments, we set the feed-forward hidden dimension as 384. The
model depth is 7. For the learning, the batch sizes are 128 for training and 1024 for evaluation.
The initial learning rate is set as 1073, We perform the train-validation-test split on the datasets fol-
lowing official guidelines. To align with real-world applications, various techniques are integrated,
including label smoothing and auto-augmentation. Moreover, the experiments also involve advanced
regularization methods (specifically, CutMix (Yun et al.,2019) and MixUp (Zhang et al., |2018))) to
enhance the models’ generalization performance. We conduct all experiments on a single machine
with the NVIDIA GeForce RTX 3090 (24 GB).

C.2 MODEL-REDUCTION: FIXED MODEL DIMENSIONS

In this section, we present a detailed set of experimental results on the performance of Vision Trans-
formers (ViTs) with fixed model dimensions on the CIFAR-10, CIFAR-100 and SVHN dataset to
elucidate the model-reduction effect on various datasets. We present these experimental results in
Figure[7] Figure[8] and Figure[9] These results further corroborate and align with the findings dis-
cussed in the main text, demonstrating the existence of saturation in model performance when fixed
model dimensions.
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Table 3: The final accuracy for different models on varied datasets.

Configurations Final accuracy
Datasets dmodet Head=1 Head=2 Head=4 Head=8 Head=16

Cifar-10 192 0.8836 0.8981 0.9004 0.9013 0.8932
Cifar-10 384 0.8795 0.8924 0.8977 0.9000 0.8997
Cifar-100 192 0.6316 0.6435 0.6454 0.6470 0.6378
Cifar-100 384 0.6280 0.6497 0.6685 0.6680 0.6671
SVHN 192 0.9684 0.9717 0.9737 0.9739 0.9724
SVHN 384 0.9721 0.9723 0.9713 0.9730 0.9757
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Figure 7: The validation accuracy of ViTs on the CIFAR-10 dataset with the model dimensions 192
(left) and 384 (right).

Final Accuracy. We also summarize the final accuracy achieved by each experiment in Table
These results indicate that with the constraint d = dyog9e1 = h X dj,, a smaller number of heads h
results in a larger head dimension dj,, potentially exceeding the critical head dimension to achieve
the rank saturation for each head. Namely, most of the heads may have reached the saturation
point, leading to the redundancy in modeling parameters. On the contrary, as the number of heads
increases, the Transformer model with reduced head dimensions gradually avoids rank saturation
(and potential parameter redundancy), leading to more portions of “effective” ranks for modeling,
which yields improved experimental results.

C.3 MODEL-REDUCTION: FIXED NUMBER OF HEADS

In this section, we present supplementary results on the performance of Vision Transformers (ViTs)
in varied model dimensions (with a fixed number of heads) on the CIFAR-10, CIFAR-100 and
SVHN dataset to elucidate the model-reduction effect on various datasets. We present these exper-
imental results in Figure [IT] Figure [I2] and Figure [I3] Notably, although the initial improvement
in the validation accuracy is pronounced as the head dimension dj, increases within relatively small
values, this improvement plateaus for appropriately large values of dj,, indicating diminishing re-
turns with further increments in modeling parameters. These observations align with our theoretical
justifications on the model-reduction effect, suggesting an optimal range for head dimensions that
balance the model performance with parameter efficiency.

Relation to Attention Ranks. The experiments focus on evaluating the model-reduction effect on
the CIFAR-10 dataset with a fixed number of heads = 8 and varying head dimensions dj. We test
5 different values of dj,: dj, = 2,4, 8, 16, 32.

In Figure it is shown that while validation accuracy improves significantly as dj increases
within relatively small values, this improvement plateaus for appropriately large values of dj,, show-
casing diminishing returns with further increments in modeling parameters. The optimal configura-
tion occurs at d;, = 16, as d, = 32 yields marginal improvements in accuracies.
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Figure 8: The validation accuracy of ViTs on the CIFAR-100 dataset with the model dimensions
192 (left) and 384 (right).
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Figure 9: The validation accuracy of ViTs on the SVHN dataset with the model dimensions 192
(left) and 384 (right).

Notably, the corresponding attention ranksﬂ in Figure also exhibit saturation when dj, > dj =
16, which aligns with the performance trend observed in Figure[T0al We observe that smaller values
of dj, lead to significant improvements in attention ranks as dj, increases. However, when the values
of dj, become larger (d;, > 16), further increases have marginal effects on attention ranks. This
correlation between attention rank saturation and performance plateauing validates our theoretical
analysis of the model-reduction effect. In other words, once the attention rank reaches saturation,
further increasing dj, has limited impact on the final model performance, and hence leads to the
model redundancy.

D THE USE OF LARGE LANGUAGE MODELS

The human authors prepared the original drafts. Subsequently, large language models were em-
ployed to refine the text, improving linguistic quality, structural coherence, and overall clarity. After
the model’s adjustments, the authors performed a comprehensive final review and confirming that
the manuscript accurately represented our methods and results.

“The attention ranks are calculated for the first-layer attention matrices on a mini-batch of CIFAR-10 images
for different head dimensions, averaged over all heads and multiple varied random seeds.
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with increasing head dimension. The correlation between attention ranks and model performance is
clearly demonstrated.
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Figure 11: The validation accuracy of ViTs on the CIFAR-10 dataset with 4 heads (left) and 8 heads

(right).
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Figure 12: The validation accuracy of ViTs on the CIFAR-100 dataset with 4 heads (left) and 8

heads (right).
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Figure 13: The validation accuracy of ViTs on the SVHN dataset with 4 heads (left) and 8 heads
(right).
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