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Abstract

Recent large language models (LLMs) have001
demonstrated exceptional performance on002
general-purpose text embedding tasks. While003
dense embeddings have dominated related re-004
search, we introduce the first Lexicon-based005
EmbeddiNgS (LENS) leveraging LLMs that006
achieve competitive performance on these tasks.007
Regarding the inherent tokenization redun-008
dancy issue and unidirectional attention lim-009
itations in traditional causal LLMs, LENS con-010
solidates the vocabulary space through token011
embedding clustering, and investigates bidirec-012
tional attention and various pooling strategies.013
Specifically, LENS simplifies lexicon matching014
by assigning each dimension to a specific token015
cluster, where semantically similar tokens are016
grouped together, and unlocking the full po-017
tential of LLMs through bidirectional attention.018
Extensive experiments demonstrate that LENS019
outperforms dense embeddings on the Massive020
Text Embedding Benchmark (MTEB), deliver-021
ing compact feature representations that match022
the sizes of dense counterparts. Notably, com-023
bining LENS with dense embeddings achieves024
state-of-the-art performance on the retrieval025
subset of MTEB (i.e. BEIR).1026

1 Introduction027

Text embeddings are vector representations of text028

that power a wide range of applications, including029

retrieval, question answering, semantic textual sim-030

ilarity, and clustering. Recent advances in LLMs031

have shown that a single model can generate em-032

beddings excelling across diverse tasks, highlight-033

ing their versatility (Li et al., 2024; BehnamGhader034

et al., 2024; Wang et al., 2023; Muennighoff et al.,035

2024; Meng et al., 2024; Lee et al., 2024a).036

While dense embeddings that encode texts037

into low-dimensional, real-valued latent seman-038

tic spaces dominate recent research, lexicon-based039

1Our anonymous code is available at https://anonymous.
4open.science/r/lens.
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Figure 1: The redundancy and noise in LLM tokenizers,
as well as the absence of bidirectional dependencies in
causal LLMs motivate LENS.

embeddings (Formal et al., 2021b,a; Shen et al., 040

2023a; Lassance et al., 2024) offer distinctive ad- 041

vantages. These high-dimensional representations, 042

where each dimension corresponds to a specific 043

token of the vocabulary, align more closely with 044

the pre-training objectives of language models due 045

to their shared use of the vocabulary space and the 046

language modeling head (Shen et al., 2023a). Re- 047

cent studies have demonstrated that lexicon-based 048

embeddings can surpass their dense counterparts, 049

utilizing masked language models under specific 050

control (Déjean et al., 2023). Additionally, lexicon- 051

based embeddings can offer better transparency, 052

providing clearer insights into the model’s deci- 053

sions via the weight of each token. Moreover, 054

the combination of dense and lexicon-based em- 055

beddings has also been proven to be promising in 056

prior studies, as they effectively complement each 057

other (Lin, 2021; Shen et al., 2023b). 058

Despite these benefits, lexicon-based embed- 059

dings remain underexplored beyond retrieval tasks. 060

To unlock their full potential in more scenarios, it is 061

essential to address the challenges posed by LLMs, 062

as shown in Fig. 1. The first one is the inherent 063
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redundancy of LLM vocabularies. Since most mod-064

ern tokenizers rely on subword tokenization (e.g.,065

"education" is split into "edu" and "cation"),066

it fragments the entire vocabulary space (Soler067

et al., 2024). And semantically equivalent to-068

kens can appear in multiple forms in the tokenizer069

(e.g., "what", "What", " what" and "review",070

"reviews"), introducing inconsistencies and diffi-071

culties in lexicon matching. Consequently, recent072

studies indicate that replacing the original tokeniza-073

tion of BM25 (Robertson et al., 1995) with the074

XLM-R tokenizer (Conneau et al., 2020) can lead075

to a significant performance drop due to the nois-076

ier vocabulary (Chen et al., 2024). The second077

challenge is that LLMs typically employ unidirec-078

tional attention during pre-training, where tokens079

can only attend to preceding tokens. This limitation080

prevents each token from fully leveraging the sur-081

rounding context, which is crucial as lexicon-based082

embeddings are always derived from the outputs of083

all tokens.084

To address these challenges, we first explore the085

potential of LLMs generating embeddings where086

each dimension corresponds to a token cluster in-087

stead of the traditional single token, with each clus-088

ter grouping tokens that share similar meanings089

or stem from the same lexeme. To achieve this,090

we utilize a simple yet effective approach that di-091

rectly clusters the token embeddings and leverages092

the centroids of these clusters as the new token093

embeddings for the language modeling head. As094

shown in Table 4, the resulting clusters naturally095

group tokens with similar meanings, forming more096

coherent and compact embeddings. At the mean-097

while, these cluster-based embeddings can achieve098

the equivalent feature size as dense embeddings099

(e.g., 4,000d), which is much smaller than previ-100

ous lexicon-based embeddings. Such a property101

not only i) facilitates the integration of LENS into102

existing dense frameworks like FAISS, freeing us103

from the sparsity constraints that, while essential104

for efficient retrieval, can limit expressiveness and105

effectiveness of models (Formal et al., 2024), but106

also ii) eliminates computational overhead in tasks107

such as clustering and classification, where inverted108

indices cannot be used.109

Furthermore, to address the interior LLM archi-110

tecture drawbacks, we also conduct extensive in-111

vestigations into modifying the model frameworks.112

Given the recent studies highlight the significant113

impact of attention mechanisms and pooling strate-114

gies on dense embeddings (Li et al., 2024; Muen-115

nighoff et al., 2024; BehnamGhader et al., 2024; 116

Lee et al., 2024a), we incorporate variants of these 117

two factors in our framework to examine how they 118

affect lexicon-based embeddings. Contrary to prior 119

findings (Li et al., 2024), which suggest that pre- 120

serving the original architecture of LLMs typically 121

yields optimal performance for dense embeddings, 122

our results indicate that bidirectional attention is 123

critical for achieving superior performance with 124

lexicon-based embeddings. 125

Built on these techniques, we introduce LENS, 126

a framework designed to generate low-dimensional 127

lexicon-based embeddings that achieve impressive 128

results across a variety of tasks. Specifically, our 129

experiments demonstrate that LENS outperforms 130

dense embeddings on the Massive Text Embedding 131

Benchmark (MTEB) (Muennighoff et al., 2023), 132

achieving state-of-the-art (SOTA) zero-shot per- 133

formance among models trained exclusively on 134

public data, as of December 1, 2024. Qualita- 135

tive examples also illustrate that LENS produces 136

grounded and meaningful representations. Further 137

analysis demonstrates that LENS, even when us- 138

ing 2000 clusters, still outperforms embeddings 139

that leverage the original vocabulary space. More- 140

over, combining LENS with dense embeddings 141

achieves SOTA performance on the retrieval subset 142

of MTEB (specifically, BEIR). 143

2 Related Work 144

Lexicon-Based Embeddings. Lexicon-based 145

embeddings assign each dimension of the 146

embedding vector to a specific token in the 147

vocabulary. With the advancements in masked 148

language models, recent studies have demonstrated 149

that lexicon-based embeddings (Mallia et al., 150

2021; Lin and Ma, 2021; Zhuang and Zuccon, 151

2021; Formal et al., 2021b,a; Shen et al., 2023a; 152

Nguyen et al., 2023; Lassance et al., 2024) can 153

deliver superior performance. Among these 154

approaches, SPLADE (Formal et al., 2021b,a; 155

Lassance et al., 2024) stands out as one of the 156

most effective methods, often outperforming dense 157

embeddings (Déjean et al., 2023). Moreover, 158

lexicon-based embeddings have been shown 159

to complement dense embeddings, with their 160

combination yielding substantial performance im- 161

provements (Chen et al., 2024; Shen et al., 2023b; 162

Lin, 2021). Despite these advances, research on 163

lexicon-based embeddings has largely focused on 164

retrieval tasks, leaving other applications relatively 165
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such as clustering and classification underexplored.166

LLM-Based Embeedings. As decoder-only167

LLMs continue to advance, recent work has in-168

vestigated their potential for generating dense text169

embeddings capable of performing well across dif-170

ferent tasks. To align LLMs with text embedding171

tasks, LLM2Vec (BehnamGhader et al., 2024) em-172

ploys masked next-token prediction training and un-173

supervised contrastive learning, while LLaRA (Li174

et al., 2023a) leverages an auto-encoding objective175

to enhance embedding quality. Recent efforts, such176

as E5-Mistral (Wang et al., 2023) and Gecko (Lee177

et al., 2024b), focus on improving embedding mod-178

els by using LLMs to generate diverse training data.179

Additionally, GRIT (Muennighoff et al., 2024) ex-180

plores the combination of contrastive learning and181

language modeling objectives to train a single LLM182

that performs well on both embedding and genera-183

tion tasks. Meanwhile, studies (Muennighoff et al.,184

2024; Lee et al., 2024a; BehnamGhader et al., 2024;185

Li et al., 2024) highlight the significant influence186

of architectural choices on embedding model per-187

formance, with findings (Li et al., 2024) indicating188

that retaining the original unidirectional attention189

often yields the best results.190

Research on leveraging LLMs for lexicon-based191

embeddings remains limited. PromptReps (Zhuang192

et al., 2024) and Mistral-SPLADE (Doshi et al.,193

2024) use prompt engineering to generate lexicon-194

based embeddings from LLMs. However, these195

methods often perform worse than their dense coun-196

terparts, introduce additional computational over-197

head, and are limited to exploring only retrieval198

tasks.199

3 Methodology200

In this section, we first introduce preliminaries for201

a better understanding of the design of our frame-202

work, then formally describe the details of LENS.203

3.1 Preliminaries204

3.1.1 Lexicon-Based Embeddings Using205

Masked Language Models206

SPLADE (Formal et al., 2021b,a; Lassance et al.,207

2024) is a representative method that utilizes208

Masked Language Models (MLMs) and regards the209

logits from the masked language modeling head as210

lexicon-based embeddings, leveraging the bidirec-211

tional attention. The MLM produces a sequence212

of logits L = (l1, l2, . . . , ln), li ∈ R|V | given the213

input sequence, where |V | is the vocabulary size.214

Each logit value lij represents the likelihood of the 215

vocabulary token j being relevant to the position 216

i. Specifically, these scores are produced by the 217

language modeling head, which maps the output 218

hidden states to the vocabulary space using the 219

token embedding matrix. 220

To obtain the lexicon-based embeddings, 221

SPLADE first applies a log-saturation transforma- 222

tion to the logits to scale the weight and enforce it 223

as non-negative, 224

wij = log (1 +ReLU(lij)) . (1) 225

Then it performs max-pooling across logits of all 226

tokens to derive the final weight for each vocabu- 227

lary token, 228

wj = max
i∈n

wij . (2) 229

Despite its proven effectiveness, former research 230

on lexicon-based embeddings using MLMs primar- 231

ily focused on small-scaled models, leaving the 232

performance of larger models mostly unexplored. 233

3.1.2 Lexicon-Based Embeddings Using 234

Causal Language Models 235

Motivated by the growing capability of larger- 236

scaled models, recent works have begun to use 237

causal language models with significantly more pa- 238

rameters, such as LLaMA (Touvron et al., 2023) 239

and Mistral (Jiang et al., 2023), to derive lexicon- 240

based embeddings. Two notable methods are 241

PromptReps (Zhuang et al., 2024) and Mistral- 242

SPLADE (Doshi et al., 2024), which employ 243

prompts to alleviate the limitations brought by the 244

unidirectional attention. 245

PromptReps enables LLMs to generate both 246

dense and lexicon-based embeddings through care- 247

fully designed prompts such as “This sentence [IN- 248

PUT] means in one word:". Dense embeddings 249

are derived from the hidden states of the final to- 250

ken ", and lexicon-based ones are the logits for the 251

next token prediction. Nevertheless, such a method 252

relying solely on prompt causes a substantial per- 253

formance drop of lexicon-based embeddings com- 254

pared to their dense counterparts, e.g., MRR@10 255

of 34.15 vs. 41.86 on the MS MARCO dataset. 256

Mistral-SPLADE adapts SPLADE to large 257

causal models like Mistral by using echo prompt- 258

ing (Springer et al., 2024). It enables full-context 259

visibility of each token by duplicating the input 260

sequence and regards the representations of the 261

second occurrence as the output. Despite getting 262
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advancements on BEIR benchmark, it still lags263

behind dense embeddings like E5-Mistral (Wang264

et al., 2023) and LLM2Vec (BehnamGhader et al.,265

2024), demonstrating that lexicon-based embed-266

dings using large models cannot solely rely on267

prompting.268

Hence, LENS systematically investigate the ar-269

chitecture of LLMs, including attention mecha-270

nisms and pooling methods, rather than exterior271

prompting. We try to unlock the full potential of272

LLMs for lexicon-based embeddings, not only on273

retrieval tasks that have been widely examined be-274

fore, but also on clustering and classification tasks275

which remains unexplored.276

3.1.3 Tokenization in LLMs277

LLM tokenizers, though designed to cover all possi-278

ble text forms for the language modeling objective,279

may hinder the effectiveness of lexicon-based em-280

bedding. i) Extra redundancy can be introduced281

under the same lexeme and further affect the token282

matching. E.g., "What", "what", and " what" can283

be regarded as distinct tokens due to differences284

in case or whitespace, even though they represent285

the same word. ii) Subword fragmentation (Soler286

et al., 2024) split a common word into pieces like287

"education" into "edu" and "cation", posing288

additional matching complexity. iii) Tokenizers289

trained on large corpora often include rare tokens,290

which inflate the vocabulary size and make the em-291

bedding larger and slower to match.292

Therefore, instead of directly using the original293

language modeling head, we simply cluster original294

tokens to form clusters and use their centroid em-295

beddings to replace the original token embeddings296

of the language modeling head. This approach re-297

duces the redundancy by merging related tokens298

and decreases the size of embeddings by using a299

smaller clustered vocabulary.300

3.2 Framework of LENS301

After discussing the background, we introduce the302

framework of our method, as shown in Fig. 2.303

3.2.1 Architecture Design304

Language Modeling Head. Motivated by the re-305

dundancy and noise in LLM tokenizer mentioned306

above, LENS assigns weights to groups of tokens307

with similar meanings, whose effectiveness has308

been verified in Zhang et al. (2024). Specifically,309

we apply KMeans clustering (Hartigan and Wong,310

1979) to the token embeddings from the language311

Figure 2: The model framework of LENS.

modeling head, where k is our desired lexicon- 312

based embedding size. Then the original token 313

embeddings in the LM head are replaced by the 314

cluster centroids, while the input token embeddings 315

remain unchanged. Such a substitution reduces the 316

dimensionality of the lexicon-based embeddings, 317

as the logits now represent scores over fewer clus- 318

ters rather than the original huge vocabulary. Check 319

Table 4 and Appendix A.1 for detailed cluster re- 320

sults. 321

Attention Mechanism. Given the former illus- 322

tration on the limitations of unidirectional attention 323

in typical causal LLMs, we emphasize it restricts 324

the visibility of each token to the entire context. 325

Hence, unlike previous works that rely on non- 326

fundamental solutions like prompt engineering, we 327

address this issue by directly modifying attention 328

to be bidirectional during fine-tuning, which makes 329

prompt design easier and inference more efficient. 330

3.2.2 Representation Generation 331

Following Wang et al. (2023) and Li et al. (2024), 332

given a raw query-passage pair (q, p) for a specific 333

embedding task, we first construct the instructed 334

query input text as 335

qins = ⟨Instruct⟩{task_definition}⟨query⟩{q}.
(3) 336

Here task_definition refers to the definition of the 337

specific embedding task, guiding the model to 338

adapt towards that task. On the other hand, the 339

input of the passage part is solely the original text. 340

Following Wang et al. (2023) and Li et al. (2024), 341

a [EOS] token is also appended to the end of the 342

sequence. 343

We then feed such an input into the modified 344

LLM, and derive a series of logits vectors L = 345

(l1, l2, . . . , ln), li ∈ Rk, where n is the sequence 346
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length and k is our clustering size. To obtain the347

final embeddings, following Formal et al. (2021a),348

log-saturation and max-pooling will be applied to349

L along the sequence dimension which is similar350

to Eq. 1, and 2.351

It is also worth noting that we only employ352

tokens corresponding to the original query q353

to derive the output of the query, avoiding the354

noise brought by task_definition tokens, inspired355

by BehnamGhader et al. (2024). Moreover, con-356

sidering the autoregressive nature of LLMs that357

each logit is used for the prediction of the subse-358

quent position, we shift the logits during pooling.359

In other words, we regard the logit corresponding360

to the neighboring on the left of each token as its361

feature during computation.362

3.2.3 Training363

Recent research has explored various complex364

methods for training embedding models. For exam-365

ple, NV-Embed-v2 (Lee et al., 2024a) employs a366

two-stage training pipeline while also incorporating367

positive-aware hard-negative mining and synthetic368

data generation. In contrast, for simplicity and369

fair comparison, the training of LENS strictly ad-370

heres to the training procedure of BGE-en-ICL (Li371

et al., 2024), an SOTA LLM-based dense embed-372

ding model. It uses a single-stage training process373

and relies exclusively on publicly available data.374

Given a processed input pair (qins, p), we utilize375

the InfoNCE loss as our objective,376

L = − log
exp(sim(qins, p)/τ)

exp( sim(qins,p)
τ ) +

∑N
j=1 exp(

sim(qins,p
−
j )

τ )
(4)377

Here p−j and N denote the negative passage and378

number of negative passages, respectively. sim() is379

the cosine similarity function, defined as sim() =380

cos(hqins , hp), where hqins ∈ Rk and hp ∈ Rk are381

the lexicon-based embeddings from the LLM for382

the instructed query and passage. The temperature383

τ is set to 0.02 in our experiments.384

4 Experiments385

4.1 Setups386

To ensure a fair comparison between dense embed-387

dings and LENS, we strictly adhere to the training388

recipe of the SOTA dense model, BGE-en-ICL.389

Model Setup. The Mistral-7B-v0.1 (Jiang et al.,390

2023) model is used as the backbone in LENS,391

in line with recent works such as BGE-en- 392

ICL (Li et al., 2024), E5-Mistral (Wang et al., 393

2023), NV-Embed-v2 (Lee et al., 2024a), and 394

LLM2Vec (BehnamGhader et al., 2024). To in- 395

vestigate the effect of different clustering sizes to 396

consolidate the output token embeddings, we set 397

k in KMeans clustering to 4,000 and 8,000 clus- 398

ters, referred to as LENS-4000 and LENS-8000, 399

respectively. LENS-4000 can output 4000-d em- 400

beddings, which is comparable to the 4096-d dense 401

embeddings produced by the same backbone LLM. 402

Training Data. We directly utilize the publicly 403

available training data provided by BGE-en-ICL. 404

This dataset is a mixture of retrieval, reranking, 405

clustering, classification, and semantic textual sim- 406

ilarity (STS) tasks. Details about the training data 407

can be found in Appendix A.2. We use the same 408

set of task instructions as BGE-en-ICL, refer to 409

Appendix A.3 for details. 410

Training Configurations. Following BGE-en- 411

ICL, our model is trained for one epoch using 412

LoRA (Hu et al., 2021), where the LoRA rank 413

is 32 and the alpha is 64, and the learning rate is 414

set to 1e-4. Each training sample is composed of 415

1 positive and 7 hard negatives. For retrieval tasks, 416

we use a batch size of 512, whereas a batch size of 417

256 is used for the rest tasks. All data are drawn 418

from the same dataset within the same batch. In 419

retrieval tasks, we employ in-batch negatives and 420

apply a KL-divergence loss to distill ranking scores 421

from the BGE-reranker model2. The maximum 422

length for both the query and passage is set to 512. 423

It should be noted that we deviate from BGE-en- 424

ICL by omitting in-context learning samples dur- 425

ing training and concentrate on zero-shot scenarios 426

solely. It enables us to exclusively evaluate LENS 427

performance, free from extraneous signals. 428

Evaluations. We evaluate the performance of 429

various embedding models using MTEB (Muen- 430

nighoff et al., 2023) and AIR-Bench (Zeng et al., 431

2024). MTEB is a comprehensive text embedding 432

benchmark encompassing seven task types across a 433

total of 56 datasets. AIR-Bench, on the other hand, 434

spans diverse domains for retrieval tasks, including 435

law, healthcare, and books, having no overlap with 436

MTEB. Notably, the ground truth for the test set in 437

AIR-Bench is hidden, and we use the 24.04 version 438

to assess the model’s out-of-domain capabilities. 439

2https://huggingface.co/BAAI/bge-reranker-large
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Task #Dims Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg.
# of datasets → 15 4 11 3 12 10 1 56

Non-Fully Public Training Data
E5-mistral-7b-instruct 4096 56.90 60.21 50.26 88.34 78.47 84.66 31.40 66.63
Linq-Embed-Mistral 4096 60.19 60.29 51.42 88.35 80.20 84.97 30.98 68.17
voyage-large-2-instruct 1024 58.28 60.09 53.35 89.24 81.49 84.31 30.84 68.23
stella_en_400M_v5 8192 58.97 60.16 56.70 87.74 86.67 84.22 31.66 70.11
gte-Qwen2-7B-instruct 3584 60.25 61.42 56.92 85.79 86.58 83.04 31.35 70.24
SFR-Embedding-2_R 4096 60.18 60.14 56.17 88.07 89.05 81.26 30.71 70.31
stella_en_1.5B_v5 8192 61.01 61.21 57.69 88.07 87.63 84.51 31.49 71.19
NV-Embed-v2 4096 62.65 60.65 58.46 88.67 90.37 84.31 30.70 72.31

Fully Public Training Data
LLM2Vec-Mistral-supervised 4096 55.99 58.42 45.54 87.99 76.63 84.09 29.96 64.80
GritLM-7B 4096 57.41 60.49 50.61 87.16 79.46 83.35 30.37 66.76
NV-Embed-v1 4096 59.36 60.59 52.80 86.91 87.35 82.84 31.20 69.32
bge-multilingual-gemma2 3584 59.24 59.72 54.65 85.84 88.08 83.88 31.20 69.88
BGE-en-ICL (zero-shot) 4096 61.67 59.66 57.51 86.93 88.62 83.74 30.75 71.24
LENS-4000 (Ours) 4000 60.76 60.86 57.92 87.93 88.13 84.35 31.56 71.22
LENS-8000 (Ours) 8000 61.86 60.91 58.02 87.98 88.43 84.67 29.54 71.63

Table 1: Top-performing models on the MTEB leaderboard as of December 1, 2024 compared to LENS. #Dims refers
to the embedding dimensions. Abbreviations: Retr. = Retrieval; Rerank. = Reranking; Clust. = Clustering; PairClass.
= Pair Classification; Class. = Classification; STS = Semantic Textual Similarity; Summ. = Summarization. The
best and the second best results using public data are in bold and underlined font respectively.

Domain #Dims wiki web news healthcare law finance arxiv msmarco Avg.
# of datasets → 1 1 1 1 1 1 1 1 8
E5-mistral-7b-instruct 4096 61.67 44.41 48.18 56.32 19.32 54.79 44.78 59.03 48.56
Linq-Embed-Mistral 4096 61.04 48.41 49.44 60.18 20.34 50.04 47.56 60.50 49.69
NV-Embed-v1 4096 62.84 50.42 51.46 58.53 20.65 49.89 46.10 60.27 50.02
gte-Qwen2-7B-instruct 3584 63.46 51.20 54.07 54.20 22.31 58.20 40.27 58.39 50.26
stella_en_1.5B_v5 8192 61.99 50.88 53.87 58.81 23.22 57.26 44.81 61.38 51.53
SFR-Embedding-Mistral 4096 63.46 51.27 52.21 58.76 23.27 56.94 47.75 58.99 51.58
NV-Embed-v2 4096 65.19 52.58 53.13 59.56 25.00 53.04 48.94 60.80 52.28
BGE-en-ICL (zero-shot) 4096 64.61 54.40 55.11 57.25 25.10 54.81 48.46 63.71 52.93
LENS-4000 (Ours) 4000 62.60 52.06 52.49 57.23 24.08 48.87 43.78 61.17 50.28
LENS-8000 (Ours) 8000 65.50 54.52 55.16 58.20 25.62 54.57 45.45 63.00 52.75

Table 2: QA performance on AIR-Bench 24.04 (English) across different models, where nDCG@10 is used as the
metric. #Dims refers to the embedding dimensions. The best and the second best results across all models are in
bold and underlined font respectively.

We compare LENS to numerous baselines,440

including E5-mistral-7b-instruct (Wang et al.,441

2023), NV-Embed-v1/v2 (Lee et al., 2024a),442

gte-Qwen2-7B-instruct (Li et al., 2023b),443

LLM2Vec (BehnamGhader et al., 2024),444

SFR-Embedding-2_R (Meng et al., 2024),445

GritLM-7B (Muennighoff et al., 2024), and446

BGE-en-ICL (Li et al., 2024). The results of447

PromptReps and Mistral-Splade are excluded, as448

they are designed specifically for retrieval tasks449

and their performance falls below of the weakest450

baseline, namely LLM2Vec-Mistral-supervised.451

Some of the baselines use private data during452

training or involve in-context learning. To ensure a453

fair comparison, we focus on zero-shot scenarios454

where no few-shot sample is included in the455

prompt, e.g., BGE-en-ICL.456

4.2 Main results 457

MTEB. Table 1 demonstrates the results of a va- 458

riety of models on MTEB. LENS-8000 achieves 459

the highest average performance among all mod- 460

els trained on fully public data as of December 461

1, 2024. Notably, LENS-8000 outperforms BGE- 462

en-ICL, its dense embedding counterpart trained 463

with the same data and hyperparameters. 6 among 464

7 categories of tasks also demonstrate consistent 465

superiority. Besides, LENS-4000 yields compara- 466

ble performance as BGE-en-ICL, both share equiv- 467

alent feature dimensions, but our lexicon-based 468

method can deliver better transparency. Further- 469

more, LENS-8000 ranks second among all models 470

in overall average performance. The leading model, 471

NV-Embed-v2, attains its superiority through a sig- 472

nificantly more complex training pipeline, which in- 473
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Text Top-weighted clusters

most dependable affordable cars (cars, Cars), (cheap, affordable), (reliable, reli), (depend, depends), (aff, afford)
fastest growing bonsai trees (faster, fastest), (grow, growing), (fast, Fast), (tree, trees), (quickly, rapid)
causes of hypoxia in adults (adult, adults), (oxygen, oxy), (cause, caused), (hyp, yp), (ox, Ox)
weather in lisbon april (Portug, Portuguese), (bon, Bon), (weather, rather), (Spring, spring), (AP, #AP)
other hot flashes causes (hot, Hot), (cause, causes), (flash, Flash), (flush, #flush), (heat, Heat)

Table 3: Qualitive examples of LENS-8000. For each example, the top-5 clusters with the largest weights in the
embeddings are shown, with two tokens from each cluster included.

Clusters

quickly, rapid, rapidly, swift
cannot, impossible, Unable, Cannot, Unable
shows, shown, showed, showing
review, Review, reviews, reviewed, Reviews
educ, education, Educ, Education, educational, Edu

Table 4: Cluster examples of LENS-8000. Each row
presents tokens belonging to a single cluster. More
cluster examples are provided in Appendix A.1.

cludes a two-stage training pipeline, positive-aware474

hard-negative mining, and synthetic data genera-475

tion. By contrast, LENS uses fully public data and476

adopts a simpler training procedure.477

AIR-Bench. We also evaluate LENS along with478

baselines on the QA tasks of AIR-Bench. As479

shown in Table 2, LENS-8000 outperforms the480

top-performing model on MTEB, NV-Embed-v2,481

demonstrating its promising generalization capa-482

bilities. Despite slightly lagging behind its dense483

counterpart BGE-en-ICL, LENS still remains com-484

petitive in several sub-tasks. However, LENS-4000485

performs less competitively, potentially because486

a smaller number of clusters may result in over-487

generalized clusters and information loss.488

4.3 Qualitative Examples489

We present some clustering results in Table 4. It can490

be found that: i) LENS groups semantically equiv-491

alent tokens (e.g., rapid and quickly, cannot492

and impossible); ii) it groups morphologically493

similar tokens (e.g., shows and showed); and iii)494

group uppercase/lowercase variants and whole-495

word/subword forms (e.g., review and Review,496

Edu and education). Such an observation proves497

the effect of clustering to eliminate the redundancy498

and noise of the tokenizer in some ways as we499

expected.500

In addition, qualitative examples from MS501

MARCO of LENS-8000 embeddings are given in502

Table 3. The top-5 clusters with the largest weights503

in the embeddings are presented for each sample,504

where two tokens from each cluster are included.505

Obviously, these clusters are highly semantically 506

relevant to the input texts, which can be regarded as 507

some keywords. There are also interesting findings 508

that the embeddings show some deep understand- 509

ing of the text such as oxygen in response to the 510

input "causes of hypoxia in adults", and some 511

knowledge expansion capabilities like Portuguese 512

and spring for the input "weather in lisbon 513

april". These qualitative samples demonstrate 514

that lexicon-based embeddings from LLMs cap- 515

tures more contextual features rather than some 516

shallow token meanings. 517

Figure 3: Influence of the number of clusters. The
configuration with 32,000 clusters retains the original
token embeddings without clustering.

5 Analysis 518

In this section, we conduct a detailed investigation 519

of LENS. For the sake of computational resources, 520

we reduce the training data of each dataset to 10% 521

of its original size in this part. Besides, we use the 522

same MTEB subset as Jiang et al. (2024) for faster 523

evaluation, as it correlates well with the overall 524

performance of MTEB (details in Appendix A.4). 525

5.1 Influence of the Number of Clusters 526

We investigate how the number of clusters k af- 527

fects the performance, as shown in Figure 3. The 528

configuration with 32,000 clusters retains the origi- 529

nal token embeddings without applying clustering. 530

Our analysis reveals that decreasing the number 531

of output entries from 32,000 tokens consistently 532

improves performance, even when the number of 533

clusters is reduced to as low as 2,000. However, it 534
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Task Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg.
# of datasets → 1 1 1 1 1 1 1 7

Unidirectional Attention
Last-token pooling 73.84 65.19 60.46 96.69 58.66 89.26 30.05 67.73
Sum-pooling 72.46 59.57 50.55 89.90 54.64 80.55 29.70 62.48
Max-pooling 75.18 59.68 50.93 92.06 57.58 82.74 30.89 64.15

Bidirectional Attention
Last-token pooling 76.89 64.21 61.57 96.62 58.33 88.72 30.72 68.15
Sum-pooling 75.65 63.64 61.77 96.97 60.05 89.58 30.98 68.38
Max-pooling 76.19 64.53 63.05 97.03 62.30 88.92 31.49 69.07

Table 5: Influence of attention mechanisms and pooling methods.

Dataset ARG CLI CQA DBP FEV FIQ HOT MSM NFC NQ QUO SCD SCF TOU COV Avg.
BGE-en-ICL 82.76 45.35 47.23 50.42 91.96 58.77 84.98 46.72 40.69 73.85 91.02 25.25 78.33 29.67 78.11 61.67
LENS-8000 (Ours) 76.02 45.77 48.67 49.75 92.32 61.57 85.71 47.24 40.61 74.64 90.79 28.54 79.75 29.34 77.18 61.86
NV-Embed-v2 70.07 45.39 50.24 53.50 93.75 65.73 85.48 45.63 45.17 73.57 89.04 21.90 80.13 31.78 88.44 62.65
LENS (Ours) + BGE 81.37 47.14 48.57 51.79 93.12 62.00 87.12 47.66 41.55 75.81 91.07 28.41 80.19 30.51 78.72 63.00

Table 6: Results in terms of nDCG@10 on the retrieval subset (i.e. BEIR) of MTEB. We use the first three letters of
each dataset’s name as its abbreviation, except SCIDOCS (abbreviated as SCD) and SciFact (abbreviated as SCF).
Bolded values indicate datasets where the combinations outperform both LENS-8000 and BGE-en-ICL individually.
On 12 out of 15 datasets, combining LENS-8000 and BGE-en-ICL results in improved performance.

is crucial to maintain an adequate number of clus-535

ters to prevent information loss that can arise from536

overgeneralization. A configuration of 8,000 clus-537

ters strikes a good balance between effectiveness538

and efficiency (dimensionality). Consequently, we539

employ k = 8, 000 in the subsequent experiments.540

5.2 Influence of Model Architcure541

We extensively investigate the effects of the atten-542

tion mechanism and pooling methods, as illustrated543

in Table 5. For attention, we examine both unidi-544

rectional and bidirectional attention. Regarding545

pooling strategies, we assess max-pooling, sum-546

pooling, and last-token pooling. The results high-547

light the critical role of bidirectional attention in548

achieving strong performance with lexicon-based549

embeddings, as evidenced by its superiority across550

all pooling methods. Among these pooling meth-551

ods, max-pooling emerges as the most effective552

strategy. This finding partially explains the poor553

performance of lexicon-based embeddings from554

PromptReps, which relies on last-token pooling555

with unidirectional attention.556

5.3 Hybrid Lexicon-Dense Embeddings557

Previous studies have demonstrated that lexicon-558

based embeddings and dense embeddings are com-559

plementary, and combining them can lead to signif-560

icant performance improvements. In this section,561

we explore the effectiveness of combining LENS562

with BGE-en-ICL, both trained on the same data563

but representing different types of embeddings. To564

evaluate general-use cases, we concatenate the two 565

embeddings into a single embedding, without ap- 566

plying any additional operations. We hypothesize 567

that enhanced performance could be achieved by 568

tuning the combination weights of the two embed- 569

dings. 570

The results are presented in Table 6. Combin- 571

ing LENS-8000 with BGE-en-ICL yields a sub- 572

stantial performance improvement, increasing from 573

61.67/61.86 to 63.00, which surpasses NV-Embed- 574

v2 and achieves SOTA results on the retrieval sub- 575

set of MTEB as of December 1, 2024. Furthermore, 576

such an improvement is consistent, as evidenced 577

by performance gains on 12 out of 15 datasets. 578

6 Conclusion 579

In this work, we introduce LENS, a simple yet 580

effective framework for generating lexicon-based 581

text embeddings using LLMs. Our approach lever- 582

ages token embedding clustering to address the 583

redundancy challenges inherent in LLM tokenizers, 584

while also enabling bidirectional attention to fully 585

unlock the potential of LLMs. Extensive experi- 586

ments demonstrate the promising effectiveness and 587

generalization capabilities of LENS compared to 588

SOTA dense embeddings. Qualitative examples 589

reveal that LENS produces embeddings that are 590

grounded and demonstrate a deep understanding 591

of the input. Further analyses show the superiority 592

of fusing lexicon-based LENS and dense embed- 593

dings, which surpasses each individual model on 594

the retrieval subset of MTEB (i.e., BEIR). 595
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Limitations596

We acknowledge the following limitations of our597

work. First, our training and evaluation are lim-598

ited to English, leaving multilingual datasets, such599

as Miracl (Zhang et al., 2023), unexplored. This600

restricts the generalizability of our findings to non-601

English contexts. Second, we applied LENS exclu-602

sively to the widely used Mistral-7B model, leaving603

other models unexplored. Additionally, compared604

to previous lexicon-based models like SPLADE,605

utilizing LLMs as the backbone significantly in-606

creases computational costs.607
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A Appendix909

A.1 Clustering results910

Clusters

impact, Impact, impacts
Entity, entity, #Entity, Entities, entities
TV, television, tv, Television, televis
comfort, comfortable, comfort
beautiful, lovely, gorgeous, handsome, beautifully
guy, guys, Guy, dude
fit, FIT, fits, fitting, fitted
recomm, recommend, recommended, recommendation
star, stars, Stars
reach, reached, reaching, reaches, reach

Table 7: Cluster examples of LENS. Each row presents
tokens belonging to a single cluster.

A.2 Training data details911

We leverage the public training data provided by912

BGE-en-ICL (Li et al., 2024). Specifically, the913

training data is a mixture of retrieval, reranking,914

classification, clustering, and STS data.915

• Retrieval: ELI5 (Fan et al., 2019), Hot-916

potQA (Yang et al., 2018), FEVER (Thorne917

et al., 2018), MSMARCO passage and docu-918

ment ranking (Bajaj et al., 2018), NQ, NLI,919

SQuAD, TriviaQA, Quora Duplicate Ques-920

tions (DataCanary et al., 2017), Arguana921

(Wachsmuth et al., 2018), FiQA (Maia et al.,922

2018).923

• Reranking: SciDocsRR (Cohan et al., 2020),924

StackOverFlowDupQuestions (Liu et al.,925

2018).926

• Classification: AmazonReviews-927

Classification (McAuley and Leskovec,928

2013), AmazonCounterfactual-Classification929

(O’Neill et al., 2021), Banking77-930

Classification (Casanueva et al., 2020),931

Emotion-Classification (Saravia et al., 2018),932

TweetSentimentExtraction-Classification933

(Maggie, 2020), MTOPIntent-Classification934

(Li et al., 2021), IMDB-Classification935

(Maas et al., 2011), ToxicConversations-936

Classification (Adams et al., 2019).937

• Clustering: TwentyNewsgroups-938

Clustering (Lang, 1995),939

{Arxiv/Biorxiv/Medrxiv/Reddit/StackExchange}-940

Clustering-{S2S/P2P}941

• STS: STS12 (Agirre et al., 2012), STS22 942

(Chen et al., 2022), STS-Benchmark (Cer 943

et al., 2017). 944

A.3 Task Instructions 945

We present the task instructions we used in Table 8. 946

947

A.4 MTEB Subset Details 948

Following Jiang et al. (2024), for each task cat- 949

egory, we select one dataset for evaluation. The 950

chosen dataset is determined based on the model 951

results presented in the original MTEB paper, fo- 952

cusing on the dataset with the highest correlation 953

to the category’s average performance. 954

• Classification: EmotionClassification 955

• Clustering: TwentyNewsgroupsClustering 956

• Pair classification: SprintDuplicateQuestions 957

• Reranking: AskUbuntuDupQuestions 958

• Retrieval: SciFact 959

• Semantic text similarity: STS15 960

• Summarization: SummEval 961

A.5 Detailed MTEB Results 962

We present the detailed MTEB results in Table 9. 963
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Task Name Instruction

ArguAna Given a claim, find documents that refute the claim.

ClimateFEVER Given a claim about climate change, retrieve documents that support or refute
the claim.

CQADupStack Given a question, retrieve detailed question descriptions from Stackexchange that are
duplicates to the given question.

DBPedia Given a query, retrieve relevant entity descriptions from DBPedia.
FEVER Given a claim, retrieve documents that support or refute the claim.
FiQA2018 Given a financial question, retrieve user replies that best answer the question.
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question.
MSMARCO Given a web search query, retrieve relevant passages that answer the query.
NFCorpus Given a question, retrieve relevant documents that best answer the question.
Natural Question Given a question, retrieve Wikipedia passages that answer the question.

QuoraRetrieval Given a question, retrieve questions that are semantically equivalent to the given
question.

SCIDOCS Given a scientific paper title, retrieve paper abstracts that are cited by the given paper.
SciFact Given a scientific claim, retrieve documents that support or refute the claim.
Touche2020 Given a question, retrieve detailed and persuasive arguments that answer the question.
TREC-COVID Given a query, retrieve documents that answer the query.
STS* Retrieve semantically similar text.
SummEval Given a news summary, retrieve other semantically similar summaries.

AmazonCounterfactualClassification Classify a given Amazon customer review text as either counterfactual
or not-counterfactual.

AmazonPolarityClassification Classify Amazon reviews into positive or negative sentiment.
AmazonReviewsClassification Classify the given Amazon review into its appropriate rating category.
Banking77Classification Given a online banking query, find the corresponding intents.

EmotionClassification Classify the emotion expressed in the given Twitter message into one of the six
emotions: anger, fear, joy, love, sadness, and surprise.

ImdbClassification Classify the sentiment expressed in the given movie review text from
the IMDB dataset.

MassiveIntentClassification Given a user utterance as query, find the user intents.
MassiveScenarioClassification Given a user utterance as query, find the user scenarios.
MTOPDomainClassification Classify the intent domain of the given utterance in task-oriented conversation.
MTOPIntentClassification Classify the intent of the given utterance in task-oriented conversation.
ToxicConversationsClassification Classify the given comments as either toxic or not toxic.
TweetSentimentExtractionClassification Classify the sentiment of a given tweet as either positive, negative, or neutral.

ArxivClusteringP2P Identify the main and secondary category of Arxiv papers based on the titles
and abstracts.

ArxivClusteringS2S Identify the main and secondary category of Arxiv papers based on the titles.
BiorxivClusteringP2P Identify the main category of Biorxiv papers based on the titles and abstracts.
BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles.
MedrxivClusteringP2P Identify the main category of Medrxiv papers based on the titles and abstracts.
MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles.
RedditClustering Identify the topic or theme of Reddit posts based on the titles.
RedditClusteringP2P Identify the topic or theme of Reddit posts based on the titles and posts.
StackExchangeClustering Identify the topic or theme of StackExchange posts based on the titles.
StackExchangeClusteringP2P Identify the topic or theme of StackExchange posts based on the given paragraphs.
TwentyNewsgroupsClustering Identify the topic or theme of the given news articles.
AskUbuntuDupQuestions Retrieve duplicate questions from AskUbuntu forum.
MindSmallReranking Retrieve relevant news articles based on user browsing history.
SciDocsRR Given a title of a scientific paper, retrieve the titles of other relevant papers.
StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum.
SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum.
TwitterSemEval2015 Retrieve tweets that are semantically similar to the given tweet.
TwitterURLCorpus Retrieve tweets that are semantically similar to the given tweet.

AIR-Bench Given a question, retrieve passages that answer the question.

Table 8: Task instructions for MTEB and AIR-Bench benchmarks.
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Dataset gte-Qwen2-
7B-instruct

SFR-Embe
dding-2_R

stella_en_
1.5B_v5

BGE-en-ICL
(zero-shot)

NV-Em
bed-v2

LENS
-4000

LENS
-8000

ArguAna 64.27 62.34 65.27 82.76 70.07 77.32 76.02
ClimateFEVER 45.88 34.43 46.11 45.35 45.39 44.62 45.77
CQADupStack 46.43 46.11 47.75 47.23 50.24 47.39 48.67
DBPEDIA 52.42 51.21 52.28 50.42 53.50 50.10 49.75
FEVER 95.11 92.16 94.83 91.96 93.75 92.37 92.32
FiQA2018 62.03 61.77 60.48 58.77 65.73 60.43 61.57
HotpotQA 73.08 81.36 76.67 84.98 85.48 85.07 85.71
MSMARCO 45.98 42.18 45.22 46.72 45.63 46.95 47.24
NFCorpus 40.60 41.34 42.00 40.69 45.17 41.64 40.61
Natural Question 67.00 73.96 71.80 73.85 73.57 73.13 74.64
QuoraRetrieval 90.09 89.58 90.03 91.02 89.04 90.84 90.79
SCIDOCS 28.91 24.87 26.64 25.25 21.90 27.51 28.54
SciFact 79.06 85.91 80.09 78.33 80.13 78.39 79.75
Touche2020 30.57 28.18 29.94 29.67 31.78 25.86 29.34
TREC-COVID 82.26 87.28 85.98 78.11 88.44 69.73 77.18
BIOSSES 81.37 87.60 83.11 86.35 87.42 84.47 85.83
SICK-R 79.28 77.01 82.89 83.87 82.15 83.81 83.30
STS12 79.55 75.67 80.09 77.73 77.89 79.07 80.99
STS13 88.83 82.40 89.68 85.98 88.30 86.54 87.34
STS14 83.87 79.93 85.07 82.34 84.30 84.32 84.39
STS15 88.54 85.82 89.39 87.35 89.04 89.69 89.75
STS16 86.49 84.50 87.15 86.54 86.77 87.23 87.63
STS17 88.73 88.93 91.35 91.25 90.67 91.55 90.87
STS22 66.88 67.10 68.10 68.08 68.12 68.69 68.09
STSBenchmark 86.85 83.60 88.23 87.92 88.41 88.22 88.47
SummEval 31.35 30.71 31.49 30.75 30.70 31.55 29.54
SprintDuplicateQuestions 92.82 97.62 96.04 95.06 97.02 96.98 97.00
TwitterSemEval2015 77.96 78.57 80.58 78.54 81.11 79.31 79.56
TwitterURLCorpus 86.59 88.03 87.58 87.19 87.87 87.50 87.37
AmazonCounterfactual 91.31 92.72 92.87 92.88 94.28 93.61 93.69
AmazonPolarity 97.50 97.31 97.16 96.86 97.74 97.05 97.07
AmazonReviews 62.56 61.04 59.36 61.28 63.96 62.83 63.61
Banking77 87.57 90.02 89.79 91.42 92.42 90.43 90.19
Emotion 79.45 93.37 84.29 93.31 93.38 92.33 91.87
Imdb 96.75 96.80 96.66 96.91 97.14 97.12 97.00
MassiveIntent 85.41 85.97 85.83 82.26 86.10 79.65 81.14
MassiveScenario 89.77 90.61 90.20 83.92 92.17 81.97 83.53
MTOPDomain 99.04 98.58 99.01 97.99 99.25 97.49 97.44
MTOPIntent 91.88 91.30 92.78 93.56 94.37 92.59 92.81
ToxicConversations 85.12 91.14 88.76 93.16 92.74 92.29 92.37
TweetSentimentExtraction 72.58 79.70 74.84 79.90 80.87 80.17 80.42
Arxiv-P2P 54.46 54.02 55.44 54.42 55.80 54.87 54.81
Arxiv-S2S 51.74 48.82 50.66 49.17 51.26 50.25 50.14
Biorxiv-P2P 50.09 50.76 50.68 52.32 54.09 52.39 52.48
Biorxiv-S2S 46.65 46.57 46.87 48.38 49.60 48.35 48.52
Medrxiv-P2P 46.23 46.66 46.87 46.13 46.09 46.35 46.38
Medrxiv-S2S 44.13 44.18 44.65 44.20 44.86 44.54 44.89
Reddit 73.55 62.92 72.86 71.20 71.10 72.32 72.37
Reddit-P2P 74.13 72.74 75.27 72.17 74.94 73.20 73.89
StackExchange 79.86 76.48 80.29 81.29 82.10 81.70 81.60
StackExchange-P2P 49.41 48.29 49.57 45.53 48.36 43.73 44.41
TwentyNewsgroups 53.91 66.42 61.43 68.51 64.82 69.44 68.78
AskUbuntuDupQuestions 67.58 66.71 67.33 64.80 67.46 65.45 65.74
MindSmallRerank 33.36 31.26 33.05 30.60 31.76 31.92 31.46
SciDocsRR 89.09 87.29 89.20 86.90 87.59 87.92 87.63
StackOverflowDupQuestions 55.66 55.32 55.25 56.32 55.79 58.15 58.79
MTEB Average (56) 70.24 70.31 71.19 71.24 72.31 71.22 71.63

Table 9: Detailed MTEB results.
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