
Squeezing Large-Scale Diffusion Models for Mobile

Jiwoong Choi 1 Minkyu Kim 1 Daehyun Ahn 1 Taesu Kim 1 Yulhwa Kim 2 Dongwon Jo 2 Hyesung Jeon 2

Jae-Joon Kim 2 Hyungjun Kim 1

Abstract
The emergence of diffusion models has greatly
broadened the scope of high-fidelity image syn-
thesis, resulting in notable advancements in both
practical implementation and academic research.
With the active adoption of the model in various
real-world applications, the need for on-device de-
ployment has grown considerably. However, de-
ploying large diffusion models such as Stable Dif-
fusion with more than one billion parameters to
mobile devices poses distinctive challenges due to
the limited computational and memory resources,
which may vary according to the device. In this
paper, we present the challenges and solutions
for deploying Stable Diffusion on mobile devices
with TensorFlow Lite framework, which supports
both iOS and Android devices. The resulting Mo-
bile Stable Diffusion achieves the inference la-
tency of smaller than 7 seconds for a 512 × 512
image generation on Android devices with mobile
GPUs.

1. Introduction
Recently, diffusion models have gained significant interest
by achieving impressive performance in image synthesis
and related tasks. Since the public release of Stable Diffu-
sion (Rombach et al., 2022), one of the foundation models
in diffusion models, there has been a surge of interest in
exploring the potential of the diffusion models in various
fields including image synthesis (Ho et al., 2020; Song et al.,
2021; Rombach et al., 2022; Ho & Salimans, 2022; Saharia
et al., 2022), super-resolution (Li et al., 2022; Sahak et al.,
2023; Gao et al., 2023), inpainting (Lugmayr et al., 2022;
Nichol et al., 2022; Avrahami et al., 2022; Gao et al., 2023),
and many other applications (Luo et al., 2023; Blattmann
et al., 2023; Yang et al., 2023; Liu et al., 2023).

1SqueezeBits Inc., Seoul, South Korea 2Seoul National Uni-
versity, Seoul, South Korea. Correspondence to: Hyungjun Kim
<hyungjun.kim@squeezebits.com>.

Workshop on Challenges in Deployable Generative AI at Inter-
national Conference on Machine Learning (ICML), Honolulu,
Hawaii, USA. 2023. Copyright 2023 by the author(s).

Deploying large diffusion models on mobile devices offers
significant advantages such as reduced server costs and im-
proved user privacy, but it presents unique challenges. These
challenges arise from the large number of parameters, typi-
cally exceeding one billion, which necessitates compressing
the model for deployment on mobile devices. Moverover,
ensuring that the computation latency remains within an
acceptable range is also a crucial consideration.

In this paper, we introduce the implementation of Mobile
Stable Diffusion based on the Stable Diffusion v2.1, achiev-
ing the lowest inference latency on GPU-powered Android
devices, to the best of our knowledge (∼7 seconds on Sam-
sung Galaxy S23 to generate a 512 × 512 image).

2. Background
Diffusion models utilize the reverse diffusion process to
generate images from noise. These models have been rec-
ognized for their ability to address significant challenges
in the field of image synthesis. Specifically, they mitigate
problems such as mode-collapse, training instability, and
quality degradation that are commonly encountered in pre-
vious approaches such as Generative Adversarial Networks
(GANs) or Variational Autoencoders (VAEs). Ho et al.
(2020) initially showcased the capability of diffusion mod-
els in generating high-quality images, although they came
with high computational costs. Subsequent works (Song
et al., 2021; Rombach et al., 2022) have focused on reduc-
ing the computational cost of diffusion models. Song et al.
(2021) introduced a method to decrease the number of de-
noising steps based on the non-Markovian diffusion process.
On the other hand, Rombach et al. (2022) proposed to im-
prove efficiency of diffusion models by applying denoising
steps on latent space.

The advancement in improving efficiency in diffusion mod-
els contributed to the development of Stable Diffusion, a
latent diffusion model for high-resolution image genera-
tion. Stable Diffusion has demonstrated impressive capa-
bilities in both text-to-image and image-to-image synthesis
tasks. The model combines three modules to implement
text-to-image synthesis; a Contrastive Language–Image Pre-
training (CLIP) module that generates guidance from a given
text prompt (text encoder), a U-Net module that conducts

1

Squeezing Large-Scale Diffusion Models for Mobile

Figure 1. (a) Converting a fully-connected layer into a Conv2D layer. (b) Input- and Output-Serialization of a large Conv2D layer.

the reverse diffusion process (denoising network), and a
Decoder module from a VAE model that generates an image
from the output latent tensor (image decoder).

There is a growing demand for on-device image synthe-
sis using the diffusion models, with a focus on enhancing
the models in terms of latency, scalability, and user pri-
vacy. Orhon et al. (2022) introduced the official support
for on-device computations of Stable Diffusion on iOS mo-
bile devices. On Android devices, Hou & Asghar (2023)
recently announced the first mobile deployment of Stable
Diffusion based on the Hexagon processor of the latest
Snapdragon 8 Gen 2 platform. Chen et al. (2023) has also
demonstrated a faster implementation of Stable Diffusion us-
ing mobile GPUs based on private OpenCL kernels. While
prior works have demonstrated the feasibility of deploying
Stable Diffusion on-device, these works commonly relied
on custom-built kernels for acceleration. Particularly in the
case of Android devices, Hou & Asghar (2023) relied on
the Hexagon processor and the dedicated SDK. Addition-
ally, Chen et al. (2023) reported extensive use of private
OpenCL-based kernels, pursuing additional performance
gain with optimized memory access and faster computation.

3. Challenges and Proposed Solutions
We have chosen Google’s TensorFlow Lite (TFLite) runtime
(Google, 2017) as our deployment framework, rather than
constructing custom-built kernels. Opting for TFLite offers
two significant benefits over building custom kernels. First,
the publicly accessibility of TFLite is likely to stimulate
further adoption of on-device Stable Diffusion models in
real-world applications. Moreover, the versatility of TFLite
facilitates the rapid deployment of various diffusion models
on different mobile devices using the same optimization
techniques. In this section, we introduce several technical
challenges we encountered while deploying the Stable Dif-
fusion model using TFLite on a mobile GPU and propose
solutions for them.

3.1. Complete Mobile GPU Delegation

TFLite enables the use of the mobile GPU via a hardware
driver called GPU delegate. It selectively runs supported
operators in a computation graph on the GPU, leaving the
unsupported operators to run on the CPU. However, such
selective execution often leads to sub-optimal performance
due to the expensive communication between CPU and GPU.
Therefore, complete delegation is necessary for achieving
optimal performance.

While the TFLite GPU delegate provides the acceleration
for the most operators involved in Stable Diffusion, it fails to
delegate even officially supported operators when the input
activation size is large. To address the incomplete GPU del-
egation, we propose three methods involving modifications
in the computation graph of the model.

Converting FullyConnected to Conv2D

In spatial transformer blocks of the denoising U-Net net-
work, there exist several fully-connected layers with large
input activations (e.g., 1 × 4096 × 320). Since the large
fully-connected layers failed to be delegated, we convert
them to equivalent convolution layers as shown in Fig. 1.
Note that the depicted FullyConnected layer and the
Reshape-Conv2D-Reshape layers result the same output
and show almost the same latency when benchmarked on
the GPU. Hence, converting all FullyConnected operators
into equivalent Conv2D operators is preferable to prevent
the GPU delegation failure.

Serializing Conv2D with large activations

Although converting fully-connected layers to equivalent
convolution layers enables delegation of layers with large
input activations, we observed that one 3× 3 convolution
layer in the denoising network failed to be delegated with
OpenCL backend due to its large input and output activation
sizes: 1×32×32×1920 and 1×32×32×640, respectively.

2

Squeezing Large-Scale Diffusion Models for Mobile

Figure 2. Images generated with the same textual description and
initial latent with 20 iterations. From left to right: baseline, after
applying input serialization for Conv2D, numerically stable GELU
approximation on Macbook M1 Pro.

Serializing the Conv2D operator can solve this problem
by reducing the activation sizes, but at the cost of multiple
kernel call overhead. Therefore, the minimal serialization
factor should be chosen to avoid excessive overhead.

The serialization can be applied along the input or output
channel dimension as shown in Fig. 1. We find that the min-
imal serialization factor that enables complete delegation is
2 with the latency of 15.5 ms for the input dimension, and
8 with the latency of 40.9 ms for the output dimension by
trying possible serialization factors in increasing order along
each dimension. Thus, we chose the input serialization for
its lower latency.

As the input serialization is a simple reordering of the com-
putation sequence, the output should be very similar to that
of the original graph. We qualitatively examined the gener-
ated images before and after applying the serialization. The
difference between the images was subtle, as shown in the
first two images in Fig. 2.

Broadcast-free Group Normalization

Group normalization is not represented as a single opera-
tor in the TFLite but as a computation graph consisting
of basic operators such as Mean, Square, Rsqrt, and
BroadcastTo. However, BroadcastTo is not supported
by the TFLite GPU delegate, which makes it necessary to
modify the implementation of the group normalization layer.

We notice that the TFLite converter does not create an ex-
plicit BroadcastTo operator when the activations are 4-
dimensional or lower tensors. Hence, we reformat the group
normalization layer so that the dimensions of the activation
tensors are at most 4. Please refer to Fig. 7 in Appendix for
the modified group normalization graph.

3.2. Numerically Stable Approximation of GELU

The images generated on different hardwares are notice-
ably different even if identical textual description and initial
latent have been used as inputs (Fig. 3).

Stable Diffusion adopts float16 as the default data type for
faster operations, which generally works well on server
GPUs without causing any issues. However, it is important

Figure 3. The images generated by different hardwares with the
same initial latent and textual description with 20 iterations. [left:
Galaxy S23 Ultra, right: Apple M1 Pro]

to note that on certain mobile devices, the use of float16
can lead to floating-point exceptions. We identify that the
numerical instability is caused by the approximated GELU
operator in its cubic polynomial term.

GELU(x) ≈ 0.5x(1 + τ(x))

where τ(x) := tanh

(√
2
π (x+ 0.044715x3)

)
Instead of this well-known approximation, we use the fol-
lowing more numerically stable approximation:

GELU(x) ≈ 0.5x
(
1 + τ

(
γM (x)

))
where

γM (x) :=

{
x, if |x| ≤ M

M, otherwise

is a clipping function. We use an empirical value M = 10,
which suppresses the floating-point exceptions and main-
tains the image quality as shown in Fig. 2.

3.3. Pipelined Execution

Figure 4. A qualitative illustration of the memory occupation of
each component of Stable Diffusion during the pipelined execution.
The orange (resp. yellow, green) area represents the memory
occupied by the denoising network (resp. text encoder, image
decoder).

Due to the limited memory available on the mobile devices,
it is often not practical to load all three components of Stable
Diffusion on the memory simultaneously.

We propose a pipelined execution strategy for devices with
small processor memory. While the denoising network is

3

Squeezing Large-Scale Diffusion Models for Mobile

Table 1. Comparison with different Stable Diffusion on Mobile. (image resolution: 512× 512)
MODEL LATENCY DEVICE HARDWARE ENGINE

HOU & ASGHAR (2023) SD V1.5 ∼ 15S (GALAXY S23) HEXAGON PROC. QUALCOMM AI ENGINE
CHEN ET AL. (2023) SD V1.4 ∼ 12S GALAXY S23 ULTRA MOBILE GPU CUSTOM KERNEL

OURS SD V2.1 ∼ 7S GALAXY S23 MOBILE GPU TFLITE

retained on the memory throughout the entire execution, the
text encoder and the image decoder are loaded interchange-
ably via a child thread running parallel with the main thread,
as described in Fig. 4.

3.4. Model Compression

We apply quantization and pruning techniques to the pre-
trained model to reduce the overall memory consumption.
Since mobile GPU does not support integer matrix multipli-
cations, float16 is applied for the activations. However, we
quantize weights into 8-bit precision to reduce the model
size; thus, weights are casted from 8-bit integers to 16-bit
floating points before being involved in the computation.
We further apply structured pruning on huge convolution
layers to minimize memory requirements.

Since it is not straightforward to measure the performance
degradation caused by the quantization and pruning quanti-
tatively, we used block-wise reconstruction error (Li et al.,
2021; Wei et al., 2022) as an indirect metric and the qual-
ity of generated images as a qualitative measure. Fig. 5
shows the output images of the baseline, quantized, and
quantized and pruned model, respectively. Although each
image shows differences in details, they are less prominent
than in Fig. 3.

Figure 5. From left to right: baseline, after applying 8-bit weight
quantization, and pruning.

4. Experiment
In this work, we use Stable Diffusion v2.1 as a baseline
model and optimize it for mobile deployment. We choose
Samsung Galaxy S23 device to measure end-to-end bench-
mark latency. The device has Snapdragon 8 Gen 2 processor
which includes Adreno 740 GPU. In addition to the quan-
tization and pruning, we apply knowledge distillation to
reduce the number of inference steps following Salimans &
Ho (2022) and Meng et al. (2023).

Table 1 shows the end-to-end latency of our model and
the comparison with previous approaches to deploy Stable
Diffusion on mobile. For a fair comparison with previous
works, we measure end-to-end latency for text encoding, 20
effective denoising steps and image decoding. The proposed
approach can successfully generate a 512x512 image from
a given text prompt within 7 seconds as shown in Fig. 6.
In addition, while previous approaches use dedicated or
custom engine to deploy Stable Diffusion on mobile, our
approach enables using off-the-shelf TFLite engine without
any custom modification.

Figure 6. Example images generated by our method on a mobile
device.

5. Conclusion
In this paper, we have discussed a series of optimization
techniques that, in combination, enable the fastest on-device
image synthesis using the Stable Diffusion. These solutions
can be extended to the deployment of other diffusion models,
thereby facilitating the implementation of these models on
various mobile devices, while leveraging the computation
capability of TFLite. We believe that the optimized deploy-
ment to a common and accessible inference framework will
enrich the ecosystem of real-world mobile applications built
upon diffusion models.

4

Squeezing Large-Scale Diffusion Models for Mobile

References
Avrahami, O., Lischinski, D., and Fried, O. Blended diffu-

sion for text-driven editing of natural images. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18208–18218, 2022.

Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim,
S. W., Fidler, S., and Kreis, K. Align your latents: High-
resolution video synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 22563–
22575, June 2023.

Chen, Y.-H., Sarokin, R., Lee, J., Tang, J., Chang, C.-L.,
Kulik, A., and Grundmann, M. Speed is all you need:
On-device acceleration of large diffusion models via gpu-
aware optimizations. arXiv preprint arXiv:2304.11267,
2023.

Gao, S., Liu, X., Zeng, B., Xu, S., Li, Y., Luo, X., Liu,
J., Zhen, X., and Zhang, B. Implicit diffusion models
for continuous super-resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10021–10030, 2023.

Google. Tensorflow lite: Machine learning for mobile and
edge devices. https://www.tensorflow.org/
lite, 2017.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models, 2020.

Hou, J. and Asghar, Z. World’s first on-device demonstra-
tion of stable diffusion on an android phone. 2023.

Li, H., Yang, Y., Chang, M., Chen, S., Feng, H., Xu, Z., Li,
Q., and Chen, Y. Srdiff: Single image super-resolution
with diffusion probabilistic models. Neurocomputing,
479:47–59, 2022.

Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P., Zhang, Q., Yu,
F., Wang, W., and Gu, S. Brecq: Pushing the limit of
post-training quantization by block reconstruction. In
International Conference on Learning Representations,
2021.

Liu, H., Chen, Z., Yuan, Y., Mei, X., Liu, X., Mandic, D.,
Wang, W., and Plumbley, M. D. Audioldm: Text-to-audio
generation with latent diffusion models. arXiv preprint
arXiv:2301.12503, 2023.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte,
R., and Van Gool, L. Repaint: Inpainting using denoising
diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11461–11471, 2022.

Luo, Z., Chen, D., Zhang, Y., Huang, Y., Wang, L., Shen,
Y., Zhao, D., Zhou, J., and Tan, T. Videofusion: De-
composed diffusion models for high-quality video gener-
ation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
10209–10218, June 2023.

Meng, C., Rombach, R., Gao, R., Kingma, D., Ermon,
S., Ho, J., and Salimans, T. On distillation of guided
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
14297–14306, 2023.

Nichol, A. Q., Dhariwal, P., Ramesh, A., Shyam, P.,
Mishkin, P., Mcgrew, B., Sutskever, I., and Chen, M.
Glide: Towards photorealistic image generation and edit-
ing with text-guided diffusion models. In International
Conference on Machine Learning, pp. 16784–16804.
PMLR, 2022.

Orhon, A., Siracusa, M., and Wadhwa, A. Stable diffusion
with core ml on apple silicon, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10684–10695, 2022.

Sahak, H., Watson, D., Saharia, C., and Fleet, D. Denoising
diffusion probabilistic models for robust image super-
resolution in the wild. arXiv preprint arXiv:2302.07864,
2023.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in Neural Information Processing Systems, 35:
36479–36494, 2022.

Salimans, T. and Ho, J. Progressive distillation for fast sam-
pling of diffusion models. In International Conference
on Learning Representations, 2022.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. International Conference on Learning
Representations ICLR, 2021.

Wei, X., Gong, R., Li, Y., Liu, X., and Yu, F. Qdrop:
Randomly dropping quantization for extremely low-bit
post-training quantization. In International Conference
on Learning Representations, 2022.

Yang, D., Yu, J., Wang, H., Wang, W., Weng, C., Zou, Y.,
and Yu, D. Diffsound: Discrete diffusion model for text-
to-sound generation. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2023.

5

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite

Squeezing Large-Scale Diffusion Models for Mobile

A. Visualization of computational graphs
We provide visualization of computational graphs proposed in the main text. Fig. 7 shows the computational graph of
original group normalization layer in TFLite format and that of the reimplemented group normalization layer. All of the
BroadcastTo operations and 5-dimension activations are removed in the reimplemented version.

In Fig. 8 , the computational graph of the modified version of GELU is depicted. Note that the additional operations
(Minimum and Maximum) are added in the beginning of the graph.

Figure 7. Left: the original group normalization; Right: reimplemented group normalization without any BroadcastTo operator

6

Squeezing Large-Scale Diffusion Models for Mobile

Figure 8. The numerically stable approximation of GELU

7

