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Abstract

Several issues in machine learning and inverse problems require to generate discrete
data, as if sampled from a model probability distribution. A common way to do
so relies on the construction of a uniform probability distribution over a set of N
points which minimizes the Wasserstein distance to the model distribution. This
minimization problem, where the unknowns are the positions of the atoms, is
non-convex. Yet, in most cases, a suitably adjusted version of Lloyd’s algorithm —
in which Voronoi cells are replaced by Power cells — leads to configurations with
small Wasserstein error. This is surprising because, again, of the non-convex nature
of the problem, as well as the existence of spurious critical points. We provide
explicit estimates for the convergence of this Lloyd-type algorithm, starting from
a cloud of points that are sufficiently far from each other. Our estimates are tight
when the algorithm is initialized from an point cloud that is evenly distributed in
the ambient space. Similar bounds can be deduced for the corresponding gradient
descent. These bounds naturally lead to a modified Poliak-Łojasiewicz inequality
for the Wasserstein distance cost, with an error term depending on the distances
between Dirac masses in the discrete distribution.

1 Introduction

In recent years, the theory of optimal transport has been the source of stimulating ideas in machine
learning and in inverse problems. Optimal transport can be used to define distances, called Wasserstein
or earth-mover distances, between probability distributions over a metric space. These distances
allows one to measure the closeness between a generated distribution and a model distribution, and
they have been used with success as data attachment terms in inverse problems. Practically, it has been
observed for several different inverse problems that replacing usual loss functions with Wasserstein
distances tend to increase the basin of convergence of the methods towards a good solution of the
problem, or even to convexify the landscape of the minimized energy [8, 7]. This good behaviour is
not fully understood, but one may attribute it partly to the fact that the Wasserstein distances encodes
the geometry of the underlying space. A notable use of Wasserstein distances in machine learning is
in the field of generative adversarial networks, where one seeks to design a neural network able to
produce random examples whose distribution is close to a prescribed model distribution [2].
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Wasserstein distance and Wasserstein regression Given two probability distributions ρ, µ on Rd,
the Wasserstein distance of exponent p between ρ and µ is a way to measure the total cost of moving
mass distribution described by ρ to µ, knowing that moving a unit mass from x to y costs ∥x− y∥p.
Formally, it is defined as the value of an optimal transport problem between ρ and µ:

Wp(ρ, µ) =

(
min

π∈Π(ρ,µ)

∫
∥x− y∥pdπ(x, y)

)1/p

, (1)

where we minimize over the set Π(ρ, µ) of transport plans between ρ and µ, i.e. probability
distributions over Rd × Rd with marginals ρ and µ. Standard references on the theory of optimal
transport include books by Villani and by Santambrogio [21, 22, 20], while the computational and
statistical aspects are discussed in a survey of Cuturi and Peyré [17].

In this article, we consider regression problems with respect to the Wasserstein metric, which can be
put in the following form

min
θ∈Θ

Wp
p(Tθ#µ, ρ), (2)

where µ is the reference distribution, a probability measure on [0, 1]ℓ, ρ is the model distribution, a
probability measure on Rd, and where Tθ : [0, 1]ℓ → Rd is a family of maps indexed by a parameter
θ ∈ Θ. In the previous formula, we also denoted Tθ#µ the image of the measure µ under the map Tθ,
also called pushforward of µ under Tθ. This image measure is defined by Tθ#µ(B) := µ(T−1

θ (B))
for any measurable set B in the codomain of Tθ. In this work, we will concentrate on the quadratic
Wasserstein distance W2. Several problems related to the design of generative models can be put under
the form (2), see for instance [9, 2]. Alternatively, in some occasions ([4] and initially [18]), extracting
a uniform quantization can be used as an intermediate step in k-means clustering. Let us note briefly
here that our estimates do not make assumptions on the absolute continuity of the sampled measure
and are therefore valid in this fully discrete case. In any case, solving (2) numerically is challenging
for several reasons, but in this article we will concentrate on one of them: the non-convexity of the
Wasserstein distance under displacement of the measures.

Non-convexity of the Wasserstein distance under displacements. It is well known that the
Wasserstein distance is convex for the standard (linear) structure of the space of probability measures,
meaning that if ν0 and ν1 are two probability measures and νt = (1 − t)ν0 + tν1, then the map
t ∈ [0, 1] 7→ Wp

p(νt, ρ) is convex. Using a terminology from physics, we may say that the Wasserstein
distance is convex for the Eulerian structure of the space of probability measures, e.g. when one
interpolates linearly between the densities. However, in the regression problem (2), the perturbations
are Lagrangian rather than Eulerian, in the sense that modifications of the parameter θ leads to a
displacement of the support of the measure Tθ#µ. This appears very clearly in particular when µ is
the uniform measure over a set X = (x1, . . . , xN ) of N point in [0, 1]d, i.e. µ = δX with

δX
def
=

1

N

N∑
i=1

δxi
.

In this case Tθ#µ is the uniform measure over the set Tθ(X) = (Tθ(x1), . . . , Tθ(xn)), i.e. Tθ#µ =
δTθ(X). In this article, we will therefore be interested by the function

FN : Y ∈ (Rd)N 7→ 1

2
W 2

2 (ρ, δY ) . (3)

This function FN is not convex, and actually exhibits (semi-)concavity properties. This has been
observed first in [1] (Theorem 7.3.2), and is related to the positive curvature of the Wasserstein space.
A precise statement in the context considered here may also be found as Proposition 21 in [15]. A
practical consequence of the lack of convexity of FN is that critical points of FN are not necessarily
global minimizers. It is actually easy to construct examples of families of critical points YN of FN

such that FN (YN ) is bounded from below by a positive constant, while limN→∞ minFN = 0, so
that the ratio between FN (YN ) and minFN is arbitrarily large as N → +∞. This can be done by
concentrating the points YN on lower-dimensional subspaces of Rd, as in Remarks 2 and 3.

When applying gradient descent to the nonconvex optimization problem (2), it is in principle possible
to end up on local minima corresponding to a high energy critical points of the Wasserstein distance,
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Figure 1: From left to right, a point cloud Y 0 in the square Ω = [0, 1]× [0, 1], the associated power
cells Pi(Y ) in the optimal transport to the Lebesgue measure on Ω, the vectors −N∇FN (Y 0) =
BN (Y 0)− Y 0 followed during the Lloyd step and the positions of the barycenters Y 1 = BN (Y ).

regardless of the non-linearity of the map θ 7→ Tθ#µ. Our main theorem, or rather its Corollary 6
shows that if the points of Y are at distance at least ε > 0 from one another, then

FN (Y )− C
1

Nεd−1
≤ N∥∇FN (Y )∥2.

In the previous inequality, ∥∇FN (Y )∥ denotes the Euclidean norm of the vector in RNd obtained
by putting one after the other the gradients of FN w.r.t. the positions of the atoms yi. We note that
due to the weights 1/N in the atomic measure δY , the components of this vector are in general of
the order of 1/N , see Proposition 1. This inequality resembles the Polyak-Łojasiewicz inequality,
and shows in particular that if the quantization error FN (Y ) = W2

2(ρ, δY ) is large, i.e. larger than
ε1−d/N , then the point cloud Y is not critical for FN . From this, we deduce in Theorem 7 that if the
points in the initial cloud are not too close to each other at the initialization, then the iterates of fixed
step gradient descent converge to points with low energy FN , despite the non-convexity of FN .

Relation to optimal quantization Our main result also has implications in terms of the uniform
optimal quantization problem, where one seeks a point cloud Y = (y1, . . . , yN ) in (Rd)N such that
the uniform measure supported over Y , denoted δY , is as close as possible to the model distribution ρ
with respect to the 2-Wasserstein distance:

min
Y ∈ΩN

FN (Y ). (4)

The uniform optimal quantization problem (4) is a very natural variant of the (standard) optimal
quantization problem, where one does not impose that the measure supported on Y is uniform:

min
Y ∈(Rd)N

GN (Y ), where GN : Y ∈ (Rd)N 7→ min
µ∈∆N

W2
2

(
ρ,

N∑
i=1

µiδyi

)
, (5)

and where ∆N ⊆ RN is the probability simplex. This standard optimal quantization problem is a
cornerstone of sampling theory, and we refer the reader to the book of Graf and Luschgy [11] and
to the survey by Pagès [16]. The uniform quantization problem (4) is less common, but also very
natural. It has been used in imaging to produce stipplings of an image [5, 3] or for meshing purposes
[10]. A common difficulty for solving (5) and (4) numerically is that the minimized functionals
FN and GN are non-convex and have many critical points with high energy. However, in practice,
simple fixed-point or gradient descent stategies behave well when the initial point cloud is not chosen
adversely. Our second contribution is a quantitative explanation for this good behaviour in the case of
the uniform optimal quantization problem.

Lloyd’s algorithm [13] is a fixed point algorithm for solving approximately the standard optimal
quantization problem (5). Starting from a point cloud Y k = (yk1 , . . . , y

k
N ) ∈ (Rd)N with distinct

points, one defines the next iterate Y k+1 in two steps. First, one computes the Voronoi diagram of Y ,
a tessellation of the space into convex polyhedra (Vi(Y

k))1≤i≤N , where

Vi(Y ) = {x ∈ Ω | ∀j ∈ {1, . . . , N}, ∥x− yi∥ ≤ ∥x− yj∥}. (6)

In the second step, one moves every point yki towards the barycenter, with respect to ρ, of the
corresponding cell Vi(Y

k). This algorithm can also be interpreted as a fixed point algorithm for
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solving the first-order optimality condition for (5), i.e. ∇GN (Y ) = 0. One can show that the energy
(GN (Y k))k≥0 decreases in k. The convergence of Y k towards a critical point of FN as k → +∞
has been studied in [6], but the energy of this limit critical point is not guaranteed to be small.

In the case of the uniform quantization problem (4), one can try to minimize the energy FN by
gradient descent, defining the iterates

Y k+1 = Y k − τN∇FN (Y k), (7)

where τ > 0 is the time step. The factor N in front of ∇FN is set as a compensation for the fact that we
have, in general, ∇FN (Y ) = O(1/N). When τ = 1, one recovers a version of Lloyd’s algorithm for
the uniform quantization problem, involving barycenters BN (Y ) of Power cells, rather than Voronoi
cells, associated to Y . More precisely, Proposition 1 proves that ∇FN (Y ) = (Y −BN (Y ))/N so
that Y k+1 = BN (Y k) when τ = 1. Quite surprisingly, we prove in Corollary 4 that if the points in
the initial cloud Y 0 are not too close to each other, then the uniform measure over the point cloud
Y 1 = Y 0 − N∇FN (Y 0) obtained after only one step of Lloyd’s algorithm is close to ρ. This is
illustrated in Figure 1. We prove in particular the following statement.
Theorem (Particular case of Corollary 4). Let ρ be a probability density over a compact convex set
Ω ⊆ Rd, let Y 0 = (y01 , . . . , y

0
N ) ∈ Ωd and assume that the points lie at some positive distance from

one another: for some constant c,

∀i ̸= j, ∥y0i − y0j ∥ ≥ cN−1/d,

corresponding for instance to a point cloud sampled on a regular grid. Then, the point cloud
Y 1 = Y 0 −N∇FN (Y 0) obtained after one step of Lloyd’s algorithm satisfies

W2
2(δY 1 , ρ) ≤ Cc,d,ΩN

−1/d,

where Cc,d,Ω is a constant depending on c, d and diam(Ω).

Outline In Section 2, we start by a short review of background material on optimal transport and
optimal uniform quantization. We then establish our main result (Theorem 3) on the approximation
of a measure ρ by barycenters of Power cells. This theorem yields error estimates for one step of
Lloyd’s algorithm in deterministic and probabilistic settings (Corollaries 4 and 5). In Section 3, we
establish a Polyak-Łojasiewicz-type inequality (Corollary 6) for the function FN : Y 7→ 1

2W
2
2(ρ, δY )

introduced in (3), and we study the convergence of a gradient descent algorithm for FN (Theorem 7).
Finally, in Section 4, we report numerical results on optimal uniform quantization in dimension
d = 2.

2 Lloyd’s algorithm for optimal uniform quantization

Optimal transport and Kantorovich duality In this section we briefly review Kantorovich duality
and its relation to semidiscrete optimal transport. The cost is fixed to c(x, y) = ∥x− y∥2, and we
assume that ρ is a probability density over a compact convex domain Ω. In this setting, Brenier’s
theorem implies that given any probability measure µ supported on Ω, the optimal transport plan
between ρ and µ, i.e. the minimizer π in the definition of the Wasserstein distance (1) with p = 2, is
induced by a transport map Tµ : Ω → Ω, meaning π = (Tµ, Id)#ρ. One can derive an alternative
expression for the Wasserstein distance using Kantorovich duality, which leads to a more precise
description of the optimal transport map [20, Theorem 1.39]:

W2
2(ρ, µ) = max

ϕ:Y→R

∫
Rd

ϕdµ+

∫
Ω

ϕcdρ, (8)

where ϕc(x) = mini c(x, yi)− ϕi. When µ = δY is the uniform probability measure over a point
cloud Y = (y1, . . . , yN ) containing N distinct points, we set ϕi = ϕ(yi) and we define the ith Power
cell associated to the couple (Y, ϕ) as

Powi(Y, ϕ) = {x ∈ Rd | ∀j ∈ {1, . . . , N}, ∥x− yi∥2 − ϕi ≤ ∥x− yj∥2 − ϕj}.
Then, the Kantorovich dual (8) of the optimal transport problem between ρ and δY turns into a
finite-dimensional concave maximization problem

W2
2(µ, ρ) = max

ϕ∈RN

N∑
i=1

ϕi

N
+

∫
Powi(Y,ϕ)

(
∥x− yi∥2 − ϕi

)
dρ(x) (9)
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By Corollary 1.2 in [12], a vector ϕ ∈ RN is optimal for this maximization problem if and only if the
potential ϕ is such that each Power cell contains the same amount of mass, i.e. if

∀i ∈ {1, . . . , N}, ρ(Powi(Y, ϕ)) =
1

N
, (10)

From now on, we denote Pi(Y ) = Powi(Y, ϕ) ∩ Ω, where ϕ ∈ RN satisfies (10). The optimal
transport map TY between ρ and δY sends every Power cell Pi(Y ) to the point yi, i.e. it is defined
ρ-almost everywhere by TY |Pi(Y ) = yi. We refer again to the introduction of [12] for more details.

Optimal uniform quantization In this article, we study the behaviour of the squared Wasserstein
distance between the (fixed) probability density ρ and a uniform finitely supported measure δY where
Y = (y1, . . . , yN ) is a cloud of N points, in terms of variations of Y . As in equation (3), we denote
FN = 1

2W
2
2(ρ, ·). Proposition 21 in [15] gives an expression for the gradient of F , and proves its

semiconcavity. We recall that F is called α–semiconcave, with α ≥ 0, if the function F − α
2 ∥ · ∥

2 is
concave. We denote DN the generalized diagonal

DN = {Y ∈ (Rd)N | ∃i ̸= j s.t. yi = yj}.

Proposition 1 (Gradient of FN ). The function FN is 1
N –semiconcave on (Rd)N and is of class C1

on (Rd)N \ DN . In addition, one has

∀Y ∈ (Rd)N \ DN ,∇FN (Y ) =
1

N
(Y −BN (Y )), where BN (Y ) = (b1(Y ), . . . , bN (Y )) (11)

and where bi(Y ) is the barycenter of the ith power cell, i.e. bi(Y ) = N
∫
Pi(Y )

xdρ(x).

It is not difficult to prove that FN admits at least one minimizer, and that this minimizer Y satisfies
the first-order optimality condition Y = BN (Y ). A point cloud that satisfies this condition is called
critical.
Remark 1 (Upper bound on the minimum of FN ). We note from [15, Proposition 12] that when ρ is
supported on a compact subset of Rd, then

minFN = min
Y ∈(Rd)N

1

2
W2

2(ρ, δY ) ≲


N− 2

d if d > 2

N−1 logN if d = 2

N−1 if d = 1.

(12)

Remark 2 (High energy critical points). On the other hand, since
FN is not convex, this first-order condition is not sufficient to have a
minimizer of FN . For instance, if ρ ≡ 1 on the unit square Ω = [0, 1]2,
one can check that the point cloud

YN =

((
1

2N
,
1

2

)
,

(
3

2N
,
1

2

)
, . . . ,

(
2N − 1

2N
,
1

2

))
is a critical point of FN but not a minimizer of FN . In fact, this critical point becomes arbitrarily bad
as N → +∞ in the sense that

lim
N→+∞

FN (YN )

minFN
= +∞.

On the other hand, we note that the point cloud YN is highly concentrated, in the sense that the
distance between consecutive points in YN is 1

2N , whereas in an evenly distributed point cloud, one
would expect the minimum distance between points to be of order N−1/d.

Gradient descent and Lloyd’s algorithm One can find a critical point of FN by following the
discrete gradient flow of FN , defined in (7), starting from an initial position Y 0 ∈ (Rd)N \ DN .
Thanks to the expression of ∇FN given in Proposition 1, the discrete gradient flow may be written as

Y k+1 = Y k + τN (BN (Y k)− Y k), (13)
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where τN is a fixed time step. For τN = 1, one recovers a variant of Lloyd’s algorithm, where one
moves every point to the barycenter of its Power cell Pi(Y

k) at each iteration:

Y k+1 = BN (Y k) (14)

We can state the following result about Lloyd’s algorithm for the uniform quantization problem,
whose proof is postponed to the appendix.
Proposition 2. Let N be a fixed integer and (Y k)k≥0 be the iterates of (14), with Y 0 ̸∈ DN .
Then, the energy k 7→ FN (Y k) is decreasing, and limk→+∞ ∥∇FN (Y k)∥ = 0. Moreover, the
sequence (Y k)k≥0 belongs to a compact subset of (Rd)N \DN and every limit point of a converging
subsequence of it is a critical point for FN .

Experiments suggest that following the discrete gradient flow of FN does not bring us to high energy
critical points of FN , such as those described in Remark 2, unless we started from an adversely
chosen point cloud. The following theorem and its corollaries, the main results of this article, backs
up this experimental evidence. It shows that if the point cloud Y is not too concentrated, then the
uniform measure over the barycenters of the power cells, δBN (Y ), is a good quantization of the
probability density ρ, i.e. it bounds the quantization error after one step of Lloyd’s algorithm (14).

We will use the following notation for ε > 0:

Iε(Y ) = {i ∈ {1, . . . , N} | ∀j ̸= i, ∥yi − yj∥ ≥ ε}.

DN,ε = {Y ∈ (RN )d | ∃i ̸= j, ∥yi − yj∥ ≤ ε}.
Note that DN,ε is an ε-neighborhood around the generalized diagonal DN .

Theorem 3 (Quantization by barycenters). Let Ω ⊆ Rd be a compact convex set, ρ a probability
density on Ω and consider a point cloud Y = (y1, . . . , yN ) in ΩN \ DN . Then, for all 0 < ε ≤ 1,

W2
2

(
ρ, δBN (Y )

)
≤ Cd,Ω

(
ε1−d

N
+ 1− Card(Iε(Y ))

N

)
. (15)

where Cd,Ω = 22d−1

ωd−1
(diam(Ω) + 1)d+1 and where ωd−1 is the volume of the unit ball in Rd−1.

The proof relies on arguments from convex geometry. In particular, we denote A⊕B the Minkowski
sum of sets: A⊕B = {a+ b | (a, b) ∈ A×B}.

Proof. Let ϕ1 ∈ RN be the solution to the dual Kantorovich problem (10) between ρ and δY . We
let ϕt = tϕ1 and we denote P t

i = Powi(Y, ϕ
t) ∩ Ω′ the ith Power cell intersected with the slightly

enlarged convex set Ω′ = Ω⊕ B(0, 1). This way, P 1
i ⊇ Pi(Y ) whereas P 0

i is in fact the intersection
of the i-th Voronoi cell defined in (6) with Ω′.

We will now prove an upper bound on the sum of the diameters of the cells Pi(Y ) whose index lies
in Iε(Y ). First, we notice the following inclusion, which holds for any t ∈ [0, 1]:

(1− t)P 0
i ⊕ tP 1

i ⊆ P t
i , (16)

Indeed, let x0 ∈ P 0
i and x1 ∈ P 1

i , so that for all j ∈ {1, . . . , N} and k ∈ {0, 1},

∥xk − yi∥2 − ϕi ≤ ∥xk − yj∥2 − ϕj .

Expanding the squares and substracting ∥xk∥2 on both sides these inequalities become linear in
ϕi, ϕj and xk, implying directly that xt = (1− t)x0 + tx1 ⊆ P t

i as desired.

For any index i ∈ Iε, the point yi is at distance at least ε from other points, implying that B(0, ε
2 ) is

contained in the Voronoi cell Vi(Y ) with Ω′. Using that P 0
i = Vi(Y ) ∩ Ω′, that Ω′ = Ω⊕ B(0, 1)

and that yi ∈ Ω, we deduce that P 0
i contains the same ball. On the other hand, P 1

i contains a segment
Si of length diam(P 1

i ) and inclusion (16) with t = 1
2 gives

1

2
(B(yi, ε/2)⊕ Si) ⊆ P

1/2
i .

The Minkowski sum in the left-hand side contains in particular the product of a (d− 1)-dimensional
ball of radius ε/2 with an orthogonal segment with length diam(P 1

i ) ≥ diam(Pi(Y )). Thus,

1

2d

(
ωd−1

εd−1

2d−1
diam(Pi(Y ))

)
≤ |P

1
2
i |,
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where |.| denotes the Lebesgue measure. Using that the Power cells P
1
2
i form a tesselation of the

domain Ω′, we therefore obtain∑
i∈Iε(Y )

diam(Pi(Y )) ≤ 22d−1

ωd−1
|Ω′| ε1−d ≤ 22d−1

ωd−1
(diam(Ω) + 1)dε1−d (17)

We now estimate the transport cost between δB and the density ρ, where B = BN (Y ). The transport
cost due to the points whose indices do not belong to Iε(Y ) can be bounded in a crude way by∑

i ̸∈Iε(Y )

∫
Pi(Y )

∥x− bi(Y )∥2dρ(x) ≤ (1− Card Iε(Y )

N
) diam(Ω)2.

Note that we used ρ(Pi(Y )) = 1
N . On the other hand, the transport cost associated with indices in

Iε(Y ) can be bounded using (17) and diam(Pi(Y )) ≤ diam(Ω):∑
i∈Iε(Y )

∫
Pi(Y )

∥x− bi(Y )∥2dρ(x) ≤ 1

N

∑
i∈Iε(Y )

diam(Pi(Y ))2

≤ 1

N
diam(Ω)

∑
i∈Iε

diam(Pi(Y ))

≤ 22d−1

ωd−1
(diam(Ω) + 1)d+1 ε

1−d

N

In conclusion, we obtain the desired estimate:

W2
2

(
ρ, δBN (Y )

)
≤ 22d−1

ωd−1
(diam(Ω) + 1)d+1 ε

1−d

N
+ diam(Ω)2

(
1− Card Iε

N

)
.

This theorem could be extended mutatis mutandis to the case where ρ is a general probability measure
(i.e. not a density). However, this would imply some technical complications in the definition of the
barycenters bi by introducing a disintegration of ρ with respect to the transport plan π.

Consequence for the uniform Lloyd’s algorithm (14) In the next corollary, we assume that any
pair of distinct points in YN ∈ (Rd)N is bounded from below by εN ≥ CN−β , implying that
IεN (YN ) = N . This corresponds to the value one could expect for a point set uniformly sampled
from a set with Minkowski dimension β. When β > d − 1, the corollary asserts that one step of
Lloyd’s algorithm is enough to approximate ρ, in the sense that the uniform measure δBN (YN ) over
the barycenters converges towards ρ as N → +∞.
Corollary 4 (Quantization by barycenters, asymptotic case). Assume εN ≥ C ·N−1/β with C, β > 0.
Then, with α = 1− d−1

β

∀Y ∈ (Rd)N \ DN,εN , W2
2(ρ, δBN (Y )) ≤

Cd,Ω

Cd−1
N−α, (18)

and in particular, if β > d− 1,
lim

N→+∞
max

Y ∈(Rd)N\DεN

W2
2(ρ, δBN (Y )) = 0. (19)

Remark 3 (Optimality of the exponent when β = d). There is no reason to believe that the exponent
in the upper bound (18) is optimal in general. However, it seems to be optimal in a “worst-case
sense” when β = d. More precisely, we show the following result in Appendix E: for any δ ∈ (0, 1),
and for every N = nd (n ∈ N) there exists a sequence of separable probability densities ρN over
X = [−1, 1]d (ρN is a truncated Gaussian distributions, whose variance converges to zero slowly as
N → +∞) such that if YN is a uniform grid of size n× · × n = Nd in X , then

W2
2(δBN (YN ), ρN ) ≥ CN− (2−δ)

d ,

where C is independent of N . On the other hand, in this setting every point in YN is at distance at
least CN−1/d from any other point in YN . Applying Corollary 4 with β = d, i.e. α = 1

d , we get

W2
2(δBN (YN ), ρN ) ≤ C ′N− 1

d .

Comparing this upper bound on W2
2(δBN (YN ), ρN ) with the above lower bound, one sees that is is

not possible to improve the exponent.
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Remark 4 (Optimality of (19)). The assumption β > d − 1 for (19) is tight: if ρ is the Lebesgue
measure on [0, 1]d, it is possible to construct a point cloud YN with N points on the (d − 1)-cube
{ 1
2}× [0, 1]d−1 such that distinct point in YN are at distance at least εN ≥ C ·N−1/(d−1). Then, the

barycenters BN (YN ) are also contained in the cube, so that W2
2(ρ, δBN (YN )) ≥ 1

12 .

The next corollary is a probabilistic analogue of Corollary 4, assuming that the initial point cloud Y
is drawn from a probability density σ on Ω. Note that σ can be distinct from ρ. The proof of this
corollary relies on McDiarmid’s inequality to quantify the proportion of ε-isolated points in a point
cloud that is drawn randomly and independently from σ. The proof of this result is in Appendix B.
Corollary 5 (Quantization by barycenters, probabilistic case). Let σ ∈ L∞(Ω) and let X1, ..., XN

be i.i.d. random variables with distribution σ ∈ L∞(Rd). Then, there exists a constant C > 0
depending only on ∥σ∥L∞ and d, such that for N large enough,

P

(
W 2

2

(
1

N

N∑
i=1

δbXi , ρ

)
≲ N− 1

2d−1

)
≥ 1− e−CN

2d−3
2d−1

3 Gradient flow and a Polyak-Łojasiewicz-type inequality

Theorem 3 can be interpreted as a modified Polyak-Łojasiewicz-type (PŁ for short) inequality for the
function FN . The usual PŁ inequality for a differentiable function F : RD → R is of the form

∀Y ∈ RD, F (Y )−minF ≤ C∥∇F (Y )∥2,
where C is a positive constant. This inequality has been originally used by Polyak to prove conver-
gence of gradient descent towards the global minimum of F . Note in particular that such an inequality
implies that any critical point of F is a global minimum of F . By Remark 2, FN has critical points
that are not minimizers, so that we cannot expect the standard PŁ inequality to hold. What we get
is a similar inequality relating FN (Y ) and ∥∇FN (Y )∥2 but with a term involving the minimimum
distance between the points in place of minFN .
Corollary 6 (Polyak-Łojasiewicz-type inequality). Let Y ∈ (Rd)N \ DN,ε. Then,

FN (Y )− Cd,Ω
1

N

(
1

ε

)d−1

≤ N∥∇FN (Y )∥2 (20)

A proof of Corollary 6 can be found in Appendix C. We note that when ε ≃ N−1/d, the second
term of the left-hand side of (20) has order N−1/d. On the other hand, as recalled in Remark 1,
minFN ≲ N−2/d when d > 2. Thus, (20) is strictly weaker than the PŁ inequality, which would
involve the minimum of FN .

Convergence of a discrete gradient flow The modified Polyak-Łojasiewicz inequality (20) sug-
gests that the discrete gradient flow 13 will bring us close to a point cloud with low Wasserstein
distance to ρ, provided that we can guarantee that the the points clouds Y k remain far from the
generalized diagonal DN during the iterations. We prove in Lemma 3 in Appendix D that if
Y k+1 = Y k − τN∇FN (Y k) and τN ∈ (0, 1), then

∀i ̸= j,
∥∥yk+1

i − yk+1
j

∥∥ ≥ (1− τN )∥yki − ykj ∥. (21)

We note that this inequality ensures that Y k never touches the generalized diagonal DN , so that the
gradient ∇FN (Y k) is well-defined at each step. Combining this inequality with Theorem 3, one can
actually prove that if the points in the initial cloud Y 0

N are not too close to each other, then a few steps
of gradient discrete gradient descent leads to a discrete measure Y k

N that is close to the target ρ. We
stress here that the goal of this paragraph is to showcase these kinds of several-steps estimates, in the
simple case of our gradient flow for FN . However, in this case, it provides a worse convergence rate
to 0 (w.r.t. N ) than that given by Corollary 4 and the decrease of the energy along the iterations from
Proposition 2. Precisely, we arrive at the following theorem, proved in Appendix D.

Theorem 7. Let 0 < α < 1
d−1 −

1
d , εN ≳ N− 1

d−α, and Y 0
N ∈ ΩN \DεN . Let (Y k

N )k be the iterates
of (13) starting from Y 0

N with timestep 0 < τN < 1. We assume that limN→∞ τN = 0 and we set

kN =

⌊
1

dτN
ln(FN (Y 0

N )Nεd−1
N )

⌋
.
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Figure 2: Optimal quantization of a density ρ corresponding to a gray-scale image (Wikimedia
Commons, CC BY-SA 3.0). (Left) We display the point clouds obtained after one step of Lloyd’s
algorithm, starting from a regular grid of size N ∈ {3750, 7350, 15000, 43350}. (Right) Quantization
error W 2

2 (ρ, δBN
) as a function of N the number of points, showing that W 2

2 (ρ, δBN
) ≃ N−1.00.

Then,
W2

2

(
ρ, δ

Y
kN
N

)
= ON→∞

(
FN (Y 0

N )1−
1
d .N

−1

d2
+α(1− 1

d )
)
. (22)

Remark 5. Note that the exponential behavior implied by 21 and Lemma 3 is coherent with the
estimates that are known in the absolutely continuous setting for the continuous gradient flow. When
transitioning from discrete measures to probability densities, lower bounds on the distance between
points become upper bounds on the density. The gradient flow µ̇t =

1
2∇µW

2
2(ρ, µt) has an explicit

solution µt = σ1−e−t , where σ is a constant-speed geodesic in the Wasserstein space with σ0 = µ0

and σ1 = ρ. In this case, a simple adaptation of the estimates in Theorem 2 in [19] shows the
bound ∥µt∥L∞ ≤ etd∥µ0∥L∞ . Still in this absolutely continous setting, it is possible to remove the
exponential growth if the target density is also bounded, as a consequence of displacement convexity
[14, Theorem 2.2]. There seems to be no discrete counterpart to this argument, explaining in part the
discrepancy between the exponent of N in (22) with the one obtained in Corollary 4.

4 Numerical results

In this section, we report some experimental results in dimension d = 2.

Gray-scale image As we mentioned in the introduction, uniform optimal quantization allows to
sparsely represent a (gray scale) image via points, clustered more closely in areas where the image
is darker [5, 3]. On figure 2, we ploted the point clouds obtained after a single Lloyd step toward
the density representing the image on the left (Puffin), starting from regular grids. The rate of
convergence observed on the right-hand side chart, namely N−1.00, is coherent with the theoretical
estimate log(N)/N of Remark 1.

Gaussian density with small variance We now consider a toy model where we approximate a
gaussian density truncated to the unit square Ω = [0, 1]2, ρ(x, y) = 1

Z e−8((x− 1
2 )

2+(y− 1
2 )

2) where Z

is a normalization constant. On the left column of Fig. 3, the initial point clouds Y 0
N are randomly

distributed in [0, 1]2. The three point clouds represented above are obtained after one step of Lloyd’s
algorithm (14). The blue curve displays in a log-log scale the mean values of FN (BN (YN )) over a
hundred random point clouds, for N ∈ {400, 961, 1600, 2500}. In this case, we observe a decrease
rate N−0.95 with respect to the number of points, similar to the case of the gray scale picture.

However, an interesting phenomena occurs when the initial point cloud Y 0
N is aligned on a axis-

aligned grid. The pictures in the right column of Fig. 3 where computed starting from such a grid
with N ∈ {400, 961, 1600, 2500} points. As in the randomly initialized case, we represented the
values of FN (BN (YN )) in log-log scale. The corresponding discrete probability measure δBN (YN )

seems to converge to ρ as N → ∞, but with a much worse rate for these "low" values of N :
FN (BN (YN )) ≃ N−0.8. In this specific setting, with a separable density and an axis-aligned grid
Y0, the power cells are rectangles and a single Lloyd step brings us to a critical point of FN . Thanks
to this remark, it is possible to estimate the approximation error from the one-dimensional case.
In fact, Appendix E shows that for any δ ∈ (0, 1), there exists variances σN = σN (δ) such that

9



Figure 3: Optimal quantization of a Gaussian truncated to the unit square. On the left, the initial point
cloud YN is drawn randomly and uniformly from [0, 1]2, while on the right YN is on a regular grid.
The top row displays the point clouds obtained after one step of Lloyd’s algorithm. The bottom row
displays the quantization error after one step of Lloyd’s algorithm FN (BN (YN )) as a fuction of the
number of points. We get FN (BN (YN )) ≃ N−0.95 when YN is a random uniform point cloud in
[0, 1]N and FN (BN (YN )) ≃ N−0.8 when YN is a regular grid.

the approximation error W 2
2 (ρσN

, δBN
) is of order N− 2−δ

2 . On the other hand, for a fixed σ, the
approximation error is of order N−1, to be compared with the bound log(N)/N for general measures.

5 Discussion

We have studied the problem of minimizing the Wasserstein distance between a fixed probability
measure ρ and a uniform measure over N points δY , parametrized by the position of the points
Y = (y1, . . . , yN ). The main difficulty is the nonconvexity of the Wasserstein distance FN : Y ∈
(Rd)N 7→ 1

2W
2
2(ρ, δY ), which we tackled by means of a modified Polyak-Łojaciewicz inequality

(20). One limitation of our work is that the exponents in our estimates depends on the ambient
dimension: it would be more interesting (but quite nontrivial) to establish similar estimates depending
on the dimension of the support of ρ. Another direction of research would be to derive consequences
for the algorithmic resolution of Wasserstein regression problems minθ W

2
2(ρ, Tθ#µ), starting with

the case where θ 7→ Tθ is linear.
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