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ABSTRACT

Recurrent large language models (Recurrent LLMs) offer linear computational
complexity as efficient alternatives to quadratic self-attention-based LLMs (Self-
Attention LLMs). However, Recurrent LLMs underperform on long-context tasks
due to limited fixed-size memory. Previous research focused on architectural in-
novations to enhance memory capacity, but failed to match Self-Attention LLM
performance. We argue this limitation stems from processing entire contexts at
once being ill-suited for Recurrent LLMs. We propose Smooth Reading, a co-
design of recurrent architecture and inference method. It introduces a end-to-end
multi-round inference method that processes context incrementally and iteratively
summarizes information, reducing memory demands. Methodologically, we reveal
architecture-inference interactions play an important role for performance, effi-
ciency and scalability, shedding light on future Recurrent LLM design. Besides,
our method substantially bridges the performance gap between Recurrent and
Self-Attention LLMs on long-context tasks while preserving efficiency advantages.
Smooth Reading boosts SWA-3B-4k from 5.68% lower to 3.61% higher perfor-
mance than Self-Attention LLMs on LongBench, while maintaining 2.5x faster
training and 2x faster inference at 64k context.

1 INTRODUCTION

Self-Attention-based large language models (Self-Attention LLMs) have demonstrated strong long-
context understanding capabilities (Bai et al., 2024} |Hsieh et al., 2024)). However, as applications
increasingly require longer contexts—such as complex reasoning (DeepSeek-Al & et al.| [2025)),
embodied agents (Zhang et al.|[20244), and research (Zheng et al.| 2025)—the quadratic computational
cost of self-attention becomes a major barrier to scaling. In response, Recurrent LLMs have re-
emerged as a promising alternative (Peng et al.; |Gu & Daoj|Yang et al., [2025};[2024; |Sun et al.; |Yang
et al.), offering linear-time computation and constant memory.

We categorize mature LLM use cases by context length into: (1) general chat (short context), (2)
long chain-of-thought (CoT) reasoning (long output), and (3) long-context understanding (long
input). Recurrent LLMs match Self-Attention LLMs on short-context tasks (Yang et al.,|[2025;2024;
Yang et al.; |Dao & Gu)) and long CoT reasoning (Zhao et al., 2025)), but lag substantially behind on
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Figure 2: Comparison of inference methods. (a) One-Round inference (OR): process the entire
context in a single pass; (b) Non-End-to-End Multi-Round inference (NMR): chunked processing
with summaries re-inserted into the prompt; (c) End-to-End Multi-Round inference (EMR): iterative
chunk reading with hidden memory updates preserved across rounds.

long-context understanding (Yang et al., 2024; |Waleffe et al., 2024} Liu et al., 2025)). This gap is a
primary obstacle to the wider adoption of Recurrent LLMs.

Most prior work attempts to close this gap through architectural changes that increase memory
capacity (Peng et al.,[2024; Yang et al., 2025} [Peng et al., 2025 |Dao & Gu; |Qin et al.f [Sun et al.; Liu
et al., [2025), such as more expressive update rules (Yang et al., 2025) or larger state sizes (Liu et al.,
20235)). Despite progress, these approaches alone have not matched the performance of Self-Attention
LLMs. A key reason is the misalignment between architecture and inference: traditional One-Round
(OR) inference (Figure ) processing the entire context in a single pass—demands much larger
memory than Recurrent LLMs can provide.

We address this limitation with Smooth Reading, a co-design method to optimize both architecture
and inference method jointly for Recurrent LLMs. Our approach consists of three main components:
(1) A tailored EMR procedure for Recurrent LLMs
that processes long inputs chunk-by-chunk. After

reading each chunk, the model produces a short con- 1007 R SWA-3B-4k-EMR *
textual summary and updates its hidden state, pre- & o Qwen-3B-OR
serving and refining hidden memory across rounds. o

This compresses information into a local working § 504 flr 100% gap reduce

window and avoids overloading fixed-size memory. 2 a

Thanks to the linear efficiency of Recurrent LLMs, é‘:’ <

the Multi-Round overhead remains manageable and E

still more efficient than Self-Attention LLMs. (2) <—>" =20% overhead i
An architectural perspective showing that different 750 1000 1250 1500
inference strategies favor different properties: while Inference Time (s)

OR prefers maximal single-pass memory capacity,

EMR benefits more from strong length extrapolation Figure 1: Inference Time vs. Accuracy on
(length generalization). It demonstrates the impor- NIAH at 64k. Applying EMR to Recurrent
tance of inference method in architecture design. (3) LLM (SWA-3B-4k) significantly closes the
A joint analysis of architecture and inference that gap to Self-Attention LLMs (Qwen-2.5-3B-
yields practical guidelines for balancing performance OR) while incurring only a 20% overhead
and efficiency, enabling optimal co-design. over OR inference, and remains about 2x

. . L faster than Self-Attention LLMs.
We evaluate architecture-inference combinations

on LongBench (Bai et al., [2024), Needle-in-a-

Haystack (Hsieh et al.l [2024), RULER (Hsieh et al.l [2024), and HELMET (Yen et al. 2025).
Smooth Reading provides a favorable accuracy-efficiency trade-off. As shown in Figure|l| Smooth
Reading significantly narrows the performance gap between Recurrent LLMs (SWA-3B-4k-EMR)
and Self-Attention LLMs (Qwen-2.5-3B-OR) on long-context tasks while incurring only a 20% over-
head over One-Round inference (SWA-3b-4k-OR) and remains about 2 x faster than Self-Attention
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counterparts. On real-world long-context tasks, Smooth Reading boosts SWA-3B-4k from 5.68%
lower to 3.61% higher performance than Self-Attention LLMs on LongBench. These results indicate
the significance of architecture-inference co-design for Recurrent LLMs.

In summary, our contributions are:

* While Recurrent LLMs suffer on long-context understanding tasks, our Smooth Reading method
substantially closes the performance gap with Self-Attention LLMs while preserving efficiency
advantages. It significantly pushes the boundary of Recurrent LLMs and makes them more
practical for real-world applications.

* We demonstrate the importance of architecture-inference co-design, showing how their interaction
governs performance, efficiency, and scalability, and provide actionable guidelines beyond
architecture-only improvements.

2 RELATED WORK

Most prior work improves either model architectures or inference strategies in isolation. Inference is
typically designed around Self-Attention LLMs, whereas new Recurrent LLMs are often evaluated
under traditional One-Round inference, leading to a mismatch between architecture and inference.

2.1 SELF-ATTENTION LLMS AND INFERENCE STRATEGIES

Self-Attention LLMs. Self-attention (Vaswanil 2017) underpins most modern LLMs (DeepSeek-Al
& et al., 2025 |Qwen et al., |2025; |Achiam et al.;2023)). By attending over all preceding tokens, these
models can, in principle, use an arbitrarily long context. However, the cost scales quadratically in
computation and linearly in space with input length, making very long contexts inefficient.

One-Round inference. The standard approach for Self-Attention LLMs is a single forward pass
over the entire input (Figure 2p). This aligns with their ability to attend to all prior tokens, but incurs
O(L?) computation and O(L) space, where L is the input length, limiting scalability.

End-to-End Multi-Round inference. End-to-End Multi-Round inference methods split the input
into chunks and iteratively process them, often appending intermediate summaries back into the
prompt (Figure ). This increases the effective context to AL tokens (A > 1), yielding O((A\L)?)
computation and O(AL) space. For Self-Attention LLMs, this compounds the already high complex-
ity.

Non-End-to-End Multi-Round inference. Methods such as prompt compression or chain-of-thought
prompting (Zhang et al.| [2024bj; |Yoon et al., [2024; Q1an et al., 2024} |Lee et al., [2024; |Chen et al.,
2023)) discard hidden states and re-feed a compressed context at each step to cap the per-step length
(Figure ). This yields O(AL) computation and O(1) memory. However, discarding hidden states
causes information loss and can degrade performance.

Table [T| summarizes these strategies for Self-Attention LLMs. Despite its quadratic cost, One-Round
inference remains prevalent due to its simplicity and strong performance. End-to-End Multi-Round
inference is rarely used with Self-Attention LLMs on long-context tasks due to its high complexity.

2.2 RECURRENT LLMS

Recurrent LLMs use fixed-size memory, enabling linear-time and constant-space inference regardless
of input length. This efficiency arises from architectural choices such as linear-attention variants or
sliding-window mechanisms (Beltagy et al.||2020). However, most recurrent models are still used
with standard One-Round inference, which can overwhelm their fixed memory on long-context tasks
and limit performance. Recent efforts target these limitations by (1) increasing memory capacity (Qin
et al.;\Gu & Dao; Dao & Guj Du et al.;[2025) or (2) improving memory efficiency (Yang et al., [2025}
Sun et al.;|Yang et al.,|2024). While helpful, Recurrent LLMs still trail Self-Attention LLMs on tasks
requiring long-context understanding.
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Table 1: Comparison of architecture-inference combinations. “C” and “S” denote computational
and space complexity. “L” is the input length. “)\” (A > 1) is a scaling factor for the effective
context length in Multi-Round settings. “OM” indicates whether the inference strategy overwhelms
the model’s memory. “HM” indicates whether hidden memory is preserved during inference. Both
memory overwhelm and discarding hidden memory degrade performance. The main drawback of
each combination is underlined. Our Smooth Reading (End-to-End Multi-Round inference with
Recurrent LLMs) achieves the best balance between performance and efficiency.

Architecture \ One-Round Non-End-to-End Multi-Round  End-to-End Multi-Round
. C: O(L?); S: O(L) C: O(A\L); S: 0(1) C: O((AL)?); S: O(AL)
Self-Attention | 5 No: FIM: — OM: No; HM: No OM: No; HM: Yes
R ‘ C:O(L); S: 0(1) C: O(A\L); S: 0(1) C: O(AL); S: 0(1)
ecurren OM: Yes; HM: — OM: No; HM: No OM: No; HM: Yes

2.3 ARCHITECTURE-INFERENCE CO-DESIGN

The interaction between architecture and inference is seldom examined, yet it is crucial for Recurrent
LLMs with fixed memory. We analyze this interplay and propose an inference method tailored
to Recurrent LLMs, leveraging their strengths while addressing their constraints. We demonstrate
the interaction of architecture and inference significantly influences performance, efficiency, and
scalability. A concurrent line of work, OPRM (Ben-Kish et al., |2025), adapts retrieval-augmented
generation to mitigate the memory overflow problem in linear-attention architectures. This highlights
the importance of inference design for Recurrent LLMs. However, OPRM does not systematically
study architecture-inference co-design, which can limit performance and generalization.

3 METHODOLOGY

The interaction between model architecture and inference strategy is critical for long-context per-
formance. We first review the characteristics of Recurrent LLMs, then introduce Smooth Reading,
which comprises:

1. An End-to-End Multi-Round (EMR) inference procedure tailored to Recurrent LLMs;
2. Guidance for selecting recurrent architectures compatible with EMR;

3. A co-design approach that jointly optimizes efficiency via architectural and inference choices.

3.1 CHARACTERISTICS OF RECURRENT LLMS AND INFERENCE STRATEGIES

Recurrent LLMs: strengths and limitations. Recurrent LLMs process each token with constant
computation and memory, enabling efficient long-context handling. However, their fixed-size memory
limits the amount of information retained at any moment. The central challenge is the trade-off
between efficiency and performance on long-context tasks.

Drawbacks of One-Round inference. With One-Round inference, Recurrent LLMs enjoy O(L)
compute and O(1) memory complexity, but processing the entire context in a single pass can
overwhelm their limited memory, causing notable performance degradation.

Advantages of End-to-End Multi-Round inference. EMR enables incremental, selective processing.
By reading in steps, the model can retain only the most relevant information, avoiding memory
overload. Although EMR introduces token-generation overhead, yielding O(AL) compute and O(1)
memory complexity, it remains far more efficient than the quadratic complexity of Self-Attention
LLMs with One-Round inference. Crucially, Recurrent LLMs’ constant-size hidden memory can be
preserved and updated across rounds at no extra memory cost, which leads to superior performance
compared to Self-Attention LLMs using Non-End-to-End Multi-Round inference (which discards
hidden states between rounds).

In summary, Smooth Reading combines Recurrent LLMs with EMR to preserve efficiency while
strengthening long-context understanding. As summarized in Table [l One-Round inference best
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‘ / ¥ Context 1/3: Answer the question based on the given passages. Only give me the answer and do not\
output any other words.

? Question: What was population of the city where the Dutch retired footballer Foeke Booy born?

The following are given passages:

Leeuwarden Stadsfries: "Liwwadden" is a city and municipality with a population of 108,249 in
Qriesland in the Netherlands. It is the provincial capital of the States of Friesland... /

I?] 4 @ Target: What was population of the city where the Dutch retired footballer Foeke Booy born?

= Reason: We need to find a city where the Dutch retired footballer Foeke Booy born and the
population of that city. The given passage mentioned that Leeuwarden city has a population of 108,249.
This information may be useful later.

@, Clues: 1) Leeuwarden city has a population of 108,249.

\m Action: Analysis complete, but no answer found yet. <READ> )

‘ «# Context 2/3: ...He is currently a youth coach, managing the D2 squad (under-13) at Almere City
FC. Foeke Booy (born 25 April 1962 in Leeuwarden) is a Dutch retired footballer and football

\manager. - J

o]

@ Target: What was population of the city where the Dutch retired footballer Foeke Booy born?

% Reason: This passage mentioned that Foeke Booy was born in Leeuwarden, and we have known
the population of Leeuwarden is 108,249. Therefore, the population of the city where the Dutch retired
footballer Foeke Booy born is 108,249.

@, Clues: 1) Leeuwarden city has a population of 108,249. 2) Foeke Booy was born in Leeuwarden.
L [ Action: The final answer is 108,249. <STOP>

J

Figure 3: Inference Example of Smooth Reading. White boxes indicate the information gathered by
the model and the decision points for whether to continue reading. Blue boxes represent chunks of
the query context.

suits Self-Attention LLMs, whereas EMR is preferable for recurrent architectures, underscoring
the importance of architecture-inference co-design. Recurrent LLMs with EMR also offer the best
balance between performance and efficiency among these strategies.

3.2 END-TO-END MULTI-ROUND INFERENCE FOR RECURRENT LLMS

End-to-End Multi-Round agentic pipeline. Our EMR procedure proceeds in rounds: at each step,
the model takes an action (including <READ> and <STOP>) and receives an observation, iterating
until it decides that enough information has been gathered. This stepwise process avoids memory
overload and ensures that relevant context remains locally available (see Figure 2f).

Chunked reading to avoid memory bottlenecks. To respect recurrent memory limits, we partition
the input into manageable, semantically coherent chunks processed sequentially. Each step introduces
only a small amount of new information, reducing overflow risk and encouraging focus on salient
content. Models advance by emitting a <READ> action. Specifically, we use a lightweight, rule-based
hierarchical chunker driven by a prioritized delimiter list. At each level, the context is split (e.g., first
by paragraphs using “\n”), then adjacent units are merged until a maximum chunk size is reached. If
a unit exceeds the limit, it is recursively split using finer-grained delimiters (e.g., sentences via *“.”),
and merging is repeated. In practice, we apply the following delimiters in order: “\n\n\n”, “\n\n”,
AR, LT e s ey e e e w2 and ¢ (space), yielding size-bounded chunks with
reasonable semantic boundaries. To avoid tokenlzatlon overhead, we estimate chunk length using
Nyoken = INt (1.5 X Nyeras ), based on the empirical average of ~ 1.5 tokens per word.

Contextual summary compression. After reading each chunk, the model produces a contextual
summary that distills essential information. These summaries (1) represent key content with fewer
tokens where possible and (2) update the hidden state so that recent, relevant information is prioritized
in recurrent memory. As illustrated in Figure[3] each contextual summary contains: 1) Target:
the task objective, to prevent distraction from irrelevant context; 2) Clues: salient information
relevant to solving the task, such as accumulated summaries (for summarization) or query-related
facts (for QA); 3) Reason: a brief rationale for updating clues at the current reading step. These
elements ensure that the model can answer the query using focused, relevant context.

Preserving hidden memory throughout inference. Unlike Self-Attention LLMs, Recurrent LLMs
maintain a fixed-size hidden memory regardless of context length. EMR retains and incrementally
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updates this memory across rounds, accumulating both recent and long-range information without
additional memory cost.

Early stopping mechanism. After each chunk, the model decides whether it has sufficient infor-
mation to answer the query. If so, it stops reading and produces the answer with a <STOP > action;
otherwise, it continues. This adaptive early stopping conserves computation.

An algorithmic summary of our EMR is provided in Algorithm |I]for reference.

3.3 ARCHITECTURAL CONSIDERATIONS FOR RECURRENT LLMS

Different inference strategies favor different architectural properties: One-Round inference benefits
from architectures with maximal effective memory, since all information must be retained simul-
taneously. End-to-End Multi-Round inference (Smooth Reading) relies more on robust length
generalization and dynamic compression than on large single-pass memory. The emphasis shifts
from raw memory capacity to length extrapolation beyond the training regime.

Two principal recurrent families are: (1) sliding-window attention models (Beltagy et al.,|2020), and
(2) linear-attention models (Katharopoulos et al.,2020). While linear-attention approaches can offer
larger effective memory under One-Round inference (Liu et al., 2025; Yang et al., 2025} [Peng et al.,
2025), sliding-window attention exhibits stronger length extrapolation under EMR. Our experiments
indicate that sliding-window architectures are better suited for Smooth Reading at extreme sequence
lengths.

3.4 Co0-DESIGN: OPTIMIZING EFFICIENCY

Efficiency emerges from the joint choice of architecture and inference. We analyze how EMR
maintains linear complexity and how to optimize wall-clock time via co-design. Let the per-token
wall-clock times for prefilling and decoding be functions of model complexity s: p(s) and d(s),
respectively. These scale with s and are independent of context length. For inference, define chunk
size ¢, number of chunks n, and total context length L = ¢ x n. Let g be the average number of
decoded tokens per round, assumed independent of L. The total inference time is

TRecurrem-EMR = n-c- p(s) + n- g- d(S) =L <p(5) + gd(s)) . (1)

Linear complexity: For fixed s, ¢, and ¢, TRecurrent-EMRr SCales linearly with L. Efficiency opti-
mization: Efficiency depends jointly on model complexity s and chunk size c: wall time increases
with s but decreases as ¢ grows (larger chunks reduce the number of rounds and, hence, decoding
steps). However, larger c requires greater effective memory. Optimal efficiency therefore requires
co-designing architecture and inference method. In practice, we jointly tune the window size (control-
ling memory span and effective complexity) and the chunk size to optimize sliding-window models
under EMR.

3.5 DATASET CONSTRUCTION

To train models for Smooth Reading, we construct a supervised fine-tuning dataset covering several
long-context tasks (e.g., QA). For each task, we:

1. Collect raw data: use standard training splits containing query, answer, and context;

2. Generate summaries: We generate stepwise contextual summaries and final answers
using either a rule-based method or a state-of-the-art LLM (DeepSeek-V3 (et al.,[2024)),
selected based on task complexity. Rule-based generation is applied to simpler tasks (e.g.,
retrieval), whereas the LLM is used for more complex tasks (e.g., summarization and
question answering). For LLM-based generation, we adopt a Non-End-to-End Multi-Round
pipeline for efficiency and use one-shot prompting with manually crafted examples to guide
contextual summary generation. The prompt template is shown in Appendix [A.T.1} After
each contextual summary, we append a <READ> token if reading continues; otherwise, we
append a <STOP> token. Maximum chunk sizes are varied during summary generation to
enhance robustness, ranging from 128 to 4096 tokens.
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Table 2: Results on LongBench. “Infer” indicates the inference method: “OR” (One-Round), “EMR”
(End-to-End Multi-Round), and “NMR” (Non-End-to-End Multi-Round). Best results in bold.

Architecture | Infer | Model | SQA MQA Summary FewShot Synthetic Code | Avg
Self-Attention ‘ OR ‘ Qwen-2.5-3B-OR ‘ 2420 41.25 30.22 65.89 56.75 66.00 ‘ 47.38
‘ NMR ‘ Qwen-2.5-3B-NMR ‘ 31.54 42.17 2191 68.96 61.50 64.13 ‘ 48.37

‘OR ‘ RWKV-7-3B-OR ‘16.96 11.39 29.16 67.72 60.50 62.84 ‘ 4143

SWA-3B-4k-OR 1643 26.14 26.96 66.43 48.00 66.22 | 41.70

RWKV-7-3B-EMR | 28.87 40.02 28.23 65.90 65.25 59.92 | 48.03
SWA-3B-4k-EMR | 30.46 47.67 26.27 69.60 66.75 65.18 | 50.99

Recurrent

‘EMR‘

Table 3: Results on the Needle-in-a-Haystack (NIAH) benchmark. All models are trained with a 32k
context length and evaluated at context lengths ranging from 8k to 256k.

Architecture | Infer | Model | 8k 16k 32k | Avg | 64k 128k 256k | Avg
‘ OR ‘ Qwen-2.5-3B-OR ‘ 98.80 98.60  97.00 ‘ 98.13 ‘ 98.00 26.00 0.00 ‘ 41.33
| NMR | Qwen-25-3B-NMR | 87.80 87.00  92.60 | 89.13 | 93.80 95.00 67.20 | 85.33

RWKYV-3B-OR 9840 95.80 86.60 | 93.60 | 39.00 860 0.00 | 15.87
SWA-3B-4k-OR 53.60 2240 11.60 | 29.20 | 6.80 1.80  1.60 | 3.40

RWKV-3B-EMR | 99.40 98.80 97.20 | 98.47 | 7520 20.60 1.94 | 32.58
SWA-3B-4k-EMR | 99.80 100.00 100.00 | 99.93 | 100.00 99.80 99.60 | 99.80

Self-Attention

or |
Recurrent

‘EMR‘

3. Enable early stopping: for tasks amenable to early stopping (e.g., QA), allow the generator
to halt reading once sufficient information has been found;

4. Clean the data: apply rule-based filters to remove low-quality outputs.

In total, the dataset comprises 48,856 items. We use this dataset to train models to produce contextual
summaries, embedding Smooth Reading behavior directly into the model. The configuration of our
dataset construction is summarized in Table

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We systematically compare model architectures and inference methods to assess the effectiveness of
Smooth Reading. We evaluate four configurations:

1. Self-Attention LLM with One-Round inference (OR).

2. Self-Attention LLM with Non-End-to-End Multi-Round inference (NMR).

3. Recurrent LLM with One-Round inference (OR).

4. Smooth Reading (ours): Recurrent LLM with End-to-End Multi-Round inference (EMR).

Our experimental pipeline comprises two steps:

Base Model Preparation: For Self-Attention LLMs, we use Qwen-2.5 (Qwen et al., [2025) as a
representative model. For Recurrent LLMs, we consider: 1) Sliding-Window LLMs: Based on
Qwen-2.5, modified to use a sliding-window attention mechanism (denoted “SWA-zk,” where x
is the window size; 4k tokens unless otherwise specified). The conversion process is detailed in
Appendix 2) RWKYV-7 (Peng et al,[2025): A strong Recurrent LLM employing a variant of
linear attention.

Model Training and Evaluation: We derive three dataset variants tailored to each inference method
(OR, NMR, EMR), and use them to train all models—including Self-Attention LLM (Qwen-2.5-3B),
Sliding-Window LLM (SWA-3B-4k), and RWKV-7 (RWKV-7-3B)—under identical training settings
for fair comparison. The inference method is appended to each model name (e.g., Qwen-2.5-3B-OR,
SWA-3B-4k-EMR). Further training and evaluation details are provided in Appendix [A.1.3] and

Appendix
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Figure 4: Efficiency vs. Context Length. Recurrent LLMs with Smooth Reading scale linearly;
Self-Attention LLMs scale quadratically. “+ES” indicates early stopping. The training speed of
SWA-3B-4k-EMR is about 2.5x that of Qwen-2.5-3B-OR at 64k. At 64k, SWA-3B-4k-EMR is about
2x faster than Qwen-2.5-3B-OR during inference, improving to up to 4x with early stopping.

4.2 LONG-CONTEXT PERFORMANCE COMPARISON

We evaluate on LongBench (Bai et al.,|2024) and NIAH (Hsieh et al.| 2024} (Tables [Z] and E]) For
NIAH, we report both in-distribution lengths (8k-32k, matching the 32k training maximum) and
extrapolated lengths (64k-256k).

One-Round Inference: Recurrent LLMs underperform relative to Self-Attention LLMs. Qwen-
2.5-3B-OR averages 47.38% on LongBench; RWKV-7-3B-OR and SWA-3B-4k-OR are below 42%.
On NIAH within the 32k training limit, Qwen-2.5-3B-OR reaches 98.13%, outperforming recurrent
baselines and highlighting the mismatch between One-Round inference and fixed recurrent memory.

End-to-End Multi-Round inference (Smooth Reading): EMR substantially improves Recurrent
LLMs. On LongBench, RWKV-7-3B-EMR and SWA-3B-4k-EMR reach 48.03% and 50.99%,
surpassing Qwen-2.5-3B-OR by 0.65 and 3.61 points, respectively. On NIAH, RWKV-3B-EMR
and SWA-3B-4k-EMR match or exceed Qwen-2.5-3B-OR; notably, SWA-3B-4k-EMR maintains
near-perfect accuracy up to 256k tokens.

End-to-End vs. Non-End-to-End Multi-Round: Recurrent LLMs with EMR outperform Self-
Attention LLMs with NMR by preserving hidden states across rounds. On LongBench, SWA-3B-
4k-EMR exceeds Qwen-2.5-3B-NMR by 2.62 points. On NIAH, NMR is less stable and generally
worse than Recurrent LLMs with EMR.

We conduct additional studies in Appendix |A.2

* Scaling to 7B models (Appendix [A.2.1) yields consistent gains with Smooth Reading.

» Comparisons with additional Self-Attention LLM baselines (e.g., Llama3.1 (Dubey et al.,[2024);
Appendix [A.2.2) further validate the effectiveness of our method.

¢ Evaluation on out-of-distribution tasks from RULER (Hsieh et al., |2024) and HELMET (Yen

et al. 2025) (Appendix [A.2.3)), including tasks unseen during training, demonstrates strong
generalization.

* Comparisons with additional inference methods—RAG, CompACT (Appendix [A.2.5)), and
OPRM (Appendix [A.2.4)—show consistent advantages.

4.3  EFFICIENCY COMPARISON

A key advantage of Recurrent LLMs is linear computational complexity in context length, compared
with the quadratic cost of Self-Attention LLMs. We report training and inference efficiency using
the Sliding-Window LLM; RWKV-7 is omitted from the efficiency plots due to the lack of a highly-
optimized inference engine for fair comparison.
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Table 4: Ablation study on window size (W) and chunk size (C) for accuracy (%) and inference time.

(a) Accuracy (b) Inference Time (Seconds)
C C

512 1024 2048 4096 512 1024 2048 4096
w w
512 97.0 77.8 0.0 0.0 512 528 457 327 100
1024 99.2 89.0 26.4 12.6 1024 537 444 374 364
2048 100.0 1000 954 312 2048 577 471 387 343
4096 99.8 99.8 100.0 834 4096 646 505 423 366

Training efficiency: Sliding-Window LLMs train substantially faster than Self-Attention LLMs. As
shown in Figurea] at a 64k context length, SWA-3B-4k-EMR is 2.5x faster than Qwen-2.5-3B-OR.

Inference efficiency: We evaluate inference speed on NIAH. Sliding-Window LLMs with Smooth
Reading are slightly slower than Self-Attention LLMs at short lengths due to overhead, but scale
linearly and become advantageous as the length grows. At 64k, SWA-3B-4k-EMR is 2Xx faster than
Qwen-2.5-3B-OR (Figure [4b).

Early stopping: Our method supports halting once sufficient information is found, further reducing
latency. At 64k, SWA-3B-4k-EMR+ES improves from 2 x faster to up to 4x faster than Qwen-2.5-
3B-OR. An ablation in Appendix [A.2.6]shows that early stopping does not compromise performance.

Inference time vs. accuracy: We compare inference time versus accuracy across architecture-
inference combinations in Figure [l SWA-3B-4k-EMR closes the performance gap to Qwen-2.5-3B-
OR with only a 20% increase in inference time over SWA-3B-4k-OR, while remaining 2 faster than
Qwen-2.5-3B-OR.

5 ANALYSIS AND ABLATION STUDY

5.1 LENGTH EXTRAPOLATION AND SCALABILITY

We evaluate length extrapolation up to 256k tokens on the NIAH (Hsieh et al., 2024) benchmark, as
shown in Table[3] All models are trained with a 32k context length and tested on substantially longer
sequences.

Self-Attention LLMs: Under One-Round (OR) inference, models such as Qwen-2.5-3B-OR perform
well within the training length but collapse at long contexts (0% at 256k). The Non-End-to-End
Multi-Round (NMR) strategy extrapolates better than One-Round (OR), yet still degrades at 256k
and is unstable because it does not preserve hidden memory.

Sliding-Window LLMs: With One-Round (OR) inference, performance declines as context length
grows due to limited memory capacity (e.g., SWA-3B-4k-OR reaches 53.6% at 8k). In contrast, with
EMS, scalability is excellent, achieving 99.6% at 256k.

RWKYV: With One-Round (OR) inference, RWKYV is strong within the training range (86.6% at 32k)
but degrades rapidly beyond it. With EMS, RWKV-3B-EMR reaches 75.2% at 64k, then declines on
longer sequences.

Comparison of SWA and RWKYV: Figure [5b|compares length extrapolation for SWA-3B-4k-OR and
RWKV-3B-OR while keeping the needle’s relative position fixed. SWA-3B-4k-OR has limited local
memory (it can only retain content within its 4k window) but exhibits stable length extrapolation,
maintaining performance beyond the training length. RWKV-3B-OR can remember much longer
spans within the training range, yet its performance drops sharply beyond that. Thus, One-Round
(OR) inference favors RWKV’s longer memory, whereas Smooth Reading benefits more from SWA’s
stronger length extrapolation. These results underscore that different inference methods call for
different architectural properties.
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Figure 5: (a) Inference time with a fixed chunk-to-window ratio of 1:2. (b) Length extrapola-
tion comparison of a Sliding-Window LLM (SWA-4k) and RWKV-7 on NIAH. Curves labeled
“{arch}_{needle position}” indicate different models and the relative position of the searched token.
SWA-4k exhibits stronger length extrapolation, while RWKV-7 provides longer memory within the
training context but limited extrapolation.

5.2 IMPACT OF CO-DESIGN ON PERFORMANCE AND EFFICIENCY

We ablate the window size (model memory span) and chunk size (processing granularity) for Sliding-
Window LLMs on NIAH. Results are summarized in Table [4l

Chunk size: Larger chunks reduce the number of processing rounds and speed up inference, but if
the chunk size exceeds the window size, accuracy collapses (e.g., W=512, C=4096 yields 0%). With
a sufficient window, increasing the chunk size from 512 to 4096 markedly reduces time (e.g., 646s to
366s at W=4096).

Window size: Larger windows retain more information and permit larger chunks, improving accuracy
(e.g., at C=2048, accuracy rises from 0% at W=512 to 100% at W=4096), but they increase per-step
computation and thus inference time for a fixed chunk size.

Interaction between chunk and window sizes: Joint tuning is essential: 1) For high accuracy,
the chunk size should not exceed the model’s window (hidden memory) size. 2) For efficiency,
a moderate ratio (e.g., chunk:window = 1:2) balances fewer rounds against manageable per-step
complexity.

Fixing the chunk-to-window ratio at 1:2 and scaling both, inference time follows a U-shaped trend
(Figure[5a): very small or very large sizes are inefficient, whereas moderate settings (e.g., W=4096
or W=8192) are fastest. These findings highlight the importance of co-designing architecture and
inference: balancing model complexity (window size) and processing steps (chunk size) is critical for
both efficiency and performance of Recurrent LLMs on long-context tasks.

6 CONCLUSION

Recurrent LLMs have underperformed on long-context tasks primarily because One-Round inference
is misaligned with their fixed-size memory. We make two contributions: (i) an End-to-End Multi-
Round (EMR) inference strategy that processes long inputs incrementally and substantially improves
Recurrent LLMs, demonstrating that better inference can overcome apparent architectural limits;
and (ii) evidence that architecture—inference co-design, rather than architecture alone, is critical
for accuracy, scalability, and efficiency. Together, these findings reveal the untapped potential of
recurrent architectures and establish a co-designed paradigm for long-context language modeling.
Last, we discuss limitations and future directions in Appendix [A.3]
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A APPENDIX

Algorithm 1 Smooth Reading: End-to-End Multi-Round Inference

Require: Context D, chunk size C, recurrent model M, initial hidden state hy € R4
Ensure: Answer a

1: X < CHUNK(D, () > Partition context into chunks of size C
2: h < hg > Initialize hidden state tensor
3: a < NULL > Initialize answer
4: fori=1to |X|do
5: response, h < M (X[i],h) > Process chunk, get text response and updated state
6: action, summary <— PARSERESPONSE(response) > Extract action and summary from text
7: if action = “READ” then
8: continue > Process next chunk
9: else if action = “STOP” then
10 a < PARSERESULT(summary)
11: break > Early termination with answer
12: end if
13: end for

14: return a

Table 5: Configuration for Dataset Construction. “Num” indicates the number of samples, and “Avg.
Length” indicates the average length of the samples. The raw datasets include the training sets of
HotpotQA (Yang et al.l 2018), NarrativeQA (Kocisky et al.,2017), GovReport (Huang et al., 2021),
QMSum (Zhong et al.| 2021), TREC (Li & Roth| [2002), TriviaQA (Joshi et al.}2017), SAMSum
(Gliwa et al., [2019), WikiSum (Liu et al.,|2018)), and LCC (Guo et al., 2023). Note, we only use the
training sets of these datasets to construct our dataset, to avoid data leakage.

Task \ Raw Dataset Summary Generator Early Stop  Clean Metric \ Num  Avg. Length
Question Answerin HotpotQA LLM Yes Fl1 5,652 4,249
g NarrativeQA LLM Yes F1 4,348 10,173
Summarization GovReport LLM No Rouge-L 8,114 12,411
QMSum LLM No Rouge-L 742 15,245
TREC LLM No Exact Match 3,259 7,759
Few-shot TriviaQA LLM No F1 3,370 13,942
SAMSum LLM No Rouge-L 3,371 12,100
Passage Count |  WikiSum Rule No Exact Match | 3,333 15,777
Retrieval WikiSum LLM Yes Exact Match 3,333 8,254
HotpotQA Rule Yes / No Exact Match 1,667 20,117
Code Generation \ LCC LLM No Edit Similarity \ 10,000 3,331
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A.1 IMPLEMENTATION DETAILS
A.1.1 MORE DETAILS ABOUT DATASET CONSTRUCTION

Table [5] summarizes the configuration for our dataset construction, and below is the prompt template
we use to generate stepwise contextual summaries with LLMs.

{example}
Above is an example.

Now, you need to address a problem with a long context, chunk by chunk. You
can access one chunk at a time and the saved information. You should update the
information to solve the problem. The saved and updated information are in JSON
format. They have four keys.

* target”: The target of the request. If there is no target, please leave it empty.
The output format requirement should be included in the target.

“reason”: The reason for updating the information. You should explain why
you update the information according to the given passage.

“clues”: The updated information. You should update the information according
to the given passage. The format is a list of strings.

“result”: The result of the request. You should give the answer to the target
if the information is enough. If the information is not enough, please leave it
empty.

Respond in the format of JSON.

Summary of the previous chunks:

{Summary of Previous Chunks}

Current chunk:

{Chunk Content}

A.1.2 How TO CONVERT SELF-ATTENTION LLM TO SLIDING-WINDOW LLM

It is simple to convert Self-Attention LLMs to Sliding-Window LLMs. As Sliding-Window LLMs do
not introduce any new parameters, we directly inherit all parameters from the Self-Attention LLM,
such as MLP layers and QKVs of attention layers. Then we modify the self-attention mechanism to
attend only to the tokens within the sliding window.

A.1.3 TRAINING DETAILS

We use AdamW (Loshchilov & Hutter, 2019) with a learning rate of 4e-5 and a weight decay of 0.01.
The batch size is set to 2, and the context length is set to 32k. We use a cosine learning rate decay
schedule with warmup. As an exception, we use a learning rate of le-5 and a weight decay of 0.1 for
models with 7B parameters, as we find this setting to be more effective. We train our models with
Xtuner (Contributorsl [2023b)). For models with 3B parameters, we train them for 1 epoch on one
H800 GPU, with about 12 hours of training time.

A.1.4 EVALUATION DETAILS

We evaluate our models using the LongBench (Bai et al, [2024) and NIAH (Hsieh et al., [2024)
benchmarks.

LongBench: LongBench comprises five main task categories, each with several sub-tasks:
* Single-document question answering (SQA): NarrativeQA (Kocisky et al), [2017),
Qasper (Dasigi et al., 2021)), MultiFieldQA (Bai et al., 2024)

* Multi-document question answering (MQA): HotpotQA (Yang et al., 2018), 2WikiMulti-
hopQA (Ho et al., 2020), MuSiQue (Trivedi et al., 2022)

* Summarization: GovReport (Huang et al., 2021)), QMSum (Zhong et al., 202 1)), MultiNews (Fab-
bri et al., [2019)
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Table 6: Results on LongBench with 7B-parameter Models.

Architecture | Infer | Model | SQA' MQA Summary FewShot Synthetic Code | Avg
Self-Attention OR Qwen-2.5-7B-OR | 34.90 56.72 32.07 72.77 57.75 73.41 | 54.60
NMR | Qwen-2.5-7B-NMR | 34.37 45.37 25.20 71.27 66.50 65.26 | 51.33

Recurrent OR SWA-7B-4k-OR 26.10 37.04 28.12 71.50 42.38 71.88 | 46.17
EMR | SWA-7B-4k-EMR | 37.80 54.67 27.39 69.86 65.75 67.71 | 53.86

Table 7: Results on LongBench with More Models
Architecture | Infer | Model | SQA' MQA Summary FewShot Synthetic Code | Avg
LongChat-v1.5-7B (Li et al.|[2023) 28.7 20.6 26.7 60.0 15.8 54.1 343
ChatGLM2-6B (GLM et al./[2024) 329 33.7 27.6 59.1 39.2 52.7 40.9
Self-Attenti OR Llama-3.1-8B-Instruct (Dubey et al.|2024) 25.3 23.7 28.4 69.4 53.0 56.6 42.7
cli-Allention Mistral-7B-Instruct-v0.3 (Jiang et al.|2023) | 41.3  39.0 272 70.7 51.8 49.1 | 465
ChatGLM3-6B (GLM et al.|[2024) 40.3 46.6 29.5 68.1 50.5 56.2 48.5
Qwen2.5-7B-Instruct|Qwen et al.|(2025) 40.9 44.1 26.6 69.1 64.6 54.5 50.0
Self-Attention ‘ OR ‘ Qwen-2.5-7B-OR (ours) ‘ 3490 56.72 32.07 72.77 57.75 7341 ‘ 54.60
Recurrent ‘ EMR ‘ SWA-7B-4k-EMR (ours) ‘ 37.8 54.7 274 69.9 65.8 67.7 ‘ 539

* Few-shot learning: TREC (Li & Roth, [2002), TriviaQA (Joshi et al.,[2017), SAMSum (Gliwa
et al.,[2019)

* Synthetic tasks: PassageCount (Bai et al., [2024), PassageRetrieval (Bai et al., [2024)
* Code generation: LCC (Guo et al.| 2023)), RepoBench-P (Liu et al., 2023

Needle-in-a-Haystack (NIAH): We use essays as haystacks, words as keys, and UUIDs as values.
We use only one needle in our experiments by default, but four needles in Table[3] as one needle is
insufficient to distinguish between models.

Chunk Size during Evaluation: During inference with Smooth Reading, we set different chunk
sizes according to the model type and task. For Sliding-Window LLMs, we use a chunk size of 1024
for LongBench and 2048 for NIAH. For RWKV-7, we use a chunk size of 512 for LongBench and
256 for NIAH.

Inference Engine: We use LMDeploy (Contributors),2023a), which provides high performance for
Self-Attention LLMs and supports Sliding-Window LLMs in interactive mode, maintaining hidden
memory throughout inference. It provides strong support for our Smooth Reading inference. To
support the inference of RWKV-7, we implement a custom inference engine from scratch, as no
optimized engine is currently available.

A.2 MORE EXPERIMENTS
A.2.1 ADDITIONAL EXPERIMENTS ON 7B MODELS

To further assess the scalability of our method, we conduct experiments using 7B-parameter models,
presented in Table[6] SWA-7B-4k-EMR achieves performance comparable to Qwen-2.5-7B-OR with
less than a 1% difference and significantly outperforms SWA-7B-4k-OR and Qwen-2.5-7B-NMR.
The results confirm that Smooth Reading consistently enhances performance across model sizes.

A.2.2 COMPARISON WITH MORE MODELS

We further compare our models with more commercial and open-source Self-Attention LLMs with
6B-8B parameters, including LongChat-v1.5-7B (Li et al., 2023), ChatGLM2-6B (GLM et al., 2024),
Llama-3.1-8B-Instruct (Dubey et al.,|2024), Mistral-7B-Instruct-v0.3 (Jiang et al.} 2023)), ChatGLM3-
6B (GLM et al., [2024), and Qwen2.5-7B-Instruct (Qwen et al.| (2025). As shown in Table [/ our
Qwen-2.5-7B-OR is a strong baseline among Self-Attention LLMs, and our SWA-7B-4k-EMR
achieves performance comparable to Qwen-2.5-7B-OR, outperforming all other Self-Attention LLMs.
Notably, this indicates the solid performance of our SWA-7B-4k-EMR.
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Table 8: Evaluation of Generalization Ability on the entire RULER Benchmark. “VT” stands for
Variable Tracking, “CWE” for Common Words Extraction, “FWE” for Frequent Words Extraction,
and “QA” for Question Answering.

Model | VI CWE FWE QA | Avg
Qwen-2.5-3B-OR | 0.00 030 6280 41.90 | 26.25
Qwen-2.5-3B-NMR | 3.76 134 540 1480 | 633
SWA-3B-4k-OR 000 148 987 010 | 2.86
SWA-3B-4k-EMR | 840 032 5007 53.60 | 28.10

Table 9: Evaluation of Generalization Ability on HELMET. “RAG” for Retrieval-Augmented Gen-
eration, “PRR” for Passage re-ranking, “ICL” for Many-shot in-context learning, “LQA” for Long-
document QA, and “SR” for Synthetic recall.

Model | RAG PRR ICL LQA SR | Avg
Qwen-2.5-3B-OR 47.67 036 34.80 14.14 31.25 | 25.64
Qwen-2.5-3B-NMR | 21.50 0.00 296 12.70 35.06 | 14.44
SWA-3B-4k-OR 1083 0.50 3936 1596 7.69 | 14.87
SWA-3B-4k-EMR 5444 047 16.68 19.51 33.94 | 25.01
Table 10: Comparison with OPRM on LongBench.
Infer | Model | SQA MQA Summary FewShot Synthetic Code | Avg
Recurrent-Gemma-1T-9B 29.83  29.60 26.45 34.23 3.75 4341 | 27.88
OPRM | Falcon-Mamba-Instruct-7B | 32.38 26.58 27.60 52.32 8.75 36.76 | 30.73
Falcon3-Mamba-Instruct-7B | 26.91  33.86 25.57 53.05 8.75 39.93 | 31.35
EMR RWKV-7-3B-EMR(ours) | 28.87 40.02 28.23 65.90 65.25 59.92 | 48.03
SWA-3B-4k-EMR(ours) 30.46 47.67 26.27 69.60 66.75 65.18 | 50.99

A.2.3 MORE EXPERIMENTS ON OUT-OF-DISTRIBUTION BENCHMARKS

To assess the generalization ability of our method, we conduct additional experiments on out-of-
distribution (OOD) benchmarks with question formats and prompts unseen during training. We
evaluate our model on RULER (Hsieh et al.,2024) and HELMET (Yen et al., 2025)) with a 32k context
length, and the results are presented in Table [§]and Table 0] respectively. As shown in the tables,
our SWA-3B-4k-EMR achieves performance comparable to Qwen-2.5-3B-OR on both benchmarks.
Variable Tracking(VT) in RULER and Passage re-ranking(PRR) in HELMET are the tasks that differ
most from our training distribution, and both models perform worse on these tasks than on others.
Nevertheless, SWA-3B-4k-EMR surpasses Qwen-2.5-3B-OR on these two tasks, indicating stronger
OOD generalization. Additionally, both Qwen-2.5-3B-NMR and SWA-3B-4k-OR perform poorly on
these benchmarks, further underscoring the importance of co-designing architecture and inference
methods.

A.2.4 COMPARISON WITH OVERFLOW PREVENTION FOR RECURRENT MODELS (OPRM)

Overflow Prevention for Recurrent Models (OPRM; (Ben-Kish et al.|[2025)) proposes a RAG-style
inference method to address overflow in Recurrent LLMs. Our approach differs in two key ways: (1)
OPRM’s RAG-style inference constrains generalization and hampers tasks that require reasoning
over the entire context; and (2) OPRM does not fully exploit the recurrent architecture and therefore
shows no clear advantage over Self-Attention LLMs. We compare our method with OPRM on
LongBench (see Table[I0), where our model outperforms all OPRM variants by a substantial margin,
demonstrating the effectiveness of our approach.

A.2.5 COMPARISON WITH OTHER MULTI-STEP INFERENCE METHODS

To assess the effectiveness of our approach, we compare Smooth Reading with several other LLM
inference methods. For a fair evaluation, we implement each method as follows:
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Table 11: Comparison with More Multi-Step Inference Methods on Question Answering Tasks.

Architecture Infer | Model | HotpotQA  MuSiQue 2WikiMQA  TriviaQA
RAG Qwen-2.5-3B-Instruct 34.59 13.44 27.67 81.16

Self-Attention RAG+ Qwen-2.5-3B-Instruct 36.91 19.92 35.47 82.15
CompACT | Qwen-2.5-3B-Instruct 36.57 18.35 39.95 79.69

Recurrent EMR ‘ SWA-3B-4k-EMR (ours) ‘ 54.25 31.77 56.99 85.61

Table 12: Comparison of Performance with and without Early Stopping on NIAH.

Early Stop‘ 8k 16k 32k 64k 128k 256k ‘ Avg

without 99.80  100.00 100.00 99.80 99.60 100.00 | 99.87
with 99.60  99.60 99.80  99.80 99.60  99.80 | 99.70

* RAG: We utilize standard RAG models as introduced by (Asai et al.| |[2023)). For each query,
Contriever-MS MARCO retrieves the top five documents from Wikipedia, using the official
embeddings from the 2018 English Wikipedia. These retrieved passages form the long context.
Note that this method incorporates external knowledge.

* RAG+: To avoid using external knowledge, we split the context into multiple passages for
each question. Both the query and each passage are encoded using sentence embedding mod-
els (Reimers & Gurevych,[2019). We compute the cosine similarity between the query and the
passages, select the top three most relevant passages, and provide them as the context for answer
generation.

* CompACT (Yoon et al.;[2024): We also compare with CompACT, a strong baseline. This method
iteratively compresses the context based on the question, and the answer is generated from this
compressed context. In our experiments, we adopt the off-the-shelf CompACT compressorﬂ

As shown in Table [T1] our Smooth Reading approach consistently achieves the highest F1-scores
across all evaluated datasets, demonstrating its superior capability in handling long-context passages.
Compared to the compressor-based method CompACT, Smooth Reading attains better results, which
suggests that the compression process in CompACT may discard information important for accurate
reasoning.

A.2.6 INFLUENCE OF EARLY STOPPING ON PERFORMANCE

We further compare the performance of our method with and without early stopping by evaluating
SWA-3B-4k-EMR on NIAH, as presented in Table [I2] The results show that early stopping has
minimal impact on performance, with average accuracy exceeding 99% in both scenarios. Moreover,
by default, we enable early stopping for question answering on LongBench, and the high performance
of our LongBench results (Table [2) also indicates that early stopping does not significantly affect
performance.

A.3 LIMITATION AND FUTURE WORK

There are several limitations to our work.

No Completely New Architecture or Inference Method We focus on the co-design of architecture
and inference rather than introducing entirely new architectures or inference algorithms. Although
the individual components we build upon already exist, our contributions are twofold: (1) to the best
of our knowledge, we are the first to systematically study the interaction between architecture and
inference method, demonstrating that judicious co-design can substantially improve performance;
and (2) we significantly improve the long-context performance of Recurrent LLMs, bringing them on
par with Self-Attention LLMs—a notable milestone for Recurrent LLMs. Designing entirely new
architectures or inference methods is outside the scope of this paper and is left to future work.

'https://huggingface.co/cwyoon99/CompAct—Tb
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Architectural Limitations We study sliding-window LLMs and RWKYV as representative recurrent
LLM architectures. Other recurrent architectures exist (e.g., DeltaNet (Yang et al., 2025)), but we did
not include them due to two practical barriers: (1) the absence of open-source, well-pretrained base
models, and (2) the lack of optimized inference engines that support high-throughput, multi-round
processing. Extending our approach to these architectures is an important direction for future work.

Need for SFT Training Our method requires supervised fine-tuning (SFT) to adapt models to the
Smooth Reading inference paradigm. This reflects a broader limitation of multi-round inference:
current LLMs are mainly trained under a one-round SFT protocol, making their out-of-the-box
multi-round performance suboptimal. Prior work on multi-round inference (Yoon et al., [2024} |Yu
et al., 2025} |Shao et al.| [2024) similarly relies on additional training. As future work, we plan to
explore training regimes that produce models capable of both one-round and multi-round inference
without requiring separate SFT datasets.

Need for Data Construction Because SFT is required, we must construct training data tailored to
multi-round inference. Advances in reinforcement learning (RL) may reduce this requirement by
leveraging simpler annotations, thereby lowering data construction costs. Given the complexity of RL
and the current lack of mature RL infrastructure for Recurrent LLMs, we leave this to future work.

Order of Query and Context

We use the default order of query followed by context (i.e., “[QUERY] [CONTEXT]”) and do not
support the reversed order (“[CONTEXT] [QUERY]”). This limitation is common among Multi-
Round Inference methods, as most prior work (Yoon et al., [2024} |Yu et al.| 2025) also adopts this
order. Nevertheless, it is addressable: since our agentic multi-step pipeline has an expandable action
space, future extensions could allow the model to read chunks in any order and learn to select the
reading sequence autonomously. This would enable the model to prioritize relevant chunks regardless
of query position. Achieving this, however, would require more sophisticated data construction and
training strategies, such as reinforcement learning, which we leave for future work.

Limited Tasks We evaluate primarily on long-context tasks, as these pose a central challenge for
Recurrent LLMs. While our method is, in principle, applicable to other domains such as deep research
(Zheng et al.| [2025) and software development (Jimenez et al.,|2024), a broader evaluation is left to
future work. We expect our approach to improve both accuracy and efficiency in these settings.

Despite these limitations, we believe our work takes a meaningful step toward unlocking the potential
of Recurrent LLMs and advancing the frontier of LLM research.
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