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ABSTRACT

This paper presents Divergence-Regularized Discounted Aggregation (DRDA),
a multi-round learning system for solving partially observable stochastic games
(POSGs), which unify normal-form games (NFGs), extensive-form games (EFGs)
with perfect recall, and Markov games (MGs). In each single round, DRDA can
be viewed as a discounted variant of Follow the Regularized Leader (FTRL) un-
der a general value function for POSGs concerning imperfect information and
an infinite horizon. While previous studies on this FTRL variant have demon-
strated its last-iterate convergence towards quantal response equilibrium (QRE) in
NFGs, this paper extends the theoretical results to POSGs by defining a generalized
Nash distribution (GND), which extends the QRE concept of Nash distribution
in NFGs through divergence regularization. The linear last-iterate convergence
of single-round DRDA to its rest point is proved under a general assumption of
hypomonotonicity. When the rest point is unique, it induces the unique GND,
which has a bounded deviation with respect to Nash equilibrium (NE). Under
multiple learning rounds, DRDA keeps replacing the base policy for divergence
regularization with the policy at the rest point in the previous round. It is further
proved that the limit point of multi-round DRDA must be an exact NE rather than
a QRE under the unique rest point assumption. In experiments, the last iterates of
multi-round DRDA converge to NE at a near-exponential rate in NFGs, outperform-
ing existing baselines including moving-magnet magnetic mirror descent (MMD)
in multiplayer EFGs. In an infinite-horizon MG, DRDA significantly outperforms
the applicable algorithms based on best-response computations.

1 INTRODUCTION

While a wide range of game-theoretic learning dynamics, including no-regret dynamics and best-
response dynamics, are primarily analyzed in static normal-form games (NFGs), many real-world
games are dynamic and usually considered under a different game representation. For example,
perfect-information games like pursuit-evasion games and fighting video games can be formulated as
Markov games (MGs). Imperfect-information games like Texas Hold’em are commonly formulated
as extensive-form games (EFGs) with perfect recall. In view of this requirement, many of the recent
studies have tried to extend the theoretical results established in NFGs to dynamic games (Kroer
et al., 2020; Farina et al., 2021). Counterfactual regret minimization (CFR) (Zinkevich et al., 2007),
as a well-known example, decomposes global regrets into local ones under counterfactual value
and enables regret minimization within a time complexity polynomial in the size of the game tree.
However, when it comes to infinite-horizon games like MGs, such generalizations are not feasible.
Instead, another line of algorithms based on best-response computations, including Fictitious Play
(FP) (Brown, 1951), Policy Space Response Oracle (PSRO) (Lanctot et al., 2017), and Exploitability
Descent (ED) (Lockhart et al., 2019), are known to be applicable. As an extension of MG, partially
observable stochastic game (POSG) introduces imperfect information and is capable of unifying NFG,
(perfect-recall) EFG, and MG. However, it is not clear if a basic learning dynamic under general
action value can be directly applied to the level of decision point in POSGs without sacrificing its
convergence properties in NFGs.
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In recent years, last-iterate convergence has become an increasingly interesting research target (Wei
et al., 2021; Lee et al., 2021). Compared to the well-examined concept of average-iterate convergence,
which CFR and FP are based upon, last-iterate convergence means that there is no need to preserve
policies in time average. This is an ideal property for further extension to deep reinforcement learning
(DRL), as it is intractable to time-average function approximators like neural networks. Much of
the existing research on last-iterate convergence is related to Follow the Regularized Leader (FTRL)
(Shalev-Shwartz & Singer, 2006)), which is a basic learning framework that has a close relationship
with various learning dynamics in game theory. The widely studied replicator dynamics (Taylor &
Jonker, 1978) as well as Hedge, multiplicative weights, and gradient methods can be captured as
special cases of FTRL (Cesa-Bianchi & Lugosi, 2006; Arora et al., 2012; Hazan et al., 2016). While it
is proved that the last-iterate of vanilla FTRL can cycle in NFGs and EFGs (Mertikopoulos et al., 2018;
Perolat et al., 2021), some of its variants exhibit last-iterate convergence. For example, the optimistic
variant of FTRL has demonstrated last-iterate convergence to Nash equilibrium (NE) in two-player
zero-sum games (Daskalakis & Panageas, 2019) under the unique equilibrium point assumption. For
general-sum games, the last iterate of a “discounted” variant of FTRL, first examined in Leslie &
Collins (2005), is proved to converge to the solution concept of Nash distribution (Coucheney et al.,
2015; Gao & Pavel, 2021), a specific form of quantal response equilibrium (QRE) (McKelvey &
Palfrey, 1995)) defined in NFGs.

While the convergence property of discounted FTRL holds even for multiplayer games, it is at the
price of applying a “perturbation” to the equilibrium point. Therefore, it is not clear if discounted
FTRL can be used to find the Nash equilibrium of the original game. Recently, a series of works on
two-player zero-sum or monotone games (Perolat et al., 2021; Abe et al., 2022; 2023) have shown that
the perturbation arising from divergence-regularized rewards can be mitigated using the technique of
multi-round learning, which repeatedly replaces the base policy in the regularization term with the
policy at the rest point in each single round. Inspired by these results, we construct a multi-round
equilibrium-learning system named Divergence-Regularized Discounted Aggregation (DRDA), based
on the continuous-time dynamic of discounted FTRL. We further examine the last-iterate convergence
of DRDA as well as its relationship to Nash equilibrium in POSGs.

Specifically, the contribution of this paper includes:

• Employing the advantage value (a type of action value) at each decision point in POSGs, we
propose single-round DRDA as an extension of discounted FTRL. By defining generalized
Nash distribution (GND) that extends Nash distribution to POSGs, we first prove the
relationship between the rest point of a learning dynamic and a QRE concept in POSGs:
every GND induces a DRDA rest point in POSGs (Theorem 1).

• By assuming local hypomonotonicity, which is a relaxation of the widely-used concept of
global monotonicity (Gorbunov et al., 2022b; Cai et al., 2022), we prove that single-round
DRDA converges to its rest point in a local λ-hypomonotone region at a linear rate under
the regularization parameter ϵ > λ (Theorem 2).

• By assuming the uniqueness of DRDA rest point, we establish an explicit NashConv bound
ϵn logK

∑
t γ

t for the rest point of single-round DRDA (Theorem 3). By showing that this
gap can vanish as the rest-point sequence of DRDA converges in multiple rounds, we further
prove that the limit point of multi-round DRDA is an exact Nash equilibrium (Theorem 4).

• Through experiments, we show that the discrete-time implementation of multi-round DRDA
converges to Nash equilibria in various multiplayer games under the POSG formulation.
In NFGs, DRDA converges at a near-exponential rate. In multiplayer EFGs, DRDA out-
performs the baselines including extragradient CFR+ (Farina et al., 2024), moving-magnet
magnetic mirror decent (Sokota et al., 2023), and regularized Nash dynamics (Perolat et al.,
2022). In an infinite-forizon Markov game, DRDA significantly outperforms the applicable
algorithms including FP, PSRO, and ED.

2 PRELIMINARIES

2.1 PARTIALLY OBSERVABLE STOCHASTIC GAME

We use the formulation of partially observable stochastic game (POSG) as a general framework to
describe a class of finite-action games possibly with imperfect information and an infinite horizon.
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Definition 1. A partially observable stochastic game is a tuple
〈
N,S,O,A,P,Z,

{
Ri
}
, ρ, γ, T

〉
:

N = {1, 2, · · · , n} is the set of all players. S is the set of all global states s ∈ S. O is the set of
all joint observations o⃗ = (oi)i∈N ∈ O. A is the set of all players’ actions, with the joint action
expressed as a⃗ = (ai)i∈N ∈ An. P is the state transition distributions, with a subsequent state
generated by st+1 ∼ P(st, a⃗t). Z is the observation distributions, with a joint observation generated
by o⃗t+1 ∼ Z(st, a⃗t, st+1). Ri is the reward function for player i, with an instant reward generated
by rit+1 = Ri(st, a⃗t, st+1). ρ is the initial state distribution, assigning each s ∈ S a probability
ρ(s) to be the initial state s0. γ ∈ (0, 1] is the discount factor, and T is the termination time. For
finite-horizon games, γ = 1, and T is finite. For infinite-horizon games, γ < 1, and T → ∞.

Inherently, POSG is able to describe simultaneous games like NFGs and MGs. Furthermore, since
sequential moves can be regarded as simultaneous moves with empty actions for the waiting players,
sequential games like EFGs can also be converted to equivalent POSGs.

2.2 BASIC CONCEPTS & NOTATIONS

The following concepts and notations will be frequently used in this paper.

History. As POSG contains imperfect information, the true state of the game at time step t ≤ T
should be expressed as a history ht = (s0, o⃗0, a⃗0, s1, o⃗1, a⃗1, · · · , st, o⃗t) ∈ H rather than a single
current state st. As a comparable concept, the trajectory used in the field of reinforcement learning
(RL) can be viewed as a history with rewards: τt = (s0, o⃗0, a⃗0, s1, r⃗1, o⃗1, a⃗1, · · · , st, r⃗t, o⃗t).
Decision point. In a POSG, player i makes his/her decisions based on his/her past observations
and actions xi

t =
(
oi0, a

i
0, o

i
1, a

i
1, · · · , oit

)
. In the case of imperfect-information games, each xi

t
can be viewed as an information set and corresponds to multiple true histories ht. In the case of
infinite-horizon games, some xi

t (even with different t) are equivalent under the optimal strategy and
can be regarded as the same decision point, which we use any one of the xi

t (or xi) to denote. For
example, in a Markov game, player i is at the same decision point when the current observation (the
last term in xi) is the same. We use X i to denote the set of all decision points and require the number
of distinct decision points |X i| to be finite throughout this paper.

We borrow the notation from the literature of EFGs (see Lanctot (2013)) and write ht ∈ xi
t (viewing

xi
t as an information set) if ht is not contradictory to the existing terms in xi

t. For k ≥ t, we write
hk ⊐ ht to express hk as a successor of ht in the game tree. Similarly, we write xi

k ⊐ xi
t to express

xi
k as a successor of xi

t.

In the special case of perfect-information games, the xi
t of any player i can uniquely determine

ht. Furthermore, we can simply use st to represent both ht and xi
t in this case, as the POSG has

essentially become an MG. Specifically, the expression of NFG, EFG, and MG under the POSG
formulation is shown in Table 1.

Table 1: Conversion of NFG, EFG, and MG under the framework of POSG

NFG EFG MG
Termination Time T = 1 T = depth of game tree T → ∞
Discount Factor − γ = 1 γ < 1

Dynamics Reduction |S| = |O| = 1 P(st, a⃗t) = P(st, a
i(st)
t ) xi

t = ht = st
• For EFGs, we use i(st) to denote the current player under global state st.

Policy. At each decision point xi, player i’s policy πi(xi) is a probability distribution over A.
Player i’s complete policy is a combination of the policies at all xi ∈ X i. We use the joint policy
π⃗ = (πi)i∈N ∈ Π to denote the combination of all players’ complete policies and use π⃗−i to denote
the combination of all players’ policies except player i’s.

Value functions & Advantage. In POSGs, the value function of history ht under a joint policy π⃗ is
defined as V i

π⃗(ht) = E
[∑T−1

k=t γk−trik+1 |ht, π⃗
]
. The corresponding state-action value function is
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defined as Qi
π⃗(ht, a

i
t) = E

[
rit+1 + γV i

π⃗(ht+1)
∣∣ht, a

i
t, π⃗
]
. Borrowing the notation from RL literature

(Sutton & Barto, 2018), define history-based advantage as Ai
π⃗(ht, a

i
t) = Qi

π⃗(ht, a
i
t)− V i

π⃗(ht).

Utility & Nash equilibrium. The individual utility in POSGs is defined as the expected value over
the initial states: ui(π⃗) = Eh0

[
V i
π⃗(h0)

]
, where h0 = (s0, o⃗0), with s0 ∼ ρ and o⃗ ∼ Z(s0).

As a commonly-used solution concept in game theory, Nash equilibrium (NE) is a joint policy π⃗nash

where no player can increase his/her own utility by unilaterally deviating from his/her own policy.
Specifically, for any player i ∈ N and any individual policy πi ∈ Πi, it holds that ui(π⃗nash) ≥
ui(πi, π⃗−i

nash). Based on Nikaido-Isoda function (Nikaidô & Isoda, 1955), define NashConv(π⃗) =∑n
i=1 maxπi

†∈Πi{ui(πi
†, π⃗

−i)− ui(π⃗)}. NashConv measures the deviation of π⃗ with respect to Nash
equilibrium. Clearly, NashConv(π⃗nash) = 0.

2.3 FOLLOW THE REGULARIZED LEADER & DISCOUNTED FTRL

Follow the Regularized Leader. Follow the Regularized Leader (FTRL) is a widely examined
equilibrium-learning dynamic. In NFGs, the continuous-time FTRL (Mertikopoulos et al., 2018) can
be expressed as an ODE of the score y⃗ with a non-negative continuous time variable t (different from
the discrete time step t used in the formulation of POSG):{

ẏit = wi(π⃗t)

πi
t = σi(yit)

(1)

where wi(π⃗t)(a) = ui(πi
a, π⃗

−i
t ) is player i’s expected utility under a pure strategy πi

a(·) with
πi
a(a) = 1, and σi(yit) = argmaxπi∈∆(A){

〈
πi, yit

〉
− ϕi(πi)} is the policy selection that maps the

current score function yit(·) into the policy space ∆(A).

The penalty function ϕi(πi) guarantees that the σi(·) in (1) is well-defined in the sense that the argmax
results in a singleton. Under entropic regularization (i.e., ϕi(πi) = ϵ

∑
ai∈A πi(ai) log πi(ai)), FTRL

is equivalent to multiplicative weights (Hedge) (Cesa-Bianchi & Lugosi, 2006; Arora et al., 2012) as
well as replicator dynamics in evolutionary game theory (Taylor & Jonker, 1978).

Discounted FTRL. While FTRL exhibits average-iterate convergence, the last iterate of FTRL may
not converge. Actually, it features a cycling behavior that is robust to the choice of regularization, util-
ity transformations, and game restrictions (see Mertikopoulos et al. (2018)). To avoid the recurrence
behavior, a “discounted” variant of FTRL can be used instead (Leslie & Collins, 2005):{

ẏit = wi(π⃗t)− yit

πi
t = σi(yit)

(2)

Discounted FTRL uses wi(π⃗t)− yit instead of wi(π⃗t) as the derivative of the score y⃗t. Consequently,
the past aggregation of utility will be discounted as t increases. This guarantees last-iterate conver-
gence towards the solution concept of Nash distribution in NFGs (Gao & Pavel, 2021; Coucheney
et al., 2015). Nash distribution is defined as the NE policy under a utility function perturbed by
entropic regularization ũi(π⃗) = ui(π⃗)− ϕi(πi), where ϕi(πi) = ϵ

∑
ai∈A πi(ai) log πi(ai). It is a

specific form of quantal response equilibrium (QRE) (McKelvey & Palfrey, 1995) and can be viewed
as a relaxation of the original NE concept.

Rest point. To formally examine the last-iterate convergence of a continuous-time dynamic, we need
to use the concept of rest point. For discounted FTRL (2), (y⃗r, π⃗r) is a rest point if both yir = wi(π⃗r)
and πi

r ∈ σi(yir) are satisfied for all i ∈ N . Intuitively, it means that y⃗t ≡ y⃗r, π⃗t ≡ π⃗r (t ≥ 0) is a
solution to the ODE. Under entropic regularization, it can be proved that the policy at the rest point of
discounted FTRL is equivalent to the concept of Nash distribution in NFGs (see Gao & Pavel (2021)).

3 DIVERGENCE-REGULARIZED DISCOUNTED AGGREGATION

As we have mentioned, while the last-iterate convergence property of discounted FTRL is desirable,
it is restricted to NFGs and comes at the price of perturbing the equilibrium point. Considering these
limitations, we combine the idea of multi-round learning to construct a new learning system, namely,
Divergence-Regularized Discounted Aggregation (DRDA), for solving POSGs.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 SINGLE-ROUND DRDA

As POSG concerns imperfect information, define a decision-point-based advantage value vi(π⃗),
which averages all possible histories’ advantages based on the visitation probability Pr (h|π⃗):

vi(π⃗)(xi, ai) =

∑
h∈xi

Pr (h|π⃗)Ai
π⃗(h, a

i)∑
h∈xi

Pr (h|π⃗)
(3)

With the definition of vi(π⃗), we analyze the following decision-point-level ODE in a POSG.
Definition 2. A single-round DRDA under regularization parameter ϵ > 0 and base policy π⃗base is
a continuous-time dynamic expressed as the following ODE with a non-negative time variable t:{

ẏit = vi(π⃗t)− yit

πi
t = σi(yit)

(4)

where yit(x
i, ·) is the score function at decision point xi ∈ X i, vi(π⃗t)(x

i, ·) is the advantage value
defined by (3), and σi(yit)(x

i) is the policy choice map under divergence regularization:

σi(yit)(x
i) = argmax

πi(xi)∈∆(A)

{〈
πi(xi), yit(x

i)
〉
− ϵDKL

(
πi(xi)||πi

base(x
i)
)}

(5)

Note that the advantage value vi(π⃗t) in the single-round DRDA (4) is comparable to wi(π⃗t) in the
discounted FTRL (2). When T = |S| = |O| = 1, the POSG is reduced to an NFG, and we have
vi(π⃗t)(x

i
0, a) = wi(π⃗t)(a)− ui(π⃗t). From the integral form of the score function, we can see that a

single-round DRDA is a discounted aggregation of the past vi(π⃗t) under a factor of e−(t−τ):

yit(x
i, ai) = e−tyi0(x

i, ai) +

∫ t

0

e−(t−τ)vi(π⃗τ )(x
i, ai)dτ (6)

Different from vanilla FTRL, the introduction of the exponentially decaying factor suggests the
boundedness of the score function:
Lemma 1. In single-round DRDA, the score y⃗ is bounded.

Besides, we use KL-divergence DKL

(
πi(xi)||πi

base(x
i)
)
=
∑

ai∈A πi(xi, ai) log πi(xi,ai)
πi
base(x

i,ai)
as the

regularizer (penalty) function in (5) and requires π⃗base to be of full support. Correspondingly, we
have an equivalent expression for σi(yit), which is in form similar to the well-known softmax:
Lemma 2. In single-round DRDA, σi(yit) has a closed-form expression:

σi(yit)(x
i, ai) =

πi
base(x

i, ai) exp
(
1
ϵ y

i
t(x

i, ai)
)∑

b∈A
πi
base(x

i, b) exp
(
1
ϵ y

i
t(x

i, b)
) (7)

It is direct to verify that the advantage value v⃗(·) is continuous. With the continuity of σ⃗(·) (7), we
know that v⃗(σ⃗(·)) is also continuous. By Brouwer’s fixed-point theorem (Florenzano, 2003), a fixed
point of v⃗(σ⃗(·)) exists. The existence of the rest point of single-round DRDA is thus proved.

3.2 MULTI-ROUND DRDA & DISCOUNTED AGGREGATION

Based on Definition 2, we further propose multi-round DRDA to extend the learning process to
multiple rounds, using an idea of repeatedly replacing the base policy π⃗base (see Perolat et al. (2021);
Abe et al. (2022; 2023)). This technique can help the overall learning process to approach Nash
equilibrium rather than QRE. Specifically, a round corresponds to a time-evolving process of (4) until
reaching its rest point (equilibrium point). The ODEs in different rounds differ in the base policy
π⃗base for divergence regularization.
Definition 3. A multi-round DRDA under regularization parameter ϵ > 0 and initial point p0 is an
iterative process of calling an oracle M. In the l-th iteration (l ≥ 1), M takes (y⃗0, π⃗0) = pl−1 as an
input and outputs pl = (y⃗r, π⃗r), where (y⃗r, π⃗r) is the rest point of the single-round DRDA starting
from (y⃗0, π⃗0) under the specified ϵ and π⃗base = π⃗0.

5
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To examine if multi-round DRDA can find exact Nash equilibrium rather than QRE, we also need to
define the counterpart of single-round DRDA under ϵ = 0. We call it Discounted Aggregation (DA),
which corresponds to the problem of ẏit = vi(π⃗t)− yit under the restriction:

πi
t(x

i) ∈ argmax
πi(xi)∈∆(A)

{〈
πi(xi), yit(x

i)
〉}

,∀xi ∈ X i (8)

Note that the hardmax policy selection above implies that πi
t is a satisfactory policy when only the

actions with the highest score yit are assigned non-zero probability. In the following section, we will
see that every NE in the POSG actually corresponds to a solution of DA. Furthermore, when the
solution (rest point) of DA is unique, the POSG has a unique Nash equilibrium that corresponds to
the unique rest point.

4 THEORETICAL ANALYSIS

In this section, we examine the convergence properties of DRDA. We will characterize the rest point
of single-round DRDA with a QRE concept in POSGs and prove a hypomonotinicity-based condition
for single-round DRDA to converge to the rest point at a linear rate. Furthermore, we will show that
under the uniqueness assumption on DA rest point, the limit point of multi-round DRDA is actually
an exact Nash equilibrium rather than a QRE. All omitted proofs are provided in Appendix C.

4.1 GENERALIZED NASH DISTRIBUTION

As a type of quantal response equilibrium (QRE) (McKelvey & Palfrey, 1995), Nash distribution
(Leslie & Collins, 2005) in NFGs corresponds to a solution concept close to Nash equilibrium but
under certain utility perturbation. Here, we first generalize this concept in the context of POSGs.
Definition 4. A generalized Nash distribution (GND) under regularization parameter ϵ ≥ 0 and
base policy π⃗base is a joint policy π⃗∗. For any player i ∈ N and any individual policy πi ∈ Πi:

ui(π⃗∗)− ϵ

T−1∑
t=0

γt
∑
xi
t

DKL

(
πi
∗(x

i
t)||πi

base(x
i
t)
) ∑
ht∈xi

t

Pr (ht|π⃗∗)

 ≥

ui(πi, π⃗−i
∗ )− ϵ

T−1∑
t=0

γt
∑
xi
t

DKL

(
πi(xi

t)||πi
base(x

i
t)
) ∑
ht∈xi

t

Pr (ht|π⃗∗)


Note that GND introduces a utility perturbation based on the KL-divergence under base policy π⃗base

and the visitation probability Pr (ht|π⃗∗) under current policy π⃗∗. When ϵ = 0, a GND becomes a
Nash equilibrium. Also note that when T = |S| = |O| = 1, the POSG is reduced to an NFG, and the
GND is equivalent to the concept of Nash distribution defined in NFGs if π⃗base is set to be a uniform
policy. However, please note that the GND defined in POSGs is not the same as the Nash distribution
defined in the (exponentially large) NFG representation of the POSG.

Now we use the following lemma to show an important inequality for GND. This inequality connects
the solution concept of GND with the rest point of single-round DRDA and DA:
Lemma 3. Given a GND π⃗∗ under ϵ and π⃗base, it holds for any player i ∈ N , any individual policy
πi ∈ Πi, and any individual decision point xi

t ∈ X i:

∑
ht∈xi

t

Pr (ht|π⃗∗)

∑
ai
t

πi
∗(x

i
t, a

i
t)A

i
π⃗∗
(ht, a

i
t)− ϵDKL

(
πi
∗(x

i
t)||πi

base(x
i
t)
) ≥

∑
ht∈xi

t

Pr (ht|π⃗∗)

∑
ai
t

πi(xi
t, a

i
t)A

i
π⃗∗
(ht, a

i
t)− ϵDKL

(
πi(xi

t)||πi
base(x

i
t)
)

The inequality above is further used to prove the following theorem, which claims that every GND
must correspond to a rest point of our learning dynamic. This theorem will be subsequently used to
relate the rest point back to the solution concept of Nash equilibrium.
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Theorem 1. In a POSG, every GND π⃗∗ under ϵ > 0 induces a rest point (v⃗(π⃗∗), π⃗∗) in single-round
DRDA, and every GND π⃗∗ under ϵ = 0 (i.e., Nash equilibrium) induces a DA rest point (v⃗(π⃗∗), π⃗∗).

4.2 CONVERGENCE OF SINGLE-ROUND DRDA

Now we analyze the conditions for single-round DRDA to converge to its rest point in POSGs. Our
analysis primarily relies on two properties: the strong convexity of the penalty function and the local
hypomonotonicity of the game. First, we need to show that, similar to other forms of regularization
used in FTRL, the divergence regularization used in single-round DRDA (5) is 1-strongly convex.
Definition 5. A function f(·) on a compact convex set C is K-strongly convex if for any z, z′ ∈ C

and any β ∈ [0, 1], f(αz + (1− α)z′) ≤ αf(z) + (1− α)f(z′)− 1
2Kα(1− α)∥z − z′∥2.

Lemma 4. DKL (π||µ) =
∑

a π(a) log
π(a)
µ(a) is 1-strongly with respect to π under ℓ1 norm.

Second, we need to examine the hypomonotonicity of the game. This property is a bit different from
cocoercivity, which is also used in analyzing the convergence of the extragradient method (Gorbunov
et al., 2022a). The concept of hypomonotonicity relaxes monotonicity, a more strict but widely used
concept in the existing convergence analyses (Gorbunov et al., 2022b; Cai et al., 2022).
Definition 6. An operator F : Rd → Rd is called monotone if for any x, x′ ∈ Rd:

⟨x− x′, F (x)− F (x′)⟩ ≥ 0 (9)

Definition 7. An operator F : Rd → Rd is called λ-hypomonotone (λ ≥ 0) if for any x, x′ ∈ Rd:

⟨x− x′, F (x)− F (x′)⟩ ≥ −λ∥x− x′∥22 (10)

Note that being 0-hypomonotone means being monotone. With the hypomonotonicity of a proper
value operator, we can define the hypomonotonicity of a POSG on a local policy set.
Definition 8. A POSG is locally λ-hypomonotone (λ ≥ 0) on a policy set Πlocal ⊂ Π if the negative
advantage value −v⃗(·) is λ-hypomonotone (λ ≥ 0) on Πlocal. I.e., for any π⃗1, π⃗2 ∈ Πlocal:∑

i∈N

〈
πi
1 − πi

2, v
i(π⃗1)− vi(π⃗2)

〉
≤ λ

∑
i∈N

∥∥πi
1 − πi

2

∥∥2
2

(11)

where the inner product sums over all (k, hk, a
i
k) triples.

Note that local hypomonotonicity only requires the inequality (11) to hold in a local region of policies
Πlocal ⊂ Π. When Πlocal = Π, we say the game is globally hypomonotone. Actually, by proving
the following proposition, we can show that global hypomonotonicity is a common property for all
NFGs (as a special case of POSG under T = |S| = |O| = 1).
Proposition 1. Every NFG is globally λ-hypomonotone under a sufficiently large λ.

To further demonstrate that hypomonotonicity can still be a realistic assumption when the game
is dynamic, we numerically provide underestimates of the global hypomonotonicity value λ for
multiplayer Kuhn poker (Kuhn, 1950) in Appendix D. The computed values are at the level of 10−1

under the standard utility setting.

Using the strong convexity of the penalty function, we can now derive a general condition for the
linear convergence of single-round DRDA towards its rest point under local hypomonotonicity.
Theorem 2. Assume that a rest point (y⃗ϵ, π⃗ϵ) of single-round DRDA under ϵ > 0 is contained in a
positively invariant compact set Ω that induces a local policy set Πlocal = {σ⃗(y⃗) | y⃗ ∈ Ω}, where
λ-hypomonotonicity is satisfied. If ϵ > λ, then the policy of the DRDA starting from an arbitrary
y⃗0 ∈ Ω will converge to π⃗ϵ at a linear rate. Specifically, there exists a non-negative energy function
V(y⃗t) satisfying

.

V(y⃗t) ≤ −2(1− λ
ϵ )V(y⃗t), with π⃗ = σ⃗(y⃗) = π⃗ϵ when V(y⃗) = 0.

The energy function V(y⃗t) is constructed based on a concept called Fenchel coupling (Mertikopoulos
& Zhou, 2019), which has a lower bound under a strongly convex penalty function (see Lemma 4
for KL-divergence). We decompose the derivative of the energy function into one term that can be
upper-bounded using the assumption of hypomonotonicity and two negative Fenchel coupling terms.
Under ϵ > λ, the derivative is non-positive and the energy function approaches zero exponentially
fast. We complete the proof by showing that the policy at the points with zero energy is exactly π⃗ϵ.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 RELATIONSHIP TO NASH EQUILIBRIUM

Recall that, under ϵ = 0, Theorem 1 implies that every Nash equilibrium induces a rest point of DA
(8). Thus, the existence of the DA rest point can be guaranteed by the existence of NE. Furthermore,
if the rest point is unique, then the policy at the rest point must be the unique Nash equilibrium of
the game. Under this uniqueness assumption, the problem of finding Nash equilibrium is reduced to
finding the rest point of DA. Formally, we have the following theorem:
Theorem 3. If the rest point (y⃗r, π⃗r) in DA is unique, then π⃗r corresponds to an exact Nash
equilibrium. Under ϵ > 0 and π⃗base, if the rest point (y⃗r, π⃗r) in single-round DRDA is unique,
and there exists a generalized Nash distribution in the POSG, then the NashConv of π⃗r is at most
ϵn logK

∑
t γ

t, where K = max
i∈N,xi

t∈X i,a∈A
1

πi
base(x

i
t,a)

.

Theorem 3 relates the DRDA rest point to Nash equilibrium under the assumption of its uniqueness.
To find approximate Nash equilibrium, we theoretically require the regularization parameter ϵ to be
close to zero. If the POSG is (strictly) monotone, then by Theorem 2, we can use an infinitesimal ϵ in
DRDA while still guaranteeing its convergence since we have λ = 0. In this case, a single round of
DRDA is sufficient to find an arbitrarily precise approximate Nash equilibrium.

On the other hand, we can establish a more general guarantee for multi-round DRDA (Definition 3).
Note that when the rest-point sequence (pl)l≥0 converges, the regularization terms approach zero at
the rest points. Using Theorem 3, we further prove that the limit point of multi-round DRDA is an
NE rather than a QRE under the uniqueness assumption.
Theorem 4. If the policies in the rest-point sequence (pl)l≥0 generated by multi-round DRDA
converge (under a properly selected ϵ > 0 and p0), and the rest point of DA is unique, then the
corresponding policy sequence must converge to a Nash equilibrium.

While Theorem 4 does not provide an exact condition for multi-round DRDA to converge, it suggests
that an arbitrarily precise approximate NE can always be found as long as the overall learning process
converges. In the next section, we will further show that multi-round DRDA actually converges to
Nash equilibrium at a fast rate in a variety of games.

5 EXPERIMENTS

As we have mentioned, POSG can unify normal-form games, extensive-form games with perfect
recall, and Markov games. Considering the representation capability of the POSG framework, DRDA
can be applied to a broad class of finite-action games. We implement DRDA in NFGs, EFGs, and
an infinite-horizon MG to demonstrate the single-round/multi-round convergence of DRDA as well
as its equilibrium-finding capability. The implementation details, parameter settings, and game
descriptions are placed in Appendices E.1, E.3, and F, respectively. Since the per-iteration time
complexity of discrete-time DRDA (SDRDA, see Algorithm 1) is a standard O(|H|) when using
dynamic programming to compute the advantage value, it is fair to compare its multi-round version
(simply referred to as DRDA in the experiment) with other algorithms under the same number of
total iterations.

Among the comparative algorithms, magnetic mirror descent (MMD), which exhibits last-iterate
convergence to QREs in two-player zero-sum or (strictly) monotone games (Sokota et al., 2023),
has an intrinsic relationship with single-round DRDA if we consider another way of discretization
(see Appendix E.2). Besides, an extended version of MMD uses the idea of moving magnets to find
exact Nash equilibrium, while DRDA employs the idea of multi-round learning to achieve the same
goal. Since MMD shares certain similarities with DRDA, we use its moving-magnet version (simply
referred to as MMD in the experiment) as a common baseline in NFGs and EFGs.

5.1 NORMAL-FORM GAME (NFG)

NFGs are games where each of the players makes one decision simultaneously. As single-round
DRDA can be viewed as a discounted variant of FTRL in NFGs, we compare it with vanilla FTRL and
the FTRL variant under the optimistic gradient method (OFTRL for short, see Boone & Mertikopoulos
(2024)). We also compare the variant of regret matching under the extragradient method (ERM+ for

8
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Figure 1: NashConv learning curves in NFG

short, see Farina et al. (2024)). We use NashConv as the performance metric for all algorithms. The
payoff settings for three NFG scenarios (i.e., 2-action matrix game, 3-action bimatrix game, and
3-action 3-player game) are provided in Appendix F.1, and the learning curves are shown in Figure 1.

In the 2-action matrix game and 3-action bimatrix game, while the average iterates of FTRL can
converge to Nash equilibrium, its last iterates cannot. OFTRL as well as ERM+ and MMD, however,
exhibits last-iterate convergence to NE at an exponential rate. For DRDA, the last iterates converge to
a rest point in each single round separated by the vertical lines. This aligns with the linear convergence
result in Theorem 2. Moreover, the rest-point policy sequence converges and approaches NE under
multiple learning rounds. This is consistent with the statement in Theorem 4. Besides, the overall
convergence rate is near-exponential since the curve drawn by the stationary policies is roughly linear
(like that of OFTRL, ERM+, and MMD).

In the 3-action 3-player game, MMD still converges, and ERM+ converges after an oscillation.
However, the average iterate of FTRL and the last iterate of OFTRL no longer converge to NE.
Actually, there is no theoretical guarantee for them to work in multiplayer games. In comparison, the
single-round/multi-round convergence of DRDA is still guaranteed in this scenario.

5.2 EXTENSIVE-FORM GAME (EFG) & MARKOV GAME (MG)

EFGs are games where each of the players makes multiple sequential decisions based on imperfect
information about the global history. Since each player in an EFG may have multiple decision points,
the size of the action space in the equivalent NFG representation can be exponential in the size
of the game tree. Therefore, it is computationally impractical to directly apply some of the NFG-
based methods to EFGs without considering the game-tree structure. Extending the idea of regret
matching, counterfactual regret minimization (CFR) (Zinkevich et al., 2007) is the most commonly
used equilibrium-learning algorithm in EFGs. Empirically, CFR+ (see (Bowling et al., 2015)) has an
improved average-iterate/last-iterate performance. Regularized Nash Dynamics (R-NaD for short,
see Perolat et al. (2021; 2022)) is a multi-round learning algorithm that also exhibits last-iterate
convergence in EFGs. Here, we compare CFR+, (stable) predictive CFR+ (PCFR+ for short, also see
Farina et al. (2024)), extragradient CFR+ (ECFR+ for short), and R-NaD in multiplayer Kuhn poker
scenarios. The game details are provided in Appendix F.2.

As is shown in Figure 2 (left & mid), while the average iterates of CFR+ can converge, its last iterates
oscillate. R-NaD has a multi-round learning pattern close to DRDA, but the process is much slower
and suffers from an oscillation in the 4-player scenario. While ECFR+ and MMD have impressive
performance in NFGs, they do not work when it comes to multiplayer EFGs. PCFR+ exhibits certain
last-iterate convergence in the 3-player case but oscillates when it comes to 4 players. The 20-round
DRDA clearly outperforms the other algorithms in 3-player/4-player Kuhn poker.

Markov game can be regarded as a special case of POSG, where each player has full observation
of the global state. The Markovian property guarantees that it is sufficient to use current states to
represent histories and decision points. This makes it practical for algorithms like DRDA to deal
with infinite-horizon games like soccer game (see Appendix F.3), where we compare DRDA with
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Figure 2: NashConv learning curves in EFG and MG
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Figure 3: NashConv learning curves in Adversarial Tiger

three other general methods of equilibrium learning: FP (Brown, 1951), PSRO (Lanctot et al., 2017),
and ED (Lockhart et al., 2019). While both FP and PSRO require preserving history policies, ED
only uses last-iterate policies like DRDA. Since the evaluation of value functions requires repeated
dynamic programming in each iteration, we only run a total of 100 iterations (5 rounds for DRDA) to
save time. As is shown in Figure 2 (right), while the 5-round DRDA has not converged in each single
round of 20 iterations, the overall convergence is significantly faster than the comparative algorithms.

Besides EFG and MG, we also run multi-round DRDA in typical POSGs like tiger game (see Wiggers
(2015)) and find that it outperforms existing methods like HSVI (Delage et al., 2024). The comparison
details are provided in Appendix F.4. Figure 3 shows the NashConv learning curves of 10-round
DRDA under parameter ϵ ∈ {0.05, 0.1, 0.15} in Adversarial Tiger with time horizon H ∈ {2, 3, 4}.

6 CONCLUSION

In this paper, a multi-round equilibrium-learning system, based on discounted FTRL and named
DRDA, is introduced under the framework of POSG. Considering that POSG is capable of unifying
NFG, (perfect-recall) EFG, and MG, we define a generalized Nash distribution (GND) in POSGs as a
solution concept comparable to QRE in NFGs. We further show that the rest point of single-round
DRDA can be characterized by GND (Theorem 1). We prove the linear last-iterate convergence of
DRDA to its rest point in a single round under the assumption of game hypomonotonicity (Theorem
2). We further prove that the limit point of multi-round DRDA must be a Nash equilibrium under
the uniqueness assumption (Theorem 3 and Theorem 4). In our experiments, the discrete-time
implementation of multi-round DRDA manages to find approximate NE in various games represented
by POSG. The last-iterate convergence of single-round/multi-round DRDA is also consistent with
theory. Like magnetic mirror decent and extragradient regret matching, multi-round DRDA achieves
a near-exponential convergence rate in NFGs. For EFG, MG, and typical POSG, DRDA outperforms
the existing baseline algorithms.
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Limitation & Future work. One limitation of this work is that we have not theoretically examined
the condition for the policy sequence of multi-round DRDA to converge despite the simulation results.
It is also left for future work to examine whether the requirement of a unique equilibrium point can
be removed in establishing the relationship to Nash equilibrium.
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A LAST-ITERATE CONVERGENCE OF MORE FTRL VARIANTS

Besides the method of discounted aggregation, the idea of optimistic gradient methods and extragradi-
ent methods can also be employed to mitigate the recurrence behavior of vanilla FTRL and facilitate
last-iterate convergence.

Note that the rest point of (1) is a (y⃗r, π⃗r) pair, where y⃗r is a solution to the variational inequality
problem (VIP) of F (y⃗) = 0 under F (y⃗) = −w⃗(σ⃗(y⃗)), and the discrete-time counterpart of (1) can
be written as y⃗t+1 = y⃗t − ηF (y⃗t).

Optimistic gradient method. Instead of using the current gradient F (y⃗t) to update, the optimistic
gradient method uses (2F (y⃗t)−F (y⃗t−1)). The update formula then becomes y⃗t+1 = y⃗t−2ηF (y⃗t)+
ηF (y⃗t−1). This method turns the original FTRL into the optimistic FTRL (OFTRL).

Extragradient method. Instead of using F (y⃗t), the extragradient method uses the gradient at
the point after one update attempt: F (y⃗t − ηF (y⃗t)). The update formula then becomes y⃗t+1 =
y⃗t − ηF (y⃗t − ηF (y⃗t)). This turns the original FTRL into what we call extragradient FTRL (EFTRL).

In the field of optimization, both the optimistic gradient method and the extragradient method
guarantee O(1/I) last-iterate convergence to the solution to the VIP under monotonicity assumptions
(Gorbunov et al., 2022b;a), where I denotes iterations. For OFTRL, a near-optimal Õ(1) regret
bound that corresponds to a Õ(1/I) convergence rate is also proved (Daskalakis et al., 2021), and
last-iterate convergence to Nash equilibrium is guaranteed in two-player zero-sum games under the
unique equilibrium assumption (Daskalakis & Panageas, 2019). For EFTRL, we find it has a learning
behavior similar to OFTRL in various game scenarios.

Reward regularization. Besides the gradient methods, Perolat et al. (2021; 2022) demonstrates that
divergence regularization − η

Pr(ht|π−i) log
πi(xi

t,a
i
t)

πi
base(x

i
t,a

i
t)

on rewards can lead to last-iterate convergence
for FTRL. With this idea, a multi-round learning algorithm, regularized Nash dynamics (R-NaD),
is also proposed to solve two-player zero-sum or monotone EFGs. As DRDA is also a multi-round
learning system that is capable of dealing with EFGs, R-NaD is directly compared with multi-round
DRDA in the experiment section.
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B AUXILIARY RESULTS

B.1 RELATED TO ACTION VALUE

The existing research on reinforcement learning has established a series of theoretical results when
analyzing Markov decision processes (MDPs). As POSGs generalize MDPs by introducing multiple
players and partial observations, some existing results related to action value in MDPs/POMDPs can
also be generalized to POSGs. The following two lemmas will be used in our subsequent proofs.

First, the advantage function has a well-known property:

Lemma 5 (Property of Advantage).∑
ai
t

πi(xi
t, a

i
t)A

i
π⃗(ht, a

i
t) = 0

Proof. By definition of the history-based advantage:

Ai
π⃗(ht, a

i
t) = Qi

π⃗(ht, a
i
t)− V i

π⃗(ht)

Therefore, we have:

∑
ai
t

πi(xi
t, a

i
t)A

i
π⃗(ht, a

i
t)

=
∑
ai
t

πi(xi
t, a

i
t)
(
Qi

π⃗(ht, a
i
t)− V i

π⃗(ht)
)

=
∑
ai
t

πi(xi
t, a

i
t)Q

i
π⃗(ht, a

i
t)− V i

π⃗(ht)
∑
ai
t

πi(xi
t, a

i
t)

= V i
π⃗(ht)− V i

π⃗(ht) = 0

Second, the well-known lemma of policy difference also holds in POSGs:

Lemma 6 (Policy Difference).

V i
πi
†,π⃗

−i(ht)− V i
π⃗(ht) = E

[
T−1∑
k=t

γk−tAi
π⃗(hk, a

i
k)
∣∣ht, π

i
†, π⃗

−i

]

Proof. First, we have:∑
ai
k

πi
†(x

i
k, a

i
k)A

i
π⃗(hk, a

i
k)

=
∑
ai
k

πi
†(x

i
k, a

i
k)Q

i
π⃗(hk, a

i
k)− V i

π⃗(hk)

=
∑

hk+1⊐hk

Pr
(
hk+1|hk, π

i
†, π⃗

−i
)(Ri(sk, a⃗k, sk+1)

+ γV i
π⃗(hk+1)

)
− V i

π⃗(hk)
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Now we can expand the RHS expectation:

E

[
T−1∑
k=t

γk−tAi
π⃗(hk, a

i
k)
∣∣ht, π

i
†, π⃗

−i

]

=

T−1∑
k=t

γk−tE
[
Ai

π⃗(hk, a
i
k)
∣∣ht, π

i
†, π⃗

−i
]

=

T−1∑
k=t

γk−t
∑

hk⊐ht

Pr
(
hk|ht, π

i
†, π⃗

−i
)∑

ai
k

πi
†(x

i
k, a

i
k)A

i
π⃗(hk, a

i
k)

=

T−1∑
k=t

γk−t
∑

hk+1⊐ht

Pr
(
hk+1|ht, π

i
†, π⃗

−i
)
Ri(sk, a⃗k, sk+1)

+


T−1∑

k=t+1

γk−t
∑

hk⊐ht

Pr
(
hk|ht, π

i
†, π⃗

−i
)
V i
π⃗(hk)

−
T−1∑
k=t

γk−t
∑

hk⊐ht

Pr
(
hk|ht, π

i
†, π⃗

−i
)
V i
π⃗(hk)


= V i

πi
†,π⃗

−i(ht)− V i
π⃗(ht)

which derives the LHS value difference in the equality.

B.2 RELATED TO INDIVIDUAL CONCAVITY

Definition 9. A finite-action game is individually concave if for any i ∈ N , any π⃗−i ∈ Π−i, any
πi
1, π

i
2 ∈ Πi, and any α ∈ [0, 1]:

ui((1− α)πi
1 + απi

2, π⃗
−i) ≥ (1− α)ui(πi

1, π⃗
−i) + αui(πi

2, π⃗
−i)

Note that the individual concavity defined here is the same as the commonly used one in games
(Bravo et al., 2018; Cai et al., 2022) with continuous action space. In the finite-action setting that
this paper considers, the policy space corresponds to the continuous action space. In the context of
POSGs, πi = (1−α)πi

1+απi
2 means that πi(xi, ·) = (1−α)πi

1(x
i, ·)+απi

2(x
i, ·) at each decision

point xi ∈ X i. The individual concavity is well-defined in the sense that πi
1, π

i
2 ∈ Πi ⇒ πi ∈ Πi.

Also note that when T = |S| = |O| = 1, the POSG is reduced to an NFG, and the individual
concavity always holds since ui(πi, π⃗−i) is linear in the individual policy πi in NFGs.

Under the assumption of individual concavity, it is direct to prove the same NashConv bound as the
one in Theorem 3 for the rest point of DA or single-round DRDA (Theorem 5) without relying on
the uniqueness of the rest point. As a result, the uniqueness assumption in Theorem 4 can also be
replaced with individual concavity.

Theorem 5. If the POSG is individually concave, then every rest point (y⃗r, π⃗r) in DA induces a Nash
equilibrium π⃗r, and every rest point (y⃗r, π⃗r) in single-round DA (under ϵ > 0 and π⃗base) induces a
joint policy π⃗r with NashConv at most ϵn logK

∑
t γ

t, where K = max
i∈N,xi

t∈X i,a∈A
1

πi
base(x

i
t,a)

.

Proof. For any i ∈ N, πi ∈ Πi, and α ∈ (0, 1], define:

π⃗† = (πi
†, π⃗

−i
r ) = ((1− α)πi

r + απi, π⃗−i
r )

Using Lemma 6, we have:

V i
πi
†,π⃗

−i
r
(ht)− V i

π⃗r
(ht) = E

[
T−1∑
k=t

γk−tAi
π⃗r
(hk, a

i
k)
∣∣ht, π

i
†, π⃗

−i
r

]
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Therefore:

ui(π⃗†)− ui(π⃗r) = Eh0

[
V i
πi
†,π⃗

−i
r
(h0)

]
− Eh0

[
V i
π⃗r
(h0)

]
= E

[
T−1∑
k=0

γkAi
π⃗r
(hk, a

i
k)
∣∣πi

†, π⃗
−i
r

]

=

T−1∑
k=0

γk
∑
hk

Pr
(
hk|πi

†, π⃗
−i
r

)∑
ai
k

πi
†(x

i
k, a

i
k)A

i
π⃗r
(hk, a

i
k)

By assumption on the individual concavity:

ui(π⃗†) ≥ (1− α)ui(π⃗r) + αui(πi, π⃗−i
r )

Combining the two formulas above, we have:
T−1∑
k=0

γk
∑
hk

Pr
(
hk|πi

†, π⃗
−i
r

)∑
ai
k

πi
†(x

i
k, a

i
k)A

i
π⃗r
(hk, a

i
k) ≥ α

(
ui(πi, π⃗−i

r )− ui(π⃗r)
)

Using Lemma 5, we have:∑
ai
k

πi
†(x

i
k, a

i
k)A

i
π⃗r
(hk, a

i
k) = α

∑
ai
k

(πi − πi
r)(x

i
k, a

i
k)A

i
π⃗r
(hk, a

i
k)

Therefore:
T−1∑
k=0

γk
∑
hk

Pr
(
hk|πi

†, π⃗
−i
r

)∑
ai
k

(πi − πi
r)(x

i
k, a

i
k)A

i
π⃗r
(hk, a

i
k) ≥ ui(πi, π⃗−i

r )− ui(π⃗r)

Letting α → 0+, we have:
T−1∑
k=0

γk
∑
hk

Pr (hk|π⃗r)
∑
ai
k

(πi − πi
r)(x

i
k, a

i
k)A

i
π⃗r
(hk, a

i
k) ≥ ui(πi, π⃗−i

r )− ui(π⃗r) (12)

Since (y⃗r, π⃗r) is a rest point of DA (ϵ = 0) or single-round DRDA (ϵ > 0), we have:

y⃗r = v⃗(π⃗r) ⇒ πi
r(x

i) ∈ argmax
πi(xi)∈∆(A)

{〈
πi(xi), vi(π⃗r)(x

i)
〉
− ϵDKL

(
πi(xi)||πi

base(x
i)
)}

(∀i ∈ N, xi ∈ X i)

By definition of v⃗(·) (3), it holds for any i ∈ N, xi ∈ X i:∑
h∈xi

Pr (h|π⃗r)

(∑
ai

πi
r(x

i, ai)Ai
π⃗r
(h, ai)− ϵDKL

(
πi
r(x

i)||πi
base(x

i)
))

≥
∑
h∈xi

Pr (h|π⃗r)

(∑
ai

πi(xi, ai)Ai
π⃗r
(h, ai)− ϵDKL

(
πi(xi)||πi

base(x
i)
))

With inequality (12), it is clear:

ui(πi, π⃗−i
r )− ui(π⃗r) ≤ ϵ

T−1∑
k=0

γk
∑
hk

Pr (hk|π⃗r)
(
DKL

(
πi(xi)||πi

base(x
i)
)
−DKL

(
πi(xi)||πi

base(x
i)
))

≤ ϵ

T−1∑
k=0

γk
∑
hk

Pr (hk|π⃗r) logK ≤ ϵ logK
T−1∑
k=0

γk

When ϵ = 0, the joint policy π⃗r is clearly a Nash equilibrium.
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C OMITTED PROOFS

C.1 PROOF OF LEMMA 1

Proof. Recall that the score y⃗ in single-round DRDA (4) has the following integral form:

yit(x
i, ai) = e−tyi0(x

i, ai) +

∫ t

0

e−(t−τ)vi(π⃗τ )(x
i, ai)dτ

When the POSG has a finite horizon, the value V i
π⃗ is bounded since the reward functions

{
Ri
}

are bounded. When the POSG has an infinite horizon, the value V i
π⃗ is still bounded since we have

0 < γ < 1 and
∑∞

k=0 γ
k = 1

1−γ . Therefore, in either case, the advantage Ai
π⃗ and advantage value

vi(π⃗) are also bounded.

On the other hand,
∫ t

0
e−(t−τ)dτ = eτ−t|t0 = 1 − e−t ∈ [0, 1). Since vi(π⃗τ ) is always bounded,

with the basic property of integrals, we directly prove the boundedness of the score y⃗.

C.2 PROOF OF LEMMA 2

Proof. First, we prove:

µ = argmax
µ∈∆(A)

{∑
a∈A

µ(a) (r(a)− logµ(a))

}
⇒ µ(a) ∝ er(a)

Write the corresponding optimization problem:

maximize
∑
a∈A

µ(a) (r(a)− logµ(a))

s.t.
∑
a∈A

µ(a) = 1

µ(a) ≥ 0, ∀a ∈ A

Using the Lagrange multiplier, we have:

L =
∑
a∈A

µ(a) (r(a)− logµ(a))− λ

(∑
a∈A

µ(a)− 1

)
∂L

∂µ(a)
= 0 ⇒ r(a)−

(
logµ(a) +

µ(a)

µ(a)

)
− λ = 0

⇒ µ(a) = er(a)−λ−1 ⇒ µ(a) ∝ er(a)

By definition of σi(·) (5), we have:

πi
t(x

i) = σi(yit)(x
i) = argmax

πi(xi)∈∆(A)


∑
ai∈A

πi(xi, ai)yit(x
i, ai)

− ϵDKL

(
πi(xi)||πi

base(x
i)
)


= argmax
πi(xi)∈∆(A)

{∑
ai∈A

πi(xi, ai)

(
1

ϵ
yit(x

i, ai)− log
πi(xi, ai)

πi
base(x

i, ai)

)}

= argmax
πi(xi)∈∆(A)

∑
ai∈A

πi(xi, ai)

1

ϵ
yit(x

i, ai) + log πi
base(x

i, ai)

− log πi(xi, ai)


Therefore:

πi
t(x

i, ai) ∝ exp

(
1

ϵ
yit(x

i, ai) + log πi
base(x

i, ai)

)
= πi

base(x
i, ai) exp

(
1

ϵ
yit(x

i, ai)

)
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C.3 PROOF OF LEMMA 3

Proof. For any i ∈ N and any own information set xi
t, define π⃗† = (πi

†, π
−i
∗ ). Let π⃗‡ be a joint

policy that equals π⃗∗ initially and switches to π⃗† after player i reaches xi
t. By definition of GND:

Eh0

[
V i
π⃗∗
(h0)

]
− ϵ

T−1∑
k=0

γk
∑
xi
k

DKL

(
πi
∗(x

i
k)||πi

base(x
i
k)
) ∑
hk∈xi

k

Pr (hk|π⃗∗)


≥ Eh0

[
V i
π⃗‡
(h0)

]
− ϵ

T−1∑
k=0

γk
∑
xi
k

DKL

(
πi
‡(x

i
k)||πi

base(x
i
k)
) ∑
hk∈xi

k

Pr (hk|π⃗∗)


For both sides, eliminate the terms related to the histories outside of the subtrees whose roots belong
to xi

t, we have:

∑
ht∈xi

t

Pr (ht|π⃗∗)V
i
π⃗∗
(ht)− ϵ

T−1∑
k=t

γk−t
∑

xi
k⊐xi

t

DKL

(
πi
∗(x

i
k)||πi

base(x
i
k)
) ∑
hk∈xi

k

Pr (hk|π⃗∗)


≥
∑
ht∈xi

t

Pr (ht|π⃗∗)V
i
π⃗†
(ht)− ϵ

T−1∑
k=t

γk−t
∑

xi
k⊐xi

t

DKL

(
πi
†(x

i
k)||πi

base(x
i
k)
) ∑
hk∈xi

k

Pr (hk|π⃗∗)


For any πi ∈ Πi and α ∈ [0, 1], we let πi

† = (1− α)πi
∗ + απi and define:

g(α) =

 ∑
ht∈xi

t

Pr (ht|π⃗∗)V
i
π⃗†
(ht)− ϵ

T−1∑
k=t

γk−t
∑

xi
k⊐xi

t

DKL

(
πi
†(x

i
k)||πi

base(x
i
k)
) ∑
hk∈xi

k

Pr (hk|π⃗∗)


−

 ∑
ht∈xi

t

Pr (ht|π⃗∗)V
i
π⃗∗
(ht)− ϵ

T−1∑
k=t

γk−t
∑

xi
k⊐xi

t

DKL

(
πi
∗(x

i
k)||πi

base(x
i
k)
) ∑
hk∈xi

k

Pr (hk|π⃗∗)


Clearly, g(0) = 0 and ∀α ∈ (0, 1], g(α) ≤ 0, which yields:

∇g(α) |α→0+ ≤ 0 (13)

Using Lemma 6, we have:

V i
π⃗†
(ht)− V i

π⃗∗
(ht) =

T−1∑
k=t

γk−t
∑

hk⊐ht

Pr (ht → hk|π⃗†)
∑
ai
k

πi
†(x

i
k, a

i
k)A

i
π⃗∗
(hk, a

i
k)

Therefore:

g(α) =
∑
ht∈xi

t

Pr (ht|π⃗∗)

T−1∑
k=t

γk−t
∑

hk⊐ht

Pr (ht → hk|π⃗†)
∑
ai
k

πi
†(x

i
k, a

i
k)A

i
π⃗∗
(hk, a

i
k)

−

ϵ

T−1∑
k=t

γk−t
∑

xi
k⊐xi

t

(DKL

(
πi
†(x

i
k)||πi

base(x
i
k)
)
−DKL

(
πi
∗(x

i
k)||πi

base(x
i
k)
)) ∑

hk∈xi
k

Pr (hk|π⃗∗)


Using Lemma 5, we have:∑

ai
k

πi
†(x

i
k, a

i
k)A

i
π⃗∗
(hk, a

i
k) = α

∑
ai
k

(πi − πi
∗)(x

i
k, a

i
k)A

i
π⃗∗
(hk, a

i
k)
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Then, we compute the derivative:

∇g(α) =
∑
ht∈xi

t

Pr (ht|π⃗∗)

T−1∑
k=t

γk−t
∑

hk⊐ht


∇Pr (ht → hk|π⃗†)

∑
ai
k

πi
†(x

i
k, a

i
k)A

i
π⃗∗
(hk, a

i
k)+

Pr (ht → hk|π⃗†)
∑
ai
k

(πi − πi
∗)(x

i
k, a

i
k)A

i
π⃗∗
(hk, a

i
k)


− ϵ

T−1∑
k=t

γk−t
∑

xi
k⊐xi

t

∑
ai
k

(πi − πi
∗)(x

i
k, a

i
k)
(
log πi

†(x
i
k, a

i
k)− log πi

base(x
i
k, a

i
k)
) ∑
hk∈xi

k

Pr (hk|π⃗∗)


Let α → 0+ and simplify the equality:

∇g(α)|α→0+ =
∑
ht∈xi

t

T−1∑
k=t

γk−t
∑

hk⊐ht

Pr (ht|π⃗∗)
∑
ai
k

(πi − πi
∗)(x

i
k, a

i
k)A

i
π⃗∗
(hk, a

i
k)

− ϵ

T−1∑
k=t

γk−t
∑

xi
k⊐xi

t

∑
ai
k

(πi − πi
∗)(x

i
k, a

i
k)

(
log πi

∗(x
i
k, a

i
k)−

log πi
base(x

i
k, a

i
k)

) ∑
hk∈xi

k

Pr (hk|π⃗∗)


Note that the following inequality always holds:∑

ai
k

πi(xi
k, a

i
k) log π

i
∗(x

i
k, a

i
k) ≤

∑
ai
k

πi(xi
k, a

i
k) log π

i(xi
k, a

i
k)

Therefore, with the inequality (13), we have:

T−1∑
k=t

γk−t
∑

xk⊐xt

hk∈xk

Pr (hk|π⃗∗)
∑
ai
k

(πi − πi
∗)(x

i
k, a

i
k)A

i
π⃗∗
(hk, a

i
k)

≤
T−1∑
k=t

γk−t
∑

xk⊐xt

hk∈xk

Pr (hk|π⃗∗) · ϵ

(
DKL

(
πi(xi

k)||πi
base(x

i
k)
)
−

DKL

(
πi
∗(x

i
k)||πi

base(x
i
k)
) )

Let πi(xi
k) = πi

∗(x
i
k) for all xi

k under k ≥ t+ 1 and simplify the inequality:

∑
ht∈xi

t

Pr (ht|π⃗∗)

∑
ai
t

πi
∗(x

i
t, a

i
t)A

i
π⃗∗
(ht, a

i
t)− ϵDKL

(
πi
∗(x

i
t)||πi

base(x
i
t)
)

≥
∑
ht∈xi

t

Pr (ht|π⃗∗)

∑
ai
t

πi(xi
t, a

i
t)A

i
π⃗∗
(ht, a

i
t)− ϵDKL

(
πi(xi

t)||πi
base(x

i
t)
)
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C.4 PROOF OF THEOREM 1

Proof. Let y⃗t = v⃗(π⃗∗) and π⃗t = π⃗∗. Compute (5) using the definition of v⃗(·) (3):

argmax
πi(xi)∈∆(A)

{〈
πi(xi), yit(x

i)
〉
− ϵDKL

(
πi(xi)||πi

base(x
i)
)}

= argmax
πi(xi)∈∆(A)


∑
ai∈A

πi(xi, ai)

∑
h∈xi

Pr (h|π⃗∗)A
i
π⃗∗
(h, ai)∑

h∈xi

Pr (h|π⃗∗)
− ϵDKL

(
πi(xi)||πi

base(x
i)
)

= argmax
πi(xi)∈∆(A)

{∑
h∈xi

Pr (h|π⃗∗)

(∑
ai∈A

πi(xi, ai)Ai
π⃗∗
(h, ai)− ϵDKL

(
πi(xi)||πi

base(x
i)
))}

By Lemma 3, for any i ∈ N, πi ∈ Πi, xi ∈ X i:∑
h∈xi

Pr (h|π⃗∗)

(∑
ai∈A

πi
∗(x

i, ai)Ai
π⃗∗
(ht, a

i)− ϵDKL

(
πi
∗(x

i)||πi
base(x

i)
))

≥
∑
h∈xi

Pr (h|π⃗∗)

(∑
ai∈A

πi(xi, ai)Ai
π⃗∗
(ht, a

i)− ϵDKL

(
πi(xi)||πi

base(x
i)
))

For ϵ > 0, it is clear that π⃗t = π⃗∗ = σ⃗(y⃗t).

For ϵ = 0, it is clear that πi
t(x

i) ∈ argmax
πi(xi)∈∆(A)

{〈
πi(xi), yit(x

i)
〉}

,∀xi ∈ X i.

Since ˙⃗yt = v⃗(π⃗t)− y⃗t = v⃗(π⃗∗)− v⃗(π⃗∗) = 0, we prove that (v⃗(π⃗∗), π⃗∗) is a rest point of single-round
DRDA when ϵ > 0 and is a rest point of DA when ϵ = 0.
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C.5 PROOF OF LEMMA 4

Proof. With respect to ℓ1 norm ∥·∥1, we show that DKL (π||µ) =
∑

a π(a) log
π(a)
µ(a) is a 1-strongly

convex function of π under a fixed µ, using the widely known result that the negative Gibbs entropy
H(π) =

∑
a π(a) log π(a) is 1-strongly convex (Example 2 in Shalev-Shwartz & Singer (2006)).

By definition of strong convexity:

H(απ + (1− α)π′) ≤ αH(π) + (1− α)H(π′)− 1

2
α(1− α)∥π − π′∥21

Since H(π) = DKL (π||µ) +
∑
a
π(a) logµ(a), we have:

DKL (απ + (1− α)π′||µ) +
∑
a

(απ + (1− α)π′)(a) logµ(a)

≤ αDKL (π||µ) + α
∑
a

π(a) logµ(a)

+ (1− α)DKL (π
′||µ) + (1− α)

∑
a

π′(a) logµ(a)

− 1

2
α(1− α)∥π − π′∥21

Simplifying the inequality, we have:

DKL (απ + (1− α)π′||µ) ≤ αDKL (π||µ) + (1− α)DKL (π
′||µ)− 1

2
α(1− α)∥π − π′∥21

which means that DKL (π||µ) is also 1-strongly convex with respect to ℓ1 norm ∥·∥1.

C.6 PROOF OF PROPOSITION 1

Proof. Consider two joint policies (π1, · · · , πj , · · · , πn) and (π1, · · · , πj
† , · · · , πn) that differ only

in player j’s policy. We hypothesize that there always exists a constant Li
j such that:∥∥∥vi(π1, · · · , πj , · · · , πn)− vi(π1, · · · , πj

† , · · · , π
n)
∥∥∥
2
≤ Li

j

∥∥∥πj − πj
†

∥∥∥
2

(14)

Now we verify this hypothesis under T = |S| = |O| = 1. In this case, the POSG is equivalent to an
NFG, with vi(π⃗)(xi

0, a) = wi(π⃗)(a)− ui(π⃗) for the unique decision point xi
0, where wi(π⃗)(a) =

ui(πi
a, π⃗

−i) is player i’s expected utility under a pure strategy πi
a(·) with πi

a(a) = 1.

Let π⃗ = (π1, · · · , πj , · · · , πn), π⃗† = (π1, · · · , πj
† , · · · , πn), L = max

π⃗∈Π

∣∣ui(π⃗)
∣∣, and we have:∥∥vi(π⃗)− vi(π⃗†)

∥∥
2
≤
∥∥vi(π⃗)− vi(π⃗†)

∥∥
1
=
∥∥vi(π⃗)(xi

0)− vi(π⃗†)(x
i
0)
∥∥
1

≤
∥∥wi(π⃗)− wi(π⃗†)

∥∥
1
+ |A| ·

∣∣ui(π⃗)− ui(π⃗†)
∣∣

When i = j:∥∥wi(π⃗)− wi(π⃗†)
∥∥
1
= 0∣∣ui(π⃗)− ui(π⃗†)

∣∣ = ∣∣∣∣∣∑
a∈A

uj(πj
a, π⃗

−j)
(
πj(a)− πj

†(a)
)∣∣∣∣∣ ≤ L

∥∥∥πj − πj
†

∥∥∥
1

When i ̸= j:∥∥wi(π⃗)− wi(π⃗†)
∥∥
1
=
∑
a∈A

∣∣∣ui(πi
a, π⃗

−i)− ui(πi
a, π⃗

−i
† )
∣∣∣ ≤ |A|max

a∈A

∣∣∣ui(πi
a, π⃗

−i)− ui(πi
a, π⃗

−i
† )
∣∣∣

∣∣ui(π⃗)− ui(π⃗†)
∣∣ = ∣∣∣∣∣∑

a∈A
πi(a)

(
ui(πi

a, π⃗
−i)− ui(πi

a, π⃗
−i
† )
)∣∣∣∣∣ ≤ max

a∈A

∣∣∣ui(πi
a, π⃗

−i)− ui(πi
a, π⃗

−i
† )
∣∣∣
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Let π⃗1 = (πi
a, π⃗

−i), π⃗2 = (πi
a, π⃗

−i
† ), and we have:∣∣∣ui(πi

a, π⃗
−i)− ui(πi

a, π⃗
−i
† )
∣∣∣ = ∣∣ui(π⃗1)− ui(π⃗2)

∣∣ = ∣∣∣∣∣∑
b∈A

ui(πj
b , π⃗

−j
1 )

(
πj
1(b)− πj

2(b)
)∣∣∣∣∣ ≤ L

∥∥∥πj − πj
†

∥∥∥
1

Therefore, it always holds:∥∥wi(π⃗)− wi(π⃗†)
∥∥
1
+ |A| ·

∣∣ui(π⃗)− ui(π⃗†)
∣∣ ≤ 2 |A|L

∥∥∥πj − πj
†

∥∥∥
1
≤ 2|A|

3
2L
∥∥∥πj − πj

†

∥∥∥
2

where the last step follows Cauchy-Schwarz inequality.

Setting Li
j = 2|A|

3
2L = 2|A|

3
2max
π⃗∈Π

∣∣ui(π⃗)
∣∣, we can see that the inequality (14) holds. With this

inequality, we can decompose the inner product
〈
πi
1 − πi

2, v
i(π⃗1)− vi(π⃗2)

〉
for two arbitrary joint

policies π⃗1 = (πi
1)i∈N and π⃗2 = (πi

2)i∈N . Specifically, we have:〈
πi
1 − πi

2, v
i(π⃗1)− vi(π⃗2)

〉
=
〈
πi
1 − πi

2, v
i(π1

1 , · · · , πn
1 )− vi(π1

2 , π
2
1 , · · · , πn

1 )
〉

+
〈
πi
1 − πi

2, v
i(π1

2 , π
2
1 , · · · , πn

1 )− vi(π1
2 , π

2
2 , π

3
1 , · · · , πn

1 )
〉

+ · · · · · ·
+
〈
πi
1 − πi

2, v
i(π1

2 , · · · , πn−1
2 , πn

1 )− vi(π1
2 , · · · , πn

2 )
〉

≤
∑
j∈N

∥∥πi
1 − πi

2

∥∥
2
Li
j

∥∥∥πj
1 − πj

2

∥∥∥
2

where the last step follows Cauchy-Schwarz inequality and (14).

Setting λ = max
i∈N

{ ∑
j∈N

1
2 (L

i
j + Lj

i )

}
, we have:

∑
i∈N

〈
πi
1 − πi

2, v
i(π⃗1)− vi(π⃗2)

〉
≤
∑
i∈N

∑
j∈N

Li
j

∥∥πi
1 − πi

2

∥∥
2

∥∥∥πj
1 − πj

2

∥∥∥
2

≤
∑
i∈N

∑
j∈N

1

2
Li
j

(∥∥πi
1 − πi

2

∥∥2
2
+
∥∥∥πj

1 − πj
2

∥∥∥2
2

)

=
∑
i∈N

∑
j∈N

1

2
(Li

j + Lj
i )

∥∥πi
1 − πi

2

∥∥2
2

≤ λ
∑
i∈N

∥∥πi
1 − πi

2

∥∥2
2

Thus, we prove that every NFG is globally λ-hypomonotone, where:

λ = max
i∈N

∑
j∈N

|A|
3
2

(
max
π⃗∈Π

∣∣ui(π⃗)
∣∣+max

π⃗∈Π

∣∣uj(π⃗)
∣∣)

= |A|
3
2

∑
j∈N

(
max

i∈N,π⃗∈Π

∣∣ui(π⃗)
∣∣+max

π⃗∈Π

∣∣uj(π⃗)
∣∣)
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C.7 PROOF OF THEOREM 2

Proof. Construct a Fenchel coupling:

F i(πi, yi) =

T−1∑
k=0

∑
hk

max
πi
†(x

i
k)∈∆(A)

{〈
πi
†(x

i
k), y

i(xi
k)
〉
− ϵDKL

(
πi
†(x

i
k)||πi

base(x
i
k)
)}

−
T−1∑
k=0

∑
hk

(〈
πi(xi

k), y
i(xi

k)
〉
− ϵDKL

(
πi(xi

k)||πi
base(x

i
k)
))

By Lemma 4, ϵDKL

(
πi(xi

k)||πi
base(x

i
k)
)

is an ϵ-strongly convex function of πi(xi
k) with respect to

ℓ1 norm. Besides, it is continuous on ∆(A). Therefore, we have the following inequality (Proposition
4.3 in Mertikopoulos & Zhou (2019)):

max
πi
†(x

i
k)∈∆(A)

{〈
πi
†(x

i
k), y

i(xi
k)
〉
− ϵDKL

(
πi
†(x

i
k)||πi

base(x
i
k)
)}

−
(〈
πi(xi

k), y
i(xi

k)
〉
− ϵDKL

(
πi(xi

k)||πi
base(x

i
k)
))

≥ 1

2
ϵ
∥∥σi(yi)(xi

k)− πi(xi
k)
∥∥2
1

≥ 1

2
ϵ
∥∥σi(yi)(xi

k)− πi(xi
k)
∥∥2
2

Enumerating all (k, hk) pairs and summing up the corresponding terms for both sides, we have:

F i(πi, yi) ≥ 1

2
ϵ
∥∥σi(yi)− πi

∥∥2
2

(15)

Recall that σi(·) has an equivalent expression (7). Therefore, the corresponding max function is
continuously differentiable with respect to yi. Applying the envelope theorem (Theorem 1.F.1 in
Takayama & Akira (1985)), we have:

∇yi(xi
k)

(
max

πi
†(x

i
k)∈∆(A)

{〈
πi
†(x

i
k), y

i(xi
k)
〉
− ϵDKL

(
πi
†(x

i
k)||πi

base(x
i
k)
)})

= σi(yi)(xi
k)

On the other hand, we have the derivative result:

∇yi(xi
k)

(〈
πi(xi

k), y
i(xi

k)
〉
− ϵDKL

(
πi(xi

k)||πi
base(x

i
k)
))

= πi(xi
k)

Therefore, we have:

∇yiF i(πi, yi) = σi(yi)− πi

For single-round DRDA (4), define a continuously differentiable energy function:

V(y⃗t) =
∑
i∈N

F i(πi
ϵ, y

i
t)

Compute its time derivative:
.

V(y⃗t) =
∑
i∈N

〈
∇yiF i(πi

ϵ, y
i
t), ẏ

i
t

〉
=
∑
i∈N

〈
σi(yit)− πi

ϵ, v
i(π⃗t)− yit

〉
=
∑
i∈N

(〈
πi
t − πi

ϵ, v
i(π⃗t)

〉
−
〈
πi
t − πi

ϵ, y
i
t

〉)
where π⃗t = σ⃗(y⃗t).
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Since π⃗ϵ = σ⃗(y⃗ϵ), by definition of σ⃗(·) (5) and the Fenchel coupling, we have:

〈
πi
t − πi

ϵ, y
i
t

〉
= F i(πi

ϵ, y
i
t) + ϵ

T−1∑
k=0

∑
hk

(
DKL

(
πi
t(x

i
k)||πi

base(x
i
k)
)
−DKL

(
πi
ϵ(x

i
k)||πi

base(x
i
k)
))

〈
πi
ϵ − πi

t, y
i
ϵ

〉
= F i(πi

t, y
i
ϵ) + ϵ

T−1∑
k=0

∑
hk

(
DKL

(
πi
ϵ(x

i
k)||πi

base(x
i
k)
)
−DKL

(
πi
t(x

i
k)||πi

base(x
i
k)
))

Summing up the two equations above, we have:〈
πi
t − πi

ϵ, y
i
t

〉
+
〈
πi
ϵ − πi

t, y
i
ϵ

〉
= F i(πi

ϵ, y
i
t) + F i(πi

t, y
i
ϵ)

which implies:
.

V(y⃗t) =
∑
i∈N

(〈
πi
t − πi

ϵ, v
i(π⃗t)− yiϵ

〉
− F i(πi

ϵ, y
i
t)− F i(πi

t, y
i
ϵ)
)

Since (y⃗ϵ, π⃗ϵ) is a rest point of single-round DRDA, we have:
.

V(y⃗t) =
∑
i∈N

〈
πi
t − πi

ϵ, v
i(π⃗t)− vi(π⃗ϵ)

〉
−
∑
i∈N

F i(πi
ϵ, y

i
t)−

∑
i∈N

F i(πi
t, y

i
ϵ)

Using the assumption on the local hypomonotonicity (11) and the inequality (15), it holds in Ω:

.

V(y⃗t) ≤ λ
∑
i∈N

∥∥πi
t − πi

ϵ

∥∥2
2
− 2 · 1

2
ϵ
∑
i∈N

∥∥πi
t − πi

ϵ

∥∥2
2
= (λ− ϵ)

∑
i∈N

∥∥πi
t − πi

ϵ

∥∥2
2
≤ 0

Using inequality (15), we further have:

.

V(y⃗t) ≤ −2(ϵ− λ)

ϵ
V(y⃗t) = −2(1− λ

ϵ
)V(y⃗t)

Note that V(y⃗t) is non-negative. Therefore, with ϵ > λ, we have:

V(y⃗t) ≤ V(y⃗0) exp
(
−2(1− λ

ϵ
)t

)
which means V(y⃗t) approaches zero exponentially fast.

Also note that by (15), V(y⃗) = 0 ⇒
∑
i∈N

∥∥σi(yi)− πi
ϵ

∥∥2
2
= 0 ⇒ π⃗ = σ⃗(y⃗) = π⃗ϵ.

As Ω is a compact set positively invariant with respect to (4), we prove that for a single-round DRDA
starting from an arbitrary y⃗0 ∈ Ω, the policy always converges to π⃗ϵ at a linear rate.
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C.8 PROOF OF THEOREM 3

Proof. By Theorem 1, every generalized Nash distribution under ϵ > 0 or ϵ = 0 induces a rest point
in single-round DRDA or DA, respectively. If there exists a GND π⃗r that induces the unique rest
point (y⃗r, π⃗r) in single-round DRDA, then π⃗r must be the unique GND under the corresponding
ϵ > 0 and π⃗base. Since Nash equilibrium always exists, if (y⃗r, π⃗r) is the unique DA rest point, then
π⃗r must be the unique GND under ϵ = 0 (i.e., the unique NE).

Therefore, by Definition 4, for any i ∈ N and πi ∈ Πi:

ui(πi, π⃗−i
r )− ui(π⃗r) ≤

ϵ

T−1∑
t=0

γt
∑
xi
t

(DKL
(
πi(xi

t)||πi
base(x

i
t)
)
−DKL

(
πi
∗(x

i
t)||πi

base(x
i
t)
)) ∑

ht∈xi
t

Pr (ht|π⃗∗)


For the non-negative KL-divergence terms, we let K = max

i∈N,xi
t∈X i,a∈A

1
πi
base(x

i
t,a)

and further have:

DKL
(
πi(xi

t)||πi
base(x

i
t)
)
=
∑
a∈A

πi(xi
t, a) log π

i(xi
t, a)−

∑
a∈A

πi(xi
t, a) log π

i
base(x

i
t, a) ≤

−
∑
a∈A

πi(xi
t, a) log π

i
base(x

i
t, a) =

∑
a∈A

πi(xi
t, a) log

1

πi
base(x

i
t, a)

≤
∑
a∈A

πi(xi
t, a) logK = logK

Therefore:

ui(πi, π⃗−i
r )− ui(π⃗r) ≤ ϵ

T−1∑
t=0

γt
∑
xi
t

logK
∑
ht∈xi

t

Pr (ht|π⃗∗)


= ϵ logK

T−1∑
t=0

γt
∑
xi
t

∑
ht∈xi

t

Pr (ht|π⃗∗)

Note that
∑
xi
t

∑
ht∈xi

t

Pr (ht|π⃗∗) =
∑
ht

Pr (ht|π⃗∗) = 1,∀t ≥ 0. Therefore, we have:

NashConv(π⃗r)=
n∑

i=1

max
πi∈Πi

{
ui(πi, π⃗−i

r )− ui(π⃗r)
}
≤ ϵn logK

T−1∑
t=0

γt

Clearly, when (y⃗r, π⃗r) is the unique rest point of DA, it corresponds to the case of ϵ = 0, which
implies that π⃗r is an exact Nash equilibrium.

C.9 PROOF OF THEOREM 4

Proof. By Definition 3, the rest points pl = (y⃗l, π⃗l) under different l in multi-round DRDA corre-
spond to the solutions to y⃗ = v⃗(π⃗) under different policy selections.

Let π⃗ϵ be the limit of the policy sequence (π⃗l)l≥0 when l → ∞. Then, we have:

lim
l→∞

DKL

(
πi
l(x

i)||πi
l−1(x

i)
)
= DKL

(
πi
ϵ(x

i)||πi
ϵ(x

i)
)
= 0

Therefore, as the policy sequence converges, the regularization term −ϵDKL

(
πi(xi)||πi

base(x
i)
)

in
(5) approaches zero at the rest point (v⃗(π⃗), π⃗). As a result, (v⃗(π⃗ϵ), π⃗ϵ) corresponds to a rest point of
DA. By Theorem 3, the limit policy π⃗ϵ is a Nash equilibrium when DA has a unique rest point.
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D GAME HYPOMONOTONICITY

Since hypomonotonicity (see Gao & Pavel (2021); Gadjov & Pavel (2023)) is less commonly used in
the existing literature of game theory than in the field of optimization, here we provide numerical
simulations to show that it can be practically used to characterize multiplayer dynamic games.

The original Kuhn poker has two players with three ranks. Here we numerically test the hypomono-
tonicity of 3-player Kuhn poker with 5 ranks and 4-player Kuhn poker with 6 ranks, both of which
are also used as test environments in the experiment section.
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Figure 4: Histograms of sampled

∑
i∈N

⟨πi
1−πi

2,v
i(π⃗1)−vi(π⃗2)⟩∑

i∈N
∥πi

1−πi
2∥2

2

in multiplayer Kuhn poker

By Definition 8, the supremum of the computed value

∑
i∈N

⟨πi
1−πi

2,v
i(π⃗1)−vi(π⃗2)⟩∑

i∈N
∥πi

1−πi
2∥2

2

can be an estimate

of a global hypomonotonicity value λ and thus reflect its order of magnitude when the sampling is
sufficient. Therefore, we compute the value by randomly sampling 106 joint policy pairs (π⃗1, π⃗2).
The histograms of the sampled value are shown in Figure 4.

For 3-player Kuhn poker, the computed value is within the range of [−0.505869, 0.472063].

For 4-player Kuhn poker, the computed value is within the range of [−0.295345, 0.349964].

Note that the maximum value is at the level of 0.1, which implies that the order of magnitude of
λ should not be too large. Therefore, the hypomonotonicity assumption used in our convergence
analysis is realistic in multiplayer Kuhn poker. By Theorem 2, as long as λ is a finite quantity, we
can always guarantee the convergence of single-round DRDA by setting a sufficiently large ϵ. On the
other hand, however, Theorem 3 and Theorem 5 suggests that a large ϵ leads to a large NE gap for the
rest-point policy. This could be viewed as a trade-off in the selection of ϵ for single-round DRDA.
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E IMPLEMENTATION DETAILS

E.1 DISCRETE-TIME ALGORITHMS

We use the discrete-time counterpart of (4) as a practical implementation of single-round DRDA. An
iteration variable m is in place of the continuous time variable t. With the introduction of a step size
η, the single-round algorithm can be viewed as an Euler method that solves the original ODE, and an
iteration is exactly one step. The pseudocode for single-round DRDA is shown in Algorithm 1.

Algorithm 1: Single-round DRDA (SDRDA)
Input: Initial score y⃗0, initial policy π⃗0, iteration number M , and regularization parameter ϵ

1 Set π⃗base = π⃗0

2 for m ∈ {0, 1, · · · ,M − 1} do
3 Compute all Pr (h|π⃗m) and Ai

π⃗m
(h, ai) for all i ∈ N (using dynamic programming)

4 for i ∈ N do
5 for xi ∈ X i do
6 for ai ∈ A do

7 Compute vi(π⃗m)(xi, ai) =

∑
h∈xi

Pr(h|π⃗m)Ai
π⃗m

(h,ai)∑
h∈xi

Pr(h|π⃗m)

8 Update yim+1(x
i, ai) = yim(xi, ai) + η

(
vi(π⃗m)(xi, ai)− yim(xi, ai)

)
9 end

10 for ai ∈ A do

11 Update πi
m+1(x

i, ai) =
πi
base(x

i,ai) exp( 1
ϵ y

i
m+1(x

i,ai))∑
b∈A

πi
base(x

i,b) exp( 1
ϵ y

i
m+1(x

i,b))

12 end
13 end
14 end
15 end

Output: Last-iterate (y⃗M , π⃗M )

For the multi-round algorithm, we use SDRDA (Algorithm 1) as the oracle M in Definition 3. The
pseudocode for multi-round DRDA is shown in Algorithm 2:

Algorithm 2: Multi-round DRDA (MDRDA)
Input: Round number L, iteration number M , and regularization parameter ϵ

1 Initialize y⃗0 and π⃗0

2 for l ∈ {0, 1, · · · , L− 1} do
3 (y⃗l+1, π⃗l+1) = SDRDA (y⃗l, π⃗l,M, ϵ)
4 end

Output: Last-iterate policy π⃗L

E.2 RELATIONSHIP WITH MAGNETIC MIRROR DESCENT

Magnetic mirror descent (MMD) (Sokota et al., 2023) is a discrete-time learning dynamic based on
mirror descent. Like single-round DRDA, MMD exhibits last-iterate convergence to QRE. Since
mirror descent itself can be converted to a special form of FTRL by introducing a score y, here we try
to mathematically compare MMD with DRDA.

For MMD, if we set the mirror map to be negative entropy and the step size to be 1, it has the
closed-form update formula πt+1 ∝ (πtρ

αeqt)
1

1+α , where πt is the policy at discrete time t, ρ is
the magnet policy, qt is the Q-value, and α is the regularization temperature. Note that ρ and qt
in MMD are analogous to the base policy πbase and the advantage value v in DRDA, respectively.
When ρ is set to be a uniform policy, we have πt+1 ∝ (πte

qt)
1

1+α . Through recursion, we can write
πt+1 ∝ eyt+1 , where yt+1 =

∑t
k=1(

1
1+α )

t+1−kqt.
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For DRDA, if we also set πbase to be uniform, it can be generally written as πt+1 ∝ eyt+1 in discrete
time. If we further consider a form of discretization based on the integral formula (6) rather than the
original ODE (4) and use qt to replace v(πt), we directly have yt+1 =

∑t
k=1(

1
e )

t+1−kqt. Clearly,
this score is the same as that of MMD when we enforce 1 + α = e. Thus, DRDA can be related to
MMD through a specific discretization if we ignore the base policy or the magnet.

Now we use a common notation ρ to indicate the base policy in DRDA. When ρ moves along time t
and is not kept as a fixed uniform policy, however, the update formula πt+1 ∝ ρte

yt+1 for DRDA
is quite different from the update formula πt+1 ∝ ρ

α
1+α

t (πte
qt)

1
1+α for moving-magnet MMD. The

above-mentioned relationship can no longer be established. That is to say, when employing a moving
magnet, the behavior of DRDA will be completely different from MMD.

From a theoretical perspective, our continuous-time dynamic guarantees last-iterate convergence to
QRE in all games with certain hypomonotonicity, while MMD is restricted to two-player zero-sum
or (strictly) monotone games. When considering finding exact Nash equilibrium, our multi-round
learning method theoretically requires the base policy ρ = πbase to be a fixed rest-point policy in
each round. In comparison, moving-magnet MMD directly learns in a single round under a changing
ρ = ρt and does not provide theoretical guarantees.

E.3 PARAMETER SETTINGS

In Table 2, we show the parameter settings in our experiments on the discrete-time DRDA from
Appendix E.1. Under the parameter settings, each single run of DRDA can be finished within one
hour using a single Intel Core i7-12700F CPU.

Table 2: Parameter settings of DRDA

matrix game bimatrix game 3-player game Kuhn-3 Kuhn-4 soccer game
L 10 10 10 20 20 5
M 5000 5000 5000 1× 105 1× 105 20
ϵ 0.1 0.1 0.3 0.02 0.015 0.1
η 0.005 0.005 0.005 0.001 0.001 0.002

In principle, an arbitrary regularization parameter ϵ can be used as long as it is greater than a
hypomonotonicity threshold λ for the game (see Theorem 2). However, our experimental results show
that a smaller gap for the rest point of single-round DRDA generally guarantees better performance
for multi-round DRDA. Therefore, ϵ should not be too large as well (see Theorem 3). The setting
above provides a moderate choice for ϵ and guarantees the performance of DRDA when the step size
η is sufficiently small (no greater than the level of 0.01).

In Table 3, we compare the NashConv of DRDA under different η. When η is too large, DRDA will
no longer converge (marked as “−”). Also note that when η is overly small, the result can be not
as good since DRDA has not reached its rest point in each single round under the same number of
iterations. In each game scenario, a range of η can guarantee good performance of DRDA.

Table 3: Last-iterate NashConv of DRDA under different η

η matrix bimatrix 3-player Kuhn-3 Kuhn-4 soccer
0.001 1.4× 10−9 1.9× 10−9 0.014 1.1× 10−10 1.3× 10−6 6.9× 10−8

0.002 2.0× 10−11 1.6× 10−12 2.0× 10−4 1.1× 10−10 1.3× 10−6 5.7× 10−13

0.005 2.1× 10−11 1.2× 10−12 3.5× 10−5 6.0× 10−9 − 9.8× 10−15

0.01 2.1× 10−11 − 3.5× 10−5 − − 1.6× 10−15

0.1 − − − − − −
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F EXPERIMENT DETAILS

F.1 NORMAL-FORM GAME (NFG)

The payoff matrices of the 2-action matrix game (zero-sum) and the 3-action bimatrix game are
shown in Tables 4 and 5, respectively.

Table 4: Payoff matrix of 2-action matrix game

Player 2, Action 1 Player 2, Action 2
Player 1, Action 1 (1,−1) (0, 0)
Player 1, Action 2 (−2, 2) (3,−3)

Table 5: Payoff matrix of 3-action bimatrix game

Player 2, Action 1 Player 2, Action 2 Player 2, Action 3
Player 1, Action 1 (9, 6) (3, 7) (6, 0)
Player 1, Action 2 (7, 0) (8, 2) (4, 4)
Player 1, Action 3 (2, 4) (1, 6) (3, 7)

The payoff tensor of the 3-action 3-player game is shown in Table 6.

Table 6: Payoff matrix of 3-action 3-player game

Player 3, Action 1 Player 3, Action 2 Player 3, Action 3
Player 1&2, Action (1,1) (9, 5, 5) (8, 3, 8) (3, 5, 9)
Player 1&2, Action (1,2) (9, 6, 4) (3, 5, 7) (4, 10, 6)
Player 1&2, Action (1,3) (10, 6, 4) (6, 3, 0) (8, 0, 1)
Player 1&2, Action (2,1) (1, 4, 1) (0, 1, 1) (1, 2, 8)
Player 1&2, Action (2,2) (8, 3, 6) (5, 5, 6) (6, 0, 9)
Player 1&2, Action (2,3) (4, 2, 0) (1, 5, 8) (9, 5, 0)
Player 1&2, Action (3,1) (4, 9, 9) (9, 9, 7) (5, 1, 8)
Player 1&2, Action (3,2) (6, 5, 9) (10, 10, 0) (8, 3, 9)
Player 1&2, Action (3,3) (6, 3, 9) (1, 2, 2) (9, 4, 5)

F.2 EXTENSIVE-FORM GAME (EFG)

Since Kuhn poker (Kuhn, 1950) is a benchmark game from the extensive-form game literature, we
use its multiplayer variants as EFG test environments. For 3-player Kuhn poker, we increase the
number of ranks from 3 to 5. For 4-player Kuhn poker, we further increase the number of ranks to 6.

F.3 MARKOV GAME (MG)

We use a two-player zero-sum soccer game as the test environment for infinite-horizon MG. Figure 5
is an illustration of the game. The two players are marked with A and B. The player who keeps the
ball is marked with a cycle. Each player can choose an action from “up”, “down”, “left”, “right”,
and “stay” at each time step. If the two players collide after the simultaneous move, then the ball
possession exchanges. When the ball carrier moves into the opponent’s goal, the game terminates.
The winning player receives a reward of +100 and the opponent receives a reward of −100. The
initial state distribution ρ is set to be a uniform distribution, and the discount factor γ is set to be 0.95.

F.4 TIGER GAME (TYPICAL POSG)

Adversarial Tiger and Competitive Tiger are two typical POSGs introduced by Wiggers (2015). We
further test multi-round DRDA in the two games. For comparison purposes, here we run a 5-round
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Figure 5: Illustration of soccer game

DRDA (103 iterations per round, with fixed parameters ϵ = 0.1, η = 0.01) under time horizon
H ∈ {2, 3, 4} for each game and record the last-iterate NashConv as well as the time consumed.

According to the existing results (reported in Table 2 of Delage et al. (2024)), among heuristic search
value iteration (HSVI), random search, informed search, sequence form linear program (SFLP), and
CFR+ algorithms, SFLP (Koller et al., 1994) demonstrates the best performance in the tiger games
under H ∈ {2, 3, 4}. However, SFLP is clearly outperformed by DRDA when we use NashConv to
describe the reported results:

Table 7: Performance comparison between SFLP (reported) and DRDA (tested) in tiger games

Game Scenario SFLP DRDA
NashConv Time NashConv Time

Adv Tiger H = 2 0.16 < 1 sec < 10−4 < 1 sec
Adv Tiger H = 3 0.24 < 1 sec < 10−4 < 1 sec
Adv Tiger H = 4 0.32 8 sec 0.017(0.010) 8(10) sec

Comp Tiger H = 2 0.24 < 1 sec < 10−4 < 1 sec
Comp Tiger H = 3 0.36 48 sec 0.028 3 sec
Comp Tiger H = 4 0.48 14 min 0.024 5 min

Note that in Adversarial Tiger with H = 4, the 5-round DRDA actually terminates using 10 seconds,
but we also show the NashConv (without parenthesis) achieved in 8 seconds for comparison purposes.
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