
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MESHWEAVER: SPARSE-VOXEL-GUIDED SURFACE
WEAVING FOR AUTOREGRESSIVE MESH GENERATION

Anonymous authors
Paper under double-blind review

Figure 1: MeshWeaver generates high-quality 3D meshes autoregressively with a sparse-voxel-
guided surface weaving process. By directly predict next vertices instead of coordinates, it achieves
a state-of-the-art mesh compression ratio of 18%, and can generate meshes with up to 16K faces.

ABSTRACT

Autoregressive mesh generation has gained attention by tokenizing meshes into
sequences and training models in a language-modeling fashion. However, ex-
isting approaches suffer from two fundamental limitations: (i) low tokenization
efficiency, which yields long sequences and prevents scaling to high-poly meshes,
and (ii) absence of geometry-aware guidance, as generation is conditioned only
on global shape embeddings rather than local surface cues. We introduce Mesh-
Weaver, an autoregressive framework that treats mesh generation as a surface
weaving process by directly predicting the next vertex instead of independent co-
ordinates. At its core is a multi-level sparse-voxel encoder that injects geometric
context into the generative process in three complementary ways: providing voxel
features as vertex representations, guiding token prediction via cross-attention
to voxel features, and serving as a structural scaffold that constrains generation
around the input surface. Our hierarchical design enables coarse-to-fine vertex
prediction in a single decoding step, while tightly couples the generative model
with 3D geometry. Extensive experiments demonstrate that MeshWeaver achieves
a state-of-the-art compression ratio of 18%, can generates meshes with up to 16K
faces, and significantly improves geometric fidelity over prior approaches.

1 INTRODUCTION

Polygonal meshes remain a cornerstone representation of 3D geometry, underpinning applications
ranging from games and animation to simulation and virtual reality. But their irregular structure

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

makes them difficult to model with deep generative architectures. Recent advances therefore rely on
implicit representations with mesh extraction via Marching Cubes (Lorensen & Cline, 1998), which
eases learning but often produces overly dense, topologically complex meshes that hinder editing
and deformation. In contrast, artist-created meshes are carefully crafted to maintain clean topology
that facilitates practical usage, yet producing such meshes manually is notoriously labor-intensive.
These limitations highlight the importance of automatic mesh generation, which seeks to unite the
structural advantages of handcrafted meshes with the scalability of modern generative models.

Recent advances have established autoregressive modeling as a new paradigm for mesh generation.
Early attempts such as MeshGPT (Siddiqui et al., 2024) and MeshXL (Chen et al., 2024a) demon-
strated the feasibility of tokenizing faces into discrete coordinate sequences and modeling them
with transformers, but they suffered from long token sequences and limited scalability to high-poly
meshes. Follow-up works explored more compact tokenizations: EdgeRunner (Tang et al., 2025)
and TreeMeshGPT (Lionar et al., 2025) leverage half-edge structures for efficient face traversal,
while BPT (Weng et al., 2025) and DeepMesh (Zhao et al., 2025a) employ block-wise indexing to
reduce coordinate counts. Nevertheless, the predominant next-coordinate prediction paradigm still
suffers from two fundamental limitations: (i) producing long token sequences that burden train-
ing and inference of autoregressive transformers, and (ii) the generative process depends on global
shape embeddings and static vocabulary representations, offering little integration of local geometric
context, making it challenging to preserve fine-grained surface fidelity in generated meshes.

To address these challenges, we propose MeshWeaver, an autoregressive mesh generation frame-
work that formulates the task as a surface weaving process. While prior autoregressive methods
also incorporate geometric conditions such as point clouds, they predominantly interpret the task as
conditional shape generation. In contrast, we advocate a different perspective: the autoregressive
paradigm is most effective when posed as a re-topology method under known geometry. Compared
to 3D generation models based on implicit representations (Xiang et al., 2025; Zhao et al., 2025b), its
distinct strength lies in directly producing structured polygonal meshes without relying on post-hoc
surface extraction. By shifting the focus to topology construction conditioned on the input surface,
we can inject fine-grained geometric priors into every prediction step, guiding the weaving process
toward meshes that are both structurally coherent and faithful to the underlying geometry.

MeshWeaver shifts the mesh generation paradigm from next-coordinate to next-vertex prediction.
Instead of expending model computation on every independent coordinate, the model directly pre-
dicts vertices as atomic tokens in a multi-level coarse-to-fine manner within a single decoding step.
This reduces sequence length and allows the transformer to focus on structural reasoning rather than
redundant coordinate generation. Central to this design is a hierarchical sparse-voxel encoder
that injects local geometric context into the autoregressive generation process through three comple-
mentary mechanisms: providing multi-level voxel features as vertex representations, guiding token
prediction via spatial-aware cross-attention, and serving as a structural scaffold that constrains gen-
eration around the input surface. Through this synergy, MeshWeaver surpasses prior limits, achieves
a state-of-the-art compression ratio of 18%, generates meshes with up to 16K faces, and delivers sig-
nificant improvements in geometric fidelity. Our contributions can be summarized as:

• We propose MeshWeaver, an autoregressive framework that formulates mesh generation
as a surface weaving process, shifting the generation paradigm from next-coordinate to
next-vertex prediction for shorter sequences and stronger structural reasoning.

• We design a hierarchical sparse-voxel encoder that injects fine-grained geometric guidance
into the generation process at three levels—representation, token prediction, and scaffold-
ing—enabling coherent and geometry-faithful mesh construction.

• MeshWeaver achieves a state-of-the-art mesh compression ratio of 18%, scales to meshes
with up to 16K faces, and substantially improves geometric fidelity.

2 RELATED WORK

3D Generation. Early 3D generation methods (Poole et al., 2023; Wang et al., 2023; Xu et al.,
2023; Chen et al., 2023; Tang et al., 2023) adapted 2D models via optimization but were inefficient
and produced impractical results. With large-scale 3D datasets (Deitke et al., 2023b;a), recent works
follow a “VAE + latent diffusion” paradigm: VecSet representations (Zhang et al., 2023; 2024;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Sp
ar

se
-V

ox
el

En
co

de
r

Po
in

t C
lo

ud
En

co
de

r 𝑣𝑣10 𝑣𝑣11

𝑣𝑣20 𝑣𝑣21

𝑣𝑣30 𝑣𝑣31 Se
lf-

At
te

nt
io

ns
(L

ev
el

-0
)

𝑣𝑣20

𝑣𝑣30

𝑣𝑣40 Se
lf-

At
te

nt
io

ns
(L

ev
el

-1
)

Cr
os

s-
At

te
nt

io
n

𝑣𝑣21

𝑣𝑣31

𝑣𝑣41Cr
os

s-
At

te
nt

io
n

Autoregressive Transformer

…
…

Voxels SelectionConditional
Tokens

Level-0 Sparse Volume Level-1 Sparse Volume

Points Sampling
& Voxelization

Points Sampling

… … … …

Vertex
Tokens

𝑜𝑜1 𝑜𝑜2

𝑣𝑣1
𝑣𝑣2

𝑣𝑣3

𝑣𝑣4
𝑣𝑣5

𝑣𝑣6
𝑣𝑣7

𝑣𝑣8
𝑣𝑣9

𝑜𝑜1 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5 𝑣𝑣1 𝑜𝑜2 𝑣𝑣5
𝑣𝑣6 𝑣𝑣7 𝑣𝑣8 𝑣𝑣9 𝑣𝑣1 𝑣𝑣5

𝑜𝑜10

𝑜𝑜11𝐵𝐵𝐵𝐵
𝐵𝐵

𝐸𝐸𝐸𝐸𝐸𝐸
𝑣𝑣10

𝑣𝑣11 𝐵𝐵𝐵𝐵
𝐵𝐵 𝑜𝑜20

𝑜𝑜21
𝑣𝑣50

𝑣𝑣51
… …

Vertex Traversal Sequence

Tokenized Sequence

Figure 2: Left: Overall Pipeline of MeshWeaver. Given an input surface, we voxelize it and
sample points to extract multi-level features with a sparse-voxel encoder. These features provide
geometry-aware context that (i) represent vertices, (ii) guide token predictions via cross-attention,
and (iii) act as a generation scaffold. The transformer autoregressively weaves the mesh vertex by
vertex in a coarse-to-fine manner, attending to voxel features for local geometric context. Right:
Vertex-Level Mesh Tokenization. The mesh is traversed patch-by-patch to produce compact 2D
vertex tokens, greatly shortening sequences.

Wu et al., 2024; Li et al., 2025a;c; Zhao et al., 2025b; Chen et al., 2025a; Li et al., 2025b) yield
compact and transferable shape sets but lack fine-grained detail, while sparse-voxel methods (Ren
et al., 2024; Xiang et al., 2025; Wu et al., 2025; He et al., 2025; Li et al., 2025d; Chen et al., 2025c)
capture local geometry more faithfully but require heavier training. However, both directions focus
only on geometry and rely on post-processing (e.g., Marching Cubes), often producing overly dense
meshes that limit practical applications.

Mesh Re-topology. Mesh re-topology converts raw or high-resolution surfaces into clean, low-poly
meshes with consistent topology, which is essential for editing, animation, and texture mapping. In
practice, this is still largely done manually, making it costly and skill-intensive. Classical algorithms
such as surface simplification (Garland & Heckbert, 1997), quad remeshing (Bommes et al., 2009;
Huang et al., 2018), and parameterization methods (Floater & Hormann, 2005) reduce effort but de-
pend on heuristics and are computationally heavy. Recent learning-based methods (Potamias et al.,
2022; Dong et al., 2025b;a; Zhang et al., 2025) offer progress, yet re-topology remains challenging
due to the need to balance fidelity and compactness while producing workflow-ready meshes.

Autoregressive Mesh Generation. PolyGen (Nash et al., 2020) pioneered an autoregressive ap-
proach that generated ordered vertex sequences and then connected them into faces with two au-
toregressive transformers. Subsequent methods such as MeshGPT (Siddiqui et al., 2024) and
MeshXL (Chen et al., 2024a) discretized faces into token sequences but suffered from extremely
long streams, limiting scalability. To improve compression, later works explored (i) topology-aware
traversal, which maximizes edge sharing (Chen et al., 2024b; 2025b; Tang et al., 2025; Lionar
et al., 2025) or decomposes meshes into local patches to reduce redundant tokens (Weng et al.,
2025; Wang et al., 2025b); and (ii) block-wise coordinate compression, which partitions space and
encodes each vertex by block and offset indices, merging repeated block codes for higher compres-
sion (Weng et al., 2025). In parallel, architectural innovations such as hourglass Transformers (Hao
et al., 2024), linear-attention mechanisms (Wang et al., 2025a), and reinforcement-learning strate-
gies (Zhao et al., 2025a; Liu et al., 2025) have been explored. Nevertheless, the state-of-the-art
compression ratio of mesh tokenization remains capped at about 22%, and mainstream approaches
still rely on next-coordinate prediction without explicit local geometric guidance.

3 METHOD

3.1 PRELIMINARY: MESH TOKENIZATION

A triangle mesh consists of a collection of faces M = {f1,f2, . . . ,fN}, where each face is a triplet
of vertices fi = (vi1,vi2,vi3), and each vertex is represented by 3D coordinates vj = (vxj , v

y
j , v

z
j).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Unlike textual data, mesh tokenization is considerably harder due to spatial redundancy and irregular
connectivity. The most naı̈ve mesh tokenization is to flatten all vertex coordinates into a sequence:

M = {vx1 , v
y
1 , v

z
1 , . . . , v

x
3N , vy3N , vz3N}, (1)

where vertices and faces are sorted in some order (e.g., yzx-order) and coordinates are discretized
into a finite resolution grid (e.g., 7-bit quantization in a 1283 grid). In autoregressive mesh genera-
tion, the mesh is then modeled as a sequence of tokens, with each coordinate predicted conditional
on its predecessors: p(M) =

∏9N
t=1 p(ct | c<t), where ct denotes the t-th coordinate token.

However, this naı̈ve formulation yields extremely long sequences (9N tokens for a mesh with N
faces), severely limiting scalability. To improve compression ratio, later works pursued more com-
pact tokenizations. Topology-aware traversals (Chen et al., 2025b; Tang et al., 2025; Lionar et al.,
2025) reduce redundant vertices by maximizing edge sharing, while patch-based methods (Weng
et al., 2025; Wang et al., 2025b; Zhao et al., 2025a) shorten sequences via local patch grouping and
block-wise coordinate compression. Despite these advances, coordinate-level tokenization remains
capped at about 22% compression, leaving the quest for more compact yet faithful tokenization an
open challenge.

3.2 VERTEX-LEVEL MESH TOKENIZATION

To overcome the compression bottleneck of coordinate-level tokenization schemes, we propose
vertex-level tokenization, which elevates the basic modeling unit from coordinates to vertices. The
key insight is that mesh traversal naturally operates on vertices: the traversal process can be viewed
as “weaving” the mesh surface vertex by vertex, akin to threading along the manifold to reconstruct
topology. Based on this perspective, we lift the 1D coordinate sequence into a 2D vertex sequence
and reformulate the task from next-coordinate prediction to next-vertex prediction. In each decod-
ing step, the transformer directly predicts a complete vertex rather than an individual coordinate.
This design fully leverages the model’s sequence modeling capacity, significantly enhances mesh
generation efficiency.

Mesh Patchification. The notion of “lifting” tokenization to vertex-level is orthogonal to the mesh
traversal strategy and can be integrated with various traversal algorithms. In this work, we adopt a
patch-based traversal due to its inherent locality, high efficiency, and minimal reliance on auxiliary
tokens. Specifically, we follow the heuristic introduced in BPT (Weng et al., 2025): we begin with
all sorted faces marked unvisited, pick the first unvisited face, and identify its vertex connected to
the largest number of remaining unvisited faces as the patch center. The patch is then formed by
grouping this center with all incident faces. As Figure 2 (right) shows, the mesh is divided into a
sequence of P local patches, each consisting of a center vertex oi and its surrounding vertices vij

arranged in a clockwise manner:

M = {o1,v11, . . . ,o2,v21, . . . , . . . ,oP ,vP1, . . . }. (2)

Multi-Level Vertex Representation. A crucial challenge in vertex-based tokenization is how to
generate a complete vertex within a single decoding step. Prior attempts such as TreeMeshGPT
adopt hierarchical MLP heads to sequentially predict z, y, and x coordinates: p(vi) = p(vzi) ·p(v

y
i |

vzi) · p(vxi | vzi , v
y
i). However, the three coordinates of a vertex are strongly coupled and do not

exhibit a clear sequential dependency, making such factorization suboptimal.

Instead, we adopt a multi-level vertex representation inspired by block-wise indexing (Weng et al.,
2025). The 3D space is hierarchically partitioned into voxel grids at L levels. At the l-th level, we
divide the voxel grids by a factor of Dl, leading to a finest resolution of R =

∏L−1
l=0 Dl that equals

to the coordinate quantization resolution. Each voxel at level l−1 corresponds to a D3
l subvolume

at level l, and each vertex is represented by multi-level voxel indices: vi = (v0i , . . . , v
L−1
i), where

vli ∈ [0, . . . , D3
l −1] denotes the index at level l conditioned on its parent in level l−1. The decoding

process at step j follows a coarse-to-fine voxel refinement: p(vj) =
∏L−1

l=0 p(vlj | v<l
j), which first

determines a coarse voxel and progressively narrows the prediction to finer subvolumes until the
final resolution is reached.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Sp
ar

se
-A

tt
n

Do
w

ns
am

pl
e

Sp
ar

se
-A

tt
n

Lo
ca

l P
oi

nt
N

et

Se
lf-

At
tn

Pr
oj

ec
tio

nCA H
ea

d

Do
w

ns
am

pl
e

Sp
ar

se
-A

tt
n

𝑣𝑣10 𝑣𝑣11

𝑣𝑣20

Se
lf-

At
tn

C

CA H
ea

d

𝑣𝑣21

…

Level 1 Level 0 Level 0 Level 1

×4 ×4 ×4 ×16 ×8

add concat

Points &
Voxels

Level 1
Features

Positional
Encoding

Level 0
Features

Voxels Selection

Figure 3: Network Architectures. Left: sparse-voxel encoder. Right: autoregressive transformer.

Tokenization Results. By integrating patch-based mesh traversal with multi-level vertex represen-
tation, we obtain a 2D vertex-token sequence:

M =
{BOS

...
BOS

 ,

 o01
...

oL−1
1

 ,

 v011
...

vL−1
11

 , . . . ,

BOS
...

BOS

 ,

 o0P
...

oL−1
P

 ,

 v0P1
...

vL−1
P1

 , . . . ,

EOS
...

EOS

}
. (3)

Here, a BOS token is inserted at the beginning of each patch to explicitly distinguish the patch
center from other vertices, while an EOS token terminates the full sequence. This design yields a
compression ratio of 18%, establishing a new state of the art.

3.3 SPARSE-VOXEL-GUIDED AUTOREGRESSIVE MESH GENERATION

Previous autoregressive mesh generation approaches typically recast the task as point cloud con-
ditioned coordinate prediction. The input point cloud is encoded into global shape embeddings
and then injected into the transformer via prefix tokens or cross-attention. During generation, each
coordinate token is represented by a static vocabulary embedding, and the next token is directly pre-
dicted from the last-layer hidden state. This paradigm lacks fine-grained structural cues, struggles
to faithfully capture the underlying geometry, as it lacks fine-grained structural cues that can guide
generation toward high-fidelity surface reconstruction.

To inject fine-grained geometric information and achieve higher-fidelity mesh generation, we intro-
duce a sparse-voxel encoder into the autoregressive generation framework that encodes the input
surface into hierarchical voxel features. It enhances the generation pipeline from 3 aspects: (i) each
input vertex is represented with multi-level voxel features carrying rich geometric information in-
stead of shape-agnostic static vocabulary embeddings, (ii) before predicting each level of a vertex
token, the hidden state attends to corresponding sparse-voxel features to perceive local geometry
and adaptively refine predictions, (iii) the sparse voxels themselves provide explicit spatial anchors
of the surface, effectively constraining the vertex prediction to regions near the true geometry.

Sparse-Voxel Encoder. Given a mesh M, we first voxelize its surface at resolution R to obtain
non-empty sparse voxels, and sample a point cloud with normals {pi ∈ R6}Np

i=1. As shown in Fig-
ure 3, a lightweight PointNet (Qi et al., 2017) aggregates the points inside each voxel into a feature
vector. These per-voxel features, together with their voxel coordinates, are processed by a stack of
shifted-window sparse attention layers (Weng et al., 2025) to produce sparse voxel features at reso-
lution R. To capture multi-scale context, we apply successive sparse convolutional down-sampling
layers interleaved with sparse attention, halving the spatial resolution at each stage until reaching
the coarsest level 0 of resolution D0. The encoder thus yields a hierarchy of sparse voxel features:

F = {F0,F1, . . . ,FL−1}, (4)

where Fl ∈ RNl×Cl denotes features of the sparse voxels at level l.

Voxel Features as Vertex Representation. In our next-vertex prediction paradigm, the transformer
operates on vertices represented not by static embeddings but by geometry-aware voxel features.
Since each vertex vi = (v0i , . . . , v

L−1
i) corresponds to voxel indices across levels, we retrieve the

features of the associated voxels and concatenate them into a multi-level embedding:

e(vi) = Concat
(
F0[v0i],F

1[v1i], . . . ,F
L−1[vL−1

i]
)
. (5)

This shape-dependent representation encodes rich local geometry around the vertex, substantially
enhancing the expressiveness compared to shape-agnostic vocabulary embeddings.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Cross-Attention-Guided Token Prediction. Our autoregressive decoder adopts a multi-level struc-
ture that mirrors the hierarchical vertex representation. Each level consists of self-attention layers
followed by a prediction head. The hidden states and voxel prediction from level l−1 are concate-
nated and linearly projected to condition level l prediction, thus modeling coarse-to-fine refinement.
To further inject geometric priors, each prediction head integrates a cross-attention layer: the hid-
den states serve as queries, while level-l sparse voxel features act as keys and values. The output
is passed to a linear layer to predict a D3

l -dimensional distribution over voxels (for level 0, we add
BOS and EOS tokens, yielding D3

0+2 classes). For l > 0, the voxel predicted at the previous level
localizes a subvolume in level l, and cross-attention is restricted to voxels inside that subvolume,
greatly reducing computation while preserving spatial precision.

Sparse Voxels as Generation Scaffold. Unlike prior autoregressive approaches that rely on implicit
shape embeddings and risk drifting into empty space, our sparse-voxel representation explicitly
marks the occupied regions across different resolutions. During decoding, we leverage this property
by masking out probabilities of empty voxels in the prediction head. Concretely, for the D3

l output
distribution at level l, only non-empty voxels are retained while the rest are assigned −∞ before
sampling. This ensures that every predicted vertex remains anchored to the surface, providing a
reliable scaffold that enforces geometric validity throughout the generation process.

3.4 TRAINING AND INFERENCE DETAILS

Training-time Subvolume Pruning. As described before, when predicting a level-l token (l > 0),
cross-attention is restricted to the sparse-voxel features located within the subvolume identified by
the previous level. During training, however, computing cross-attention over the full mesh sequence
requires each vertex to be individually masked to its corresponding subvolume—a process that re-
mains computationally expensive despite the inherent sparsity of the mask. To further reduce train-
ing complexity, we introduce a subvolume pruning strategy. As Figure 4 shows, since the sparse
voxels are naturally partitioned by subvolumes, we sample only a subset of these subvolumes along
with the vertices that attend to them, and compute the loss exclusively within this subset. This
truncated training significantly decreases the number of sparse voxels involved in cross-attention,
thereby accelerating training.

Volume 2Volume 1 Volume 3 Volume 4
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
𝑣𝑣4
𝑣𝑣5
𝑣𝑣6
𝑓𝑓11 𝑓𝑓12 𝑓𝑓13 𝑓𝑓14 𝑓𝑓21 𝑓𝑓22 𝑓𝑓23 𝑓𝑓31 𝑓𝑓32 𝑓𝑓33 𝑓𝑓41 𝑓𝑓42 𝑓𝑓43

Sparse Voxels

Ve
rt

ic
es

𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
𝑣𝑣5
𝑓𝑓11 𝑓𝑓12 𝑓𝑓13 𝑓𝑓14 𝑓𝑓21 𝑓𝑓22 𝑓𝑓23

Volume 2Volume 1

Tr
un

ca
te

d
Ve

rt
ic

es

Truncated Sparse Voxels

Volume 3
Volume 4

Figure 4: Training-time Subvolume Pruning.

Cross-Attention KV Cache.
Key–Value (KV) caching is
widely adopted in LLM in-
ference to avoid redundant
computation. In our model,
caching applies not only to
the self-attention layers of the
autoregressive transformer, but
also to the cross-attention inside
each prediction head. After the sparse-voxel encoder produces multi-level voxel features, we
map them once into keys and values and store them in a dedicated cross-attention cache. During
decoding, the prediction result from the previous level determines a subvolume in current level, and
the model retrieves only the relevant sparse keys and values from the cache for prediction. This
mechanism eliminates repeated feature projections, substantially reducing inference cost without
sacrificing accuracy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details. We build a corpus of 800K meshes by merging Objaverse++(Deitke
et al., 2023a), ShapeNet (Chang et al., 2015), 3D-Future (Fu et al., 2021), HSSD (Khanna* et al.,
2023), and ABO (Collins et al., 2022), filtering meshes with 1K–16K faces and applying random
scale/rotation augmentations. The backbone is a 24-layer LLaMA3-style (Dubey et al., 2024) trans-
former (1024 hidden, RoPE) with a sparse-voxel and point-cloud encoder, totaling 600M param-
eters. Coordinates are 7-bit quantized with a two-level space partition ([16, 8]). Training uses

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

In
pu

t
M

es
hA

ny
tV

2
Ed

ge
Ru

nn
er

BP
T

Tr
ee

M
GP

T
M

es
h-

Si
lk

so
ng

Ou
rs

Figure 5: Qualitative Results on Point-Cloud Conditioned Mesh Generation.

AdamW(Loshchilov & Hutter, 2019) with cosine-decayed learning rate (1×10−4 → 1×10−5),
batch size 4 per GPU across 8 GPUs, for 200K steps (2 weeks).

Evaluation Dataset & Metrics. Prior autoregressive mesh generation works are typically trained
on Objaverse, yet the exact subsets used are often unspecified, making replication difficult. To
ensure fair comparison, we adopt the Toys4K (Stojanov et al., 2021) dataset containing 4,000 meshes
across 105 categories. Generation quality is evaluated with three metrics: Chamfer Distance (CD),
which measures the average bidirectional distance between generated and ground-truth point clouds;
Hausdorff Distance (HD), which captures the worst-case surface deviation; and Normal Consistency
(NC), which assesses the alignment of local surface orientations.

4.2 POINT-CLOUD-CONDITIONED MESH GENERATION

To benchmark the performance of point-cloud-conditioned mesh generation, we choose Me-
shAnythingV2 (Chen et al., 2025b), EdgeRunner (Tang et al., 2025), BPT (Weng et al., 2025),
TreeMeshGPT (Lionar et al., 2025), and Mesh-Silksong (Song et al., 2025) as our baselines. We
do not compare with Nautilus (Wang et al., 2025b) due to the absence of pretrained checkpoints.
During inference, we adopt identical random seed and sampling temperature of 0.5 for all methods.

Quantitative Results. Table 1 reports the quantitative evaluation results. Our approach achieves
substantial gains over baselines in both CD and HD, indicating that the generated surfaces align more
closely with the ground-truth meshes. Moreover, our method attains the highest |NC| and matches
the best existing method (Mesh-Silksong) in NC, suggesting the good performance in preserving
surface orientation. These advantages stem from the sparse-voxel representation, which provides
precise local geometric guidance and allows our model to faithfully reproduce intricate details. In

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison on Mesh Tokenization Efficiency.
Method MeshAnythingV2 EdgeRunner TreeMeshGPT BPT Nautilus DeepMesh Mesh-Silksong Ours

Compression Ratio ↓ 0.46 0.47 0.22 0.26 0.27 0.28 0.22 0.18

Input w/o Voxel Encoder w/ Voxel Encoder Input w/o Voxel Scaffold w/ Voxel Scaffold

Figure 6: Qualitative Ablation Studies on Sparse-Voxel Encoder.

contrast, baseline methods lack such fine-grained supervision, leading to error accumulation, surface
drift, and an inability to capture complex local structures. In addition, several prior approaches (e.g.,
MeshAnythingV2 and EdgeRunner) are constrained by limited tokenization efficiency and therefore
train only on meshes with fewer than 4K faces, restricting their capacity to handle more complex
geometries. In contrast, our efficient vertex-level tokenization enables training on more complex
meshes and raises the performance ceiling.

Table 1: Quantitative Results on Point-Cloud-
Conditioned Mesh Generation.

Method CD (×10−1) ↓ HD ↓ NC ↑ |NC| ↑
MeshAnythingV2 0.213 0.169 0.194 0.878
EdgeRunner 0.147 0.118 0.668 0.902
BPT 0.172 0.122 0.719 0.909
TreeMeshGPT 0.205 0.183 0.685 0.887
Mesh-Silksong 0.140 0.106 0.734 0.900

MeshWeaver (ours) 0.116 0.087 0.732 0.914

Qualitative Results. Figure 5 visualizes the
generated meshes of different methods. It is
easy to observe that our method clearly recon-
structs finer geometric detail—for example, the
key layout of the “keyboard” (second column)
and the patern on the coin (third column). Com-
peting methods, while able to capture coarse
shape, often suffer from surface misalignment
(e.g., “keyboard” in second column), detail loss
(e.g., “coin” in third column), or incomplete
generation (e.g., MeshAnythingV2 on “dinosaur”). These qualitative results highlight the superi-
ority of our approach in fine-grained mesh generation.

4.3 MESH TOKENIZATION

To benchmark the efficiency of mesh tokenization, we compare with both face-traversal-based (Chen
et al., 2025b; Tang et al., 2025; Lionar et al., 2025) and coordinate-merging-based (Weng et al., 2025;
Wang et al., 2025b; Zhao et al., 2025a; Song et al., 2025) mesh tokenization approaches. We report
the mesh compression ratio computed as L/(9N), where L is the compressed sequence length and
9N is the sequence length of vanilla representation of a N -face mesh, a lower compression ratio
indicates better efficiency.

As Table 2 shows, our vertex-level tokenization achieves a state-of-the-art compression ratio of 18%,
while existing coordinate-level tokenization algorithms remain capped at about 22%. It is worth not-
ing that the compression efficiency of our tokenization scheme still has room for improvement. For
example, during vertex token prediction, one could follow the idea of BPT and adopt separate token
sets for patch-center vertices and for other vertices. This design would implicitly distinguish differ-
ent patches and eliminate the need to insert a BOS token at the beginning of each patch sequence
in Equation 3, thereby further shortening the token length. In this work, however, we opt for the
simpler implementation of explicitly inserting BOS tokens.

4.4 ABLATION STUDIES

Sparse-Voxel Encoder. We investigate the contribution of the sparse-voxel encoder from three
complementary aspects: (i) voxel features as vertex representation (VF), (ii) cross-attention-guided
token prediction (CA), and (iii) sparse voxels as generation scaffold (GS). Among these, VF and
CA are part of model training, while GS is used only at inference time. To isolate their effects, we
train ablated variants from scratch under identical hyperparameters to the full model. Concretely,
without VF we replace voxel features with multi-level static vocabulary embeddings for vertex rep-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

resentation; without CA, each level’s token prediction head reduces to a linear classifier without
cross-attention (please refer to Figure 3); without GS, we disable logit masking based on the sparse-
voxel structure during inference.

Table 3: Ablation on Sparse-Voxel Encoder.
Method CD (×10−1) ↓ HD ↓ NC ↑ |NC| ↑
w/o VF 0.142 0.122 0.694 0.884
w/o CA 0.146 0.128 0.681 0.886
w/o VF&CA 0.158 0.138 0.660 0865
w/o GS 0.122 0.090 0.715 0.909

Ours 0.116 0.087 0.732 0.914

Quantitative results are reported in Table 3.
Removing either VF or CA results in a sub-
stantial performance drop, and ablating both
leads to the most severe degradation, indi-
cating that voxel-based geometric priors and
cross-attention guidance provide complemen-
tary benefits for mesh generation. Disabling GS
at inference produces a moderate but consistent
decline, confirming its role in constraining the generative process around the input surface and miti-
gating error accumulation and surface drifting, thereby facilitating our “surface weaving” paradigm.
We also visualize some qualitative results in Figure 6, where removing the sparse-voxel encoder in
training results in detail loss, while disabling the inference-time scaffold results in surface drifting.

Level Partition. We study multi-level partition from two perspectives: (i) space partition, where the
3D space is divided into multi-level voxel grids with a fixed final resolution of 7-bit quantization (i.e.,
27 = 128), and (ii) layer partition, which controls how transformer depth is allocated across levels.
For space partition, we experiment with three configurations—(16, 8), (8, 16), and (8, 4, 4)—that
exploit a moderate number of levels while keeping the vocabulary size at each level tractable for
training. Other decompositions such as (32, 4) would lead to prohibitively large level 0 vocabulary
size (e.g., 323), which would cause training difficulties and inefficiency for cross attention. For layer
partition, we fix the total number of self-attention layers at 24 in the autoregressive transformer and
vary the allocation across levels; specifically, under the same (16, 8) space partition, we assign the
first M layers to level 0 is assigned M layers and the remaining 24−M layers to level 1.

Table 4: Ablation Study on Level Partition.
Space Part. Layer Part. CD (×10−1) ↓ HD ↓ NC ↑ |NC| ↑

(8,16) 16+8 0.120 0.088 0.738 0.912
(8,4,4) 16+8 0.137 0.096 0.691 0. 880

(16,8) 18+6 0.113 0.089 0.729 0.908
(16,8) 20+4 0.121 0.088 0.740 0.910

(16,8) 16+8 0.116 0.087 0.732 0.914

As shown in Table 4, the (16, 8) and (8, 16)
space partitions achieve comparable perfor-
mance, while (8, 4, 4) performs a little worse.
We attribute this to the deeper hierarchy reduc-
ing the spatial support of later levels, limiting
the effective range of local geometry injected
by sparse-voxel features and thus increases the
difficulty of vertex prediction. From an effi-
ciency perspective, (8, 16) also requires an extra downsampling layer in the sparse-voxel encoder to
match the level 0 resolution, thus we adopt (16, 8) as our default space partition configuration.

Regarding the partition of transformer layers, varying the depth of level 0 from 16 to 20 has negli-
gible effect on final performance. We argue that 16 layers are sufficient to handle the coarse voxel
prediction task, and subsequent layers mainly refine predictions at finer levels, which does not re-
quire excessive depth. In our final model, we choose a 16+8 split for level 0 and level 1, respectively.

Cross-Attention KV Cache. We further evaluate the effect of the cross-attention KV cache intro-
duced in Section 3.4 on inference efficiency. Specifically, we randomly select 200 meshes from
the Toys4K dataset and measure the throughput of point-cloud-conditioned mesh generation on the
same GPU, quantified by the number of generated tokens per second (tokens/s). Without cross-
attention KV caching, the model runs at an average speed of 26.8 tokens/s, while enabling the cache
increases the throughput to 30.7 tokens/s—an improvement of approximately 14.5%.

5 CONCLUSION

We introduced MeshWeaver, an autoregressive framework that casts mesh generation as a surface
weaving process. By predicting the next vertex rather than the next coordinate and coupling de-
coding with a hierarchical sparse-voxel encoder, our model achieves shorter sequences, stronger
structural reasoning, and fine-grained geometric guidance. This design enables state-of-the-art com-
pression and geometric fidelity while scaling to meshes with up to 16K faces. Beyond these results,
MeshWeaver suggests a promising path toward practical, high-quality mesh generators that tightly
unite structural coherence with geometric detail.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-integer quadrangulation. ACM transac-
tions on graphics (TOG), 28(3):1–10, 2009.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry and
appearance for high-quality text-to-3d content creation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pp. 22246–22256, 2023.

Rui Chen, Jianfeng Zhang, Yixun Liang, Guan Luo, Weiyu Li, Jiarui Liu, Xiu Li, Xiaoxiao Long,
Jiashi Feng, and Ping Tan. Dora: Sampling and benchmarking for 3d shape variational auto-
encoders. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 16251–
16261, 2025a.

Sijin Chen, Xin Chen, Anqi Pang, Xianfang Zeng, Wei Cheng, Yijun Fu, Fukun Yin, Billzb Wang,
Jingyi Yu, Gang Yu, et al. Meshxl: Neural coordinate field for generative 3d foundation models.
Advances in Neural Information Processing Systems, 37:97141–97166, 2024a.

Yiwen Chen, Yikai Wang, Yihao Luo, Zhengyi Wang, Zilong Chen, Jun Zhu, Chi Zhang, and Gu-
osheng Lin. Meshanything v2: Artist-created mesh generation with adjacent mesh tokenization.
arXiv preprint arXiv:2408.02555, 2024b.

Yiwen Chen, Tong He, Di Huang, Weicai Ye, Sijin Chen, Jiaxiang Tang, Zhongang Cai, Lei Yang,
Gang Yu, Guosheng Lin, and Chi Zhang. Meshanything: Artist-created mesh generation with
autoregressive transformers. In The Thirteenth International Conference on Learning Represen-
tations, 2025b. URL https://openreview.net/forum?id=KGZAs8VcOM.

Yiwen Chen, Zhihao Li, Yikai Wang, Hu Zhang, Qin Li, Chi Zhang, and Guosheng Lin. Ultra3d:
Efficient and high-fidelity 3d generation with part attention. arXiv preprint arXiv:2507.17745,
2025c.

Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan Gundogdu,
Xi Zhang, Tomas F Yago Vicente, Thomas Dideriksen, Himanshu Arora, et al. Abo: Dataset and
benchmarks for real-world 3d object understanding. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 21126–21136, 2022.

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan
Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al. Objaverse-xl: A universe of
10m+ 3d objects. Advances in Neural Information Processing Systems, 36:35799–35813, 2023a.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
tated 3d objects. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 13142–13153, 2023b.

Qiujie Dong, Jiepeng Wang, Rui Xu, Cheng Lin, Yuan Liu, Shiqing Xin, Zichun Zhong, Xin Li,
Changhe Tu, Taku Komura, et al. Crossgen: Learning and generating cross fields for quad mesh-
ing. arXiv preprint arXiv:2506.07020, 2025a.

Qiujie Dong, Huibiao Wen, Rui Xu, Shuangmin Chen, Jiaran Zhou, Shiqing Xin, Changhe Tu, Taku
Komura, and Wenping Wang. Neurcross: A neural approach to computing cross fields for quad
mesh generation. ACM Transactions on Graphics (TOG), 44(4):1–17, 2025b.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Michael S Floater and Kai Hormann. Surface parameterization: a tutorial and survey. Advances in
multiresolution for geometric modelling, pp. 157–186, 2005.

10

https://openreview.net/forum?id=KGZAs8VcOM

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang Zhao, Steve Maybank, and Dacheng
Tao. 3d-future: 3d furniture shape with texture. International Journal of Computer Vision, 129
(12):3313–3337, 2021.

Michael Garland and Paul S Heckbert. Surface simplification using quadric error metrics. In Pro-
ceedings of the 24th annual conference on Computer graphics and interactive techniques, pp.
209–216, 1997.

Zekun Hao, David W Romero, Tsung-Yi Lin, and Ming-Yu Liu. Meshtron: High-fidelity, artist-like
3d mesh generation at scale. arXiv preprint arXiv:2412.09548, 2024.

Xianglong He, Zi-Xin Zou, Chia-Hao Chen, Yuan-Chen Guo, Ding Liang, Chun Yuan, Wanli
Ouyang, Yan-Pei Cao, and Yangguang Li. Sparseflex: High-resolution and arbitrary-topology
3d shape modeling. arXiv preprint arXiv:2503.21732, 2025.

Jingwei Huang, Yichao Zhou, Matthias Niessner, Jonathan Richard Shewchuk, and Leonidas J
Guibas. Quadriflow: A scalable and robust method for quadrangulation. In Computer Graph-
ics Forum, volume 37, pp. 147–160. Wiley Online Library, 2018.

Mukul Khanna*, Yongsen Mao*, Hanxiao Jiang, Sanjay Haresh, Brennan Shacklett, Dhruv Batra,
Alexander Clegg, Eric Undersander, Angel X. Chang, and Manolis Savva. Habitat Synthetic
Scenes Dataset (HSSD-200): An Analysis of 3D Scene Scale and Realism Tradeoffs for Object-
Goal Navigation. arXiv preprint, 2023.

Weiyu Li, Jiarui Liu, Hongyu Yan, Rui Chen, Yixun Liang, Xuelin Chen, Ping Tan, and Xiaoxiao
Long. Craftsman3d: High-fidelity mesh generation with 3d native diffusion and interactive ge-
ometry refiner. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
5307–5317, 2025a.

Weiyu Li, Xuanyang Zhang, Zheng Sun, Di Qi, Hao Li, Wei Cheng, Weiwei Cai, Shihao Wu, Jiarui
Liu, Zihao Wang, et al. Step1x-3d: Towards high-fidelity and controllable generation of textured
3d assets. arXiv preprint arXiv:2505.07747, 2025b.

Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu,
Yuan-Chen Guo, Ding Liang, Wanli Ouyang, et al. Triposg: High-fidelity 3d shape synthesis
using large-scale rectified flow models. arXiv preprint arXiv:2502.06608, 2025c.

Zhihao Li, Yufei Wang, Heliang Zheng, Yihao Luo, and Bihan Wen. Sparc3d: Sparse representa-
tion and construction for high-resolution 3d shapes modeling. arXiv preprint arXiv:2505.14521,
2025d.

Stefan Lionar, Jiabin Liang, and Gim Hee Lee. Treemeshgpt: Artistic mesh generation with au-
toregressive tree sequencing. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 26608–26617, 2025.

Jian Liu, Jing Xu, Song Guo, Jing Li, Jingfeng Guo, Jiaao Yu, Haohan Weng, Biwen Lei, Xianghui
Yang, Zhuo Chen, et al. Mesh-rft: Enhancing mesh generation via fine-grained reinforcement
fine-tuning. arXiv preprint arXiv:2505.16761, 2025.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. In Seminal graphics: pioneering efforts that shaped the field, pp. 347–353. 1998.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. Polygen: An autoregressive
generative model of 3d meshes. In International conference on machine learning, pp. 7220–7229.
PMLR, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

11

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=FjNys5c7VyY.

Rolandos Alexandros Potamias, Stylianos Ploumpis, and Stefanos Zafeiriou. Neural mesh simplifi-
cation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 18583–18592, 2022.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams.
Xcube: Large-scale 3d generative modeling using sparse voxel hierarchies. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 4209–4219, 2024.

Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti, Vladislav
Rosov, Angela Dai, and Matthias Nießner. Meshgpt: Generating triangle meshes with decoder-
only transformers. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 19615–19625, 2024.

Gaochao Song, Zibo Zhao, Haohan Weng, Jingbo Zeng, Rongfei Jia, and Shenghua Gao. Mesh
silksong: Auto-regressive mesh generation as weaving silk. arXiv preprint arXiv:2507.02477,
2025.

Stefan Stojanov, Anh Thai, and James M Rehg. Using shape to categorize: Low-shot learning
with an explicit shape bias. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 1798–1808, 2021.

Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023.

Jiaxiang Tang, Zhaoshuo Li, Zekun Hao, Xian Liu, Gang Zeng, Ming-Yu Liu, and Qinsheng Zhang.
Edgerunner: Auto-regressive auto-encoder for artistic mesh generation. In The Thirteenth In-
ternational Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=81cta3WQVI.

Hanxiao Wang, Biao Zhang, Weize Quan, Dong-Ming Yan, and Peter Wonka. iflame: Interleaving
full and linear attention for efficient mesh generation. arXiv preprint arXiv:2503.16653, 2025a.

Yuxuan Wang, Xuanyu Yi, Haohan Weng, Qingshan Xu, Xiaokang Wei, Xianghui Yang, Chunchao
Guo, Long Chen, and Hanwang Zhang. Nautilus: Locality-aware autoencoder for scalable mesh
generation. arXiv preprint arXiv:2501.14317, 2025b.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in neural information processing systems, 36:8406–8441, 2023.

Haohan Weng, Zibo Zhao, Biwen Lei, Xianghui Yang, Jian Liu, Zeqiang Lai, Zhuo Chen, Yuhong
Liu, Jie Jiang, Chunchao Guo, et al. Scaling mesh generation via compressive tokenization.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 11093–11103,
2025.

Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao
Yao. Direct3d: Scalable image-to-3d generation via 3d latent diffusion transformer. Advances in
Neural Information Processing Systems, 37:121859–121881, 2024.

Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Yikang Yang, Yajie Bao, Jiachen Qian, Siyu
Zhu, Xun Cao, Philip Torr, et al. Direct3d-s2: Gigascale 3d generation made easy with spatial
sparse attention. arXiv preprint arXiv:2505.17412, 2025.

12

https://openreview.net/forum?id=FjNys5c7VyY
https://openreview.net/forum?id=81cta3WQVI
https://openreview.net/forum?id=81cta3WQVI

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen,
Xin Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 21469–21480,
2025.

Jiale Xu, Xintao Wang, Weihao Cheng, Yan-Pei Cao, Ying Shan, Xiaohu Qie, and Shenghua Gao.
Dream3d: Zero-shot text-to-3d synthesis using 3d shape prior and text-to-image diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20908–20918, 2023.

Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape
representation for neural fields and generative diffusion models. ACM Transactions On Graphics
(TOG), 42(4):1–16, 2023.

Chen Zhang, Wentao Wang, Ximeng Li, Xinyao Liao, Wanjuan Su, and Wenbing Tao. High-fidelity
lightweight mesh reconstruction from point clouds. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 11739–11748, 2025.

Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan
Xu, and Jingyi Yu. Clay: A controllable large-scale generative model for creating high-quality 3d
assets. ACM Transactions on Graphics (TOG), 43(4):1–20, 2024.

Ruowen Zhao, Junliang Ye, Zhengyi Wang, Guangce Liu, Yiwen Chen, Yikai Wang, and Jun Zhu.
Deepmesh: Auto-regressive artist-mesh creation with reinforcement learning. arXiv preprint
arXiv:2503.15265, 2025a.

Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
high resolution textured 3d assets generation. arXiv preprint arXiv:2501.12202, 2025b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

Point Cloud Conditioner. Similar to prior works, we adopt a point cloud encoder based on the
architecture of 3DShape2VecSet (Zhang et al., 2023) to encode the input point cloud into fix-length
conditional tokens, which are prepended to the mesh sequence to provide global generation context.
The conditional tokens are attended to each other via bidirectional attention, while the subsequent
vertex tokens attend to their predecessors via causal attention. This attention mechanism can be
implemented efficiently with PyTorch’s (Paszke et al., 2019) FlexAttention.

Training Loss. Our framework adheres to a fully causal generation scheme: each vertex is condi-
tioned on all preceding vertices, and within a vertex, each level’s token is conditioned on predictions
from coarser levels. Training therefore reduces to a sequence-modeling problem, optimized using
the standard cross-entropy loss commonly employed in causal language models:

L = −
N∑
j=1

L−1∑
l=0

log p
(
vlj |v<j , v

<l
j

)
, (6)

where N denotes the number of vertices, L the number of levels, vlj the level-l token of vertex j,
v<j all previously generated vertices, and v<l

j the already predicted levels of the j-th vertex.

B ADDITIONAL RESULTS

Traning Curve Ablation on Sparse-Voxel Encoder. We further visualize training dynamics in
Figure 7. Compared to the ablated variant without VF and CA, our full model exhibits markedly
faster convergence. Without the sparse-voxel encoder, the model effectively reduces to pure lan-
guage modeling over vertices, lacking geometric priors and therefore requiring substantially longer
optimization. In contrast, the inclusion of the sparse-voxel encoder provides explicit surface-aware
context, reducing the difficulty of next-vertex prediction and accelerating training.

0 20000 40000 60000 80000 100000

Training Step

0

2

4

6

8

10

12

T
ra

in
in

g
L

o
ss

with Sparse-Voxel Encoder

without Sparse-Voxel Encoder

Figure 7: Comparision on Training Loss with or without Sparse-Voxel Encoder.

Additional Qualitative Results. We present more generated results in Figure 8 and Figure 9.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In
pu

t
M

es
hA

ny
tV

2
BP

T
Tr

ee
M

GP
T

M
es

h-
Si

lk
so

ng
Ou

rs
In

pu
t

BP
T

Tr
ee

M
GP

T
M

es
h-

Si
lk

so
ng

Ou
rs

Ed
ge

Ru
nn

er

Figure 8: Additional Results on Point-Cloud Conditioned Mesh Generation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

In
pu

t
M

es
hA

ny
tV

2
BP

T
Tr

ee
M

GP
T

M
es

h-
Si

lk
so

ng
Ou

rs
In

pu
t

BP
T

Tr
ee

M
GP

T
M

es
h-

Si
lk

so
ng

Ou
rs

Ed
ge

Ru
nn

er

Figure 9: Additional Results on Point-Cloud Conditioned Mesh Generation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C LIMITATIONS

While MeshWeaver advances the state of automatic mesh generation, several challenges remain.
First, real-world assets often contain tens to hundreds of thousands of faces, which are still beyond
the capacity our framework can reliably produce. Second, the sparse-voxel encoder, though effective
for structural guidance, introduces additional computational overhead, making it difficult to scale
to very high resolutions (e.g., 5123 or 10243). Finally, performance is bounded by the scale and
quality of available training data; we expect that larger and more diverse curated datasets will further
improve both fidelity and robustness.

17

	Introduction
	Related Work
	Method
	Preliminary: Mesh Tokenization
	Vertex-Level Mesh Tokenization
	Sparse-Voxel-Guided Autoregressive Mesh Generation
	Training and Inference Details

	Experiments
	Experimental Settings
	Point-Cloud-Conditioned Mesh Generation
	Mesh Tokenization
	Ablation Studies

	Conclusion
	Implementation Details
	Additional Results
	Limitations

