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Figure 1: MeshWeaver generates high-quality 3D meshes autoregressively with a sparse-voxel-
guided surface weaving process. By directly predict next vertices instead of coordinates, it achieves
a state-of-the-art mesh compression ratio of 18%, and can generate meshes with up to 16K faces.

ABSTRACT

Autoregressive mesh generation has gained attention by tokenizing meshes into
sequences and training models in a language-modeling fashion. However, ex-
isting approaches suffer from two fundamental limitations: (i) low tokenization
efficiency, which yields long sequences and prevents scaling to high-poly meshes,
and (ii) absence of geometry-aware guidance, as generation is conditioned only
on global shape embeddings rather than local surface cues. We introduce Mesh-
Weaver, an autoregressive framework that treats mesh generation as a surface
weaving process by directly predicting the next vertex instead of independent co-
ordinates. At its core is a multi-level sparse-voxel encoder that injects geometric
context into the generative process in three complementary ways: providing voxel
features as vertex representations, guiding token prediction via cross-attention
to voxel features, and serving as a structural scaffold that constrains generation
around the input surface. Our hierarchical design enables coarse-to-fine vertex
prediction in a single decoding step, while tightly couples the generative model
with 3D geometry. Extensive experiments demonstrate that MeshWeaver achieves
a state-of-the-art compression ratio of 18%, can generates meshes with up to 16K
faces, and significantly improves geometric fidelity over prior approaches.

1 INTRODUCTION

Polygonal meshes remain a cornerstone representation of 3D geometry, underpinning applications
ranging from games and animation to simulation and virtual reality. But their irregular structure

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

makes them difficult to model with deep generative architectures. Recent advances therefore rely on
implicit representations with mesh extraction via Marching Cubes (Lorensen & Cline, 1998), which
eases learning but often produces overly dense, topologically complex meshes that hinder editing
and deformation. In contrast, artist-created meshes are carefully crafted to maintain clean topology
that facilitates practical usage, yet producing such meshes manually is notoriously labor-intensive.
These limitations highlight the importance of automatic mesh generation, which seeks to unite the
structural advantages of handcrafted meshes with the scalability of modern generative models.

Recent advances have established autoregressive modeling as a new paradigm for mesh generation.
Early attempts such as MeshGPT (Siddiqui et al., 2024) and MeshXL (Chen et al., 2024a) demon-
strated the feasibility of tokenizing faces into discrete coordinate sequences and modeling them
with transformers, but they suffered from long token sequences and limited scalability to high-poly
meshes. Follow-up works explored more compact tokenizations: EdgeRunner (Tang et al., 2025)
and TreeMeshGPT (Lionar et al., 2025) leverage half-edge structures for efficient face traversal,
while BPT (Weng et al., 2025) and DeepMesh (Zhao et al., 2025a) employ block-wise indexing to
reduce coordinate counts. Nevertheless, the predominant next-coordinate prediction paradigm still
suffers from two fundamental limitations: (i) producing long token sequences that burden train-
ing and inference of autoregressive transformers, and (ii) the generative process depends on global
shape embeddings and static vocabulary representations, offering little integration of local geometric
context, making it challenging to preserve fine-grained surface fidelity in generated meshes.

To address these challenges, we propose MeshWeaver, an autoregressive mesh generation frame-
work that formulates the task as a surface weaving process. While prior autoregressive methods
also incorporate geometric conditions such as point clouds, they predominantly interpret the task as
conditional shape generation. In contrast, we advocate a different perspective: the autoregressive
paradigm is most effective when posed as a re-topology method under known geometry. Compared
to 3D generation models based on implicit representations (Xiang et al., 2025; Zhao et al., 2025b), its
distinct strength lies in directly producing structured polygonal meshes without relying on post-hoc
surface extraction. By shifting the focus to topology construction conditioned on the input surface,
we can inject fine-grained geometric priors into every prediction step, guiding the weaving process
toward meshes that are both structurally coherent and faithful to the underlying geometry.

MeshWeaver shifts the mesh generation paradigm from next-coordinate to next-vertex prediction.
Instead of expending model computation on every independent coordinate, the model directly pre-
dicts vertices as atomic tokens in a multi-level coarse-to-fine manner within a single decoding step.
This reduces sequence length and allows the transformer to focus on structural reasoning rather than
redundant coordinate generation. Central to this design is a hierarchical sparse-voxel encoder
that injects local geometric context into the autoregressive generation process through three comple-
mentary mechanisms: providing multi-level voxel features as vertex representations, guiding token
prediction via spatial-aware cross-attention, and serving as a structural scaffold that constrains gen-
eration around the input surface. Through this synergy, MeshWeaver surpasses prior limits, achieves
a state-of-the-art compression ratio of 18%, generates meshes with up to 16K faces, and delivers sig-
nificant improvements in geometric fidelity. Our contributions can be summarized as:

• We propose MeshWeaver, an autoregressive framework that formulates mesh generation
as a surface weaving process, shifting the generation paradigm from next-coordinate to
next-vertex prediction for shorter sequences and stronger structural reasoning.

• We design a hierarchical sparse-voxel encoder that injects fine-grained geometric guidance
into the generation process at three levels—representation, token prediction, and scaffold-
ing—enabling coherent and geometry-faithful mesh construction.

• MeshWeaver achieves a state-of-the-art mesh compression ratio of 18%, scales to meshes
with up to 16K faces, and substantially improves geometric fidelity.

2 RELATED WORK

3D Generation. Early 3D generation methods (Poole et al., 2023; Wang et al., 2023; Xu et al.,
2023; Chen et al., 2023; Tang et al., 2023) adapted 2D models via optimization but were inefficient
and produced impractical results. With large-scale 3D datasets (Deitke et al., 2023b;a), recent works
follow a “VAE + latent diffusion” paradigm: VecSet representations (Zhang et al., 2023; 2024;
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Figure 2: Left: Overall Pipeline of MeshWeaver. Given an input surface, we voxelize it and
sample points to extract multi-level features with a sparse-voxel encoder. These features provide
geometry-aware context that (i) represent vertices, (ii) guide token predictions via cross-attention,
and (iii) act as a generation scaffold. The transformer autoregressively weaves the mesh vertex by
vertex in a coarse-to-fine manner, attending to voxel features for local geometric context. Right:
Vertex-Level Mesh Tokenization. The mesh is traversed patch-by-patch to produce compact 2D
vertex tokens, greatly shortening sequences.

Wu et al., 2024; Li et al., 2025a;c; Zhao et al., 2025b; Chen et al., 2025a; Li et al., 2025b) yield
compact and transferable shape sets but lack fine-grained detail, while sparse-voxel methods (Ren
et al., 2024; Xiang et al., 2025; Wu et al., 2025; He et al., 2025; Li et al., 2025d; Chen et al., 2025c)
capture local geometry more faithfully but require heavier training. However, both directions focus
only on geometry and rely on post-processing (e.g., Marching Cubes), often producing overly dense
meshes that limit practical applications.

Mesh Re-topology. Mesh re-topology converts raw or high-resolution surfaces into clean, low-poly
meshes with consistent topology, which is essential for editing, animation, and texture mapping. In
practice, this is still largely done manually, making it costly and skill-intensive. Classical algorithms
such as surface simplification (Garland & Heckbert, 1997), quad remeshing (Bommes et al., 2009;
Huang et al., 2018), and parameterization methods (Floater & Hormann, 2005) reduce effort but de-
pend on heuristics and are computationally heavy. Recent learning-based methods (Potamias et al.,
2022; Dong et al., 2025b;a; Zhang et al., 2025) offer progress, yet re-topology remains challenging
due to the need to balance fidelity and compactness while producing workflow-ready meshes.

Autoregressive Mesh Generation. PolyGen (Nash et al., 2020) pioneered an autoregressive ap-
proach that generated ordered vertex sequences and then connected them into faces with two au-
toregressive transformers. Subsequent methods such as MeshGPT (Siddiqui et al., 2024) and
MeshXL (Chen et al., 2024a) discretized faces into token sequences but suffered from extremely
long streams, limiting scalability. To improve compression, later works explored (i) topology-aware
traversal, which maximizes edge sharing (Chen et al., 2024b; 2025b; Tang et al., 2025; Lionar
et al., 2025) or decomposes meshes into local patches to reduce redundant tokens (Weng et al.,
2025; Wang et al., 2025b); and (ii) block-wise coordinate compression, which partitions space and
encodes each vertex by block and offset indices, merging repeated block codes for higher compres-
sion (Weng et al., 2025). In parallel, architectural innovations such as hourglass Transformers (Hao
et al., 2024), linear-attention mechanisms (Wang et al., 2025a), and reinforcement-learning strate-
gies (Zhao et al., 2025a; Liu et al., 2025) have been explored. Nevertheless, the state-of-the-art
compression ratio of mesh tokenization remains capped at about 22%, and mainstream approaches
still rely on next-coordinate prediction without explicit local geometric guidance.

3 METHOD

3.1 PRELIMINARY: MESH TOKENIZATION

A triangle mesh consists of a collection of faces M = {f1,f2, . . . ,fN}, where each face is a triplet
of vertices fi = (vi1,vi2,vi3), and each vertex is represented by 3D coordinates vj = (vxj , v

y
j , v

z
j ).
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Unlike textual data, mesh tokenization is considerably harder due to spatial redundancy and irregular
connectivity. The most naı̈ve mesh tokenization is to flatten all vertex coordinates into a sequence:

M = {vx1 , v
y
1 , v

z
1 , . . . , v

x
3N , vy3N , vz3N}, (1)

where vertices and faces are sorted in some order (e.g., yzx-order) and coordinates are discretized
into a finite resolution grid (e.g., 7-bit quantization in a 1283 grid). In autoregressive mesh genera-
tion, the mesh is then modeled as a sequence of tokens, with each coordinate predicted conditional
on its predecessors: p(M) =

∏9N
t=1 p(ct | c<t), where ct denotes the t-th coordinate token.

However, this naı̈ve formulation yields extremely long sequences (9N tokens for a mesh with N
faces), severely limiting scalability. To improve compression ratio, later works pursued more com-
pact tokenizations. Topology-aware traversals (Chen et al., 2025b; Tang et al., 2025; Lionar et al.,
2025) reduce redundant vertices by maximizing edge sharing, while patch-based methods (Weng
et al., 2025; Wang et al., 2025b; Zhao et al., 2025a) shorten sequences via local patch grouping and
block-wise coordinate compression. Despite these advances, coordinate-level tokenization remains
capped at about 22% compression, leaving the quest for more compact yet faithful tokenization an
open challenge.

3.2 VERTEX-LEVEL MESH TOKENIZATION

To overcome the compression bottleneck of coordinate-level tokenization schemes, we propose
vertex-level tokenization, which elevates the basic modeling unit from coordinates to vertices. The
key insight is that mesh traversal naturally operates on vertices: the traversal process can be viewed
as “weaving” the mesh surface vertex by vertex, akin to threading along the manifold to reconstruct
topology. Based on this perspective, we lift the 1D coordinate sequence into a 2D vertex sequence
and reformulate the task from next-coordinate prediction to next-vertex prediction. In each decod-
ing step, the transformer directly predicts a complete vertex rather than an individual coordinate.
This design fully leverages the model’s sequence modeling capacity, significantly enhances mesh
generation efficiency.

Mesh Patchification. The notion of “lifting” tokenization to vertex-level is orthogonal to the mesh
traversal strategy and can be integrated with various traversal algorithms. In this work, we adopt a
patch-based traversal due to its inherent locality, high efficiency, and minimal reliance on auxiliary
tokens. Specifically, we follow the heuristic introduced in BPT (Weng et al., 2025): we begin with
all sorted faces marked unvisited, pick the first unvisited face, and identify its vertex connected to
the largest number of remaining unvisited faces as the patch center. The patch is then formed by
grouping this center with all incident faces. As Figure 2 (right) shows, the mesh is divided into a
sequence of P local patches, each consisting of a center vertex oi and its surrounding vertices vij

arranged in a clockwise manner:

M = {o1,v11, . . . ,o2,v21, . . . , . . . ,oP ,vP1, . . . }. (2)

Multi-Level Vertex Representation. A crucial challenge in vertex-based tokenization is how to
generate a complete vertex within a single decoding step. Prior attempts such as TreeMeshGPT
adopt hierarchical MLP heads to sequentially predict z, y, and x coordinates: p(vi) = p(vzi ) ·p(v

y
i |

vzi ) · p(vxi | vzi , v
y
i ). However, the three coordinates of a vertex are strongly coupled and do not

exhibit a clear sequential dependency, making such factorization suboptimal.

Instead, we adopt a multi-level vertex representation inspired by block-wise indexing (Weng et al.,
2025). The 3D space is hierarchically partitioned into voxel grids at L levels. At the l-th level, we
divide the voxel grids by a factor of Dl, leading to a finest resolution of R =

∏L−1
l=0 Dl that equals

to the coordinate quantization resolution. Each voxel at level l−1 corresponds to a D3
l subvolume

at level l, and each vertex is represented by multi-level voxel indices: vi = (v0i , . . . , v
L−1
i ), where

vli ∈ [0, . . . , D3
l −1] denotes the index at level l conditioned on its parent in level l−1. The decoding

process at step j follows a coarse-to-fine voxel refinement: p(vj) =
∏L−1

l=0 p(vlj | v<l
j ), which first

determines a coarse voxel and progressively narrows the prediction to finer subvolumes until the
final resolution is reached.
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Figure 3: Network Architectures. Left: sparse-voxel encoder. Right: autoregressive transformer.

Tokenization Results. By integrating patch-based mesh traversal with multi-level vertex represen-
tation, we obtain a 2D vertex-token sequence:

M =
{BOS

...
BOS

 ,

 o01
...

oL−1
1

 ,

 v011
...

vL−1
11

 , . . . ,

BOS
...

BOS

 ,

 o0P
...

oL−1
P

 ,

 v0P1
...

vL−1
P1

 , . . . ,

EOS
...

EOS

}
. (3)

Here, a BOS token is inserted at the beginning of each patch to explicitly distinguish the patch
center from other vertices, while an EOS token terminates the full sequence. This design yields a
compression ratio of 18%, establishing a new state of the art.

3.3 SPARSE-VOXEL-GUIDED AUTOREGRESSIVE MESH GENERATION

Previous autoregressive mesh generation approaches typically recast the task as point cloud con-
ditioned coordinate prediction. The input point cloud is encoded into global shape embeddings
and then injected into the transformer via prefix tokens or cross-attention. During generation, each
coordinate token is represented by a static vocabulary embedding, and the next token is directly pre-
dicted from the last-layer hidden state. This paradigm lacks fine-grained structural cues, struggles
to faithfully capture the underlying geometry, as it lacks fine-grained structural cues that can guide
generation toward high-fidelity surface reconstruction.

To inject fine-grained geometric information and achieve higher-fidelity mesh generation, we intro-
duce a sparse-voxel encoder into the autoregressive generation framework that encodes the input
surface into hierarchical voxel features. It enhances the generation pipeline from 3 aspects: (i) each
input vertex is represented with multi-level voxel features carrying rich geometric information in-
stead of shape-agnostic static vocabulary embeddings, (ii) before predicting each level of a vertex
token, the hidden state attends to corresponding sparse-voxel features to perceive local geometry
and adaptively refine predictions, (iii) the sparse voxels themselves provide explicit spatial anchors
of the surface, effectively constraining the vertex prediction to regions near the true geometry.

Sparse-Voxel Encoder. Given a mesh M, we first voxelize its surface at resolution R to obtain
non-empty sparse voxels, and sample a point cloud with normals {pi ∈ R6}Np

i=1. As shown in Fig-
ure 3, a lightweight PointNet (Qi et al., 2017) aggregates the points inside each voxel into a feature
vector. These per-voxel features, together with their voxel coordinates, are processed by a stack of
shifted-window sparse attention layers (Weng et al., 2025) to produce sparse voxel features at reso-
lution R. To capture multi-scale context, we apply successive sparse convolutional down-sampling
layers interleaved with sparse attention, halving the spatial resolution at each stage until reaching
the coarsest level 0 of resolution D0. The encoder thus yields a hierarchy of sparse voxel features:

F = {F0,F1, . . . ,FL−1}, (4)

where Fl ∈ RNl×Cl denotes features of the sparse voxels at level l.

Voxel Features as Vertex Representation. In our next-vertex prediction paradigm, the transformer
operates on vertices represented not by static embeddings but by geometry-aware voxel features.
Since each vertex vi = (v0i , . . . , v

L−1
i ) corresponds to voxel indices across levels, we retrieve the

features of the associated voxels and concatenate them into a multi-level embedding:

e(vi) = Concat
(
F0[v0i ],F

1[v1i ], . . . ,F
L−1[vL−1

i ]
)
. (5)

This shape-dependent representation encodes rich local geometry around the vertex, substantially
enhancing the expressiveness compared to shape-agnostic vocabulary embeddings.
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Cross-Attention-Guided Token Prediction. Our autoregressive decoder adopts a multi-level struc-
ture that mirrors the hierarchical vertex representation. Each level consists of self-attention layers
followed by a prediction head. The hidden states and voxel prediction from level l−1 are concate-
nated and linearly projected to condition level l prediction, thus modeling coarse-to-fine refinement.
To further inject geometric priors, each prediction head integrates a cross-attention layer: the hid-
den states serve as queries, while level-l sparse voxel features act as keys and values. The output
is passed to a linear layer to predict a D3

l -dimensional distribution over voxels (for level 0, we add
BOS and EOS tokens, yielding D3

0+2 classes). For l > 0, the voxel predicted at the previous level
localizes a subvolume in level l, and cross-attention is restricted to voxels inside that subvolume,
greatly reducing computation while preserving spatial precision.

Sparse Voxels as Generation Scaffold. Unlike prior autoregressive approaches that rely on implicit
shape embeddings and risk drifting into empty space, our sparse-voxel representation explicitly
marks the occupied regions across different resolutions. During decoding, we leverage this property
by masking out probabilities of empty voxels in the prediction head. Concretely, for the D3

l output
distribution at level l, only non-empty voxels are retained while the rest are assigned −∞ before
sampling. This ensures that every predicted vertex remains anchored to the surface, providing a
reliable scaffold that enforces geometric validity throughout the generation process.

3.4 TRAINING AND INFERENCE DETAILS

Training-time Subvolume Pruning. As described before, when predicting a level-l token (l > 0),
cross-attention is restricted to the sparse-voxel features located within the subvolume identified by
the previous level. During training, however, computing cross-attention over the full mesh sequence
requires each vertex to be individually masked to its corresponding subvolume—a process that re-
mains computationally expensive despite the inherent sparsity of the mask. To further reduce train-
ing complexity, we introduce a subvolume pruning strategy. As Figure 4 shows, since the sparse
voxels are naturally partitioned by subvolumes, we sample only a subset of these subvolumes along
with the vertices that attend to them, and compute the loss exclusively within this subset. This
truncated training significantly decreases the number of sparse voxels involved in cross-attention,
thereby accelerating training.
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Figure 4: Training-time Subvolume Pruning.

Cross-Attention KV Cache.
Key–Value (KV) caching is
widely adopted in LLM in-
ference to avoid redundant
computation. In our model,
caching applies not only to
the self-attention layers of the
autoregressive transformer, but
also to the cross-attention inside
each prediction head. After the sparse-voxel encoder produces multi-level voxel features, we
map them once into keys and values and store them in a dedicated cross-attention cache. During
decoding, the prediction result from the previous level determines a subvolume in current level, and
the model retrieves only the relevant sparse keys and values from the cache for prediction. This
mechanism eliminates repeated feature projections, substantially reducing inference cost without
sacrificing accuracy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details. We build a corpus of 800K meshes by merging Objaverse++(Deitke
et al., 2023a), ShapeNet (Chang et al., 2015), 3D-Future (Fu et al., 2021), HSSD (Khanna* et al.,
2023), and ABO (Collins et al., 2022), filtering meshes with 1K–16K faces and applying random
scale/rotation augmentations. The backbone is a 24-layer LLaMA3-style (Dubey et al., 2024) trans-
former (1024 hidden, RoPE) with a sparse-voxel and point-cloud encoder, totaling 600M param-
eters. Coordinates are 7-bit quantized with a two-level space partition ([16, 8]). Training uses
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Figure 5: Qualitative Results on Point-Cloud Conditioned Mesh Generation.

AdamW(Loshchilov & Hutter, 2019) with cosine-decayed learning rate (1×10−4 → 1×10−5),
batch size 4 per GPU across 8 GPUs, for 200K steps ( 2 weeks).

Evaluation Dataset & Metrics. Prior autoregressive mesh generation works are typically trained
on Objaverse, yet the exact subsets used are often unspecified, making replication difficult. To
ensure fair comparison, we adopt the Toys4K (Stojanov et al., 2021) dataset containing 4,000 meshes
across 105 categories. Generation quality is evaluated with three metrics: Chamfer Distance (CD),
which measures the average bidirectional distance between generated and ground-truth point clouds;
Hausdorff Distance (HD), which captures the worst-case surface deviation; and Normal Consistency
(NC), which assesses the alignment of local surface orientations.

4.2 POINT-CLOUD-CONDITIONED MESH GENERATION

To benchmark the performance of point-cloud-conditioned mesh generation, we choose Me-
shAnythingV2 (Chen et al., 2025b), EdgeRunner (Tang et al., 2025), BPT (Weng et al., 2025),
TreeMeshGPT (Lionar et al., 2025), and Mesh-Silksong (Song et al., 2025) as our baselines. We
do not compare with Nautilus (Wang et al., 2025b) due to the absence of pretrained checkpoints.
During inference, we adopt identical random seed and sampling temperature of 0.5 for all methods.

Quantitative Results. Table 1 reports the quantitative evaluation results. Our approach achieves
substantial gains over baselines in both CD and HD, indicating that the generated surfaces align more
closely with the ground-truth meshes. Moreover, our method attains the highest |NC| and matches
the best existing method (Mesh-Silksong) in NC, suggesting the good performance in preserving
surface orientation. These advantages stem from the sparse-voxel representation, which provides
precise local geometric guidance and allows our model to faithfully reproduce intricate details. In
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Table 2: Comparison on Mesh Tokenization Efficiency.
Method MeshAnythingV2 EdgeRunner TreeMeshGPT BPT Nautilus DeepMesh Mesh-Silksong Ours

Compression Ratio ↓ 0.46 0.47 0.22 0.26 0.27 0.28 0.22 0.18

Input w/o Voxel Encoder w/ Voxel Encoder Input w/o Voxel Scaffold w/ Voxel Scaffold

Figure 6: Qualitative Ablation Studies on Sparse-Voxel Encoder.

contrast, baseline methods lack such fine-grained supervision, leading to error accumulation, surface
drift, and an inability to capture complex local structures. In addition, several prior approaches (e.g.,
MeshAnythingV2 and EdgeRunner) are constrained by limited tokenization efficiency and therefore
train only on meshes with fewer than 4K faces, restricting their capacity to handle more complex
geometries. In contrast, our efficient vertex-level tokenization enables training on more complex
meshes and raises the performance ceiling.

Table 1: Quantitative Results on Point-Cloud-
Conditioned Mesh Generation.

Method CD (×10−1) ↓ HD ↓ NC ↑ |NC| ↑
MeshAnythingV2 0.213 0.169 0.194 0.878
EdgeRunner 0.147 0.118 0.668 0.902
BPT 0.172 0.122 0.719 0.909
TreeMeshGPT 0.205 0.183 0.685 0.887
Mesh-Silksong 0.140 0.106 0.734 0.900

MeshWeaver (ours) 0.116 0.087 0.732 0.914

Qualitative Results. Figure 5 visualizes the
generated meshes of different methods. It is
easy to observe that our method clearly recon-
structs finer geometric detail—for example, the
key layout of the “keyboard” (second column)
and the patern on the coin (third column). Com-
peting methods, while able to capture coarse
shape, often suffer from surface misalignment
(e.g., “keyboard” in second column), detail loss
(e.g., “coin” in third column), or incomplete
generation (e.g., MeshAnythingV2 on “dinosaur”). These qualitative results highlight the superi-
ority of our approach in fine-grained mesh generation.

4.3 MESH TOKENIZATION

To benchmark the efficiency of mesh tokenization, we compare with both face-traversal-based (Chen
et al., 2025b; Tang et al., 2025; Lionar et al., 2025) and coordinate-merging-based (Weng et al., 2025;
Wang et al., 2025b; Zhao et al., 2025a; Song et al., 2025) mesh tokenization approaches. We report
the mesh compression ratio computed as L/(9N), where L is the compressed sequence length and
9N is the sequence length of vanilla representation of a N -face mesh, a lower compression ratio
indicates better efficiency.

As Table 2 shows, our vertex-level tokenization achieves a state-of-the-art compression ratio of 18%,
while existing coordinate-level tokenization algorithms remain capped at about 22%. It is worth not-
ing that the compression efficiency of our tokenization scheme still has room for improvement. For
example, during vertex token prediction, one could follow the idea of BPT and adopt separate token
sets for patch-center vertices and for other vertices. This design would implicitly distinguish differ-
ent patches and eliminate the need to insert a BOS token at the beginning of each patch sequence
in Equation 3, thereby further shortening the token length. In this work, however, we opt for the
simpler implementation of explicitly inserting BOS tokens.

4.4 ABLATION STUDIES

Sparse-Voxel Encoder. We investigate the contribution of the sparse-voxel encoder from three
complementary aspects: (i) voxel features as vertex representation (VF), (ii) cross-attention-guided
token prediction (CA), and (iii) sparse voxels as generation scaffold (GS). Among these, VF and
CA are part of model training, while GS is used only at inference time. To isolate their effects, we
train ablated variants from scratch under identical hyperparameters to the full model. Concretely,
without VF we replace voxel features with multi-level static vocabulary embeddings for vertex rep-
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resentation; without CA, each level’s token prediction head reduces to a linear classifier without
cross-attention (please refer to Figure 3); without GS, we disable logit masking based on the sparse-
voxel structure during inference.

Table 3: Ablation on Sparse-Voxel Encoder.
Method CD (×10−1) ↓ HD ↓ NC ↑ |NC| ↑
w/o VF 0.142 0.122 0.694 0.884
w/o CA 0.146 0.128 0.681 0.886
w/o VF&CA 0.158 0.138 0.660 0865
w/o GS 0.122 0.090 0.715 0.909

Ours 0.116 0.087 0.732 0.914

Quantitative results are reported in Table 3.
Removing either VF or CA results in a sub-
stantial performance drop, and ablating both
leads to the most severe degradation, indi-
cating that voxel-based geometric priors and
cross-attention guidance provide complemen-
tary benefits for mesh generation. Disabling GS
at inference produces a moderate but consistent
decline, confirming its role in constraining the generative process around the input surface and miti-
gating error accumulation and surface drifting, thereby facilitating our “surface weaving” paradigm.
We also visualize some qualitative results in Figure 6, where removing the sparse-voxel encoder in
training results in detail loss, while disabling the inference-time scaffold results in surface drifting.

Level Partition. We study multi-level partition from two perspectives: (i) space partition, where the
3D space is divided into multi-level voxel grids with a fixed final resolution of 7-bit quantization (i.e.,
27 = 128), and (ii) layer partition, which controls how transformer depth is allocated across levels.
For space partition, we experiment with three configurations—(16, 8), (8, 16), and (8, 4, 4)—that
exploit a moderate number of levels while keeping the vocabulary size at each level tractable for
training. Other decompositions such as (32, 4) would lead to prohibitively large level 0 vocabulary
size (e.g., 323), which would cause training difficulties and inefficiency for cross attention. For layer
partition, we fix the total number of self-attention layers at 24 in the autoregressive transformer and
vary the allocation across levels; specifically, under the same (16, 8) space partition, we assign the
first M layers to level 0 is assigned M layers and the remaining 24−M layers to level 1.

Table 4: Ablation Study on Level Partition.
Space Part. Layer Part. CD (×10−1) ↓ HD ↓ NC ↑ |NC| ↑

(8,16) 16+8 0.120 0.088 0.738 0.912
(8,4,4) 16+8 0.137 0.096 0.691 0. 880

(16,8) 18+6 0.113 0.089 0.729 0.908
(16,8) 20+4 0.121 0.088 0.740 0.910

(16,8) 16+8 0.116 0.087 0.732 0.914

As shown in Table 4, the (16, 8) and (8, 16)
space partitions achieve comparable perfor-
mance, while (8, 4, 4) performs a little worse.
We attribute this to the deeper hierarchy reduc-
ing the spatial support of later levels, limiting
the effective range of local geometry injected
by sparse-voxel features and thus increases the
difficulty of vertex prediction. From an effi-
ciency perspective, (8, 16) also requires an extra downsampling layer in the sparse-voxel encoder to
match the level 0 resolution, thus we adopt (16, 8) as our default space partition configuration.

Regarding the partition of transformer layers, varying the depth of level 0 from 16 to 20 has negli-
gible effect on final performance. We argue that 16 layers are sufficient to handle the coarse voxel
prediction task, and subsequent layers mainly refine predictions at finer levels, which does not re-
quire excessive depth. In our final model, we choose a 16+8 split for level 0 and level 1, respectively.

Cross-Attention KV Cache. We further evaluate the effect of the cross-attention KV cache intro-
duced in Section 3.4 on inference efficiency. Specifically, we randomly select 200 meshes from
the Toys4K dataset and measure the throughput of point-cloud-conditioned mesh generation on the
same GPU, quantified by the number of generated tokens per second (tokens/s). Without cross-
attention KV caching, the model runs at an average speed of 26.8 tokens/s, while enabling the cache
increases the throughput to 30.7 tokens/s—an improvement of approximately 14.5%.

5 CONCLUSION

We introduced MeshWeaver, an autoregressive framework that casts mesh generation as a surface
weaving process. By predicting the next vertex rather than the next coordinate and coupling de-
coding with a hierarchical sparse-voxel encoder, our model achieves shorter sequences, stronger
structural reasoning, and fine-grained geometric guidance. This design enables state-of-the-art com-
pression and geometric fidelity while scaling to meshes with up to 16K faces. Beyond these results,
MeshWeaver suggests a promising path toward practical, high-quality mesh generators that tightly
unite structural coherence with geometric detail.
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A IMPLEMENTATION DETAILS

Point Cloud Conditioner. Similar to prior works, we adopt a point cloud encoder based on the
architecture of 3DShape2VecSet (Zhang et al., 2023) to encode the input point cloud into fix-length
conditional tokens, which are prepended to the mesh sequence to provide global generation context.
The conditional tokens are attended to each other via bidirectional attention, while the subsequent
vertex tokens attend to their predecessors via causal attention. This attention mechanism can be
implemented efficiently with PyTorch’s (Paszke et al., 2019) FlexAttention.

Training Loss. Our framework adheres to a fully causal generation scheme: each vertex is condi-
tioned on all preceding vertices, and within a vertex, each level’s token is conditioned on predictions
from coarser levels. Training therefore reduces to a sequence-modeling problem, optimized using
the standard cross-entropy loss commonly employed in causal language models:

L = −
N∑
j=1

L−1∑
l=0

log p
(
vlj |v<j , v

<l
j

)
, (6)

where N denotes the number of vertices, L the number of levels, vlj the level-l token of vertex j,
v<j all previously generated vertices, and v<l

j the already predicted levels of the j-th vertex.

B ADDITIONAL RESULTS

Traning Curve Ablation on Sparse-Voxel Encoder. We further visualize training dynamics in
Figure 7. Compared to the ablated variant without VF and CA, our full model exhibits markedly
faster convergence. Without the sparse-voxel encoder, the model effectively reduces to pure lan-
guage modeling over vertices, lacking geometric priors and therefore requiring substantially longer
optimization. In contrast, the inclusion of the sparse-voxel encoder provides explicit surface-aware
context, reducing the difficulty of next-vertex prediction and accelerating training.
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Figure 7: Comparision on Training Loss with or without Sparse-Voxel Encoder.

Additional Qualitative Results. We present more generated results in Figure 8 and Figure 9.
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Figure 8: Additional Results on Point-Cloud Conditioned Mesh Generation.
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Figure 9: Additional Results on Point-Cloud Conditioned Mesh Generation.
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C LIMITATIONS

While MeshWeaver advances the state of automatic mesh generation, several challenges remain.
First, real-world assets often contain tens to hundreds of thousands of faces, which are still beyond
the capacity our framework can reliably produce. Second, the sparse-voxel encoder, though effective
for structural guidance, introduces additional computational overhead, making it difficult to scale
to very high resolutions (e.g., 5123 or 10243). Finally, performance is bounded by the scale and
quality of available training data; we expect that larger and more diverse curated datasets will further
improve both fidelity and robustness.
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