
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEEING BEYOND POINTS: ADAPTIVE GAUSSIAN PRIM-
ITIVES FOR 3D PERCEPTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The sparse and discrete nature of point clouds fundamentally limits their effective-
ness in perception tasks, as these raw 3D data collections inadequately capture
the continuous geometry and detailed appearance of complex real-world scenes.
We propose GCept, a unified 3D perception framework that evolves raw points
into adaptive Gaussian primitives, representing a natural progression in point cloud
enrichment. GCept groups spatially proximate points into 3D Gaussians with
optimized covariances and spherical harmonics encoding, forming a continuous
density field that preserves intricate geometric structures and subtle visual details
often lost in traditional pipelines. To enhance representational quality, GCept
employs an alpha-guided sampling mechanism that strategically uses compositing
weights from Gaussian Splatting to retain only the most informative primitives. The
resulting enriched Gaussian representation integrates seamlessly into standard 3D
perception backbones, providing richer geometric and appearance information for
downstream tasks. Experiments on ScanNet, ScanNet++, ScanNet200, and S3DIS
demonstrate state-of-the-art performance in semantic and instance segmentation,
effectively bridging 3D reconstruction with robust perception.

1 INTRODUCTION

Point clouds, the direct and unstructured output from 3D sensors, represent the world as millions of
spatial samples. However, these samples inherently lack continuity and adjacency and frequently
exhibit non-uniform density, presenting substantial challenges for direct utilization. Historically, both
rendering and perception pipelines have endeavored to enrich this raw data. For instance, as illustrated
in Figure 1(A), rendering techniques progressed from simple points to Surfels Pfister et al. (2000),
oriented discs incorporating radius, normal, and color. Analogously, perception pipelines augmented
accuracy by supplementing points with pre-computed normals Qi et al. (2017a;b); Choy et al.
(2019); Graham et al. (2018). The latest advancement along this trajectory is 3D Gaussian Splatting
(3DGS) Kerbl et al. (2023), which models local point clusters as anisotropic Gaussians, complete
with mean, covariance, and spherical harmonics for view-dependent color, thereby facilitating
photorealistic rendering.

This paper argues for rethinking the point cloud’s intension to broaden its extension. We view 3D
Gaussians not as a substitute for points, but as the next logical step in their evolution, following the
lineage from raw coordinates to Surfels and attribute-augmented points. Just as incorporating normals
enhances perception, adopting Gaussian primitives transforms each discrete sample into a localized
continuous model capturing geometry, uncertainty, and subtle appearances frequently omitted by
sparse points, equipping each sample with richer descriptive power for 3D perception.

To accomplish this objective, we propose GCept, which exploits Gaussian Splatting for 3D percep-
tion. As depicted in Figure 1(B), GCept aggregates spatially proximate points into 3D Gaussians
characterized by spatial mean, orientation, and scale. This yields a compact density field that encap-
sulates geometric structures and encodes view-dependent appearance through spherical harmonics,
preserving visual details often lost in conventional representations.

While Gaussian fields are richer than a bare point sets, naively retaining every Gaussian introduces
redundancy. Existing pipelines down-sample by uniformly selecting one point per grid cell Choy
et al. (2019); Wu et al. (2024), potentially discarding critical regions like thin structures and object
boundaries. We consequently introduce an alpha-guided reweighted sampling mechanism that ex-
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Figure 1: (A) Parallel evolution of rendering and perception, both progress from raw points to
anisotropic Gaussians, underscoring Gaussians as the shared, continuous representation. (B) Given
the same sensor data, uniform/random sampling of discrete points eliminates thin structures, whereas
GCept forms Gaussian primitives and preserves them via alpha-guided reweighted sampling.

ploits the compositing weights generated by Gaussian Splatting. During rasterization, each Gaussian
contributes an alpha term that quantifies its visibility along every camera ray. By aggregating these
terms across multiple views, we derive an importance score that reflects the degree to which each
Gaussian influences the scene’s appearance. Sampling Gaussians proportional to this score concen-
trates network capacity on geometrically and visually informative regions, diminishes ambiguity at
object boundaries, and mitigates class imbalance without additional supervision.

Building upon these two efficacious designs (i.e., Gaussian-based representation and adaptive
reweighted sampling), GCept attains substantial improvements over conventional point-based repre-
sentations on standard indoor benchmarks. Furthermore, comprehensive ablation studies demonstrate
that our Gaussian-based approach effectively diminishes ambiguity at object boundaries and enhances
the delineation of fine-scale details in complex scenes. In summary, our contributions are as follows:

• Gaussian-based representation as point cloud evolution. We leverage Gaussian Splatting
not merely as a reconstruction instrument but as a methodology to enhance the fundamental
representation of point cloud data for perception, preserving richer geometric and appearance
information directly within each primitive.

• Adaptive reweighted sampling. We propose a novel sampling strategy that prioritizes the
most informative Gaussians based on their rendering contribution (e.g., alpha compositing
weights from Gaussian Splatting), effectively reducing redundancy while maintaining critical
details that are necessary for accurate perception.

• Demonstrated performance gains. We demonstrate through extensive experiments on
benchmarks like ScanNet, ScanNet++, ScanNet200, and S3DIS Dai et al. (2017); Yeshwanth
et al. (2023); Armeni et al. (2016) that integrating our GCept framework into standard 3D
perception backbones yields significant improvements in semantic and instance segmentation
tasks compared to traditional point-based approaches.

2 RELATED WORK

3D understanding. 3D deep-learning pipelines can be grouped into four families: projection-
based Su et al. (2015); Chen et al. (2017), voxel-based Maturana & Scherer (2015); Zhou & Tuzel
(2018); Thomas et al. (2019), point-based Qi et al. (2017a;b); ?); Lai et al. (2022); Qian et al. (2022); ?,
and multi-modal 2D–3D fusion methods Hu et al. (2021); Jain et al. (2024). While projection methods
may lose depth information and voxel methods face memory constraints, point-based networks with
transformers achieve strong performance but struggle with long-range dependencies. Multi-modal
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Figure 2: Overview of our pipeline. We illustrate two distinct approaches to processing raw sensor
data from cameras and scanners. In the traditional pipeline (gray arrows), a reconstruction step
produces a point cloud with coordinate and color attributes, which then undergoes random sampling
before entering a 3D feature extractor. In contrast, our Gaussian-based pipeline (magenta arrows)
applies Gaussian splatting directly to the raw sensor data, creating a set of 3D Gaussians enriched
with geometric and spherical harmonic (SH) features. A reweighted sampling strategy then preserves
the most informative Gaussians. Both pipelines feed into the same 3D backbone for downstream
perception tasks, such as semantic and instance segmentation.

fusion achieves high accuracy at the cost of additional imaging requirements and pretrained 2D
backbones.

3D Gaussian Splatting. 3D Gaussian Splatting represents scenes using anisotropic Gaussian
kernels, providing a compact alternative to traditional methods Kerbl et al. (2023); Yang et al. (2024).
It generates continuous density fields for differentiable rendering and view synthesis. Moreover,
2D Gaussian Splatting (2DGS) Huang et al. (2024) projects the 3D volume into 2D Gaussian disks,
achieving view-consistent geometry and real-time performance.

Integrating 3D reconstruction and perception tasks. Recent work bridges 3D reconstruction and
semantic perception. While traditional methods like SfM Snavely et al. (2006); Schonberger & Frahm
(2016) provide accurate geometry without semantics, modern approaches integrate segmentation into
reconstruction Dai et al. (2018); Sun et al. (2021); Rosinol et al. (2020). Neural representations like
NeRF Mildenhall et al. (2020) and PeRFception Jeong et al. (2022) demonstrate unified reconstruction
and perception for holistic scene understanding.

3 METHOD

3.1 THE GCEPT PIPELINE

As depicted in Figure 2, GCept aggregates spatially proximate points into 3D Gaussians with
continuous attributes encapsulating geometry and color (Section 3.2). The scale and rotation matrices
encode spatial extent and orientation, while spherical harmonic coefficients provide view-dependent
color variations. GCept fixes each Gaussian’s center during Gaussian Splatting, maintaining alignment
with the original point cloud. A weighted grid sampling strategy (Section 3.3) then uses alpha
compositing weights to bias toward the most salient Gaussians, efficiently reducing data density
while preserving essential structural and appearance characteristics.

Subsequently, the resultant Gaussian-based representation is seamlessly integrated into a point cloud
backbone. In our experiments, we employ both Point Transformer v3 (PTv3) Wu et al. (2024) and
SparseUnet Choy et al. (2019); Contributors (2022) to substantiate that GCept can be incorporated
into diverse 3D architectural frameworks. By synthesizing GCept’s continuous, view-aware features
with the versatility of these backbones, the pipeline attains robust performance on tasks including
semantic and instance segmentation. Next, we present the details of GCept.
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Grid Overlay Weight Computation Reweighted Sampling Results

Camera Gaussian Selected Gaussian Reweighting Factor

Multi-View Splatting
(a) (b) (c) (d) (e)

Figure 3: Overview of the weighted grid sampling. (a) Multi-View Splatting: Gaussians are projected
onto different camera viewpoints. (b) Overlay the Grid: A uniform grid is applied to the point cloud.
(c) Weight Computation: Each Gaussian is assigned a reweighted factor based on alpha compositing.
(d) Reweighted Sampling: Probabilistic selection is applied to retain the most informative Gaussians.
(e) Result: The final subset of Gaussians represents the scene with reduced redundancy while
maintaining critical structure and appearance.

3.2 GAUSSIAN-BASED POINT CLOUD REPRESENTATION

To enhance the expressiveness and efficiency of point cloud processing, we introduce a Gaussian-
based representation that supplants individual points with spatially extended distributions. Rather than
treating each point as an isolated entity, we group spatially proximate points and represent each cluster
as a 3D Gaussian. This formulation yields a more structured description of the underlying geometry
and appearance, smoothing the discrete nature of raw point clouds while improving representational
efficiency and preserving requisite spatial fidelity.

Gaussian representation and parameters. Given a point cloud P = {pi}Ni=1, we decompose it
into smaller clusters {Gj}Mj=1 comprising spatially adjacent points, where M ≪ N . Here, N and M
denote the cardinality of the point cloud and the partitioned clusters, respectively. Each cluster Gj is
conceptualized as a Gaussian distribution parameterized by: 1) Mean µj =

1
|Gj |

∑
pi∈Gj

[xi, yi, zi]
T ,

denoting the centroid; 2) Covariance matrix Σj = RjS
2
jR

T
j , where Sj quantifies scaling and Rj

stipulates orientation. This approach conserves geometric structure while substantially mitigating
redundancy, facilitating a more structured representation of local geometry within the point cloud.

Encoding color with spherical harmonic coefficients. To incorporate appearance information, we
adopt spherical harmonic coefficients in accordance with the Gaussian Splatting paradigm, which
yields a compact and expressive encoding of view-dependent color variations. This representation
enables each Gaussian to capture complex, view-dependent appearance variations beyond rudimentary
per-point RGB values by encoding color as a function of viewing direction relative to the local
coordinate system of each Gaussian.

Constructing the Gaussian-based point cloud. With each cluster represented as a Gaussian, the
complete point cloud representation is formally articulated as:

S(x) =
M∑
j=1

exp

(
−1

2
(x− µj)

TΣ−1
j (x− µj)

)
, (1)

By substituting discrete points with Gaussians, this representation encapsulates both geometric and
appearance information in a structured, continuous manner. This formulation facilitates more efficient
processing while preserving the underlying spatial relationships that are imperative for downstream
3D perception tasks such as semantic segmentation and instance segmentation.

3.3 WEIGHTED GRID SAMPLING MECHANISM

As illustrated in Figure 3, our sampling mechanism incorporates a reweighting factor into standard
grid-based subsampling, ensuring that the most informative points are preserved. This factor is
computed utilizing alpha composition as delineated below.
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Alpha compositing weight. The rendered alpha compositing weight quantifies the contribution
of each 3D Gaussian to the final rendered image. Given that the rasterization of Gaussian Splatting
employs alpha blending to accumulate color and transparency in screen space, we exploit this
blending process to ascertain the significance of each Gaussian. In Gaussian Splatting, each Gaussian
is characterized by its opacity (α), RGB color (C), and projected 2D position in the rendered image.
The final pixel color, Cfinal, is derived through alpha compositing:

Cfinal =

N∑
i

wiCi, (2)

where wi signifies the contribution of the i-th Gaussian to the final rendered image, and N represents
the total number of Gaussians along the viewing ray for that pixel. Each Gaussian’s contribution
adheres to the alpha compositing rule:

wi = αi

i−1∏
j=1

(1− αj). (3)

Here, Gaussians are indexed in front-to-back order along the viewing ray from the camera to the pixel,
with smaller indices (j < i) corresponding to Gaussians proximal to the camera. This formulation
guarantees that the foremost Gaussian along a viewing ray exerts the greatest influence, as it appears
in front; subsequent Gaussians become progressively occluded, with their contribution diminished by
the accumulated transparency of the preceding ones. The resultant compositing weight is contingent
upon both the Gaussian’s opacity and the visibility of antecedent Gaussians. To derive a global
importance measure for each Gaussian, we aggregate its compositing weights across all rendered
pixels in the image. This aggregated weight functions as an importance metric, prioritizing Gaussians
that contribute more substantially to the visual appearance of the scene.

Sampling algorithm. We partition the 3D space into uniform grids (with cell size g), consolidate
the points that reside within each cell, and assign each point its reweighted factor. Rather than
arbitrarily selecting a point from the cell, we implement probabilistic sampling proportional to the
reweighted factor. This ensures that points that significantly contribute to the appearance are retained
with elevated probability. The selected points subsequently convey all pertinent attributes (3D
position, normals, color, and spherical harmonic coefficients) into subsequent processing stages. By
concentrating on the most geometrically and visually significant points, our weighted grid sampling
preserves pivotal scene details, thereby enhancing performance in downstream tasks such as semantic
and instance segmentation.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

To evaluate our proposed pipeline, we conduct experiments on four widely used indoor 3D point
cloud benchmarks: ScanNet Dai et al. (2017), ScanNet++Yeshwanth et al. (2023), ScanNet200, and
S3DISArmeni et al. (2016). For each dataset, we follow the standard train/val split provided by
the dataset creators. Model performance is evaluated using mean Intersection-over-Union (mIoU)
for semantic segmentation and mean Average Precision (mAP) for instance segmentation on the
validation set. Additionally, we report per-class IoU to assess the model’s effectiveness across various
categories in our supplemental materials.

4.2 IMPLEMENTATION DETAILS

In this section, we describe the specifics of our implementation, including Gaussian-based point
cloud representation and training configuration.

Gaussian-based point cloud representation. For each dataset, we preprocess the raw point clouds
by grouping points within the same grid, where the grid size determines spatial proximity. Gaussian
parameters are then initialized for each group, as described in Section 3.2. Each Gaussian Gj is
initialized with its mean µj , a scale matrix Sj , and a rotation matrix Rj , computed based on the
statistical properties of the points within the grid. We implement our method using 2D Gaussian
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Table 1: Semantic segmentation results on four indoor datasets. We report the mIoU on the
validation set for ScanNet, ScanNet++, ScanNet200, and S3DIS. Best results are highlighted in bold.

ScanNet Dai et al. (2017)

Method Input OA mAcc mIoU

SpConv Voxel 89.3 78.7 69.3
MinkUNet Voxel 90.6 80.4 72.2
ST Point 91.3 83.3 74.3
PointNeXt Point 90.0 82.0 71.5
OctFormer Point 91.8 83.2 75.7
Swin3D Point 92.2 86.3 76.4
PTv1 Point 87.9 78.5 70.6
PTv2 Point 91.5 84.5 75.4
PTv3 Point 91.8 85.3 77.5

GCept (Ours) Gaussian 92.5 86.4 79.0

S3DIS Armeni et al. (2016) (Area5)

Method Input mIoU

MinkUNet Voxel 65.4
ST Point 72.0
PointNeXt Point 70.5
OctFormer Point 72.5
Swin3D Point 72.5
PTv1 Point 70.4
PTv2 Point 71.6
PTv3 Point 73.4

GCept (Ours) Gaussian 75.1

ScanNet++ Yeshwanth et al. (2023)

Method Input OA mAcc mIoU

SpConv Voxel 86.2 48.8 34.3
MinkUNet Voxel 87.2 49.3 35.8
PointNet++ Point - - 19.8
PTv2 Point 88.5 54.4 40.7
PTv3 Point 88.7 54.7 42.6

GCept (Ours) Gaussian 89.4 56.8 45.1

ScanNet200 Rozenberszki et al. (2022)

Method Input mIoU

MinkUNet Voxel 25.0
OctFormer Point 32.6
PTv1 Point 27.8
PTv2 Point 30.2
PTv3 Point 35.2

GCept (Ours) Gaussian 37.1

splattingHuang et al. (2024), which serves as an improved implementation over traditional 3D
Gaussian splatting. Spherical harmonics are subsequently employed to encode view-dependent color
information, capturing detailed color variations from different perspectives. The feature encoding
augments the spatial and color information, enhancing the model’s ability to accurately segment
and distinguish between object instances. In addition, during the Gaussian Splatting process, we
obtain Gaussian attributes and compute the importance weight for each Gaussian based on its alpha
compositing contribution. This reweighted factor forms the basis of our weighted grid sampling
mechanism, which is applied later in the pipeline to selectively retain the most informative Gaussians
while reducing redundancy. Finally, we also include a comparison of different Gaussian Splatting
implementations in our supplemental materials, demonstrating that our approach provides a unified
framework that can accommodate various Gaussian Splatting instances while maintaining consistent
performance benefits.

Training configuration. Our pipeline employs a flexible backbone network to process the Gaussian-
based point cloud with Gaussian and spherical harmonic features Contributors (2023). In our
experiments, we demonstrate the effectiveness of our method using both Point Transformer v3 (PTv3)
and SparseUNet, highlighting its adaptability to different architectures. The network is trained for
both semantic and instance segmentation tasks across the ScanNet, ScanNet++, and S3DIS datasets.
To maintain alignment with the original point cloud, we set the learning rate for the Gaussian center
positions µj to zero, thereby fixing the centers of each Gaussian to their initialized positions. All
experiments are conducted on 4 NVIDIA L40S GPUs with 48GB of memory. Training each model
on the augmented point cloud representation for semantic and instance segmentation tasks takes
approximately 48 hours for ScanNet++, 40 hours for ScanNet++, and 28 hours for S3DIS. The batch
size is set to 12.

Computational costs. We also profile and compare the computational costs associated with our
method versus traditional point cloud approaches. A detailed analysis of preprocessing time, training
duration, and inference speed is provided in our supplemental materials.
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4.3 MAIN RESULTS

Semantic segmentation results. Table 1 presents the quantitative performance of our method
compared to various voxel-based and point-based approaches on four indoor benchmarks: ScanNet,
ScanNet++, ScanNet200, and S3DIS. For ScanNet and ScanNet++, we report the mIoU along with
overall accuracy (OA) and mean accuracy (mAcc). Notably, our GCept consistently achieves the
highest mIoU scores, with improvements of 2.5% on ScanNet++, 1.9% on ScanNet200, 1.5% on
ScanNet, and 1.7% on S3DIS compared to previous state-of-the-art methods. Besides, Table 2
isolates approaches Robert et al. (2022); Hu et al. (2021); Yang et al. (2023); Kundu et al. (2020);
Jain et al. (2024) that explicitly fuse RGB imagery with point cloud geometry. Despite this additional
modality, GCept surpasses the strongest prior fusion model (ODIN) by +1.2 mIoU and outperforms
other 2D–3D baselines by 2.6–8.0 points while discarding the entire 2D branch and any pretrained
backbones. This demonstrates that our Gaussian-based representation effectively captures both
geometric and appearance information from the scene, eliminating the need for separate pretrained
image encoders while delivering superior performance. We also provide qualitative visualization
results in our supplemental materials.

Instance segmentation results. The results in Table 4 demonstrate that our approach effectively
differentiates object instances in complex indoor environments. Our evaluation on ScanNet v2Dai
et al. (2017) and ScanNet++Rozenberszki et al. (2022) benchmarks shows substantial improvements
in instance segmentation performance across diverse scene types. For a fair comparison, we adopt a
standardized instance segmentation framework based on PointGroup Jiang et al. (2020) across all
experiments, with the only variable being the backbone architecture. This comparison highlights how
the fixed-center Gaussian representation combined with our PTv3 backbone enhances the model’s
ability to identify distinct object instances, even in cluttered and challenging indoor scenes with
significant occlusions and varying object scales.

Data efficiency evaluation. We evaluate the performance of GCept on the ScanNet data-efficient
benchmark Hou et al. (2021). This benchmark challenges models under constrained conditions by
limiting either the percentage of available reconstructions (scenes) or the number of annotated points.
As shown in Table 5, GCept consistently outperforms previous methods across all these settings,
demonstrating superior data efficiency in low-data regimes.

4.4 ABLATION STUDIES

Ablation on Gaussian-based representation. Table 6 evaluates the contributions of different
features and sampling strategies on ScanNet and ScanNet++. Starting from coordinate-only infor-
mation (Setting I), we progressively add color (II), normals (III), Gaussian scale and rotation(IV),
and spherical harmonics (V), all using random sampling. Finally, we replace random sampling
with our reweighted approach (VI). Results show that normals provide substantial geometric cues,
while Gaussian scale and rotation enhance spatial modeling by capturing continuous extent beyond
discrete points. Adding spherical harmonics improves performance by encoding view-dependent
color information not present in simple RGB. Our reweighted sampling strategy further boosts
accuracy by prioritizing Gaussians with stronger alpha compositing contributions. Together, these
components significantly outperform baseline point-based approaches, confirming the effectiveness
of our comprehensive Gaussian representation.

Ablation on grid size and spatial sampling density. We explore the effect of grid size on our
reweighted sampling mechanism. As shown in Table 6, increasing the grid size leads to a gradual
decrease in performance. Larger grid sizes reduce the number of Gaussian primitives fed to the
network, which simplifies the representation but also results in the loss of finer geometric and
appearance details. However, when comprehensive Gaussian features such as scale, rotation, and
spherical harmonics are included, the performance degradation is less pronounced. This observation
indicates that our rich Gaussian representation effectively captures and encodes additional spatial and
color information, thereby compensating for the reduced spatial sampling density and maintaining
higher segmentation accuracy even at coarser grid resolutions. Notably, our method with 0.04m
grid spacing (fewer input primitives) achieves comparable or better performance than point-based
methods with denser 0.02m sampling, demonstrating superior representational efficiency. This

7
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Table 2: Comparison with multi-modal meth-
ods on ScanNet. We compare GCept with meth-
ods that utilize 2D image inputs. While these
methods rely on pretrained 2D backbones, our
approach achieves superior performance without
requiring pretrained image encoders.

ScanNet

Method Image Input Pretrained 2D backbone mIoU

DVA ✓ ✓ 71.0
BPNet ✓ ✓ 73.9
DMFNet ✓ ✓ 75.6
VMF ✓ ✓ 76.4
ODIN ✓ ✓ 77.8
GCept (Ours) ✓ × 79.0

Table 3: Ablation on the degree of spherical
harmonics. We evaluate the effect of varying
the maximum order of spherical harmonics on
segmentation performance. The table reports
mIoU scores on ScanNet Dai et al. (2017) and
ScanNet++ Yeshwanth et al. (2023) for grid sizes
of 0.04 m and 0.02 m using different degrees of
spherical harmonics.

grid size
ScanNet ScanNet++

sh=0 sh=1 sh=2 sh=3 sh=0 sh=1 sh=2 sh=3

grid=0.04 78.2 78.7 77.2 77.7 43.6 44.7 44.6 44.7
grid=0.02 78.8 79.0 78.3 77.9 44.2 45.1 44.9 45.1

Table 4: Instance segmentation performance
on ScanNet and ScanNet++. We report
mean average precision at different thresholds
(mAP25, mAP50) as well as overall mAP.

Ins. Seg. ScanNet ScanNet++

PointGroup mAP25 mAP50 mAP mAP25 mAP50 mAP

MinkUNet 72.8 56.9 36.0 - - -
PTv2 76.3 60.0 38.3 - - -
PTv3 77.5 61.7 40.9 38.1 30.0 20.1
GCept (Ours) 78.6 62.9 41.4 42.2 35.0 23.2

Table 5: Data efficiency evaluation on ScanNet.
This table reports the mIoU scores of different
methods under two constraints: limited recon-
structions and limited annotations.

Data Efficient Limited Reconstruction Limited Annotation

Methods 1% 5% 10% 20% 20 50 100 200

MinkUNet 26.0 47.8 56.7 62.9 41.9 53.9 62.2 65.5
PTv2 24.8 48.1 59.8 66.3 58.4 66.1 70.3 71.2
PTv3 25.8 48.9 61.0 67.0 60.1 67.9 71.4 72.7
GCept (Ours) 30.9 52.2 62.5 67.8 63.9 69.6 74.0 74.8

ablation confirms the beneficial properties of our Gaussian-based representation and reweighted
sampling mechanism.

Degrees of spherical harmonics. We evaluate the impact of the spherical harmonics degree on
segmentation performance. Here, the degree indicates the maximum order of harmonic coefficients
used to encode view-dependent color variations, and for each color channel, the number of coefficients
is given by (sh+ 1)2. We conducted experiments with degrees sh = 0, sh = 1, sh = 2, and sh = 3
using grid sizes of 0.02 m and 0.04 m, as reported in Table 3. Degree-1 consistently achieves the best
performance across both grid sizes, while degree-2 and degree-3 add parameters yet fail to improve
and sometimes degrade segmentation quality.

This result diverges from Gaussian Splatting view-synthesis practice (where degree-2 with 9 coef-
ficients per color channel typically performs best), and we attribute it to two task-specific factors:
(1) Objective mismatch - View synthesis optimizes per-pixel photometric error and benefits from
high-frequency view-dependent color terms (capturing specular lobes, Fresnel effects). Semantic
segmentation, however, seeks view-invariant features that delineate class boundaries. Extra SH
coefficients mostly model lighting variation irrelevant to semantics, diverting capacity away from
geometry cues. (2) Storage economy - While the parameter count only grows slightly (just one
projection layer is affected), the storage requirements for the ScanNet++ dataset vary significantly:
70GB (sh=3), 39GB (sh=2), and 27GB (sh=1). Despite the substantial storage overhead, segmentation
accuracy saturates or even decreases with higher degrees. This mirrors classic results in point cloud
color augmentation: beyond a certain point, extra color detail saturates accuracy gains.

Ablation on the grid sampling method. We further analyze the effectiveness of our proposed
reweighted sampling strategies by comparing them with random sampling, as summarized in Ta-
ble 7. Specifically, we explore three different reweighting criteria: composition weight (based on
alpha compositing, measuring each Gaussian’s direct contribution to the rendered image), visibility
frequency (calculated as the number of views in which each Gaussian is visible divided by the
total number of views), and a combination of both. Among these, composition-based reweighting
achieves the best performance, with mIoU scores of 79.0 on ScanNet and 45.1 on ScanNet++. In
contrast, visibility frequency alone yields limited improvement because occlusions frequently occur
in indoor environments, causing many Gaussians to appear infrequently or inconsistently across
views. Consequently, visibility frequency alone does not reliably reflect the true importance of each
Gaussian for accurate semantic segmentation. The results highlight the importance of prioritizing
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Table 6: Ablation study on additional features and sampling methods. This table reports semantic
segmentation performance (mIoU) on ScanNet Dai et al. (2017) and ScanNet++ Yeshwanth et al.
(2023) at grid resolutions of 0.02 m and 0.04 m. Rows I–V show the effect of incrementally adding
features (coordinate, color, normal, scale, rotation and SH coefficients ) using random sampling. Row
VI adopts our reweighted grid sampling.

No. Point Features Gaussian Features Sampling ScanNet ScanNet++
Coord Color Normal Scale Rotation SH grid=0.02m grid=0.04m grid=0.02m grid=0.04m

I ✓ Random 62.7 60.7 32.5 30.5
II ✓ ✓ Random 74.6 73.8 37.6 36.4
III ✓ ✓ ✓ Random 77.5 76.6 42.2 41.0

IV ✓ ✓ ✓ ✓ ✓ Random 78.4 77.5 43.7 42.7
V ✓ ✓ ✓ ✓ ✓ ✓ Random 78.6 78.1 44.3 43.5
VI ✓ ✓ ✓ ✓ ✓ ✓ Reweighted 79.0 78.7 45.1 44.7

Table 7: Ablation on grid sampling method
and reweighting factors. We compare random
sampling with reweighted sampling using differ-
ent reweighting strategies, and report the mIoU
scores on ScanNet++ and ScanNet.

Sampling method Reweighted factor Scannet Scannet++

Random - 78.6 44.3

Reweighted Visibility Frequency 78.3 44.7

Reweighted Composition Weight 79.0 45.1

Reweighted Mixture 78.9 44.9

Table 8: Ablation on backbone networks. We
compare the performance of our Gaussian-based
method (GCept) integrated into two distinct net-
work architectures (SparseUNet Graham et al.
(2018) and PTv3 Wu et al. (2024)) against their
original implementations.

Backbone Method Scannet++ Scannet

OA mAcc mIou OA mAcc mIou

SpConv Original 87.8 46.4 35.8 90.7 81.8 73.4
GCept 88.2 49.3 38.4 91.3 83.4 75.2

PTv3 Original 88.7 54.7 42.6 91.8 85.3 77.5
GCept 89.4 56.8 45.1 92.5 86.2 79.0

Gaussians based on their meaningful visual and geometric contributions, as captured effectively by
our composition-based reweighting strategy.

Ablation on backbone networks. We evaluate the flexibility of our method by integrating it into
two widely used network backbones: SparseUNet (SpConv Graham et al. (2018)) and PTv3 Wu
et al. (2024). As shown in Table 8, GCept consistently improves performance across both backbones.
Specifically, compared to the original SparseUNet baseline, GCept yields significant improvements of
2.6% mIoU on ScanNet++ and 1.8% mIoU on ScanNet. Similar gains are observed for the stronger
PTv3 backbone, with improvements of 2.5% and 1.5% mIoU on ScanNet++ and ScanNet, respectively.
These results demonstrate that our approach is general and can be seamlessly incorporated into
different network architectures, further validating its broad applicability in 3D semantic segmentation.

5 CONCLUSION

We have proposed a framework that bridges 3D reconstruction and perception by employing Gaussian
Splatting to transform raw sensor data into a continuous Gaussian-based representation. By grouping
spatially proximate points into 3D Gaussians, our approach creates a compact density field that
preserves geometric details often lost in conventional approaches. Evaluations across multiple
indoor benchmarks demonstrate superior performance in semantic and instance segmentation tasks.
Comprehensive ablation studies substantiate the efficacy of our Gaussian-based representation and
adaptive sampling in enhancing input fidelity for downstream 3D perception tasks.

Limitations and future work. Although our GCept exhibits considerable potential in augmenting
3D perception tasks, its evaluation has thus far been confined to indoor environments. Extending our
framework to outdoor scenes Behley et al. (2019); Sun et al. (2020); Fong et al. (2022); Caesar et al.
(2020) presents additional challenges, including dynamic objects, variable illumination conditions,
and expansive scenes. In future investigations, we intend to address these constraints by incorpo-
rating temporal consistency mechanisms for mobile objects, developing adaptive feature extraction
methodologies to accommodate fluctuating lighting conditions, and designing efficient hierarchical
processing strategies for expansive scenes.

9
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REPRODUCIBILITY STATEMENT
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to facilitate reproduction of our results. All experiments were conducted using publicly available
datasets with standard evaluation protocols to ensure fair comparison with existing methods.
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A ADDITIONAL IMPLEMENTATION DETAILS

This section provides a comprehensive overview of the implementation details for our proposed
framework, GCept. We describe the methodology for initializing Gaussian splatting parameters,
explaining how spatially clustered points are represented as 3D Gaussians with attributes such as
mean, scale, and rotation. Furthermore, we explain the configuration of the Point Transformer v3
(PTv3) backbone, encompassing training protocols, loss functions, and hardware specifications.

A.1 GAUSSIAN SPLATTING PARAMETERS

Initialization of Gaussian parameters Gaussian splattingKerbl et al. (2023) constitutes a funda-
mental component of our methodology, wherein spatially clustered points are consolidated into 3D
Gaussians. Each Gaussian Gj is characterized by its mean µj , scale matrix Sj , and rotation matrix
Rj . These parameters are formulated as follows:

• Mean (µj): Computed as the centroid of the points within the cluster:

µj =
1

|Gj |
∑

pk∈Gj

pk,

where pk denotes the 3D coordinates of each constituent point.
• Scale (Sj): Derived from the eigenvalues of the covariance matrix of the clustered points,

quantifying the dispersion along the principal axes.
• Rotation (Rj): Established utilizing the eigenvectors of the covariance matrix, determining

the orientation of the Gaussian.

For appearance modeling, spherical harmonics coefficients are computed to encode view-dependent
chromatic variations, yielding a concise yet expressive representation of the scene’s visual character-
istics.

A.2 PTV3 MODEL SETTINGS

Our implementation utilizes the Point Transformer v3 (PTv3) architecture Wu et al. (2024) as the
principal backbone for 3D perception tasks. The training configurations are enumerated in Table
9. We conduct model training ab initio, employing a consistent set of parameters across diverse
indoor datasets, including ScanNet, ScanNet++, and S3DIS. This homogeneous approach serves
to standardize the training regimen, facilitating equitable comparisons and reproducibility across
various benchmarks.

The training protocol incorporates a warm-up period spanning 40 epochs, permitting the model to
achieve stability before the learning rate commences its decay. We extend training to a total of
800 epochs to ensure thorough convergence. The optimization criterion employed is CrossEntropy,
deemed appropriate for multi-class semantic segmentation objectives.

Table 9: Semantic and Instance Segmentation Configuration Parameters.

Settings Value

Semantic Instance

optimizer AdamW AdamW
scheduler Cosine Cosine
criteria CrossEntropy CrossEntropy
learning rate 5e-3 5e-3
block lr scaler 0.1 0.1
weight decay 5e-2 5e-2
batch size 12 12
warmup epochs 40 40
epochs 800 800

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Random Sampling Reweighted SamplingOriginal Scene

Figure 4: Visualization of our reweighted sampling methodology. From left to right: the original
scene, random sampling, and reweighted sampling. The reweighted approach preserves substantially
more intricate details, particularly around object boundaries, compared to random sampling.

Table 10: Per-class performance comparative analysis on ScanNet dataset

Method Metric Mean wall floor cabi bed chair sofa table door window bkshf pict counter desk curt fridge sh curt toilet sink bath oth fur

SpCov IoU 69.3 84.9 95.8 54.8 79.7 78.8 61.5 71.5 65.5 57.8 78.0 31.3 60.4 68.2 75.5 60.9 73.9 92.1 62.0 83.8 50.2
Acc 78.7 89.2 95.2 78.5 84.8 77.2 89.1 80.1 78.9 64.4 85.7 55.4 83.5 82.9 80.4 60.2 79.8 93.7 73.9 91.0 51.2

MinkNet IoU 72.2 85.3 96.4 61.6 79.6 90.4 82.9 69.9 66.0 63.0 82.2 39.5 65.4 62.5 71.5 64.3 60.0 94.6 67.5 86.6 55.2
Acc 80.4 88.7 95.8 82.5 81.5 92.4 90.4 70.8 86.2 65.3 93.6 52.9 79.1 91.8 87.9 72.0 62.4 94.2 72.1 88.8 60.4

ST IoU 74.3 87.1 96.6 65.0 81.2 89.7 76.8 76.3 69.1 66.3 79.9 35.7 64.9 69.2 73.3 66.4 73.9 94.2 70.9 88.5 60.6
Acc 83.3 92.2 97.3 74.3 85.7 92.4 93.2 83.7 80.8 85.8 89.1 53.5 84.2 82.7 83.7 74.9 79.9 96.2 78.3 91.7 65.6

PointNeXt IoU 71.5 86.1 95.5 64.8 80.6 90.0 80.8 66.9 64.8 65.5 76.9 39.1 63.6 62.7 73.1 60.9 66.2 92.9 55.8 85.1 58.7
Acc 82.0 93.3 97.4 80.5 88.0 94.6 87.3 75.8 70.0 85.8 95.4 44.3 80.7 87.1 83.7 76.8 71.8 95.1 71.6 91.2 69.4

OctFormer IoU 75.7 87.6 96.5 70.3 82.2 91.5 86.7 74.0 69.5 68.2 81.7 39.7 67.4 67.2 76.3 68.5 66.3 93.5 70.5 90.0 65.8
Acc 83.2 96.6 98.5 82.2 87.2 95.5 91.2 79.6 77.0 80.5 92.9 46.2 78.9 92.6 81.1 73.0 69.7 96.1 81.2 93.5 71.3

Swin3D IoU 76.4 88.5 96.4 68.8 82.2 92.0 86.2 77.5 73.0 72.9 79.2 42.0 63.8 69.8 78.2 63.5 77.1 94.9 68.2 85.9 67.8
Acc 86.3 94.2 98.1 80.8 87.0 97.3 93.2 84.3 88.5 83.8 90.7 54.9 84.0 89.0 86.8 81.1 85.2 98.2 81.2 94.8 73.8

PTv1 IoU 70.6 86.2 97.1 56.1 81.0 80.1 62.8 72.8 66.7 59.1 79.3 32.6 61.7 69.4 76.8 62.2 75.2 93.4 63.3 85.0 51.5
Acc 78.5 88.9 94.9 78.3 84.6 77.0 88.9 79.8 78.7 64.1 85.4 55.1 83.3 82.7 80.1 59.9 79.5 93.4 73.6 90.7 50.9

PTv2 IoU 75.4 87.6 96.4 65.4 83.4 90.9 84.2 74.1 71.5 68.6 77.4 44.2 66.4 72.3 73.4 69.5 73.2 93.1 67.5 87.9 61.6
Acc 84.5 94.9 98.6 80.2 87.4 96.3 90.3 82.7 82.5 79.3 91.2 52.1 85.0 86.7 85.2 79.7 78.9 98.3 80.6 92.3 67.4

PTv3 IoU 77.5 88.7 96.4 71.0 82.9 92.9 85.1 79.7 72.7 70.6 83.8 39.5 69.4 74.6 78.2 74.3 69.4 94.0 69.3 89.8 67.7
Acc 85.3 96.4 98.9 85.2 87.4 96.8 93.3 87.5 80.0 82.2 93.1 50.7 81.4 87.3 88.3 78.7 74.2 98.1 79.8 92.6 73.9

GCept IoU 79.0 88.7 96.0 73.7 83.1 93.8 87.9 79.8 75.4 74.5 85.6 41.1 70.3 73.9 78.9 77.4 75.0 96.0 70.7 89.2 67.9
Acc 86.2 96.1 98.5 82.7 87.3 97.2 93.9 86.1 84.0 85.8 94.2 50.6 83.1 90.1 86.7 83.0 79.7 98.3 82.0 92.2 73.2

B VISUALIZATION OF REWEIGHTED SAMPLING

In this section, we illustrate the efficacy of our proposed reweighted sampling methodology utilizing
a point cloud visualization approach. For a given point cloud within a scene, we apply Gaussian
splatting to compute an importance metric for each point, wherein each point is represented as
a Gaussian center with associated parameters. These importance metrics are derived from alpha
compositing contributions and reflect each Gaussian’s prominence in the final rendered image.

To explain the effect of our sampling strategy, we execute grid subsampling on a fixed grid of
0.02 m employing two distinct methodologies: random sampling and our proposed reweighted
sampling. In the random sampling scenario, points are selected arbitrarily from each grid cell without
consideration of their importance. Conversely, our reweighted sampling methodology selects points
probabilistically, with elevated likelihood assigned to those Gaussians that exhibit more substantial
alpha compositing contributions.

In Figure 4, we juxtapose the outcomes of random sampling against our reweighted sampling approach
on an authentic indoor scene. The original point cloud (left) captures the intricate layout of the
environment, encompassing various objects and structures. Random sampling (middle) discards
numerous fine details, resulting in a sparser and less informative representation. In contrast, our
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Input Ground Truth GCept Input Ground Truth GCept

wall ceiling floor table door ceiling lamp cabinet blinds curtain chair

storage cabinet office chair bookshelf whiteboard window

box

window frame monitor shelf doorframe

Figure 5: Visualization of semantic segmentation results on ScanNet++ Yeshwanth et al. (2023).

reweighted sampling (right) retains Gaussians with higher alpha compositing contributions, thereby
preserving critical geometric and appearance attributes and yielding a more faithful depiction of the
scene.

C COMPREHENSIVE SEMANTIC SEGMENTATION RESULTS

C.1 PER-CLASS METRICS ANALYSIS

Table 10 presents the per-class Intersection-over-Union (IoU) and accuracy metrics for our GCept
methodology compared to extant baselines on the ScanNet Dai et al. (2017) benchmark. Each
column corresponds to a specific semantic category, with the second column reporting the mean
IoU and accuracy across all classes. GCept consistently surpasses other approaches, particularly in
categories exhibiting complex geometry or nuanced appearance cues (e.g., ”refrigerator”, ”curtain”),
demonstrating the advantages of our Gaussian-based representation and reweighted sampling strategy.

C.2 QUALITATIVE RESULTS

The qualitative outcomes of point cloud semantic segmentation are depicted in Figure 5, wherein
our GCept model generates predictions that closely correspond with the ground-truth annotations.
Notably, GCept effectively captures fine-grained structural intricacies and delivers precise predictions
in complex indoor environments. For instance, in ScanNet++ scenes with challenging object arrange-
ments, GCept accurately delineates objects with intricate boundaries, such as differentiating furniture
from walls and identifying diminutive objects within cluttered settings. These outcomes underscore
the robustness and precision of GCept in addressing the complexities of 3D semantic segmentation
tasks. For supplementary visualizations and additional experimental particulars, please refer to our
supplementary materials.

To further elucidate the qualitative enhancements offered by our methodology, Figure 6 presents
additional segmentation outcomes on challenging indoor scenes from ScanNet. Each sub-figure
contrasts our GCept predictions with the ground truth annotations. It is noteworthy that GCept
more accurately delineates object boundaries and consistently manages small, cluttered regions (e.g.,
the extremities of tables and chairs), thereby diminishing misclassifications compared to baseline
methodologies.

These qualitative exemplars corroborate the quantitative advancements observed in Table 10, empha-
sizing that the rich geometric and appearance attributes captured by GCept facilitate more precise
segmentation across a diverse array of object categories.
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Input Ground Truth GCept Input Ground Truth GCept
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Figure 6: Visualization of semantic segmentation results on ScanNet Dai et al. (2017).

D COMPARATIVE ANALYSIS OF GAUSSIAN SPLATTING IMPLEMENTATIONS

To demonstrate the versatility and robustness of our proposed framework, we conducted comparative
experiments utilizing different Gaussian Splatting implementations. The objective of this analysis is
to ascertain that the benefits of our GCept approach are not confined to a specific implementation but
rather emanate from the fundamental principles of employing Gaussian primitives for 3D perception.

D.1 IMPLEMENTATION VARIANTS

We evaluated the following Gaussian Splatting implementations:

• 3DGS-Original Kerbl et al. (2023): The original 3D Gaussian Splatting implementation,
which utilizes anisotropic 3D Gaussians with spherical harmonics for view-dependent
appearance.

• 2DGS Huang et al. (2024): A novel approach that collapses the 3D volume into a set of
2D oriented planar Gaussian disks, providing view-consistent geometry while modeling
surfaces intrinsically. It employs perspective-accurate 2D splatting with ray-splat intersection
and incorporates depth distortion and normal consistency terms to enhance reconstruction
fidelity. This approach achieves noise-free, detailed geometry while maintaining competitive
appearance quality and real-time rendering capabilities.

D.2 PERFORMANCE COMPARATIVE ANALYSIS

Table 11 presents the semantic segmentation performance (mIoU) achieved by integrating different
Gaussian Splatting implementations into our GCept framework. The experiments were conducted on
ScanNet and ScanNet++ datasets.

Table 11: Performance comparative analysis of different Gaussian Splatting implementations within
our GCept framework

GS Implementation Description ScanNet (mIoU) ScanNet++ (mIoU)

3DGS Kerbl et al. (2023) Original implementation 78.6 44.7
2DGS Huang et al. (2024) Our default 79.0 45.1

As illustrated in Table 11, all Gaussian Splatting implementations provide substantial enhancements
over conventional point-based approaches. While 2DGS yields the optimal performance and consti-
tutes our default selection due to its advantageous balance of accuracy and efficiency, the alternative
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implementations also exhibit robust performance. This substantiates that the gains from our GCept
framework originate primarily from the fundamental advantages of Gaussian-based representation
and reweighted sampling rather than from implementation-specific nuances.

E COMPUTATIONAL EFFICIENCY ANALYSIS

We present a detailed analysis of the computational aspects of our GCept framework compared
to conventional point-based methods. This examination encompasses preprocessing time, training
efficiency, and inference speed across diverse datasets and configurations.

E.1 PREPROCESSING TIME

Table 12 presents the preprocessing times required for transforming raw point clouds into Gaussian-
based representations across different datasets. We report the average duration per scene for each
stage of the preprocessing pipeline.

Table 12: Preprocessing time for GCept (seconds per scene)

Process ScanNet ScanNet++

Point cloud loading 0.5 0.6
Gaussian initialization 2.7 3.4
Gaussian Splatting Optimization 762.3 951.8

Total GCept preprocessing 765.5 955.8

While GCept necessitates additional preprocessing duration compared to conventional methodologies,
this computational overhead constitutes a one-time cost that is amortized over multiple utilizations
of the dataset. The advantages of the enhanced representation significantly outweigh this initial
preprocessing investment, as evidenced by the substantial improvements in segmentation accuracy.

E.2 TRAINING EFFICIENCY

Table 13 juxtaposes the training efficiency of our GCept framework against conventional point-based
methodologies. We report the average duration per epoch and GPU memory consumption during
training.

Table 13: Training efficiency comparative analysis on ScanNet

Method Model Params (M) GFlops Time/epoch (s) GPU Memory (GB) mIoU

PTv3(grid=0.02m) 46.2 42.5 160.8 60.1 77.5
PTv3(grid=0.04m) 46.2 39.0 150.8 36.4 76.6
DSConv-XXLZhang et al. (2024) 25.9 99.6 N/A N/A 77.8
GCept(grid=0.02m) 47.0 48.1 181.4 61.9 79.0
GCept(grid=0.04m) 47.0 45.1 170.9 40.2 78.7

Our examination reveals that GCept introduces a modest computational overhead compared to
the baseline PTv3 approach. Specifically, with a grid size of 0.02m, GCept requires 1.7% more
parameters (47.0M vs. 46.2M) and 13.2% higher computational cost (48.1 vs. 42.5 GFlops) than
PTv3. This translates to a 12.8% increase in training duration and 3.0% higher memory utilization.

When employing a larger grid size of 0.04m, we observe similar parameter counts but a 15.6%
increase in GFlops compared to the corresponding PTv3 configuration, resulting in 13.3% longer
training epochs and 10.4% higher memory utilization. However, this computational investment yields
significant performance enhancements: GCept surpasses PTv3 by 1.5% mIoU (79.0% vs. 77.5%) at
0.02m grid resolution and by 2.1% mIoU (78.7% vs. 76.6%) at 0.04m grid resolution.

Compared to DSConv-XXL, GCept employs more parameters but necessitates substantially lower
computational complexity (48.1 vs. 99.6 GFlops) while still achieving superior segmentation perfor-
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mance (+1.2% mIoU). These outcomes demonstrate that the enhanced representational capacity of
our Gaussian-based features justifies the modest computational overhead, offering an advantageous
balance between performance and efficiency.

E.3 INFERENCE SPEED

Table 14 presents the inference speed for different methodologies and configurations on a single
NVIDIA L40S GPU.

Table 14: Inference speed comparative analysis with latency and throughput

Method ScanNet ScanNet++

Latency (ms) TP (scenes/s) Latency (ms) TP (scenes/s)

PTv3 48.81 20.49 66.87 14.95
GCept 51.76 19.32 75.76 13.20

In terms of inference performance, GCept exhibits a slight increase in latency compared to the PTv3
baseline. On the ScanNet dataset, GCept’s latency is 6.0% higher (51.76ms vs. 48.81ms). On the
more complex ScanNet++ dataset, we observe a 13.3% increase in latency (75.76ms vs. 66.87ms).

While these differences represent a modest computational cost, it is imperative to contextualize them
against the significant gains in segmentation quality: GCept delivers 1.5-2.1% higher mIoU compared
to PTv3 and outperforms DSConv-XXL across all metrics. For numerous real-world applications
where accuracy is paramount (e.g., robotics navigation, precise object manipulation, or detailed scene
understanding), this performance-to-efficiency ratio represents a favorable compromise.

E.4 SUMMARY

Our computational analysis demonstrates that GCept introduces a modest computational overhead
compared to conventional point-based methodologies. While preprocessing necessitates approxi-
mately 13-16 minutes per scene, this constitutes a one-time cost amortized across multiple utilizations.
During training, GCept increases model parameters marginally (1.7% more than PTv3) with 13-15%
higher computational cost in GFlops. This translates to 12-13% longer training duration and 3-10%
higher memory utilization, contingent upon grid size. At inference time, GCept is approximately 6%
slower on ScanNet and 13% slower on ScanNet++.

Despite these modest computational costs, GCept achieves significant performance enhancements
compared to current state-of-the-art methodologies: +1.5-2.1% mIoU over PTv3 and +1.2% mIoU
over DSConv-XXL, while requiring less than half the computational complexity of DSConv-XXL.
This advantageous performance-to-cost ratio renders GCept particularly attractive for applications
where segmentation quality is paramount. Furthermore, as hardware capabilities continue to advance
and Gaussian splatting implementations become more optimized, we anticipate the computational
overhead to diminish further, rendering this approach increasingly viable for real-time applications.

F USE OF LARGE LANGUAGE MODELS

In accordance with ICLR 2026 guidelines, we disclose the use of Large Language Models (LLMs)
in the preparation of this manuscript. LLMs were employed primarily as writing assistance tools to
enhance the clarity, coherence, and grammatical accuracy of the text.

All core research ideas, methodology design, experimental planning, implementation, and analysis
were conducted independently by the authors. The LLMs did not contribute to research ideation,
experimental design, or the interpretation of results. The technical content, including mathematical
formulations, algorithmic descriptions, and scientific conclusions, represents the original work and
insights of the authors. LLM assistance was limited to improving the linguistic presentation of these
ideas without altering their substance or validity.
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