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Abstract

In contrast with Mercer kernel-based approaches
as used e.g. in Kernel Principal Component Anal-
ysis (KPCA), it was previously shown that Sin-
gular Value Decomposition (SVD) inherently re-
lates to asymmetric kernels and asymmetric Ker-
nel Singular Value Decomposition (KSVD) has
been proposed. However, the existing formulation
to KSVD cannot work with infinite-dimensional
feature mappings, the variational objective can be
unbounded, and needs further numerical evalu-
ation and exploration towards machine learning.
In this work, i) we introduce a new asymmetric
learning paradigm based on coupled covariance
eigenproblem (CCE) through covariance opera-
tors, allowing infinite-dimensional feature maps.
The solution to CCE is ultimately obtained from
the SVD of the induced asymmetric kernel ma-
trix, providing links to KSVD. ii) Starting from
the integral equations corresponding to a pair of
coupled adjoint eigenfunctions, we formalize the
asymmetric Nyström method through a finite sam-
ple approximation to speed up training. iii) We
provide the first empirical evaluations verifying
the practical utility and benefits of KSVD and
compare with methods resorting to symmetriza-
tion or linear SVD across multiple tasks.

1. Introduction
Feature mappings can transport the data in a Hilbert space
of a typically higher dimension. They are intimately linked
through inner products with reproducing kernels (Aronszajn,
1950) and thus often associated with symmetric learning.
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One can for example think of kernel principal components
analysis (KPCA, Schölkopf et al. (1998)) where one tries to
find orthonormal directions in the feature space that maxi-
mize the variance associated to a symmetric Gram matrix,
or kernel canonical correlation analysis (KCCA, Lai & Fyfe
(2000)) where the maximization of a correlation based on
two different views of the data leads to an optimization
problem governed by two symmetric Gram matrices.

In many real-world applications however, there is an inher-
ent degree of asymmetry. Among others, directed graphs
of citation networks (Ou et al., 2016), biclustering (Kluger
et al., 2003), attention in Transformers (Wright & Gonzalez,
2021; Chen et al., 2023) typically involve an asymmetry that
cannot be captured when working with reproducing kernels.
Often the asymmetric matrices are first symmetrized before
applying some matrix decomposition such as singular value
decomposition (SVD, Strang (2006); Golub & Van Loan
(2013)) so that only one set of eigenvectors is obtained.

As a fundamental linear algebra tool, SVD can process ar-
bitrary non-symmetric matrices and jointly learns both left
and right singular vectors, e.g., embeddings of source and
target nodes (Estrada, 2012). However, SVD alone lacks
flexibility for nonlinear feature learning. Suykens (2016)
propose asymmetric kernel SVD (KSVD), a variational
principle based on least-square support vector machines
(LSSVMs) that leads to the matrix SVD and mentions that
nonlinear extensions can be obtained when the SVD is ap-
plied to an asymmetric kernel matrix rather than the given
data matrix. However, their formulation only allows finite-
dimensional feature mappings to induce the kernel and its
variational objective is unbounded unless the regularization
hyperparameters are properly selected. Yet, Suykens (2016)
does not provide numerical evaluations on the practical util-
ity and applications of KSVD, leaving this topic largely
unexplored. While infinite-dimensional feature maps are
common in all kernel methods, including the asymmetric
ones, e.g., Wright & Gonzalez (2021) focus on the under-
standings of the asymmetric dot-product attention kernel
resulting from the queries and keys through a pair of Banach
spaces in the supervised setting, little literature addresses
learning with generic asymmetric kernel machines with
infinite-dimensional maps. Differently, our work provides a
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new asymmetric learning paradigm for unsupervised feature
learning based on the CCE allowing two generic datasets.

Kernel methods additionally suffer from efficiency, as they
require processing a kernel matrix that is quadratic in the
sample size. Many approaches have been proposed to im-
prove the efficiency, among which the Nyström method
has been widely applied (Williams & Seeger, 2000; Zhang
et al., 2008; Gittens & Mahoney, 2016; Meanti et al., 2020;
Xiong et al., 2021). The Nyström method of subsampling
arises from the approximate eigendecomposition of an in-
tegral operator associated with a symmetric kernel (Baker,
1981), which restricts the existing Nyström method to only
Mercer kernels. In (Drineas et al., 2005; Nemtsov et al.,
2016; Xiong et al., 2021), Nyström-like methods for ma-
trix compression or approximation are discussed by directly
applying the symmetric Nyström method to estimate left
and right singular vectors, yet ignoring the asymmetry con-
straints. In (Michaeli et al., 2016), though the asymmetric
Nyström method is mentioned in the proposed nonparamet-
ric KCCA method, it still leverages the existing symmetric
Nyström method in implementation for the eigenvectors
of two symmetric positive definite kernels and can only
deal with square matrices. Hence, the analytical framework
of the Nyström method to asymmetric kernel machines re-
mains to be formalized and is of particular interest for the
efficient computation of KSVD.

The research question that we tackle in this paper is "How
can we learn directions in the feature space in an asymmet-
ric way while controlling the computational complexity of
our method ?"

The technical contributions of this work are summarized as:

• We first present a new asymmetric learning paradigm
based on coupled covariances eigenproblem (CCE)
allowing infinite-dimensional feature maps. We show
that its solution leads to the KSVD problem associated
with a specific asymmetric similarity matrix that blends
in two feature maps.

• We leverage the integral equations involving the pair of
adjoint eigenfunctions related to the continuous analog
of SVD and derive an extension to the Nyström method
able to handle asymmetric kernels, which can be used
to speed up KSVD training without significant decrease
in accuracy of the solution.

• We conduct extensive experiments to demonstrate the
performance of the CCE asymmetric learning scheme
in unsupervised feature extraction and different down-
stream tasks with real-world datasets. The efficacy
of the proposed Nyström method is also verified to
efficiently compute the KSVD.

Note that we do not claim to propose the KSVD algorithm,
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Figure 1. Illustrative example of asymmetric similarity. In a di-
rected graph, each node can act as the source or the target. Given
the adjacency matrix [a(vi, vj)]

N
i,j=1, its rows relate to the out-

going edges, while the columns relate to the incoming edges.
The connections between nodes are directional, s.t. a(vi, vj) ̸=
a(vj , vi), i ̸= j.

as it was already sketched in the letter by Suykens (2016).
Rather, we give a novel asymmetric learning problem based
on two covariance operators in the feature space, whose
solution coincides with a KSVD with infinite-dimensional
feature maps, a case that was not previously possible.

2. Learning in Feature Spaces with
Asymmetry

We begin this section by reviewing in Section 2.1 the con-
cept of asymmetric similarity that is critical to this work,
before introducing in Section 2.2 the Coupled Covariances
Eigenproblem (CCE) that allows us to learn in feature spaces
with asymmetry as the solution is ultimately obtained from
the SVD of an asymmetric similarity matrix. We conclude
in Section 2.3 with some remarks about related work.

2.1. Asymmetric Similarity

Typically, a kernel κ̂ : X × X → R is induced by a single
feature map ϕ̂ on a single data set whose samples lie in a
space X and is symmetric. However, in practice, asymmet-
ric similarities are widely used such as in directed graphs
(where similarity is directional) as exemplified in Fig. 1.
Each node acts as source and target and is associated with
two feature vectors xi, zi, possibly from different spaces, for
its source and target role, respectively. One can thus extract
two sets of features for each node, one related to the nodes
to which it points and one for the nodes that point to it. In
general, an asymmetric kernel κ : X × Z → R describes a
similarity between elements from two different spaces X ,Z .
Despite the utility of asymmetry, classical Mercer-kernel
methods, e.g. KPCA, only deal with symmetric similarities
induced by a single feature map, and thus one has to resort
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Figure 2. Schematic of our construction. X ,Z fromA are mapped
to a possibly infinite-dimensional space H. We propose to consider
coupled scalar products ψ(zj) onto wϕl and ϕ(xi) onto wψl . H is
shown separately for clarity.

KPCA

Σϕwϕ = λϕwϕ

Σψwψ = λψwψ

CCE

Σϕwψ = λwϕ

Σψwϕ = λwψ

Figure 3. Overview comparison of KPCA and CCE.

to symmetrizing an asymmetric similarity matrix K, which
can be done by considering (K⊤ +K)/2, KK⊤, or K⊤K.

Compared to the literature on Mercer kernels, asymmetric
kernels are less studied. They have been mostly applied
in supervised learning, e.g., regression (Mackenzie & Tieu,
2004; Wu et al., 2010; Kuruwita et al., 2010) and classi-
fication (Muñoz et al., 2003; Koide & Yamashita, 2006;
Tsuda, 1998). Some works do not resort to symmetrization:
(He et al., 2023) applies two feature mappings to the given
samples and maintains an asymmetric kernel in the LSSVM
classifier. Chen et al. (2023) applies the variational objec-
tive from (Suykens, 2016) as an auxiliary regularization
loss to the model for low-rank self-attention in Transform-
ers are built as the asymmetric similarity between queries
and keys. Relaxations of the Mercer conditions have also
been generalized to learning in reproducing kernel Banach
spaces (Zhang et al., 2009; Xu & Ye, 2019) and Kreı̆n spaces
(Oglic & Gaertner, 2018). Other related but orthogonal ap-
proaches include (Neto & Rodrigues, 2023) for robust SVD
estimation with Gaussian norm in the original space, and
(Vasilescu, 2009) for tensor data where SVD is applied to
the symmetric kernel in each mode.

2.2. Coupled Covariances Eigenproblem

The goal of this section is to gradually define and solve the
Coupled Covariances Eigenproblem (CCE). Our goal is to

provide a new tool able to learn in (infinite-dimensional)
feature spaces and take advantage of asymmetry.

Notation. Given a bounded linear operator Γ between
Hilbert spaces, its adjoint is referred to as Γ∗. The Frobe-
nius norm of a matrix is denoted by ∥·∥F. The identity
matrix of size r is Ir. Set the spaces X = Rm and
Z = Rn. We assume access to two sets of samples
{xi}ni=1 ∈ Xn and {zj}mj=1 ∈ Zm. We consider two
mappings ϕ : X → H and ψ : Z → H whose outputs lie
in a common feature space H. We moreover assume that
the feature maps are centered. In practice, given the train-
ing samples, one can realize the centering by the translated
feature maps ϕ̃(x) = ϕ(x) − 1

n

∑n
i=1 ϕ(xi) and ψ̃(z) =

ψ(z) − 1
m

∑m
j=1 ψ(zi), and then the similarity matrix of

interest [G̃]ij = ⟨ϕ̃(xi), ψ̃(zj)⟩ can be computed straight-
forwardly, e.g., G̃ = (In − 1

n1n1
⊤
n )G(Im − 1

m1m1⊤
m).

Construction of the Subspaces in H. In CCE, the goal
is to learn a pair of r directions in the feature space H
that solve a coupled eigenvalues problem. The sough-after
directions are collected in vectors Wϕ ∈ Hr,Wψ ∈ Hr as
follows:

Wϕ = [wϕ1 , . . . , w
ϕ
r ], Wψ = [wψ1 , . . . , w

ψ
r ].

Denote by Σϕ,Σψ ∈ L(H) the empirical covariance opera-
tors described by

Σϕ =
1

n

n∑
i=1

ϕ(xi)ϕ(xi)
∗, Σψ =

1

m

m∑
j=1

ψ(zj)ψ(zj)
∗.

While performing KPCA would result in solving two eigen-
value problems independently for both covariance operators
and using the top r eigenvectors of each to compute interest-
ing directions, we propose to intricate the learned directions
in the feature space by solving the following CCE problem:

Definition 2.1 (CCE). Find Wϕ ∈ Hr,Wψ ∈ Hr such that

ΣϕWψ = ΛWϕ, ΣψWϕ = ΛWψ, (1)

for some diagonal matrix Λ ∈ Rr×r with positive values.

Even if H is infinite-dimensional, we can parameterize the
directions Wϕ,Wϕ using matrices. Indeed, given that a
solution exists, it holds that for any l ∈ {1, . . . , r}

Σϕw
ψ
l =

1

n

n∑
i=1

⟨ϕ(xi), wψl ⟩ϕ(xi) = λlw
ϕ
l .

Thus all directions {wϕl }rl=1 lie in Span {ϕ(xi)}ni=1. Con-
sequently, we can parameterize the directions Wϕ over
the {ϕ(xi)}ni=1 by a matrix of coefficients Bϕ ∈ Rn×r.
A similar argument holds for the directions Wψ over the
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{ψ(zj)}mj=1 with coefficients Bψ ∈ Rm×r so that for all
l ∈ {1, . . . , r}

wϕl =

n∑
i=1

bϕilϕ(xi), wψl =

m∑
j=1

bψjlψ(zj). (2)

Projection Operators. Let Γϕ : Hr → Rn×r and
Γψ : Hr → Rm×r be linear operators acting on some direc-
tions W ∈ Hr in the following way:

[ΓϕW ]il =
1√
n
⟨ϕ(xi), wl⟩, [ΓψW ]jl =

1√
m
⟨ψ(zj), wl⟩.

These operators compute the inner products between the
chosen directions and the feature maps associated with the
data. As Γϕ and Γψ are bounded linear operators they admit
adjoint operators whose action can be made explicit: for
any B ∈ Rn×r, Γ∗

ϕB = 1√
n
[
∑n
i=1 bilϕ(xi)]

r
l=1 ∈ Hr and

Γ∗
ψ can be treated similarly. This observation allows us to

rewrite Equation 2 under the form

Wϕ = Γ∗
ϕBϕ, Wψ = Γ∗

ψBψ.

We also remark that the covariance operators Σϕ and Σψ can
be expressed using these projection operators, so that Equa-
tion 1 can be reformulated using matrix variables Bϕ, Bψ
as

Γ∗
ϕΓϕΓ

∗
ψBψ = Γ∗

ϕBϕΛ, Γ∗
ψΓψΓ

∗
ϕBϕ = Γ∗

ψBψΛ. (3)

Asymmetric Kernel Matrix. The operators ΓψΓ
∗
ϕ and

ΓϕΓ
∗
ψ are of particular interest and their action can be de-

scribed by related matrices as formalized in the following.

Proposition 2.2. Let G ∈ Rn×m such that gij =
1√
nm

⟨ϕ(xi), ψ(zj)⟩. For all Bϕ ∈ Rn×r and Bψ ∈ Rm×r,
it holds that

ΓψΓ
∗
ϕBϕ = G⊤Bϕ, ΓϕΓ

∗
ψBψ = GBψ.

This proposition resembles the celebrated kernel trick but
induces an asymmetry in what is an equivalent of the Gram
matrix associated with an asymmetric kernel κ(x, z) =
⟨ϕ(x), ψ(z)⟩. This kernel permits to avoid the explicit com-
putation of the feature mappings.

Because most classical kernel functions require that the two
inputs have compatible dimensions, there are a few chal-
lenges associated with the computation of κ(x, z) when X
and Z are different by nature. In this case, we can transform
the two inputs x, z into the same dimension through a com-
patible linear transformation C ∈ L(Z,X ). For Euclidean
spaces we can find matrices C, such that C⊤x is compatible
with z in dimensions, and then apply existing (symmetric)
kernel functions thereafter.

Remark 2.3 (Dimensionality Compatibility Matrix). We
consider different alternatives to attain the compatibility
matrix C as follows: a0) the pseudo-inverse of the tackled
data matrix; however, it can be computationally unstable
and expensive, thus we propose the following a1-a3.

a1) PCA projection on xi; it finds the projection directions
capturing the most variance of data samples (Jolliffe, 1986).
a2) randomizing the projection C; the random linear trans-
formation has been shown to retain the main patterns of
the data matrix (Larsen & Nelson, 2017). a3) learnable C
w.r.t. the downstream tasks; it gives the optimal C by op-
timizing the downstream task objective, e.g., classification
loss.

a2 is very computationally efficient while learning the opti-
mal C in a3 can take more computation, up to the task and
its optimizer, e.g. SGD optimizer with backpropagated C
as experimented in Section 4.3. Note that a0-a2 can be ap-
plied under general unsupervised setups for feature learning,
while a3 is commonly used when considering end-to-end
training for the downstream tasks under supervised setups.

Solution to the CCE. Solving the CCE gives rise to a
generalized shifted eigenvalue problem, as shown in the
following proposition.

Proposition 2.4. Let G ∈ Rn×m be the asymmetric kernel
matrix from Proposition 2.2. The directions (Wϕ,Wψ) ∈
Hr respectively parameterized by the matrices (Bϕ, Bψ) ∈
Rn×r×Rm×r are solution to the CCE problem if and only if
(Bϕ, Bψ) are solution to the generalized shifted eigenvalue
problem

G⊤GBψ = G⊤BϕΛ,

GG⊤Bϕ = GBψΛ,
(4)

where Λ ∈ Rr×r is a positive diagonal matrix.

According to Lanczos’ decomposition theorem (Lanczos,
1958), Problem 4 can be solved by taking for Bϕ, Bψ the
top-r left and right singular vectors of the matrix G.

Proposition 2.5. Let Bsvd
ϕ (resp. Bsvd

ψ ) be top-r left
(resp. right) singular vectors of G. Then

Wϕ = Γ∗
ϕB

svd
ϕ , Wψ = Γ∗

ψB
svd
ψ

is a solution to the CCE.

We have shown that solving the CCE reduces to an KSVD
problem, with an asymmetric similarity matrix that involves
both feature maps. Once the directions are learned, if we
are given some new data x ∈ X or z ∈ Z we can compute
the projected feature scores

[⟨ϕ(x), wψl ⟩]
r
l=1, [⟨ψ(z), wϕl ⟩]

r
l=1,

and use these in downstream tasks.
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CCE versus 2KPCA. The proposed CCE problem gives
a new understanding of the set of directions of interest in
the feature space, namely Wϕ and Wψ from Proposition 2.5,
arising from the SVD of the asymmetric kernel matrix G
and the feature maps ϕ, ψ. We note that these directions
can also be interpreted as the principal directions associated
to the covariance operators of two symmetrized kernels in
two separate KPCA problems arising from feature maps
x 7→ Σ

1/2
ψ ϕ(x) and z 7→ Σ

1/2
ϕ ψ(z), respectively. In the

dual, this corresponds to taking the SVDs of GG⊤ and
G⊤G, which is equivalent to taking the SVD of G. We
refer to this interpretation as 2KPCA. From a computational
standpoint, performing 2KPCA or CCE yields the same
singular vectors. However, they are significantly different
in the modelling from the following perspectives.

• In 2KPCA, one takes the principal components associ-
ated to kernels built via complicated entanglement of
ϕ and ψ. In CCE, the empirical covariances associated
to both feature maps appear free from any other factor.

• The coupling between the two input variables within
the feature maps of 2KPCA is realized through the
square root of the other covariance, while in CCE the
coupling of the input variables naturally arises by cross-
ing the learned directions in Definition 2.1.

• For principal component extraction, we need to com-
pute the projections on the singular vectors Wϕ and
Wψ in H, which are essential in downstream tasks to
extract the principal components of test points. This
can be easily accomplished in CCE with explicit direc-
tions, while it is not as clear in 2KPCA.

2.3. Related work

We now discuss research areas that are tangent to our topic:
asymmetric kernel SVD (KSVD) and symmetric kernel
approaches such as KPCA or KCCA.

Asymmetric Kernel SVD. Given a data matrix A ∈
Rn×m, (Suykens, 2016) regards it w.r.t. either the collection
of rows {A[i, :] ≜ xi ∈ X}ni=1 or the collection of columns
{A[:, j] ≜ zj ∈ Z}mj=1. In the example in Fig. 1, X denotes
the outgoing edges of source nodes, while Z denotes the
incoming edges of the target. (Suykens, 2016) proposes
a variational principle for SVD with two linear mappings
ϕ(xi) = C⊤

1 xi, ψ(zj) = C2zj with compatibility transfor-
mations C1, C2 on the rows and columns of A. Provided
that the compatibility condition AC1C2A = A holds, the
stationary solutions correspond to the SVD of A. The two
mappings can be extended to construct the n ×m matrix
Gij = k(ϕ(xi), ψ(zj)), where k is a kernel function allow-
ing to be nonlinear and asymmetric. Stationary solutions
are then linked to the SVD of G when the regularization

hyperparameters are fixed as the top singular values of G.
The KSVD algorithm therefore finds singular vectors of
features non-linearly related to the input variables through
the SVD of the non-symmetric rectangular matrix K.

Symmetric Kernel Approaches with Covariances. Our
new construction makes it easier to compare KSVD with
other common algorithms based on finding the best approx-
imation of some covariance quantity, which instead work
with symmetric kernels in contrast to our work. KPCA
applies a nonlinear feature mapping ϕ to a set of data
samples xi and considers projections aϕ1

⊤ϕ(xi) for maxi-
mal variances w.r.t. a single covariance cov (Φaϕ1 ,Φaϕ1).
KPCA can also be tackled through a symmetric PSD ker-
nel kϕ := ϕ⊤(·)ϕ(·) (Schölkopf et al., 1998), while KSVD
works with two covariances coupled by each other. We
note that doing two KPCA with ϕ(xi) and ψ(zj) lead to
two decoupled covariances and lead to two symmetric ker-
nels ϕ⊤(·)ϕ(·) and ψ⊤(·)ψ(·) w.r.t. xi and zj , respectively.
This is significantly different from KSVD, as shown in
Figure 3, as KSVD is associated with two coupled co-
variances and essentially works with an asymmetric ker-
nel ϕ⊤(·)ψ(·). KCCA deals with samples from two data
sources and only considers projections of each data source.
KSVD seeks maximal variances of two sets of projections
from a single matrix. Specifically, KCCA considers pro-
jections aϕ1

⊤ϕ(xi) and aψ1
⊤ψ(zi) and couples them in a

single covariance cov (Φaϕ1
,Ψaψ1

). In our formulation, we
consider aϕ1

⊤ψ(zj) and aψ1
⊤ϕ(xi) leading to two covari-

ances cov(Ψaϕ1
,Ψaϕ1

), cov(Φaψ1
,Φaψ1

). KCCA leads
to two separate symmetric PSD kernels kϕ := ϕ⊤(·)ϕ(·),
kψ := ψ⊤(·)ψ(·), while KSVD couples two feature map-
pings inducing a single asymmetric kernel κ := ϕ⊤(·)ψ(·).
Our construction is therefore key to allow for asymmetric
kernels w.r.t. KCCA and contrasts with earlier KSVD con-
structions, where drawing parallels with related approaches
such as KCCA was notably challenging due to the lack of a
covariance and subspace interpretation.

3. Nyström Method for Asymmetric Kernels
We adapt the celebrated Nyström method to asymmetric
kernels, the goal being to speed up the computation of the
left and right singular vectors of G from Section 2. The
existing Nyström method approximates eigenfunctions of
the integral operator associated with a symmetric kernel
(Williams & Seeger, 2000). Schmidt (1907) discusses the
treatment of the integral equations with an asymmetric ker-
nel for the continuous analog of SVD (Stewart, 1993). In
this section, we base our formulation upon the pair of ad-
joint eigenfunctions originally studied in (Schmidt, 1907),
namely singular functions, and start from the correspond-
ing integral equations (Baker, 1981) to formally derive the
asymmetric Nyström method in a similar spirit with the
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widely adopted symmetric Nyström method (Williams &
Seeger, 2000).

Adjoint Eigenfunctions With an asymmetric kernel
κ(x, z), us(x) and vs(z) satisfying

λsus(x) =
∫
Dz
κ(x, z)vs(z) pz(z)dz,

λsvs(z) =
∫
Dx
κ(x, z)us(x) px(x)dx

(5)

are called a pair of adjoint eigenfunctions corresponding to
the eigenvalue λs with λ1 ≥ λ2 ≥ . . . ≥ 0, where px(x)
and pz(z) are the probability densities over Dx and Dz .
Note that (Schmidt, 1907) works with the reciprocal of λs,
which is called a singular value by differentiating from the
eigenvalues of symmetric matrices (Stewart, 1993). The
integral equations in (5) do not specify the normalization
of the adjoint eigenfunctions, which correspond to the left
and right singular vectors with finite sample approxima-
tion, while generally in SVD the singular values are solved
as orthonormal. Thus, to correspond the results of the ad-
joint eigenfunctions to the orthonormal singular vectors in
SVD, the scalings determining the norms are implicitly in-
cluded in (5). For normalization, we incorporate three scal-
ings lλs , lus , lvs for λs, us(x), vs(z), respectively, into (5),
such that lλs

λslus
us(x) =

∫
Dz
κ(x, z)lvsvs(z) pz(z)dz

and lλs
λslvsvs(z) =

∫
Dx
κ(x, z)lus

us(x) px(x)dx.

Nyström Approximation for the Adjoint Eigenfunctions
Given the i.i.d. samples {x1, . . . , xn} and {z1, . . . , zm},
similar to (Williams & Seeger, 2000), from the probability
densities px(x), pz(z) over Dx,Dz , the two integral equa-
tions in (5) over px(x) and pz(z) are approximated by an
empirical average:

λsus(x) ≈
lvs

mlλs
lus

m∑
j=1

κ(x, zj)vs(zj),

λsvs(z) ≈
lus

nlλs
lvs

n∑
i=1

κ(xi, z)us(xi),
(6)

where s = 1, . . . , r, which corresponds to the rank-r com-
pact SVD on a kernel through the Lanczos’ decomposition
theorem (Lanczos, 1958):

G(n,m)V (n,m) = U (n,m)Λ(n,m),
(G(n,m))⊤U (n,m) = V (n,m)Λ(n,m),

(7)

where G(n,m) ∈ Rn×m is the asymmetric kernel ma-
trix with entries Gij = κ(xi, zj) and r ≤ min{n,m},
V (n,m) = [v

(n,m)
1 , . . . , v

(n,m)
r ] ∈ Rm×r, U (n,m) =

[u
(n,m)
1 , . . . , u

(n,m)
r ] ∈ Rn×r are column-wise orthonor-

mal and contain the singular vectors, and Λ(n,m) =

diag{λ(n,m)
1 , . . . , λ

(n,m)
r } denotes the positive singular val-

ues. To match (6) against (7), we first require the scalings
on the right side of the two equations in (6) to be consistent,
i.e., lvs/(mlλs lus) ≜ lus/(nlλs lvs), which yields lvs =

(
√
m/

√
n) lus

and lvs/(mlλs
lus

) ≜ lus
/(nlλs

lvs) =
1/ (

√
mnlλs) .

When running all samplings xi and zj in (6) to match
(7), we arrive at: us(xi) ≈

√√
mnlλs

U
(n,m)
is , vs(zj) ≈√√

mnlλs
V

(n,m)
js , λs ≈ (1/(

√
mnlλs

))λ
(n,m)
s . The Nys-

tröm approximation to the s-th pair of adjoint eigenfunc-
tions with an asymmetric kernel κ(x, z) is obtained for
s = 1, . . . , r:

u(n,m)
s (x) ≈ (

√√
mnlλs

/λ(n,m)
s )

∑m

j=1
κ(x, zj)V

(n,m)
js ,

v(n,m)
s (z) ≈ (

√√
mnlλs

/λ(n,m)
s )

∑n

i=1
κ(xi, z)U

(n,m)
is ,

(8)
which are also called the out-of-sample extension to evalu-
ate new samples, where the norms of u(n,m)

s , v
(n,m)
s are up

to the scaling lλs . In (8), it explicitly formalizes the approxi-
mated adjoint functions (left and right singular vectors) with
the asymmetric kernel κ (G).

Nyström Approximation to Asymmetric Kernel Matri-
ces With the asymmetric Nyström approximation derived
in (8), we can apply CCE to a subset of the data with sam-
ple size n < N and m < M to approximate the adjoint
eigenfunctions at all samplings {xi}Ni=1 and {zj}Mj=1. We
assume the kernel matrix to approximate from KSVD is
G ∈ RN×M and denote λ̃(N,M)

s , ũ
(N,M)
s , and ṽ(N,M)

s as
the Nyström approximation of the singular values, and left
and right singular vectors of G, respectively. We then utilize
the Nyström method to approximate the singular vectors of
G through the out-of-sample extension (8):

ũ(N,M)
s = (

√√
mnlλs

/λ(n,m)
s )GN,mv

(n,m)
s ,

ṽ(N,M)
s = (

√√
mnlλs

/λ(n,m)
s )G⊤

n,Mu
(n,m)
s ,

(9)

with λ̃
(N,M)
s = (1/

√
mnlλs

)λ
(n,m)
s for s = 1, . . . , r,

where u(n,m)
s , v

(n,m)
s are the left and right singular vec-

tors to the s-th nonzero singular value λ(n,m)
s of an n×m

sampled submatrix Gn,m, GN,m ∈ RN×m is the subma-
trix by sampling m columns of G, and Gn,M ∈ Rn×M
is by sampling n rows of G. More remarks on the devel-
oped asymmetric Nyström method and comparisons to the
existing symmetric one are provided in Appendix A.2.2.

4. Numerical Experiments
This section aims to give a comprehensive empirical eval-
uation of SVD in feature spaces with asymmetric kernels
in the formulation discussed above. In existing works, the
potential benefits in applications remain largely unexplored
w.r.t. advantages of asymmetric kernels. The following ex-
periments do not claim that asymmetric kernels are always

6
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superior to symmetric ones as it can be problem-dependent.
We consider a variety of tasks, including representation
learning in directed graphs, biclustering, and downstream
classification/regression on general data. A key aspect of
our setup is that we can use the solutions Bϕ, Bψ to ex-
press the nonlinear embeddings without explicitly comput-
ing the feature mappings {ϕ(xi)}ni=1, {ψ(zj}mj=1, which
in our derivation, and differently from previous work, are
allowed to be infinite-dimensional. The effectiveness of our
new asymmetric Nyström method is also evaluated.

4.1. Directed Graphs

Setups Unsupervised node representation learning ex-
tracts embeddings of nodes from graph topology alone. We
consider five benchmark directed graphs (Sen et al., 2008;
Yang et al., 2016). KSVD is compared with its closely
related baselines, i.e., PCA, SVD, and KPCA, and also
with node embedding algorithms DeepWalk (Perozzi et al.,
2014), a well-known random walk-based approach, HOPE
(Ou et al., 2016), which preserves the asymmetric node
roles with two embedding spaces using network centrality
measures, and also Directed Graph Autoencoders (DiGAE)
(Kollias et al., 2022). All compared methods are unsuper-
vised and require only the adjacency matrix; note that this is
different from the common setup of graph neural networks
(Wu et al., 2022) that use additional node attributes on top
of graph topology and operate in semi-supervised setups.

We evaluate the downstream applications of node classifica-
tion and graph reconstruction. With (K)PCA and DeepWalk,
we only obtain one set of embeddings. With SVD, KSVD,
HOPE, and DiGAE two sets of embeddings are obtained
and then concatenated. As the adjacency matrix is square,
there is no compatibility issue. We compute ℓ1, ℓ2 norms
(lower is better (↓)) for graph reconstruction and Micro- and
Macro-F1 scores (higher is better (↑)) for node classification
using an LSSVM classifier averaged over 10 trials on the
extracted 1000 components following (Ou et al., 2016; He
et al., 2023). KPCA employs the RBF kernel and KSVD
employs the asymmetric kernel

κSNE(x, z) =
exp(−∥x− z∥22/γ2)∑

z′∈Z exp(−∥x− z′∥22/γ2)
,

also known as the SNE kernel (Hinton & Roweis, 2002),
which can be seen as an asymmetric extension of RBF , and
conduct 10-fold cross-validation for the kernel parameter in
the same range. Detailed experimental setups are provided
in Appendix C.

Results In Table 1 for node downstream classification, the
results indicate consistent improvements over both SVD
and KPCA, verifying the effectiveness of employing non-
linearity (to SVD) and asymmetric kernels (to KPCA). The
graph reconstruction task reflects how well the extracted

embeddings preserve the node connection structure. The
adjacency matrix is reconstructed with the learned embed-
dings and then compared to the ground truth with ℓ1, ℓ2
norms. Asymmetric kernels greatly improve SVD, further
illustrating the significance of using nonlinearity. KPCA
achieves better performance than SVD, showing that con-
sidering the asymmetry alone, i.e., SVD, is not enough and
nonlinearity is of great importance. Although DeepWalk,
HOPE, and DiGAE are designed specifically for graphs, the
simpler KSVD shows competitive performance, demonstrat-
ing great potential in representation learning for directed
graphs.

4.2. Biclustering

Setups Biclustering simultaneously clusters samples and
features of the data matrix, e.g., cluster documents and
words. SVD has long been a common method by cluster-
ing rows and columns through right/left singular vectors.
KPCA can be applied either to the rows or the columns at
a time, due to its symmetry. We apply k-means to the ex-
tracted embeddings from SVD, KPCA, and KSVD. We also
compare with the biclustering methods EBC (Percha & Alt-
man, 2015), based on ensemble, and the recently proposed
BCOT (Fettal et al., 2022), based on optimal transport. In
the considered benchmarks (Fettal et al., 2022), the rows
relate to documents, where the NMI metric can be used. The
columns relate to terms, where the Coherence index is used
(Dhillon et al., 2003). Other settings are as in Section 4.1
and we use a1 for the compatibility matrix.

Results In Table 2, KSVD outputs considerably better
clustering compared to KPCA, which can only perform clus-
tering on a single data view at a time. Despite the KSVD
algorithm not being specialized for this task, it consistently
achieves competitive or superior performance compared to
BCOT and EBC, both specifically designed for bicluster-
ing. This experiment further emphasizes the significance of
asymmetric feature learning and its potential to boost the
performance of downstream tasks in applications.

4.3. General Data

Setups Since asymmetric kernels are more general than
symmetric ones, the features learned with asymmetric ker-
nels can help boost performance in generic feature extrac-
tion. We evaluate KSVD on general data from UCI (Dua &
Graff, 2017). First, we extract embeddings with kernel meth-
ods, and then apply a linear classifier/regressor and report
results on test data (20% of the dataset). Besides SNE, we
employ RBF and note that the resulting kernel matrix G in
(4) is still asymmetric, as the kernel is applied to two differ-
ent sets X and Z , i.e. κ(xi, zj) ̸= κ(xj , zi). Data matrices
are generally non-square, so we need the dimensionality
compatibility C as in Remark 2.3. C is realized by A† in
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Table 1. Results on the node embedding downstream tasks with directed graph datasets.

Dataset Node classification Graph reconstruction

F1 Score (↑) PCA KPCA SVD KSVD DeepW HOPE DiGAE Norm (↓) PCA KPCA SVD KSVD DeepW HOPE DiGAE

Cora Micro 0.757 0.771 0.776 0.792 0.741 0.750 0.783 ℓ1 556.0 349.0 622.0 14.0 19.0 15.0 26.0
Macro 0.751 0.767 0.770 0.784 0.736 0.473 0.776 ℓ2 41.2 37.9 41.7 17.4 17.6 18.1 20.9

Citeseer Micro 0.648 0.666 0.667 0.678 0.624 0.642 0.663 ℓ1 138.0 46.0 176.0 25.0 25.0 26.0 25.0
Macro 0.611 0.635 0.632 0.640 0.587 0.607 0.627 ℓ2 21.3 16.0 24.6 14.3 14.4 13.3 16.4

Pubmed Micro 0.765 0.754 0.766 0.773 0.759 0.771 0.781 ℓ1 1937.0 171.0 1933.0 170.0 171.0 171.0 171.0
Macro 0.736 0.715 0.738 0.743 0.737 0.741 0.749 ℓ2 128.0 31.9 118.1 23.8 19.4 23.8 27.9

TwitchPT Micro 0.681 0.681 0.694 0.712 0.637 0.685 0.633 ℓ1 1780.0 766.0 1839.0 756.0 864.0 1108.0 759.0
Macro 0.517 0.531 0.543 0.596 0.589 0.568 0.593 ℓ2 196.3 172.4 192.1 140.3 146.5 158.2 79.7

BlogCatalog Micro 0.648 0.663 0.687 0.710 0.688 0.704 0.697 ℓ1 5173.0 766.0 5166.0 764.0 810.0 3709.0 771.0
Macro 0.643 0.659 0.673 0.703 0.679 0.697 0.690 ℓ2 429.4 99.9 410.5 94.2 104.0 286.7 202.6

Table 2. Biclustering results of documents w.r.t. NMI and of terms
w.r.t. Coherence (Coh).

Method ACM DBLP Pubmed Wiki

NMI Coh NMI Coh NMI Coh NMI Coh

SVD 0.58 0.21 0.09 -0.06 0.31 0.42 0.39 0.42
KPCA 0.59 0.28 0.26 0.17 0.29 0.51 0.46 0.57
KSVD 0.68 0.32 0.28 0.21 0.33 0.54 0.48 0.64
BCOT 0.38 0.27 0.27 0.22 0.16 0.54 0.48 0.64
EBC 0.62 0.20 0.15 0.21 0.19 0.56 0.47 0.63

previous work (Suykens, 2016); we denote this approach
a0. We compare a0 with our proposed approaches a1, a2
in unsupervised settings, and with our a3 with learnable C,
optimized by SGD on the downstream task objective.

Results In Table 3, KSVD maintains the best overall re-
sults with all alternatives a0-a3, showing promising poten-
tials of applying asymmetric kernels on general data for
downstream tasks. Under unsupervised setups, the alter-
natives a1-a2 for C all lead to comparable performance to
the expensive pseudo-inverse a0. For fair comparisons with
learnable C, we also evaluate KPCA with optimized C, i.e.,
we use κ̂(C⊤x,C⊤x) in KPCA. With a3, asymmetric ker-
nels consistently outperform KPCA, while, for KPCA, a
learnable C only provides marginally improved or compara-
ble results. The matrix C can be viewed as a transformation
for dimensionality compatibility providing additional de-
grees of freedom to learn enhanced embeddings.

4.4. Asymmetric Nyström Method

We evaluate the proposed asymmetric Nyström method
against other standard solvers on problems of different sizes.
We compare with three common SVD solvers: truncated
SVD (TSVD) from the ARPACK library, the symmetric
Nyström (Sym. Nys.) applied to GG⊤ and G⊤G employ-
ing the Lanczos Method (Lehoucq et al., 1998) for the SVD
subproblems, and randomized SVD (RSVD) (Halko et al.,
2011). For all used solvers, we use the same stopping cri-
terion based on achieving a target tolerance ε. The accu-
racy of a solution Ũ = [ũ1, . . . , ũr], Ṽ = [ṽ1, . . . , ṽr], is

evaluated as the weighted average η = 1
r

∑r
i=1 wi(1 −

|u⊤i ũi

∥ũi∥ |) +
1
r

∑r
i=1 wi(1 − |v⊤i ṽi

∥ṽi∥ |), with wi = λi and
U = [u1, . . . , ur], V = [v1, . . . , vr] the left and right singu-
lar vectors of G from its rank-r truncated SVD. The stop-
ping criterion for all methods is thus η ≤ ε. This criterion
is meaningful in feature learning tasks as the aim is to learn
embeddings of the given data as scalar products with the
singular vectors, rather than approximating the full kernel
matrix. We use random subsampling for all Nyström meth-
ods and increase the number of subsamples m to achieve
the target ε, where we use m = n as the kernel matrices are
square; we employ the SNE kernel and set r = 20.

Table 4 shows the algorithm running time at tolerance level
ε = 10−1. We also show the speedup w.r.t. RSVD, i.e.,
t(RSVD)/t(Ours), where t(RSVD), t(Ours) denote the training time
of RSVD and our asymmetric Nyström solver. Our solver
shows to be the fastest and our improvement is more sig-
nificant with larger problem sizes. In Appendix B.2, we
present the results at tolerance level ε = 10−2, also veri-
fying our advantages. Further, we consider that a solver’s
performance may depend on the singular spectrum of the
kernel. We vary the bandwidth γ of the SNE kernel on Cora
to assess how the singular value decay of the kernel matrix
affects performance, where an increased γ leads to spectra
with faster decay, and vice versa.

In Fig. 4, we vary γ and show the required subsamples m
to achieve the given tolerance and the runtime speedup w.r.t.
RSVD. Our method shows overall speedup to RSVD, and
our asymmetric Nyström requires significantly fewer sub-
samples on matrices with faster singular spectrum decay,
showing greater speedup in this scenario. In Fig. 5, the node
classification F1 score (Macro) is reported for several values
of subsamples m, where KSVD employs the asymmetric
Nyström method and KPCA uses the symmetric Nyström
on the same RBF kernel. It shows superior performances of
the asymmetric method at all considered m without signifi-
cant accuracy decrease due to the subsampling. Additional
results are provided in Appendix B.
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Table 3. Downstream task results on general UCI datasets, where the best results are in bold.

Dataset Metric KPCA
(RBF)

KPCA
(RBF Learnable C)

KSVD (RBF) KSVD (SNE)

a0 a1 a2 Learnable C (a3) a0 a1 a2 Learnable C (a3)

Diabetes ACC (↑) 0.67 0.68 0.66 0.67 0.67 0.71 0.66 0.65 0.67 0.69
Ionosphere ACC (↑) 0.67 0.68 0.68 0.69 0.69 0.70 0.70 0.67 0.68 0.72

Liver ACC (↑) 0.71 0.72 0.74 0.70 0.71 0.76 0.71 0.72 0.70 0.75
Cholesterol RMSE (↓) 59.36 53.14 54.53 52.80 55.24 45.91 49.11 47.83 48.12 44.40

Yacht RMSE (↓) 15.85 14.05 14.90 14.74 16.57 12.98 15.41 14.18 13.89 13.05
Physicochemical-protein RMSE (↓) 5.96 5.96 5.94 5.96 6.01 5.90 5.96 6.03 6.00 5.93

Table 4. Runtime for multiple KSVD problems at tolerance ϵ =
10−1; the lowest solution time is in bold.

Task N
Time (s)

TSVD RSVD Sym. Nys. Ours Speedup

Cora 2708 0.841 0.274 0.673 0.160 1.71×
Citeseer 3312 0.568 0.290 0.214 0.136 2.14×
PubMed 19717 9.223 4.577 44.914 0.141 32.51×
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Figure 4. Varying singular spectrum. Number of samples m
(green) to achieve a fixed tolerance and the speedup factor w.r.t.
RSVD (blue) on Cora when the spectrum of G varies (larger γ leads
to faster decay).
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Figure 5. Effect of m. Performance on Cora at different m by asym-
metric Nyström. Dashed lines indicate the exact solution.

5. Conclusion
This work presents a novel learning scheme for asymmetric
learning in feature spaces. We establish that the solution
to the coupled covariances eigenproblem (CCE) can be ob-
tained by performing SVD on an asymmetric kernel matrix,
providing a new perspective on KSVD grounded in covari-
ance operators. In addition, the resulting computations can
be sped up on large-scale problems, thanks to the formally
derived asymmetric Nyström method. Numerical results

show the potential of the retained asymmetry and nonlinear-
ity realized in KSVD and the effectiveness of the developed
asymmetric Nyström method. The insights and methodolo-
gies in this work pave the way for further exploration of
asymmetric kernel methods in machine learning.
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A. Further comparisons with related work
A.1. KSVD and discussions with related work

Our main interest in this work is to derive a new formulation for KSVD, to promote more insights into nonlinear feature
learning with considerations to asymmetry. We start from a new asymmetric learning paradigm based on coupled covariances
eigenproblem (CCE) and show that the solutions to CCE leads to the KSVD problem associated with a specific asymmetric
similarity matrix that blends in two feature maps. Our formulations involve two covariance operators allowing to work
with infinite-dimensional feature mappings with induced asymmetric kernels, aiming to provide a vigorous formalization
equipped with interpretations w.r.t. both the covariance matrix and kernel matrix. KSVD attains an asymmetric kernel
matrix G simultaneously coupling two sets of mapping information, which is intrinsically different from KPCA. Through
this work, we would also like to convey that although the solutions of PCA and KPCA can be computed numerically by the
linear algebra tool of SVD, PCA is essentially different from SVD, and so is KPCA from KSVD.

The solution of KSVD leads (4) in terms of an asymmetric kernel G instead of the given data matrix A, and is therefore
related to the compact SVD as a solution to (4). (Suykens, 2016) revisits the compact matrix SVD with a variational principle
under the setups of least squares support vector machines (LSSVM), where the dual solution leads to a shifted eigenvalue
problem regarding the given data matrix A. It focuses on the (linear) matrix SVD; although it mentions the possibility with
nonlinearity by transforming A into some asymmetric kernel matrix of the same size, it cannot deal with infinite-dimensional
feature spaces nor nor connect to the covariances, where it neither formalizes the derivations to the kernel trick, nor mentions
possible applications with any experimental evaluations. In (Chen et al., 2023), the asymmetric self-attention is remodelled
for low-rank properties through the finite-dimensional feature mappings with neural networks.The queries and keys are
regarded as two data sources and directly tackle the self-attention by applying the variational objective proposed in (Suykens,
2016) as an auxiliary regularization loss into the optimization objective, which is iteratively minimized to approach zero and
cannot provide the singular vectors nor singular values. In the early work of Schmidt (Schmidt, 1907), the shifted eigenvalue
problem is also discussed w.r.t. the integral equations regarding a pair of adjoint eigenfunctions in the continuous cases with
function spaces. Hence, we can see that there can be multiple frameworks that can lead to a solution in the form resembling
a shifted eigenvalue problem either on the given data matrix or an asymmetric kernel matrix as derived in KSVD, whereas
different goals are pertained in the addressed scenarios and the methodologies are also varied with different optimization
objectives and interpretations.

Moreover, to get the terminology of KSVD clearer, we additionally discuss the differences to a few other existing works that
share some similarities in naming the methodology. In (Neto & Rodrigues, 2023), it considers a new algorithm for SVD that
incrementally estimates each set of robust singular values and vectors by replacing the Euclidean norm with the Gaussian
norm in the objective. Different from kernel-based methods, (Neto & Rodrigues, 2023) operates in the original space, not in
the feature space, where the kernel is only used in the objective for the estimator and the data are not processed with any
nonlinearity in the feature space. Despite the similarity in names, the tasks and methodologies in (Neto & Rodrigues, 2023)
and KSVD are intrinsically different. In (He et al., 2023), it presents how to apply asymmetric kernels with LSSVMs for
supervised classification with both input samples and their labels, and is derived with finite-dimensional feature spaces. In
particular, unlike our construction with X and Z , (He et al., 2023) can only consider a single data set under the context of its
supervised task, exploring the supervised learning for the row data and possibly missing full exploitation of the asymmetry
residing in the data. Accordingly, the asymmetry in (He et al., 2023) only comes from the choice of the asymmetric kernel
function, while our asymmetry also comes from jointly handling two different sets. In (Vasilescu, 2009), KPCA is extended
to tensor data to analyze the factors w.r.t. each mode of the tensor, where SVD is applied to solve the eigendecomposition of
the KPCA problem in each mode and the left singular vectors (i.e., eigenvectors) are obtained as the nonlinear factor for
each mode. (Vasilescu, 2009) still only considers the symmetry in feature learning but extend it to higher-order tensors.
Hence, the data processing, the kernel-based learning scheme, the optimization framework, and also the task are all different
from the ones considered in the present work.

A.2. Asymmetric Nyström method and related work

A.2.1. BACKGROUND

The existing Nyström method starts from the numerical treatment of an integral equation with a symmetric kernel function
κ̂(·, ·) such that λu(x) =

∫ b
a
κ̂(x, z)u(x) dx, i.e., the continuous analogue to the eigenvalue problem, where the quadrature

technique can be applied to formulate the discretized approximation (Baker, 1981). Concerning the more general cases
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with multivariate inputs, the probability density function and the empirical average technique of finite sampling have been
utilized to compute the approximated eigenfunctions that correspond to the eigenvectors (Baker, 1981; Schölkopf et al.,
1999). To better illustrate the differences to the established asymmetric Nyström, we provide more details on the symmetric
Nyström method for reference, based on the derivations from (Williams & Seeger, 2000).

Given the i.i.d. samples {x1, . . . , xq} from the probability density px(x) over Dx, an empirical average is used to
approximate the integral of the eigenfunction with a symmetrick kernel:

λsus(x) =

∫
Dx

κ̂(x, z)us(x)px(x) dx ≈ 1

q

∑q

i=1
κ̂(x, xi)us(xi), (10)

where us is said to be an eigenfunction of κ̂(·, ·) corresponding to the eigenvalues with λ1 ≥ λ2 ≥ . . . ≥ 0. By running
x in (10) at {x1, . . . , xq}, an eigenvalue problem is motivated, such that G(q)U (q) = U (q)Λ(q), where G(q) ∈ Rq×q is the
Gram matrix with G(q)

ij = κ̂(xi, xj) for i, j = 1, . . . , N , U (q) = [u
(q)
1 , . . . , u

(q)
q ] ∈ Rq×q is column orthonormal and the

diagonal matrix Λ(q) ∈ Rq×q contains the eigenvalues such that λ(q)1 ≥ . . . ≥ λ
(q)
q ≥ 0. In this case, the approximation of

eigenvalues and eigenfunction from the integral equation (10) arrives at:

λs ≈
λ
(q)
s

q
, us(xi) ≈

√
qU

(q)
i,s , (11)

which can be plugged back to (10), leading to the Nyström approximation to the i-th eigenfunction:

us(x) ≈
√
q

λ
(q)
s

q∑
i=1

κ̂(x, xi)U
(q)
i,s , (12)

with ∀s : λ(q)s > 0. With the Nyström technique in (12), one can use different sampling sets to approximate the integral (10).
Thus, given a larger-scale Gram matrix G(N) ∈ RN×N , for the first p eigenvalues and eigenfunctions, a subset of training
data q ≜ n < N can be utilized to attain their approximation at all N points for the kernel matrix G(N) with (11):

λ̃(N)
s ≜

N

n
λ(n)s , ũ(N)

s ≜

√
n

N

1

λ
(n)
s

GN,nu
(n)
s , (13)

where λ̃(N)
s and ũ(N)

s are the Nyström approximation of the eigenvalues and eigenvectos ofG(N). Here u(n)s are eigenvectors
corresponding to the s-th eigenvalues λ(n)s of an n× n submatrix Gn,n and GN,n is the submatrix by sampling n columns
of G(N).

A.2.2. DISCUSSIONS

We provide the following remarks elaborating on the existing Nyström method w.r.t. the eigenvalue problem for Mercer
kernels and our extended Nyström method w.r.t. the SVD problem for asymmetric kernels.

1. Integral equations. As shown in Section A.2.1 above, the existing Nyström method starts from a single integral
equation with a symmetric kernel κ̂(·, ·), corresponding to an eigenvalue problem in the discretized scenarios (Baker,
1981; Williams & Seeger, 2000). Thus, the existing Nyström method is derived only for Mercer kernels with symmetry
constraints on the tackled matrix. Differently, the proposed asymmetric Nyström method deals with an asymmetric
kernel κ(·, ·) and starts from a pair of adjoint eigenfunctions, which jointly determine an SVD problem in the discretized
scenarios (Schmidt, 1907; Stewart, 1993). In (Drineas et al., 2005; Nemtsov et al., 2016), the matrix compression is
discussed with Nyström-like methods to general matrices. However, the method in (Nemtsov et al., 2016) is formulated
to approximate subparts of the left and right singular vectors, and still applies the symmetric Nyström method to
heuristically approximate the asymmetric submatrix twice for the corresponding subparts; (Drineas et al., 2005) directly
applies the symmetric Nyström method and resembles its formulas to approximate left and right singular vectors of
general matrices, ignoring the asymmetry constraints. Rather than working with singular vectors, (Xiong et al., 2021)
utilizes the technique in (Drineas et al., 2005) to the submatrix blocks to approximate a surrogate attention matrix
in Transformers for computation efficiency. Hence, the analytical framework of the asymmetric Nyström method
has not been formally formulated yet. In our paper, the explicit rationale of leveraging the Nyström technique is
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provided for the asymmetric matrices through the finite sample approximation to the pair of adjoint eigenfunction,
which incorporates the asymmetry constraints on the tackled matrix, so that from analytical and practical aspects it
becomes viable to directly apply the asymmetric Nyström method to the cases that pertain the asymmetric nature.

2. Special case with symmetry. In the derivations on the finite sample approximation, three scalings lλs
, lus

, and lvs are
introduced to the singular values λs, right singular vectors us(x), and left singular vectors vs(z) in Eq. (7) in Section 4
in the paper, for the considerations on their norms. Meanwhile, the constant coefficients in the two equations in Eq.
(8) in the paper are required to be the same in scalings to proceed the derivations that match the SVD problem. In
the existing symmetric Nyström method, the scaling issue of the approximated eigenfunction does not appear with
lλsλlusu(x) =

∫
κ̂(x, z)lusu(x)px(x) dx, as the scaling lus is cancelled out in the two sides of this equation, i.e., the

Eq. (10) above. Thus, in (10) it implicitly sets the scaling of the eigenvalue as lλs
= 1 (Williams & Seeger, 2000),

while in (13) lλs
is set as 1/N in the application of the Nyström method to speedup the eigenvalue problem on a larger

Gram matrix G(N).

Note that, for feature learning, we only need to find the singular vectors in Eq. (10) or (11) in the paper, which are
taken as embeddings of the given data for downstream tasks. The computation of the singular values can be omitted,
so that we can simply implement the scaling through normalization in practice. The numerical computation of the
approximated kernel matrix is also not necessary for the considered feature learning tasks. When considering the
special case where the kernel matrix G in KSVD is square (N = M ) and symmetric (G = G⊤), the numbers of
samplings to the rows and column are the same (n = m), and the scaling lλs

is set the same, the asymmetric Nyström
method boils down to the existing Nyström method.

3. Another alternative derivation. We consider an asymmetric kernel function κ(x, y), and define the induced kernel
operator and its adjoint by

(Gg)(x) = Epx(x)[κ(x, Y )g(Y )],

(G∗f)(y) = Epy(y)[κ(X, y)f(X)],
(14)

for L2-integrable functions f and g, where we denote the two datasets in the matrix form by arranging the samples
row-wisely in X and Y , respectively. Then, the left and right s-th singular functions us(·) and vs(·) of the kernel
operator κ(x, y) satisfy

(G∗us)(y) = λsvs(y),

(Gvs)(x) = λsus(x).
(15)

Given n samples x1, . . . , xn drawn from px(x) and m samples y1, . . . , ym drawn from py(y), the relations can be
approximated as

vs(y) =
1

σs
(G∗us)(y) ≈

1

nλs

n∑
i=1

κ(xi, y)us(xi),

us(x) =
1

σs
(Gvs)(x) ≈

1

mλs

m∑
j=1

κ(x, yj)vs(yj).

(16)

As G = [κ(xi, yj)] = UΛV T ∈ Rn×m, we then scale the kernel matrix by 1/
√
mn, and the left and right singular

vectors by 1/
√
n and 1/

√
m, respectively, yielding the approximated estimates of the pair of adjoint eigenfunctions:

v(n,m)
s (y) ≈ 1

nλs

n∑
i=1

κ(xi, y)U
(n,m)
is ,

u(n,m)
s (x) ≈ 1

mλs

m∑
j=1

κ(x, yj)V
(n,m)
js ,

(17)

such that

vs(y) ≈
1

nλs

n∑
i=1

κ(xi, y)us(xi) ⇒
√
mn

Nλs

n∑
i=1

κ(xi, yj)
√
nUis ≈

√
mVjs ⇒

1

λs

n∑
i=1

κ(xi, yj)Uis ≈ Vjs,

us(x) ≈
1

mλs

m∑
j=1

κ(x, yj)vs(yj) ⇒
√
mn

mλs

m∑
j=1

κ(xi, yj)
√
mVjs ≈

√
NUis ⇒

1

λs

m∑
j=1

κ(xi, yj)Vjs ≈ Uis,

(18)
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which indeed correspond to matrix SVD in (7).

Note that while this alternative above can also derive the asymmetric Nyström method, it is different from the
techniques presented in Section 3. In contrast, the derivation in (3) starts from the integral equations of the pair
of adjoint eigenfunctions with asymmetric kernels. One of our goals is to align and compare w.r.t. the symmetric
Nyström in (Williams & Seeger, 2000), which is widely adopted in machine learning, which views the Nyström
approximation (Baker, 1981) originally from the integral equations with symmetric kernels, as presented in Section
A.2 in the Appendix, where thorough comparisons on the connections and differences are discussed.

B. Additional numerical results
B.1. Additional ablations on KSVD

To further study the effect of simultaneous nonlinearity and asymmetry in KSVD, we design the following experiment.
We first make some non-linear encoding in a preprocessing step to the samples xi (i.e., rows of the given data matrix A)
and then compute SVD, and compare the downstream classification/regression results with SVD on the asymmetric kernel
matrix. Specifically, we consider polynomial features with degree 2 of the samples xi as φ(xi) and then apply SVD to
φ(A) = [φ(x1), . . . , φ(xN )]⊤ as φ(A) = UAΣAV

⊤
A and use UA as the learned embeddings. Correspondingly, KSVD

employs the polynomial kernel of degree 2 kpoly(x, z) = (x⊤z + 1)2 and applies SVD to the asymmetric kernel matrix
Gij = k(xi, zj) and we use the singular vectors Bϕ as the learned embeddings for fair comparisons. The embeddings are
then fed to a linear classifier/regressor for the downstream classification/regression tasks as in Section 4.3 in the main paper.

Table 5. Ablation study on SVD applied after nonlinear preprocessing v.s. KSVD. Higher values (↑) are better for AUROC and lower
values (↓) are better for RMSE.

Method AUROC (↑) RMSE (↓)

Diabetes Ionosphere Liver Cholesterol Yacht Physicochemical-protein

Nonlinear+SVD 0.6296 0.7292 0.7032 49.0867 15.0002 5.9517
KSVD 0.7607 0.8374 0.7100 49.1592 14.6489 5.4583

This experiment shows the additional benefit brought by the construction on row space and column space, as X ,Z in our
derivations, and with the asymmetric kernel trick, instead of simply applying SVD to a matrix which is attained by applying
some nonlinear transformation to the rows of the data matrix A. In fact, our experiments show that KSVD is an effective
tool to learn more informative embeddings when the given data physically present asymmetric similarities as in Sections 4.1
and 4.2 in the main paper, and it also shows better performance for general datasets as experimented in Section 4.3 in the
main paper.

B.2. Additional results on the asymmetric Nyström method

In Figure 6 in the main paper, the node classification F1 score is reported for multiple number of subsamplings m, where
KSVD (green line) employs the asymmetric Nyström method and KPCA (blue line) uses the symmetric Nyström, both
employing the RBF kernel. Note that, as explained in the main paper, the resulting kernel matrix G in KSVD maintains
the asymmetry even with the (symmetric) RBF function, as the kernel is applied to two different inputs, i.e., X and Z .
Note that the data matrix is square, so we can set m = n for the subsamplings of the asymmetric Nyström. In addition, we
provide the corresponding Micro F1 scores on Cora and also add the evaluations on Citeseer and Pubmed. The asymmetric
Nyström-based kernel method KSVD shows superior performances at all considered m compared to KPCA without
significant decrease in accuracy of the solution due to the subsampling.

In Table 6, we provide extensional results on Table 4 for the tolerance levels ε = 10−1 and 10−2, showing the training time
and the speedup w.r.t. RSVD, i.e. t(RSVD)/t(Ours), where t(RSVD), t(Ours) is the training time of RSVD and our asymmetric
Nyström solver, respectively. Our solver maintain the fastest than the compared solvers and our improvement is more
significant with larger problem sizes.

We further experiment on large-scale datasets with millions of samples and features in Table 7 below, showing the
classification performance (AUROC) of KPCA/KSVD with RBF with subsampling m = 1000, where N is the number of
samples and M is the number of variables. We employ alternative a2 for the compatibility matrix C. In Table 7, KSVD
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Figure 6. F1 Scores at different numbers of subsampling m with the asymmetric and symmetric Nyström method. Green line: KSVD,
blue line: KPCA.

achieves the best performance also in real-world large datasets, further verifying the effectiveness and scalability.

Table 6. Runtime for multiple KSVD problems at different tolerances; the lowest solution time is in bold.

Task N
Time (s) for ε = 10−1 Time (s) for ε = 10−2

TSVD RSVD Sym. Nys. Ours Speedup TSVD RSVD Sym. Nys. Ours Speedup

Cora 2708 0.841 0.274 0.673 0.160 1.71× 0.841 0.313 0.681 0.225 1.39×
Citeseer 3312 0.568 0.290 0.214 0.136 2.14× 0.568 0.396 0.425 0.239 1.66×
PubMed 19717 9.223 4.577 44.914 0.141 32.51× 9.223 5.209 53.297 0.590 8.83×

Table 7. Classification results with AUROC metric (↑) on large-scale real-world datasets from (Chang & Lin, 2011).

Dataset N M KPCA KSVD

AmazonCat-13K 1,186,239 203,882 0.51 0.55
Avazu 14,596,137 1,000,000 0.52 0.67
Criteo 45,840,617 1,000,000 0.54 0.63

C. Experimental details
Details of the experimental setups are provided below. Experiments in Sections 4.1 and 4.2 are implemented in MATLAB
2023b, and Python 3.7 is used in Section 4.3. Experiments are run on a PC with an Intel i7-8700K and 64GB RAM, and
experiments in Section 4.3 use a single NVIDIA GeForce RTX 2070 SUPER GPU.

C.1. Feature learning experiments

In the experiments, we conduct 10-fold cross validation for determining kernel hyperparameters with grid searches in the
same range for fair comparisons. The employed nonlinear kernels in the experiments are κ̂RBF(x, z) = exp(−∥x−z∥2

2

γ2 )

and κSNE(x, z) =
exp(−∥x−z∥2

2/γ
2)∑

z′∈Z exp(−∥x−z′∥2
2/γ

2)
with hyperparameter γ. In the node classification experiments, we denote

A =: X = [x1, . . . , xN ]⊤ as the asymmetric adjacency matrix withXij as the directed similarity between node i and node j.
KPCA is conducted for feature extraction in the following way: we compute symmetric kernel matrix Ĝ s.t. Ĝij = k̂(xi, xj),
with (symmetric) RBF kernel k̂, and its top 1000 eigenvectors are taken as the extracted features taken as input to the
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Table 8. Descriptions of the tested directed graph datasets.
Datasets Cora Citeseer Pubmed TwitchPT BlogCatalog

# Nodes 2708 3327 19717 1,912 10,312
# Edges 5429 4732 44338 64,510 333,983
# Classes 7 6 3 2 39

Table 9. Descriptions of the tested datasets for biclustering (Fettal et al., 2022).
Datasets ACM DBLP Pubmed Wiki

# Documents 3025 4057 19717 2405
# Terms 1870 334 500 4973
# Document clusters 3 4 3 17
# Term clusters 18 2 3 23

LSSVM classifier, following (He et al., 2023). PCA is conducted similarly by taking the linear kernel k̂(xi, xj) = x⊤i xj .
For all methods, we employ an LSSVM classifier with regularization parameter set to 1 and we utilize the one-vs-rest
scheme. We use the original implementations of the authors for all baselines and the best parameters reported in their
papers. Graph reconstruction is a typical task in node representation learning and is helpful to evaluate how well the learned
representations preserve neighborhood information in embedding space. Graph reconstruction reconstructs all existing
edges by reconstructing the full adjacency matrix from embedding space. In this task, with the feature embeddings extracted
by all tested methods, we recover the matrix that reflects the edges between nodes and then the connections between each
node. For a given node v with the out-degree kv, the closest kv nodes to v in feature space are searched to reconstruct the
adjacency matrix. The ℓ1, ℓ2 norms between X and its reconstruction are evaluated.

In biclustering tasks, the closely related baseline methods, i.e., SVD and KPCA, are compared with KSVD, where the
kernel setup is the same as above. Specifically, we apply SVD and KSVD on the data matrix with attained left and right
singular vectors and then k-means is adopted for performing the biclustering task with extracted features, where we use the
scikit-learn in Python to implement k-means. We note that as KPCA only works with symmetric kernels, so KPCA is applied
twice. We also compare with the biclustering method EBC (Percha & Altman, 2015) based on ensemble and the recently
proposed BCOT method (Fettal et al., 2022) based on optimal transport. We follow the data setups and evaluations in (Fettal
et al., 2022) with official sources in https://github.com/chakib401/BCOT: the rows relate to the clustering of
documents, where the ground truth can be compared through the popular clustering metric NMI; the columns relate to
the clustering of terms, where the Coherence index is used (Dhillon et al., 2003). For the compatibility matrix C, we use
alternative a1. The results of BCOT are taken from its orignal paper (Fettal et al., 2022), and EBC are ran by its official
codes provided in https://github.com/blpercha/ebc with threshold 10−4. On the tested datasets, we provide
their descriptions in Table 8 and Table 9. The results of BCOT are from its paper (Fettal et al., 2022), and EBC are ran by
official codes with threshold 10−4.

C.2. Nyström experiments

In this part, we evaluate the efficiency of the proposed asymmetric Nyström method with comparisons to other standard
solvers. The accuracy of a solution Ũ = [ũ1, . . . , ũr], Ṽ = [ṽ1, . . . , ṽr], is evaluated as the weighted average η =
1
r

∑r
i=1 wi(1− |u⊤i ũi

∥ũi∥ |) +
1
r

∑s
i=1 wi(1− |v⊤i ṽi

∥ṽi∥ |), with wi = λi, where r is the rank of the low-rank approximation,
U = [u1, . . . , ur], V = [v1, . . . , vr] are the left and right singular vectors of G from its rank-r compact SVD with singular
values λ1 ≥ · · · ≥ λr. We compare our method with three common SVD solvers: truncated SVD (SVD) from the ARPACK
library, Symmetric Nyström (Williams & Seeger, 2000) applied to GG⊤ and G⊤G, and randomized SVD (RSVD) (Halko
et al., 2011). We employ the Lanczos method at rank r (Lehoucq et al., 1998) for the SVD subproblem of symmetric
Nyström, and we employ RSVD at rank r for the SVD subproblem of asymmetric Nyström. Truncated SVD is run to
machine precision for comparison. For a given tolerance ε, we stop training when η < ε, with η being the accuracy of a
solution.

In Table 4 in the paper, we evaluate multiple tolerances, i.e., ε = 10−1, 10−2. In particular, for RSVD, we increase
the number of oversamples until the target tolerance is reached. For the Nyström methods, we increase the number of
subsamples m until the target tolerance is reached. We use random subsampling for all Nyström methods. The tolerance
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used in Figures 4 and 5 is ε = 10−2. In Table 4, the SNE kernel bandwidth is set as γ = k
√
Mγx, with γx the variance of

the training data and data-dependent k (k = 1 for Cora and Citeseer, k = 0.5 for Pubmed); e.g., for Cora γx = 0.0002 and
γ = k

√
Mγx ≈ 0.74. This gives an indication on the scaling w.r.t γ in Figure 4. In Figure 4, we consider that a solver’s

performance may depend on the singular spectrum of the kernel matrix, so we vary γ as shown in the horizontal axis in
Figure 4, where an increased γ leads to spectra with faster decay, and assess training time. Our approach shows overall
speedup compared to RSVD, and our asymmetric Nyström requires significantly fewer subsamples on the matrices with
faster decay of the singular spectrum, showing greater speedup w.r.t. RSVD in this scenario. In the experiments of Fig. 6 in
this Appendix and of Figure 5 in the main body, we compare the node classification performance of KPCA using symmetric
Nyström against KSVD using our proposed asymmetric Nyström. We use the RBF kernel for both KPCA and KSVD, with
γ tuned via 10-fold cross validation. Note that KSVD achieves higher performance at all considered subsamplings m, even
if both methods use the RBF kernel. Similarly, even when symmetric kernel functions are chosen, the resulting G matrix in
the KSVD solution w.r.t. (2.4) in the paper still maintains the asymmetry, as the two inputs of the kernel is applied to X and
Z , respectively.

C.3. General data experiments

In the experiments on general datasets, we consider three common classification datasets, including Diabetes of size 768,
Ionosphere of size 351, Liver of size 583, and three commonly used regssion datasets, including Cholesterol of size 303,
Yacht of size 308, and Physicochemical-protein of size 45730. Note that, though only the embeddings for samples are
needed in prediction, i.e., the right singular vectors in KSVD and the eigenvectors in KPCA, the embeddings by KSVD are
learned on an asymmetric kernel with two feature maps, while in KPCA they are learned with a symmetric kernel relating to
a single feature map. To implement a learnable C matrix in KSVD, i.e., the alternative a3 in Remark 3.2 in the paper, we
utilize the backpropagation learning scheme with stochastic gradient descent (SGD) based optimizers for minimizing the
loss in the downstream tasks. Correspondingly, we set C matrix as learnable parameters that can be backpropagated and
optimized by SGD-based optimizer in an end-to-end manner. To make C learnable, we set GV as the learned features on
the data samples to the downstream classifier/regressor, where V is chosen as the top-4 right singular vectors of G. In this
manner, gradient can be backpropagated, where V is alternatively updated through the SVD on G. To be specific, we adopt
an iterative training scheme for conducting SVD on the asymmetric kernel matrix G and updating other parameters: i) for
input X and Z, which is given as Z := X⊤C in this case, we compute the asymmetric kernel matrix G := [κ(x, z)], x ∈ X ,
z ∈ Z, and then conduct SVD on G to obtain V s.t. GV = UΛ. ii) As C can only be backpropagated through G, we detach
the gradient of V computed in previous step and fix it, we then forward X , Z to update G and send the projected features of
samples from KSVD, i.e., GV , to the classification or regression head with the computed loss (cross-entropy loss or the
mean squared error loss), and update all the parameters except V . In other experiments using KPCA or fixed C, i.e., a0, a1,
a2, we also train these methods with SGD-based optimizers, which makes our KSVD comparable to the learnable C case in
a3 for fair and consistent evaluations. Here, the difference lies in that we only need to update the classification/regression
head, as the projected features of all samples (GV ) is fixed with the given input data.

We adopt SGD as the optimizer for the linear classification or regression head, where the learning rate is set to 10−3 for all
experiments except Cholesterol (10−1) and Physicochemical-protein (10−4). We choose the first 4 right singular vectors,
i.e., GV[:,:4], to feed forward to the classification or regression head. When RBF kernel is used, γ2 is selected as 1e7 in most
cases except for Physicochemical-protein dataset, which is with 1e6. When SNE kernel is used, γ2 is selected as 1e5 in most
cases except for Ionosphere dataset with 1e6, Liver dataset with 1e4. Moreover, since Physicochemical-protein is a larger
dataset, we utilize batch-training mode where we fix the batch size to be 500. All experiments are run for 2000 iterations.

D. Algorithm for C

Algorithm 1 details the realization of the compatibility matrix discussed in Section 2.2 in the main paper. Below, we consider
the case M > N , where we construct the projection matrix Cx ∈ RM×N such that XCx ∈ RN×N . If N > M , we rather
construct Cz ∈ RN×M such that ZCz ∈ RM×M . The construction of Cz mirrors the algorithm for Cx with the appropriate
changes. In the case of square matrix with N =M , C = IN , with IN the identity matrix of size N ×N .
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Algorithm 1 Compatibility Matrix Realization.
Input: X = {xi ∈ RM}Ni=1

Define X = [x1, . . . , xN ]⊤

if projection on xi then
Cx = argmin

C

∥∥X −XCC⊤
∥∥2
F

{Alternative a1}

else if randomized projection then
Cx = randn(M,N) {Alternative a2}

else if pseudoinverse then
Cx =

(
(XX⊤)†X

)⊤
{Alternative a0}

else if learnable then
Cx is learned by optimizing the downstream task objective. {Alternative a3}

end if
Return: Cx

E. Proof of Proposition 2.2
Proof. Let Bϕ ∈ Rn×r.

[ΓψΓ
∗
ϕBϕ]jl =

1√
m
⟨ψ(zj),

1√
n

n∑
i=1

bϕilϕ(xi)⟩

=

n∑
i=1

1√
nm

⟨ϕ(xi), ψ(zj)⟩bϕil

= [G⊤Bϕ]jl

The proof for ΓϕΓ∗
ψ is similar.

F. Proof of Proposition 3.3
Proof. Apply on the left respectively Γϕ and Γψ to both equations from Equation (3) combined with Proposition 3.2.

G. Proof of Proposition 3.4
Proof. Perform the substitution of the proposed Wϕ,Wψ in the CCE problem with the knowledge that Bsvd

ϕ , Bsvd
ψ come

from the SVD of G.
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