Rethinking Verification for LLM Code Generation:
From Generation to Testing

Zihan Ma'23*, Taolin Zhang'*, Maosong Cao', Junnan Liu', Wenwei Zhang',
Minnan Luo®>f, Songyang Zhang'- , Kai Chen"
!Shanghai Al Laboratory
2School of Computer Science and Technology, Xi’an Jiaotong University, China
SMOE KLINNS Lab, Xi’an Jiaotong University, China
{mazihan880}@stu.xjtu.edu.cn
{zhangtaolin,zhangsongyang}@pjlab.org.cn
{minnluo}@xjtu.edu.cn

Abstract

Large language models (LLMs) have recently achieved notable success in
code-generation benchmarks such as HumanEval and LiveCodeBench. However, a
detailed examination reveals that these evaluation suites often comprise only a lim-
ited number of homogeneous test cases, resulting in subtle faults going undetected.
This not only artificially inflates measured performance but also compromises ac-
curate reward estimation in reinforcement learning frameworks utilizing verifiable
rewards (RLVR). To address these critical shortcomings, we systematically investi-
gate the test-case generation (TCG) task by proposing multi-dimensional metrics
designed to rigorously quantify test-suite thoroughness. Furthermore, we introduce
a human-LLM collaborative method (SAGA), leveraging human programming
expertise with LLM reasoning capability, aimed at significantly enhancing both
the coverage and the quality of generated test cases. In addition, we develop a
TCGBench to facilitate the study of the TCG task. Experiments show that SAGA
achieves a detection rate of 90.62% and a verifier accuracy of 32.58% on TCG-
Bench. The Verifier Accuracy (Verifier Acc) of the code generation evaluation
benchmark synthesized by SAGA is 10.78% higher than that of LiveCodeBench-v6.
These results demonstrate the effectiveness of our proposed method. We hope
this work contributes to building a scalable foundation for reliable LLM code
evaluation, further advancing RLVR in code generation, and paving the way for
automated adversarial test synthesis and adaptive benchmark integration. '

1 Introduction

Large Language Models (LLMs) have triggered a paradigm shift in automatic code generation,
demonstrating capabilities on par with or even exceeding human programmers on numerous bench-
mark tasks. As LLMs become increasingly integrated into software development workflows, ensuring
the quality and reliability of the code they produce is paramount. This necessitates reliable evaluation
methodologies, where code verifiers—typically powered by test suites—play a critical role. This
raises a crucial question: Are the test cases of current benchmarks for evaluating models’ code
capabilities robust enough?

Initial analyses of benchmarks like HumanEval [6] (avg. 7.7 tests/problem), MBPP [3] (3 tests/prob-
lem), and EvalPlus [27, 28] (which saw a 15% pass rate drop with 80x more tests) indicate the

1 means corresponding authors, ¥ means project lead, = means authors contributed equally.
'The data demo and prompts can be accessed via https://github.com/open-compass/SAGA

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/open-compass/SAGA

fragility of current evaluation setups due to sparse test coverage. While methods like TestEval [42]
tailor tests to specific solutions, they are inefficient for large-scale evaluation and impractical for
dynamic integration into RL training loops, thereby hindering the development of models robust
against diverse failures. LiveCodeBench [19] employs LLMs to generate numerous tests from golden
solutions and synthetic inputs, aiming to enhance robustness.

However, a fundamental concern is that such ®)
methods may inadvertently create tests biased
towards typical, often homogenized, LLM er-
ror patterns, which starkly contrast with diverse
human reasoning errors. Conversely, compet-

itive programming platforms (Online Judges) e s]| 950
possess extensive, rigorously curated test suites — e Lt]
for assessing code robustness, but these are often Number of Test Cases S U ’

private and inaccessible. This underscores the Figure 1: (a) Verifiers synthesized primarily from
urgent need for accessible and robust code ver- LLM-generated data exhibit a high failure rate
ifiers to enable reliable performance evaluation when testing human-written bugs. (b) PCA analy-
and reward estimation. sis reveals that LLM-induced errors are highly clus-
tered, indicating systematic weaknesses, whereas
human errors are diverse and dispersed, posing
greater challenges to existing verifiers.

—
o
=

0.00

3

-0.20

3

0.40

Failure Rate(%)

In this work, we first identify limitations in
current benchmarks through preliminary exper-
iments. Our investigation reveals critical weak-
nesses in existing verifier suites. Specifically,
when we took LLM-generated solutions that had passed LiveCodeBench’s private tests and re-
evaluated them on LeetCode’s online judge, we found that for a significant portion of these solu-
tions—20% for medium and 40% for hard problems, respectively—LeetCode identified errors that
LiveCodeBench’s verifier had missed. This demonstrates that LiveCodeBench’s verifiers can be
flawed, failing to achieve comprehensive error detection and thereby overestimating the true quality
of the LLM-generated solutions. Furthermore, these LLM-centric verifiers themselves exhibit a high
failure rate (i.e., they fail to detect existing bugs) when evaluating human-written faulty code, a rate
much higher than any apparent failure rate on LLM-generated errors (Figure 1(a)). PCA analysis
of error patterns (Figure 1(b)) reveals that LLM errors cluster tightly, indicating shared systematic
biases, while human errors are widely distributed across a complex error landscape.

These findings underscore the fundamental inadequacy of constructing verifiers solely from LLM-
generated data, as such approaches misassess LLMs’ coding capabilities and provide flawed training
feedback, manifesting two critical challenges: (1) Test Case Homogenization and LLM-Centric
Bias: LLM-based TCG methods produce test suites that mirror the generating models’ error patterns
and cognitive biases, creating a “homogenization trap” where tests focus on LLM-like failures while
neglecting diverse human programming errors (e.g., logical flaws, integer overflows). (2) Verifier
Ineffectiveness and Persistent Blind Spots: Verifiers built on such test suites exhibit blind spots
for human-like errors, failing to rigorously evaluate code due to challenges in generating tests for
complex boundary conditions and interaction scenarios, compounded by LLM-centric test design.
These challenges impede reinforcement learning frameworks (e.g., DeepSeek-R1 [8], O1-I0I [10])
from leveraging verifiable rewards, leading to optimization misdirection via reward hacking®.

To address these challenges, we develop a comprehensive measurement framework for code verifiers,
introducing multi-dimensional evaluation metrics (detection rate, verifier accuracy) and identifying
test case diversity and per-case strength as critical quality factors. We derive an upper bound for
detection rate and validate it empirically across 1,500+ coding problems. Using this framework, we
uncover systemic test quality issues in leading benchmarks, such as CodeForce-CoTs [38], where
50% of problems had tests failing to detect known errors and 84% of verifiers were flawed, further
underscoring these limitations.

To systematically improve the quality of code verifiers, we formally define the Test Case Generation
(TCG) task, comprising three core components: task formulation, benchmark construction, and
method exploration. We introduce TCGBench, a benchmark curated by aggregating representative
problems from three leading competitive programming platforms—Atcoder, Codeforces, and Now-
coder. TCGBench curates human-verified adversarial examples spanning diverse error patterns (e.g.,

*Models exploit verifier weaknesses instead of achieving genuine correctness, as they are insufficiently
penalized for diverse errors.

logical flaws, edge cases) and supports comprehensive evaluation of TCG methods. We further
investigate current TCG methods and propose SAGA (Strategic Adversarial & Constraint-differential
GenerAtive workflow), a novel human-LLM collaborative framework. SAGA is designed to system-
atically generate high-coverage, highly discriminative test cases by leveraging both human-derived
constraints from correct solutions and insights from failure modes in incorrect solutions. This dual-
pronged analytical approach allows SAGA to achieve improvements over current state-of-the-art
TCG methods, with the Detection Rate increasing by 9.55% and Verifier Accuracy by 12.14%.

Additionally, we leverage SAGA to enhance the quality of the popular code generation benchmark
LiveCodeBench-v6 (subset)’, and develop CodeCompass, a new high-quality code benchmark. We
believe SAGA can further be employed to scale datasets, enabling the production of training data
with robust and accurate reward estimation for coding tasks. Our main contributions are as follows:

We construct TCGBench, a comprehensive dataset from competitive programming platform, to
analyze existing Test Case Generation practices. On it, we formalize multi-dimensional metrics for
rigorous test case quality evaluation.

We propose and validate SAGA, a novel human-LLM collaborative TCG framework (Fig. 5). By
integrating insights from both correct and incorrect human solutions, SAGA generates significantly
more effective test suites, improving Verifier Accuracy by 15.86% over existing TCG methods.
Using SAGA, we develop CodeComPass, a challenging benchmark with human-verified adversarial
examples for robust code generation evaluation, and introduce TCGCoder-7B, a SAGA-distilled
specialist model for capable TCG.

2 Related Work

Reliable evaluation is paramount for advanced code-generating LLMs [36, 13], especially in Rein-
forcement Learning from Verifiable Rewards (RLVR) contexts [8, 30]. However, existing benchmarks
often exhibit limitations such as LLM-centric biases and insufficient test diversity [27, 19]. This
underscores the need for more effective Test Case Generation (TCG). Current LLM-based TCG
methods, primarily Direct Generation [22] and Input-Interpreter [19], still struggle to produce com-
prehensive and challenging test suites that cover subtle corner cases. Our work, SAGA, addresses this
gap by introducing a novel human-LLM collaborative framework designed to systematically generate
higher-quality tests by leveraging deep human insights. A comprehensive review of related works is
provided in Appendix A.

3 Evaluating Verifier Quality: Metrics and TCG Paradigms

The reliable evaluation of LLM-generated Froblem Direct Test Case Generation 1oy cues
code is critically constrained by the quality "= = %j 5|
and accessibility of verifiers. Standard bench- = R '

marks like HumanEval [6] often employ lim- uw l«&” Input-based Test Case Generation

ited test suites, while the extensive private ver- oo Problem @ — Test Cases
ifiers of Online Judges remain largely inac- == = —-% — — G —
cessible for broader research. This scarcity | o1 o Gmtmm ;

Code Verifier

of robust, accessible verifiers impedes accu- 7S Ours Method
rate LLLM evaluation and the advancement of e g@ T s et Cass
RLVR. To surmount this challenge, we focus ~* = O — e —oe— &
on leveraging LLMs themselves for Test Case -~ “* o S |
Generation—the systematic synthesis of test oo o Mo

suites. Figure 2 illustrates the pivotal role pjore 2: The code evaluation pipeline and different
of a Code Verifierin the LLM code evalua- 1cg paradigms.

tion pipeline. It also highlights distinct TCG

paradigms:

3The subset used in our study comprises 101 problems from AtCoder, specifically from contests ABC387
through ABC400 and ARC190 through ARC196 (problems A to F). This selection facilitates a consistent
evaluation scope when comparing with benchmarks like our proposed TCGBench, which also incorporates these
recent algorithmic challenges.

(a) 7 (b) Atcoder Nowcoder CodeForce

= Atcoder [Retention Rate

CodeForce Detection Rate
60 Nowcoder 4 Verifier Accuracy
DS-V3{ 853 | 835 | 848 | 767 67.6 69.9 694 588 64.7 650

S e
< 50 % 5
= | e]
s 7 -
24)40 Z S QwenT2By 647 | 708 | 669 | 499 612 647 619 37 454 414
] =]
520 ¢ Qwen-Coder{ 64.1 66.5 | 68.6 | 475 578 55.6 57.9 331 441 37.1
A e
7
10 %
DEID ISR P P s N v et
/ N oo 0\(\ o o oo o o 0
4 Qv o™ o s o o
0 Q Q' Q*
DS-V3 Qwen-72B Qwen-Coder TCG Model TCG Model TCG Model

Figure 3: Direct generation issues: (a) Low quality of LLM-generated tests. (b) High self-pass rates
suggest model blind spots.

Direct Generation: An LLM directly produces complete test cases (inputs and outputs). Representa-
tive works include TestChain [22], AceCoder [47], and CodeRM [32].

Input-Interpreter: An LLM generates test inputs; a ground-truth interpreter (or reference solution)
then computes the corresponding outputs. This paradigm, exemplified by LiveCodeBench [19] and
Codeforce-COT [38], often employs random input sampling—a strategy proven effective by Live-
CodeBench for generating numerous diverse test cases and thus adopted in our baseline evaluations.
EvalPlus [27], which mutates seed inputs for execution, also aligns with this approach. A comparative
analysis with EvalPlus is detailed in Section 4.2.1.

Human Priors (Our Approach): LLM-driven TCG is guided by structured human expertise, a
strategy central to our proposed SAGA framework (detailed in Section 4).

3.1 Problem Definition

Formally, for a programming problem P € P with description D, input space X'p, and ground-truth
solution fp : Xp — Yp, a TCG method aims to produce a test case set T' = {(I;, O;) }I_;, where
each input I; € Xp and its corresponding output O; = fp(I;). To quantify the quality of such
generated test suites, we employ two key metrics:

Definition 1 (Detection Rate (DR)). A solution-level metric that answers the question: "For a specific
buggy program, can our test suite find at least one bug?" Mathematically, DR measures a test suite’s
ability to detect an error in a single incorrect solution S # fp. It is the probability that at least one
test case in T causes S to fail. Let E; be the event that S fails on test case i. The detection rate is
the probability of the union of these events: es(T) = P({J;—, E;). The final reported DR for a TCG
method is the average of these binary outcomes (1 if a bug is found, 0 otherwise) across all known
incorrect solutions for a given problem set.

Definition 2 (Verifier Accuracy (VAcc)). A stricter, problem-level metric that answers the question:
"For a given problem, can our test suite find bugs in all known incorrect solutions?" VAcc evaluates
the systematic completeness of the verifier. It is a binary indicator that equals 1 if and only if the test
suite T' successfully detects a failure in every incorrect solution within the set Syong(P). Formally:
VAce(T) = 1 (VS € Surong(P),€5(T) > 0), where |(-) is the indicator function. VAcc(T) = 1
signifies that the verifier is robust enough to reject all known faulty programs for that problem.

3.2 Investigating Current TCG Paradigms and Their Limitations

To ground our exploration of TCG effectiveness, we leverage TCGBench, a dataset we curated
comprising 1840 recent programming problems from Atcoder, Codeforces, and Nowcoder, along
with an average of 36.66 incorrect user submissions per problem. This rich resource (detailed in
Appendix D) facilitates rigorous evaluation of TCG methodologies. Our analysis employ open-
source LLMs: DeepSeek-V3-0324, Qwen2.5-72B-Instruct, and Qwen2.5-Coder-32B-Instruct with
the greedy decoding strategy.

For paradigm 1: Is Direct LLM-based Test Case Generation Effective?

Directly prompting an LLM to generate complete test cases (inputs XM, outputs OFM) from a
problem description P, depends heavily on the LLM’s deep comprehension, particularly of edge

cases. Our experiments (Figure 3), involving LLM generation of 50 diverse test cases per problem,

(a) g.g50;

CodeForce

0875} NowCoder
0.82 :
w 0-825¢ 2040 R 0.850f
< <o =
3 0.800 g s G085
g 0.775 g 0. b =1
& & st & 0.800f
g 0.750 5076 o g
g 8 2 0.775
£ 0725 5074]
Q Q
% 0.700} —o— DeepSeekV3 %072l / —o— DeepSeekV3 = 0.750 i —o— DeepSeekV3
8 o675 Qwen2.5-72B =Tl IV} Qwen2.5-72B R g.7250 Qwen2.5-72B
- —4-- Qwen2.5-Coder 0.70+ —2-- Qwen2.5-Coder —&-- Qwen2.5-Coder
0.650 — — — . — — — : 0.700 — — — .
LR R R S S R S O H PP P
() Test Case Size Test Case Size Test Case Size
0.850 o2l
0.825 ° °
® = 080t Ry
= 0.800 P °
2 =078 ottt %
. o
So7s 4 Attt ~
= 0.750 g0.76 g
K] g]
£ 0.725 D 0.741 2
S @ @ L
] 3 e 8 0.750
2 0.700F —o— DeepSeek-V3 ®0.72 7 —o— DeepSeek-V3 ® e —o— DeepSeek-V3
E Qwen2.5-72B =] & Qwen2.5-72B A o795l Qwen2.5-72B
0.675 —a Qwen2.5-Coder 0.70 —#- Qwen2.5-Coder —&= Qwen2.5-Coder
0.650 ! — i i —T—TT 0.700 i T
B D P S ERP B D S ESP o D ENP
Test Case Size Test Case Size Test Case Size

Figure 4: Experimental validation of Input-Interpreter (random sampling) limitations on TCGBench.
(a) Detection rate vs. number of test cases (linear scale), showing clear saturation below 100%. (b)
Detection rate vs. log of the number of test cases (semi-log scale), illustrating diminishing returns
consistent with the theoretical upper bound 1 — (1 — p)™=#, validating the impact of correlation p.

reveal the issues. The retention rate (proportion of valid tests post-verification against ground truth)
is very low, indicating unreliable quality. This results in poor overall DR (often <60%) and VAcc
(<10%). Moreover, LLM-generated solutions easily pass these self-generated tests. Notably, on
AtCoder problems with historical official tests*, LLM solutions performed substantially better on
their own generated tests, suggesting such tests fail to challenge the model’s cognitive biases.

For paradigm 2: Can a Large Number of Inputs from an Input-Interpreter Approach Compen-
sate for Low Quality?

The Input-Interpreter paradigm, where an LLM generates random inputs I52%"d ~ X'p for a ground-
truth interpreter, is employed by benchmarks like LiveCodeBench [19]. While generating many tests
is feasible, merely increasing the quantity n does not fundamentally improve the detection rate. This
limitation arises from inherent correlations between test cases. We propose here a corollary for the
upper bound of the detection rate’:

Corollary 1 (Asymptotic Saturation of Detection Rate). As the number of generated test
cases n — oo, if p (the average probability of a single test detecting an error, 0 < p < 1)
and peg (the effective average positive correlation between detection events, peg > 0) are
stable characteristics, the approximate upper bound on the detection rate eg(T') converges to:
lim,, 00 €5(T) = 1 — (1 — p)M/Perr < 1.

This corollary implies that due to inter-test correlation peg, simply increasing the number of random
tests cannot guarantee 100% error detection; the detection rate will saturate. The underlying reasoning
involves the concept of an "effective sample size" neg ~ n/(1 + (n — 1)peg) [20], which quantifies
the diminishing utility of additional correlated tests. Our experiments on TCGBench (Figure 4)
confirm this: detection rates plateau (Fig. 4(a)), and marginal gains diminish rapidly. Notably,
plotting the detection rate against the logarithm of the number of test cases (Fig. 4(b)) reveals a trend
consistent with our derived theoretical upper bound, further validating the impact of correlation p.

Beyond DR and Acc, to more deeply quantify the intrinsic quality and efficiency of TCG strategies
like SAGA (introduced in Section 4), we employ two advanced metrics. These provide observable
insights into test suite characteristics related to p (average test potency) and peg (inter-test correlation):

“Early AtCoder problems provided official test cases; however, from December 2024 onwards, test cases are
no longer publicly available for new contests.

>The full derivation is provided in Appendix C.

* Distinct Error Pattern Coverage (DEPC): For a test suite 7 and Np problems, let v(t;) be the
error pattern vector for test t;. DEPC is ’{v(tk) |t € T and ||v(tg)]l1 > 1}’ The Diversity

Ratio is DEPC(T) /n. Higher DEPC suggests lower peg, indicating broader unique error detection.
* Normalized Area Under the Accuracy-Number of test cases Curve (AUC-AccN): For Verifier
Accuracy Acc(k) with k tests up to N,
1 e Ace(k;) + Acc(kiy1)
N — kmln . 2

=Kkmin

Higher AUC@ N indicates superior average verifier accuracy, reflecting potent (high p) and
efficiently diverse tests.

Detailed explanations and derivations for these metrics are in Appendix B.

4 SAGA: A Human-LLM Collaborative Framework for Advanced TCG

The preceding analysis in Section 3.2 revealed critical limitations in prevalent Test Case Generation
(TCG) paradigms. As demonstrated, Direct Generation suffers from low test quality (Figure 3), while
the Input-Interpreter approach is constrained by test case homogeneity and saturating performance
returns (Figure 4). To address these shortcomings, we introduce SAGA (Strategic Adversarial
& Constraint-differential GenerAtive workflow), a novel human-LLLM collaborative framework
(Figure 5). SAGA systematically generates high-quality, diverse, and discriminative test suites
by maximizing test potency (p) and diversity (lowering correlation p). Additionally, we trained
TCGCoder-7B, a SAGA-distilled 7B specialist model from 15,000 problems (details in Appendix J),
as a strong TCG baseline and reference.

4.1 The SAGA Framework: Integrating Human Expertise

Recognizing the limitations of naive TCG, o))
SAGA explores the integration of human ex- Table 1: Initial Impact of Incorporating Simple
pertise. Intuitively, leveraging human problem- Human Priors (Shuman) into Basic TCG Paradigms
solving insights should enhance TCG. Table 1 ©n AtCoder Results (Accuracy @50).

shows that incorporating simple human priors —ethod Accuracy @50
(e.g., boundary values from Spyman) into basic Direct Gen. (Paradigm 1) 11.30%
TCG paradigms on TCGBench-Full yields some Direct Gen. + Simple Priors 15.06% (+3.76%)
improvement. However, these gains are often Input-Interpreter (Paradigm 2) 23.36%
marginal, failing to fully exploit LLM potential Input-Interpreter + Simple Priors | 27.95% (+4.59%)

for detecting complex flaws. While methods
like EvalPlus [27] use human solutions, it’s often for mutating seeds or formatting inputs, not deeply
guiding large-scale challenging test generation.

SAGA advances beyond such superficial integration. As depicted in Figure 5, it deeply incorporates
multifaceted human programming insights—from both correct solutions (GroundTruth, Spyman) and
incorrect submissions (Human Bugs, Syrong)—Wwith LLM reasoning via a structured, dual-pronged
analytical strategy. An LLM is fed the problem description P and insights gleaned from human
solutions through a customized prompting module. This process generates Python Case Scripts to
produce test inputs, accompanied by Math Explanations and Self-Validation code to ensure correctness
and relevance. The generated inputs are then processed by an Interpreter (ground-truth solution) to
yield test outputs, forming the final test cases. SAGA’s core analytical dimensions are:

* Multidimensional Analysis (Leveraging Spuman): This dimension extracts profound insights from
correct solutions to engineer challenging tests. It involves:

1. Constraint Handling Differences: Discrepancies in how Syrong and Sl ..
specific constraints.

2. Defense Pattern Deconstruction: This is where the Math Explanation component (Figure 5)
plays a key role. It transforms the implicit programming logic from human code into explicit,
structured test instructions. Diverse defensive logic and problem-solving strategies within
Shuman are decomposed into formal mathematical or logical constraints (e.g., "equivalence class:
player pairs”, "boundary_value: [(1,2), (N,N-1)]"). This process allows SAGA to purposefully

, manage problem-

_ def gen_TC1(): Python Scripts | |"test_strategy": ¢ Inputs
> Multi-Dim Eetirn nt 27 SRS | R oy e ooy 17
Analysis s ([’]‘“ : “boundary_valu [: T T “input” : 1\.125/
GroundTruth b Al A3 e [) stress_strategy”: "Random valid pairs mpul \
\ PP\ d(f" {\) {i])() ;
n" . join(case
def gen TC3(see =42, e 19909 0 Test In; uts
— (e Math Explanation
L ° mitihes - i] (e D) def validate_inputs(input_str): </>S >—
¢ X try:
? Mul; ie:g:ésﬁe”s)jzetuple(playeps)) assert len(lines) >= 1, 'Missing N’ Interpreter
Proble /v q = random.choice(tuple(players - {p})) T 2 o [o @ © I0E, G
matches.append(f"{p} {a}") Outputs
Diff tial ”“ye“"e"'°"ef"; 7 return True “output” : “2”
layers.remove: .
itierentia o);"(N}\n" s "3n“.juin(mat(hes) G DOEIREIERGP €0 8 “output” : “5”
Analyﬂs return False, str(e) |V TR
Human Bugs Case Scripts Self Validation Test Outputs

Figure 5: Overview of the SAGA framework. SAGA leverages both GroundTruth (correct human
solutions) and Human Bugs (incorrect submissions) alongside the Problem description. An LLM
performs Multi-Dimensional Analysis and Differential Analysis to generate Python Case Scripts for
test input synthesis. These scripts are accompanied by Math Explanations (capturing testing strategies
and constraints) and Self-Validation code. The generated Test Inputs are then passed to an Interpreter
(ground-truth solution) to produce Test Outputs, forming the final test cases.

target the core mathematical and logical properties of the problem—such as singularities,
extremal values, or specific structural properties—guiding the generation of meaningful edge
and adversarial test cases that simple random generation would miss.
3. Targeted Test Generation: Using these constraints and pitfalls to guide the LLM in constructing
challenging test inputs [via the Case Scripts.
This analytical approach aims to generate test cases that not only cover a wide spectrum of valid
scenarios, including complex boundary conditions and intricate interactions, but also enhance test
diversity (lowering p) and individual test potency (increasing p).
* Differential Analysis (Leveraging Syrong): This addresses error types missed by analyzing only
correct solutions. It compares failed submissions (Syrong) With their corrected versions (S. ... to
find inputs Igigr where Swrong (Laiff) 7 Seorrect (Ldifr), revealing common error patterns. This targets:
1. Constraint Handling Differences: Discrepancies in how Syrone and S, manage problem-
specific constraints.
2. Lack of Defensive Completeness: Deficiencies in Syrong related to handling edge cases or
boundary inputs, as revealed by comparison with S/, ..
3. Failure Pattern Analysis: Generating specific inputs that trigger failures in Syrong but are
correctly handled by S’ (-
The incorporation of these differentially identified inputs g into the test suite 1" creates a more
rigorous and challenging evaluation framework, as it specifically targets known failure modes,

thereby substantially increasing the discriminative power of the resulting verifier.

The Self-Validation scripts (Figure 5) ensure that generated test inputs adhere to problem constraints
and the intended testing strategy before execution. For Multidimensional Analysis, SAGA leverages
insights from 10 distinct, correct user solutions per problem to broaden perspective. In Differential
Analysis, it meticulously pairs a user’s correct solution with their most recent preceding incorrect
submission. This focus on closely related yet differing attempts enhances SAGA’s ability to identify
subtle error patterns and generate challenging corner cases. By synergistically combining these
refined analytical dimensions, SAGA produces comprehensive and highly effective test suites.

It is important to note that SAGA is designed for efficiency. The main computational cost lies in a
one-time analysis phase per problem, where the LLM performs a single, powerful analysis of human
solutions to generate a Python Case Script. Crucially, it is this generated script—not the LLM—that
then programmatically generates a large volume of test inputs. This design avoids the high cost and
latency of repeatedly invoking the LLM for every single test case, making the framework scalable.

4.2 Experimental Validation of SAGA

SAGA’s effectiveness was initially validated on the TCGBench. Figure 6 visually summarizes
SAGA’s multifaceted superiority in this context, comparing it against the random Input-Interpreter
baseline and its core analytical components (Multidimensional Analysis and Differential Analysis).

Key Findings from Comparison on TCGBench (Fig. 6): SAGA markedly improves solution
vetting capabilities: its DR surpasses 93.81% (vs. baseline’s 82.85% at n = 100) and VAcc reaches

93 % - oy .
(@) o5 yu=)3.81 (E)\SO SAGAAUC@S0: 0.5445 (€) -+~ Baseline wipiter () e~ Bascline W/ Differ
X [S Bascline AUC@S0: 02586 1.33% w/MultiDim == SAGA w/MultiDim —+— SAGA
290 P o—0—0—0— < w0 e . 0o
@ H - A 20, — 7
= g5 9 ,A/ [,/ d)
g" o £ 30- X —0—0—0—0 t / e o
Basgeline DR@100: 82.85% 2 K (SRSl y rigd &g
80 2 Bascline VAce@100: 21.89 s e 07 N
i 5
L < 20- , = £z AN \.
da 75 =O= w/ MultiDim i a0k o +* 4 0.6 N \.
Q 2 w/ Differ = & o MaliDi [g4 S ~——
%70 /= SAGA £ 10 o w oS g .
a Baseline DR@100 g Spof 0ab .
65- L, o o)) [—— | . . - 070203070 s0 07 TT0T 20030 4030
510 20 30 40 50 B y . . 3
Test Case Size >0 'l‘e:: Ca:; Si;g 0 Test Case Size Test Case Size

Figure 6: SAGA outperforms the Baseline (Random Input-Interpreter) and its individual analytical
components (Multidimensional Analysis leveraging Shuman; Differential Analysis leveraging Swrong)
on the AtCoder subset of the full TCGBench across: (a) Detection Rate, (b) Verifier Accuracy (with
AUC@50 values), (c) Distinct Error Pattern Coverage (DEPC), and (d) Diversity Ratio. Dotted lines
in (a) & (b) show baseline performance at n = 100. See Appendix F for SAGA’s performance on
other platforms within the full TCGBench.

41.33% (vs. baseline’s 21.89% at n = 100) with only 50 tests. SAGA’s AUC@50 (0.5445) more
than doubles the baseline’s (0.2586), showcasing superior efficiency. SAGA also generates test suites
of superior intrinsic quality: it achieves the highest DEPC (broader error coverage, lower p) and
Diversity Ratio (more efficient error discovery per test). Both Multidimensional and Differential
analysis components individually outperform the baseline, but their synergy in SAGA yields optimal
results. This robustly validates SAGA’s systematic leveraging of human insights on a large scale.

4.2.1 Main Results and Analysis on TCGBench-Lite

For focused main comparisons and ablation studies, we curated TCGBench-Lite, a challenging
subset of 270 problems from AtCoder, Codeforces, and Nowcoder contests since June 2024. This
ensures contemporary relevance and minimizes potential data leakage. To further guarantee the
impartiality of our results, particularly for the evaluation of our SAGA-distilled model TCGCoder-
7B, we employed a strict chronological split: the training data for TCGCoder-7B was sourced entirely
from problems published before 2023. This temporal separation ensures the model is evaluated on
genuinely unseen problems. TCGBench-Lite includes an average of 41.41 incorrect submissions
(Swrong) per problem. Its difficulty distribution (Easy: 27.04%, Medium: 32.59%, Hard: 40.37%)
was determined by platform tags and contest characteristics (details in Appendix E). This curated
set allows for rigorous yet manageable evaluation. Unless specified, all LLM-driven methods use
DeepSeek-V3-0324 as the backbone for fair comparison. We evaluate against the Input-Interpreter
(LiveCodeBench-style random sampling), TestChain [22], EvalPlus [27], and our SAGA-distilled
TCGCoder-7B. Results are in Table 2.

Analysis of Main Comparison (Table 2): SAGA’s structured integration of human insights yields
substantial gains over other TCG methods on TCGBench-Lite. Notably, SAGA achieves an AUC@50
of 0.2228, surpassing the Input-Interpreter (0.1234), which is limited by random sampling’s homo-
geneity. This highlights SAGA’s ability to produce more consistently effective tests. While EvalPlus
achieves a high raw Diversity Ratio through mutation, its lower AUC@50 (0.1278) suggests that
SAGA’s deep analysis of human solutions is more critical for overall verifier quality than mere test
variety. TestChain, lacking rich human priors, performs weakest. Crucially, our SAGA-distilled
TCGCoder-7B (AUC@50: 0.1890) outperforms all these established baselines, even when they
utilize a much larger backbone model (DeepSeek-V3-0324). This demonstrates SAGA’s potential to
distill effective TCG strategies into smaller, specialized, and highly capable models, thereby making
advanced TCG more accessible.

Analysis of Ablation Studies (Table 2): Value of Structured Human Insights: Isolating SAGA’s
Multidimensional Analysis (leveraging Shuman) and Differential Analysis (leveraging Syrong) reveals
that both significantly outperform simpler prompting (SimpleCOT) and the Input-Interpreter baseline
in terms of AUC@50. This underscores that structured analysis of human solutions, whether correct
or incorrect, is fundamental for higher-quality verifiers. The full SAGA framework, synergistically
combining both analytical dimensions, achieves the optimal overall quality (highest AUC@50),
confirming their complementary benefits. Importance of Prompt Design: The substantial performance
degradation when replacing SAGA’s detailed, insight-driven prompts with generic CoT (SimpleCOT)
highlights that the methodology of integrating human insights is as critical as the insights themselves

Table 2: Experimental Results: Main Comparison of SAGA with Baselines and Ablation Studies
on TCGBench-Lite. Metrics are DR@Fk, VAcc@k, AUC@50, and DivRatio@50. All methods use
DeepSeek-V3-0324 backbone unless specified in ablation.

Method / Configuration DR@20 DR@50 VAcc@20 VAcc@50 AUC@50 DivRatio@50
Main Comparison with Baseline TCG Methods
TestChain [22] 6591% 68.31% 8.12% 11.88% 0.0841 50.09%
Input-Interpreter (LiveCodeBench-style [19]) 77.84% 81.07% 12.36% 16.72% 0.1234 79.42%
EvalPlus [27] 67.52% 71.12% 11.56% 15.15% 0.1139 79.27%
TCGCoder-7B (SAGA-distilled model) 85.14% 89.44% 17.93% 29.11% 0.1890 94.43%
SAGA (DeepSeek-V3 Backbone) 85.66% 90.62% 22.40% 32.58% 0.2228 94.06%
SAGA Ablation Studies
Analytical Component Ablation
SAGA w/ Multidim. Analysis only 84.51% 88.00% 20.70% 26.05% 0.1923 95.81%
SAGA w/ Differential Analysis only 8431% 88.16% 19.85% 26.67% 0.1926 94.41%
Prompt Design Ablation
SimpleCOT Prompt for SAGA 83.36% 84.54% 15.61% 19.11% 0.1424 96.23%
Random Input w/ GT for SAGA 8231% 86.64% 16.44% 22.70% 0.1616 85.38%
EvalPlus w/ GT for SAGA 76.72% 79.56% 11.67% 20.44% 0.1278 89.49%
Base LLM Ablation for SAGA
SAGA w/ Qwen2.5-Coder-7B-Instruct 78.88% 79.78% 19.70% 22.96% 0.1810 96.80%
SAGA w/ Qwen2.5-72B-Instruct 82.77% 85.08% 20.30% 26.46% 0.1943 94.92%
SAGA w/ Qwen2.5-Coder-32B-Instruct 86.25% 90.54% 20.74% 32.73% 0.2139 94.72%

for effective TCG. Robustness Across LLMs: SAGA demonstrates commendable robustness when
paired with different LLM backbones. While peak performance on specific metrics can vary with
the LLM (e.g., SAGA with Qwen2.5-Coder-32B-Instruct yields the highest VAcc@50), the SAGA
framework with its default DeepSeek-V3 backbone consistently provides the best overall AUC@50.
This indicates SAGA’s comprehensive design is more impactful for holistic verifier quality than
relying on specific LLM capabilities or optimizing for isolated metrics like Diversity Ratio. Notably,
SAGA also shows strong performance with Qwen2.5-Coder-7B-Instruct (TCGCoder-7B’s base
model), further validating SAGA’s efficacy on smaller, specialized coder models.

5 Towards Advanced Applications of SAGA

SAGA’s proven capability in generating high-quality, diverse, and discriminative test suites (Section 4)
enables advancements in LLM code evaluation and training. This section primarily explores the
development of a superior code generation benchmark, CodeComPass, while also noting the potential
for SAGA-enhanced verifiers to contribute to more reliable Reinforcement Learning from Verifiable
Rewards (RLVR).

CodeCompass: A SAGA-Enhanced Benchmark for Code Generation Evaluation

To address the need for more challenging and discerning evaluation of LLM code generation models,
we introduce CodeCompass. The verifiers within CodeCompass are synthesized using SAGA for the
270 contemporary problems that also constitute TCGBench-Lite (detailed in Appendix E), ensuring
relevance and minimizing data leakage risks. Each problem in CodeCompass features a rich test suite,
averaging 50.54 SAGA-generated test cases, meticulously curated to ensure comprehensive coverage
(with additional manual curation applied if initial generation yielded fewer than a target threshold).

For comparative analysis of verifier quality and impact on model evaluation, we focus on a shared
subset of 101 AtCoder problems that overlap between our CodeCompass verifiers and the test suites
used by LiveCodeBench-v6. This allows for a direct comparison on common ground.

Superior Verifier Quality of CodeCompass. We first establish the intrinsic quality of CodeCompass
verifiers using core TCG metrics against those of LiveCodeBench-v6 on the shared AtCoder subset
(Table 3). CodeCompass demonstrates markedly higher efficacy in identifying faulty solutions,
greater efficiency in discovering unique error patterns (Diversity Ratio@40: +43.13%), and faster
convergence to quality. This confirms that SAGA produces verifiers that are intrinsically more diverse,
discriminative, and effective.

60[% *—— g
Table 3: Verifier Quality: CodeCompass vs.
LCB-v6 (Shared Subset, @40 tests). 557 B8 I~
Metric LiveCodeBench-v6 CodeCompass S140 @ * 5267
DR@40 78.85% 93.44% 50 (5:6%)
VAcc@40 19.61% 30.39% =
DivRatio @40 53.56% 96.69% E] sso & 4653
AUC@40 0.1388 0.1980 45
@;J) (-148%) Models
B 0, 1 @ wen2.5-
S | 208% g, [LiveCodeBench 340 O 3881 8 S“,e,,ﬁj_;ffﬂ_m
: [CodeCompass 36.63 A A GPT4o
® 35 & DeepSeck-V3
= 6 & QWQ-32B
8 2 % Deepseek-R1
~ 353% 1360 30/ 390 0 A 3069 8 Qwen3-235B-A22B
o 3.
g , 2.7 [16.1%]
2 158% 11.9% 20 e 26.73
< 25 25.74
, -
Easy Meodium Hard LiveCodeBench CodeCompass
Figure 7: Avg. Pass@1 by Difficulty. Figure 8: Model Ranking Changes.

Enhanced Discriminative Power for Code Generation Model Evaluation. This superior verifier
quality translates directly to a more challenging and discerning evaluation for LLM code generation
models. As shown in Figure 7, CodeComPass consistently elicits lower average Pass@1 rates across
all problem difficulties compared to LiveCodeBench-v6 on the shared subset, indicating a more
rigorous test. Critically, this increased stringency enhances discriminative power (Figure 8): when
evaluated on CodeComPass, the average Pass@1 for various models drops by a relative 9.56%
compared to their performance on LiveCodeBench-v6. This relative decrease leads to a re-ranking
of models (e.g., Qwen2.5-72B and Qwen2.5-Coder-32B switch relative positions). This ability to
expose nuanced differences in model capabilities confirms that CodeComPass offers a more robust
and insightful assessment of true code generation proficiency.

Meanwhile, the superior SAGA-generated verifiers, exemplified by CodeComPass, promise to
enhance Reinforcement Learning from Verifiable Rewards (RLVR) frameworks [8, 10] by delivering
more accurate reward signals and mitigating reward hacking, thereby fostering more robust and
capable code generation models.

6 Conclusion

This paper critically re-evaluates LLM-based Test Case Generation (TCG), highlighting current
verifier limitations and formalizing key quality metrics alongside TCGBench, a foundational TCG
research dataset. We introduce SAGA, a novel human-LLM collaborative framework that integrates
human programming insights with LLM reasoning to demonstrably generate superior test suites.
Leveraging SAGA, we developed CodeComPass, an enhanced verifier suite for robust code gen-
eration evaluation, and distilled TCGCoder-7B, a specialized, efficient TCG model. Collectively,
these contributions significantly advance reliable LLM code evaluation and pave the way for future
automated test synthesis and effective adversarial testing.

7 Acknowledgment

This work was supported by the National Nature Science Foundation of China (No. 62192781,
No. 62272374), the Natural Science Foundation of Shaanxi Province (2024JC-JCQN-62), the Key
Research and Development Project in Shaanxi Province No. 2023GXLH-024, Shanghai Oriental
Talents Project BIZH2024070. We also thank the OpenCompass team at Shanghai Al Laboratory
and our colleagues for their support and discussions.

10

References

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]

[10]

Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John A. Clark, Myra B. Cohen, Wolfgang
Grieskamp, Mark Harman, Mary Jean Harrold, and Phil McMinn. An orchestrated survey of
methodologies for automated software test case generation. J. Syst. Softw., 86(8):1978-2001,
2013. doi: 10.1016/J.JSS.2013.02.061. URL https://doi.org/10.1016/j.jss.2013.02.
061.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Slav Petrov,
Melvin Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily
Pitler, Timothy P. Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Is-
ard, Paul Ronald Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira, Ka-
reem Ayoub, Megha Goel, George Tucker, Enrique Piqueras, Maxim Krikun, Iain Barr, Nikolay
Savinov, Ivo Danihelka, Becca Roelofs, Anais White, Anders Andreassen, Tamara von Glehn,
Lakshman Yagati, Mehran Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski, and
et al. Gemini: A family of highly capable multimodal models. CoRR, abs/2312.11805, 2023. doi:
10.48550/ARX1V.2312.11805. URL https://doi.org/10.48550/arXiv.2312.11805.

Jacob Austin, Augustus Odena, Maxwell 1. Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program
synthesis with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.
org/abs/2108.07732.

S. Beyleda and V. Gruhn. Bintest - search-based test case generation. In Proceedings 27th
Annual International Computer Software and Applications Conference. COMPAC 2003, pages
28-33, 2003. doi: 10.1109/CMPSAC.2003.1245318.

Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three decades
later. Commun. ACM, 56(2):82-90, 2013. doi: 10.1145/2408776.2408795. URL https:
//doi.org/10.1145/2408776.2408795.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374,
2021. URL https://arxiv.org/abs/2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language
models to self-debug. arXiv preprint arXiv:2304.05128, 2023.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948.

Zhiyu Duan, Yujia Li, Pubo Ma, Xiaodong Gou, and Shunkun Yang. A multi-layer fault
triggering framework based on evolutionary strategy guided symbolic execution for automated
test case generation. In 22nd IEEE International Conference on Software Quality, Reliability,
and Security, QRS 2022 - Companion, Guangzhou, China, December 5-9, 2022, pages 255-262.
IEEE, 2022. doi: 10.1109/QRS-C57518.2022.00045. URL https://doi.org/10.1109/
QRS-C57518.2022.00045.

Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam, David Dohan,

Francis Song, Hunter Lightman, Ignasi Clavera Gilaberte, Jakub Pachocki, Jerry Tworek, Lorenz
Kuhn, Lukasz Kaiser, Mark Chen, Max Schwarzer, Mostafa Rohaninejad, Nat McAleese,

11

https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.48550/arXiv.2312.11805
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2501.12948
https://doi.org/10.1109/QRS-C57518.2022.00045
https://doi.org/10.1109/QRS-C57518.2022.00045

03 contributors, Oleg Miirk, Rhythm Garg, Rui Shu, Szymon Sidor, Vineet Kosaraju, and
Wenda Zhou. Competitive programming with large reasoning models. CoRR, abs/2502.06807,
2025. doi: 10.48550/ARXIV.2502.06807. URL https://doi.org/10.48550/arXiv.2502.
06807.

[11] Andrea Fioraldi, Alessandro Mantovani, Dominik Christian Maier, and Davide Balzarotti.
Dissecting american fuzzy lop: A fuzzbench evaluation. ACM Trans. Softw. Eng. Methodol., 32
(2):52:1-52:26, 2023. doi: 10.1145/3580596. URL https://doi.org/10.1145/3580596.

[12] Garrett M Fitzmaurice, Nan M Laird, and James H Ware. Applied longitudinal analysis. John
Wiley & Sons, 2012.

[13] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder:
When the large language model meets programming - the rise of code intelligence. CoRR,
abs/2401.14196, 2024. doi: 10.48550/ARXIV.2401.14196. URL https://doi.org/10.
48550/arXiv.2401.14196.

[14] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv., 45(1), December 2012. ISSN
0360-0300. doi: 10.1145/2379776.2379787. URL https://doi.org/10.1145/2379776.
2379787.

[15] Dong Huang, Qingwen Bu, Yuhao Qing, and Heming Cui. Codecot: Tackling code syntax errors
in cot reasoning for code generation, 2024. URL https://arxiv.org/abs/2308.08784.

[16] Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui.
Agentcoder: Multi-agent-based code generation with iterative testing and optimisation, 2024.
URL https://arxiv.org/abs/2312.13010.

[17] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-
jun Zhang, Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

[18] Kush Jain, Gabriel Synnaeve, and Baptiste Roziere. Testgeneval: A real world unit test
generation and test completion benchmark, 2024.

[19] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

[20] Leslie Kish. Survey sampling. new york: John wesley & sons. Am Polit Sci Rev, 59(4):1025,
1965.

[21] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu-Hong
Hoi. Coderl: Mastering code generation through pretrained models and deep reinforcement
learning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/8636419dealaa9fbd25fc4248e702dad-Abstract-Conference.html.

[22] Kefan Li and Yuan Yuan. Large language models as test case generators: Performance evaluation
and enhancement. CoRR, abs/2404.13340, 2024. doi: 10.48550/ARXIV.2404.13340. URL
https://doi.org/10.48550/arXiv.2404.13340.

[23] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, Jodao
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy V, Jason T. Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca,
Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,

12

https://doi.org/10.48550/arXiv.2502.06807
https://doi.org/10.48550/arXiv.2502.06807
https://doi.org/10.1145/3580596
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1145/2379776.2379787
https://arxiv.org/abs/2308.08784
https://arxiv.org/abs/2312.13010
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2404.13340

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
(32]

[33]

[34]

[35]

Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony
Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao,
Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt,
Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Mufioz
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
Starcoder: may the source be with you! Trans. Mach. Learn. Res., 2023, 2023. URL
https://openreview.net/forum?id=KoFOg41haE.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’ Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. CoRR, abs/2203.07814, 2022. doi: 10.48550/ARXIV.2203.
07814. URL https://doi.org/10.48550/arXiv.2203.07814.

Guanghan Liu and Kung-Yee Liang. Sample size calculations for studies with correlated
observations. Biometrics, pages 937-947, 1997.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and Lingming Zhang.
Evaluating language models for efficient code generation. In First Conference on Language
Modeling, 2024. URL https://openreview.net/forum?id=IBCBMeAhmC.

Kaibo Liu, Yudong Han, Yiyang Liu, Jie M. Zhang, Zhenpeng Chen, Federica Sarro, Gang
Huang, and Yun Ma. Trickybugs: A dataset of corner-case bugs in plausible programs. In
2024 IEEE/ACM 21st International Conference on Mining Software Repositories (MSR), pages
113-117, 2024.

Shudong Liu, Hongwei Liu, Junnan Liu, Linchen Xiao, Songyang Gao, Chengqi Lyu, Yuzhe
Gu, Wenwei Zhang, Derek F. Wong, Songyang Zhang, and Kai Chen. Compassverifier:
A unified and robust verifier for llms evaluation and outcome reward, 2025. URL https:
//arxiv.org/abs/2508.03686.

Sharon L Lohr. Sampling: design and analysis. Chapman and Hall/CRC, 2021.

Zeyao Ma, Xiaokang Zhang, Jing Zhang, Jifan Yu, Sijia Luo, and Jie Tang. Dynamic scaling of
unit tests for code reward modeling, 2025. URL https://arxiv.org/abs/2501.01054.

Valentin J.M. Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J.
Schwartz, and Maverick Woo. The art, science, and engineering of fuzzing: A survey. IEEE
Transactions on Software Engineering, 47(11):2312-2331, 2021. doi: 10.1109/TSE.2019.
2946563.

Phil McMinn. Search-based software test data generation: a survey. Softw. Test. Verification
Reliab., 14(2):105-156, 2004. doi: 10.1002/STVR.294. URL https://doi.org/10.1002/
stvr.294.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-Tau Yih, Sida I. Wang, and
Xi Victoria Lin. LEVER: learning to verify language-to-code generation with execution. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett, editors, International Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research,
pages 26106-26128. PMLR, 2023. URL https://proceedings.mlr.press/v202/ni23b.
html.

13

https://openreview.net/forum?id=KoFOg41haE
https://doi.org/10.48550/arXiv.2203.07814
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=IBCBMeAhmC
https://arxiv.org/abs/2508.03686
https://arxiv.org/abs/2508.03686
https://arxiv.org/abs/2501.01054
https://doi.org/10.1002/stvr.294
https://doi.org/10.1002/stvr.294
https://proceedings.mlr.press/v202/ni23b.html
https://proceedings.mlr.press/v202/ni23b.html

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.
08774. URL https://doi.org/10.48550/arXiv.2303.08774.

Carlos Pacheco and Michael D. Ernst. Randoop: feedback-directed random testing for java. In
Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems
and Applications Companion, OOPSLA 07, page 815-816, New York, NY, USA, 2007.
Association for Computing Machinery. ISBN 9781595938657. doi: 10.1145/1297846.1297902.
URL https://doi.org/10.1145/1297846.1297902.

Guilherme Penedo, Anton Lozhkov, Hynek Kydli¢ek, Loubna Ben Allal, Edward Beech-
ing, Agustin Piqueres Lajarin, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and
Leandro von Werra. Codeforces cots. https://huggingface.co/datasets/open-ri/
codeforces-cots, 2025.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code. CoRR,
abs/2308.12950, 2023. doi: 10.48550/ARXIV.2308.12950. URL https://doi.org/10.
48550/arXiv.2308.12950.

Kostya Serebryany and the LLVM Team. libFuzzer — a library for coverage-guided fuzz testing.
https://1lvm.org/docs/LibFuzzer.html, 2016. Accessed: 2024-04-15.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code
generation using deep reinforcement learning. arXiv preprint arXiv:2301.13816, 2023.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Ling-
ming Zhang, An Ran Chen, and Lei Ma. TESTEVAL: benchmarking large language models for
test case generation. CoRR, abs/2406.04531, 2024. doi: 10.48550/ARXIV.2406.04531. URL
https://doi.org/10.48550/arXiv.2406.04531.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In Marie-Francine
Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual
Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pages 8696-8708. Association
for Computational Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.685. URL
https://doi.org/10.18653/v1/2021.emnlp-main.685.

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
Codet5+: Open code large language models for code understanding and generation. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 1069—1088. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
EMNLP-MAIN.68. URL https://doi.org/10.18653/v1/2023.emnlp-main.68.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou,
Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li,
Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie
Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan,
Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zhihao Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Kohsuke Yatoh, Kazunori Sakamoto, Fuyuki Ishikawa, and Shinichi Honiden. Feedback-
controlled random test generation. In Michal Young and Tao Xie, editors, Proceedings of the
2015 International Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD,
USA, July 12-17, 2015, pages 316-326. ACM, 2015. doi: 10.1145/2771783.2771805. URL
https://doi.org/10.1145/2771783.2771805.

14

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1145/1297846.1297902
https://huggingface.co/datasets/open-r1/codeforces-cots
https://huggingface.co/datasets/open-r1/codeforces-cots
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.48550/arXiv.2406.04531
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.1145/2771783.2771805

[47]

[48]

[49]

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen.
Acecoder: Acing coder rl via automated test-case synthesis. ArXiv, 2502.01718, 2025.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan
Wang, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained
model for code generation with multilingual benchmarking on humaneval-x. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’23, page 5673-5684, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701030. doi: 10.1145/3580305.3599790. URL https://doi.org/10.1145/
3580305.3599790.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-

marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

15

https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790

Appendix

A Related Works

A.1 Advancements and Challenges in LLM-based Code Generation and Evaluation

Large Language Models (LLMs) have revolutionized automated code generation, with models like Al-
phaCode [25], GPT-4 [36], Gemini [2], and specialized code models such as CodeT5 [43, 44],
StarCoder [23], DeepSeek Coder [13], CodeLlama [39], and Qwen2.5-Coder [45, 17] demon-
strating remarkable capabilities. These models, whether trained via Supervised Fine-Tuning or
enhanced through Reinforcement Learning (RL) with execution feedback (e.g., AlphaCode [25],
PPOCoder [41], CodeRL [21]), increasingly match or exceed human performance on diverse pro-
gramming benchmarks.

The reliable evaluation of these sophisticated models is paramount and hinges on the quality of Code
Verifiers—typically test suites—that ascertain the functional correctness of generated code. This
is especially critical for RL frameworks employing verifiable rewards (RLVR) [8, 10, 35], where
test case quality directly impacts reward accuracy and training efficacy. However, as highlighted in
Section 1, the comprehensiveness and robustness of verifiers often present a significant bottleneck,
underscoring the critical need for effective Test Case Generation.

To this end, the research community has developed numerous benchmarks. Early benchmarks like Hu-
manEval [6] and MBPP [3] provided foundational testbeds. Subsequent efforts like EvalPlus [27, 28]
and MBPP-Plus aimed to improve robustness by expanding existing test sets. More comprehen-
sive benchmarks such as TACO [24], CodeContests [25] (focused on algorithmic problems), Big-
CodeBench [49] (complex multi-library tasks), LiveCodeBench [19] (simulating online judge envi-
ronments), and HumanEvalPack [48] (multilingual program synthesis) have broadened the evaluative
scope. Concurrently, dedicated TCG benchmarks like TESTEVAL [42] and TestGenEval [18] have
emerged. Despite these advancements, persistent issues in test case quality, coverage, and potential
LLM-centric biases necessitate continuous efforts towards developing high-quality, diverse, and
unbiased Code Verifiers.

A.2 Methodologies for Test Case Generation (TCG)

TCG is fundamental to validating code correctness and providing feedback for both evaluation and
training of code generation models. While formally defined as a distinct task in this paper, TCG
principles are integral to benchmark creation (e.g., LiveCodeBench [19], TESTEVAL [42]) and RL
data pipelines (e.g., ACECODER [47], CodeRL [21]). However, suboptimal test quality in existing
datasets (e.g., TACO [24], CodeForces-CoTs [38]) can lead to overestimated model performance and
reward hacking, particularly in rule-based RL systems like AlphaCode [25] and DeepSeek Coder [13],
thus highlighting the urgent need for effective TCG.

Traditional TCG Techniques: Software testing has a rich history of TCG. Search-Based Software
Testing (SBST) [1, 14] uses metaheuristics like genetic algorithms [4, 34] to optimize for coverage
criteria, though it can be computationally intensive. Symbolic Execution [9, 5] explores program
paths systematically but faces path explosion and challenges with complex code. Fuzzing [33, 11],
especially coverage-guided variants like AFL [11] and libFuzzer [40], excels at finding crashes and
vulnerabilities by mutating inputs, though it may lack semantic depth for logical tests. Feedback-
directed random testing [46, 37] also discovers defects but can sometimes lack diversity.

LLM-based TCG Paradigms: With the rise of LLMs, new TCG methods have emerged, leveraging
semantic understanding for potentially greater coverage and diversity. As discussed in Section 3,
these generally follow two paradigms:

1. Direct Generation: LLMs produce complete test cases (inputs and outputs). This includes
assertion-focused methods (e.g., CodeCoT [15], AgentCoder [16]) and direct input-output syn-
thesis (e.g., TestChain [22], CodeRM [32], AceCoder [47]), aiming for logical coverage and
boundary conditions.

2. Input-Interpreter: LLMs generate test inputs, which are then executed by a ground-truth solution
to derive outputs. This is seen in LiveCodeBench [19],CodeForce-Cot [38] and related to LLM-

16

guided fuzzing. EvalPlus [27, 28] also aligns by mutating seed inputs for execution. TestChain [22]
also showed improvements by decoupling input and output generation.

Advanced and Specialized TCG Approaches: In RL contexts, dynamic TCG is crucial. CodeRM-
8B [32] adjusts test quantity by problem difficulty. LEVER [35] uses learned verifiers, and other
works focus on execution-feedback for reward model optimization, all highlighting the impact of test
quality on RL outcomes. Differential testing, as in AID [29], compares program versions to expose
bugs, showing strong results on datasets like TrickyBugs [29] and EvalPlus [27]. Recent efforts also
explore generating tests targeting prior failures [7] or using LLMs for test suite refinement.

Despite these diverse approaches, achieving comprehensive logical coverage, generating truly diverse
and challenging corner-case tests, and maintaining computational efficiency remain significant
hurdles. Furthermore, many LLM-centric TCG methods may perpetuate biases inherent in the LLMs
themselves (Section 1). This paper’s SAGA framework addresses these limitations by proposing a
novel human-LLM collaborative paradigm that systematically integrates deep human insights from
both correct and incorrect solutions. By focusing on a dynamic, adaptive, and efficient TCG process,
SAGA aims to enhance the reliability of LLM code evaluation and training, paving a new path for
TCG research.

B Formulation and Interpretation of Advanced Evaluation Metrics

This section provides detailed explanations and interpretations for the advanced metrics introduced in
Section 3.2 to evaluate the intrinsic quality of test suites.

B.1 Distinct Error Pattern Coverage (DEPC) and Diversity Ratio

Formulation (from main text): For a test suite 7 and Np problems, let v(¢;) be the Np-dimensional
binary error pattern vector for test t;, (where v(tz); = 1 if ¢, reveals an error for problem j).

DEPC(T) = ‘{v(tk) |t € T and [[o(ty)[l, > 1}].

The Diversity Ratio is DEPC(7)/n, where n = |T]|.

Interpretation: DEPC measures the breadth of error coverage by counting the number of unique ways
(patterns) in which the test suite can detect failures across a set of problems. A higher DEPC signifies
that the test suite is capable of identifying a wider variety of distinct error types or combinations
of errors. This directly relates to the concept of inter-test case correlation (peg) discussed in our
theoretical model (Appendix C): a test suite with high DEPC is likely composed of tests that are less
correlated in terms of the errors they detect, thus having a lower p.g. The Diversity Ratio normalizes
DEPC by the number of test cases, indicating the average efficiency of each test in contributing a
new, distinct error pattern. A high Diversity Ratio suggests that the test suite is not only diverse but
also concise, with less redundancy among its test cases.

B.2 Normalized Area Under the Accuracy-Number of test cases Curve (AUC-AccN)

Formulation (from main text): For Verifier Accuracy Acc(k) achieved with a test suite of size k
(up to a maximum N, starting from £,,,;,,), the AUC-AccN is approximated by the trapezoidal rule:

1
N ———
AUCaQ N

i=Kkmin

(kig1 — k).

NEI Acc(k;) + Acc(kitr)

2

Interpretation: AUC-AccN quantifies the average Verifier Accuracy as the test suite size grows,
providing a single scalar value to compare the overall effectiveness and efficiency of different TCG
strategies. A higher AUC@N (ranging from O to 1) indicates that a TCG strategy consistently
generates test suites that achieve higher verifier accuracy across various sizes up to N. This metric
is a composite reflection of both the average potency of individual test cases (p) and the effective
diversity of the test suite (related to pesr).

» Impact of p (Test Potency): A higher average p means individual tests are more likely to detect
errors. This leads to a steeper initial rise in the Acc(k) curve and a higher overall level of accuracy

17

achieved, both of which contribute to a larger AUC@ N. Thus, AUC-AccN is particularly sensitive
to p.

* Impact of Diversity (low p.g): Greater diversity (lower peg), empirically reflected by a high
DEPC, allows the Acc(k) curve to sustain its rise or plateau at a higher level for a larger number of
test cases before saturation effects become dominant. This sustained high accuracy also contributes
to a larger AUC@N.

Therefore, a high AUC@ N signifies a TCG strategy that excels at generating tests that are individually
powerful (high p) and collectively non-redundant (low peg), leading to efficient and robust verifier
construction within the specified test suite size limit. It reflects a better overall quality of the generated
test cases in achieving high average performance.

C Theoretical Analysis of Detection Rate

We analyze the detection rate eg(T) = P(X > 1) for a test suite T = {t1,...,t,}, where X =
>i 1k, and p; = P(E;) is the probability that test ¢; detects an error.

C.1 Modeling Correlated Heterogeneous Bernoulli Trials

The expectation of X is E[X] = > p; = np, where p = + > p;. The variance is Var(X) =
Sopi(1=pi) + 30,4 Cov(lg,, 1k,).

To model the effect of correlation in a tractable manner that allows for insights similar to the
homogeneous case (uniform p, uniform p), we consider an approximating model. We define an
effective average pairwise covariance, C.g, and an average individual variance, O’% = % Spi(l—
p;). We then model the variance as if it arose from a system with these averaged second-order
characteristics: _ ~
Varapprox(X) = nag +n(n —1)Cog.

If we further posit that these average characteristics can be related through an effective average
correlation peg such that Cog ~ pegr/avg(p;(1 — p;))? or, more simply for conceptual linkage,

Ceot = pestP(1 — P) (assuming p; are not excessively dispersed, making 012, ~ p(1 — p)), then:

Varapprox(X) & np(l — p)[1 + (n — 1) Pesr]-)]
This equation models the variance of X as if it were a sum of n Bernoulli trials with a common
success probability p and a common pairwise correlation peg. The validity of this approximation
depends on the actual distribution of p; and the structure of covariances. However, it serves as a
useful model to understand the qualitative impact of average correlation.

Definition 3 (Model-Based Effective Sample Size ny). Within this approximating model (Eq. 1),
and by analogy to Kish’s design effect [20] (where deff” = 1+ (n— 1) pegr), the model-based effective

sample size is:
n

nig N ——————.
T4 (n—1)pesr
This n}g represents the number of hypothetical independent Bernoulli(p) trials that would exhibit the
variance given by Eq. 1. This is consistent with adjustments for correlated data [31, 12, 26].

C.2 Upper Bound and Saturation within the Model

Using n}s and p from our model, we analyze the detection rate eg(7') = 1 — P(X = 0).
Theorem 1 (Model-Based Approximate Upper Bound on Detection Rate). Within the described
approximating model, the detection rate eg(T) is approximately upper bounded by:

Es(T) ~1-— (1 - ﬁ)n;“ ~1-— (1 —]5) 1+("L:Ll)ﬁcff_

Proof Sketch. The probability P(X = 0) is approximated by that of n’; independent Bernoulli(p)
trials, which is (1 — p)"r. O

This theorem suggests that even when individual p; vary, if there’s an effective positive average
correlation peg > 0, the system behaves as if it has fewer independent tests, limiting the detection
rate.

18

C.3 Interpretation and Implications for Performance Metrics

The derivation above, employing an approximating model based on average parameters (P, peff),
robustly indicates that a persistent positive effective correlation among test case detection events leads
to a saturation of the overall detection rate. The core insight—that redundancy limits the marginal
gain from additional tests—remains. This theoretical observation is crucial for understanding the
performance of TCG strategies and their impact on the empirical metrics used in this paper:

* Verifier Accuracy (Acc(T)) and its relation to p: The Verifier Accuracy at any given test suite
size n, Acc(T),), is fundamentally driven by the test suite’s ability to expose errors, which is
heavily influenced by the average potency of its constituent test cases. A higher average error
detection probability, p, means that individual tests are, on average, more "powerful" or "incisive."
Consequently, a TCG strategy yielding a higher p will lead to a verifier that more readily and
correctly identifies faulty solutions, directly boosting Acc(T),). While high correlation (peg) can
limit the ultimate achievable accuracy by causing early saturation of distinct error discovery, a
strong p is essential for the accuracy curve to reach a high level in the first place.

* AUC-AccN as a reflection of sustained high p and managed p.: The Area Under the Accuracy-
Number of test cases Curve (AUC-AccN), which quantifies the average Verifier Accuracy as test
suite size increases, is a composite reflection of both p and peg. A high p ensures that the Acc(k)
curve rises steeply and achieves a significant altitude. This initial rapid ascent and the overall
height of the curve contribute substantially to a larger AUC-AccN. Concurrently, a lower effective
correlation peg (i.e., greater diversity, reflected empirically by DEPC) allows the accuracy to be
sustained or to continue growing across a larger number of test cases before significant saturation,
thereby expanding the area under the curve. Therefore, strategies achieving a high AUC-AccN are
those that likely generate test cases with a consistently high average error detection probability (p)
and effectively manage redundancy (lower peg). The magnitude of p is particularly critical for the
"value" captured by AUC-AccN, as it dictates the average level of accuracy being integrated.

* DEPC and its relation to p.s: DEPC empirically captures the diversity of error patterns. A TCG
strategy that yields high DEPC is effectively generating tests with low effective average correlation
Pest, thus mitigating the saturation effect on discovering new types of errors and allowing for a
more sustained increase in overall detection capability.

Therefore, the pursuit of TCG methods like SAGA, which aim to enhance both individual test case
strength (targeting a higher p) and inter-test case diversity (targeting a lower peg), is theoretically
well-founded for optimizing these key verifier performance metrics.

D TCGBench: Foundational Dataset for TCG Research

As introduced in Section 3.2, TCGBench is the comprehensive dataset curated for our Test Case
Generation (TCG) research. It aggregates 1840 recent programming problems sourced from
three leading competitive programming platforms: AtCoder (https://atcoder. jp), Codeforces
(https://codeforces.com), and Nowcoder (https://www.nowcoder.com). These platforms
are recognized for their diverse algorithmic challenges. For each problem in TCGBench, we also
collected an average of 36.66 incorrect human submissions, specifically those resulting in "Wrong
Answer" (WA) or "Time Limit Exceeded" (TLE) verdicts. This large-scale collection of problems,
along with their corresponding WA/TLE submissions, provides a rich empirical foundation for
studying human error patterns and rigorously developing and evaluating TCG methodologies. The
problems are sourced from recent contests to ensure currency and minimize data leakage risks when
evaluating contemporary LLMs.

E TCGBench-Lite and CodeCompass: Curated Set for Evaluation

For the main experimental comparisons and ablation studies presented in Section 4.2.1, and for
constructing the CodeCompass verifiers (Section 5), we curated TCGBench-Lite. This is a focused
subset of 270 problems sourced from AtCoder, Codeforces, and Nowcoder contests held since June
2024, ensuring high contemporary relevance and minimizing potential data leakage for evaluating
newer models. TCGBench-Lite features an average of 41.41 incorrect submissions per problem.

19

https://atcoder.jp
https://codeforces.com
https://www.nowcoder.com

The difficulty distribution for TCGBench-Lite and CodeCompass (Easy: 27.04%, Medium: 32.59%,
Hard: 40.37%) was determined by a multi-faceted approach. This involved considering platform-
provided difficulty tags, the type of contest round (e.g., AtCoder Beginner Contest vs. Regular
Contest; Codeforces Div.4/3 vs. Div.2/1), typical problem-solving patterns associated with specific
problem slots within these contests, and general community perception of difficulty for similar
problems. For instance, early problems in beginner-focused contests were generally classified
as ’Easy’, while later problems in advanced contests or those requiring complex algorithms/data
structures were classified as "Hard’. This classification aims to provide a balanced yet challenging
set for rigorous evaluation. The verifiers in CodeCompass, used for code generation evaluation,
consist of an average of 50.54 SAGA-generated test cases per problem for these 270 problems. The
characteristics are summarized in Table 4.

Table 4: Overview of TCGBench-Lite (Core Dataset for CodeCompass Verifiers).

Aspect Details for CodeCompass Evaluation
Core Dataset Source Atcoder, Codeforces, Nowcoder (June 2024 - Present)
Total Problems 270

Difficulty Distribution Easy (27.04%), Medium (32.59%), Hard (40.37%)

Scale for CG Evaluation Avg. Test Cases/Problem: 50.54
Avg. Syrong/Problem (for SAGA’s TCG): 41.41

Primary CG Metric Pass@k
CodeForce
a) o5 b c d
(@ o5 (2<>0' SAGA AUC@S0: 0.6269 © .. Baseline w / Differ (d) -+- Baseline w/ Differ
290 bt @ BedmeAvCaS O G — — B ey S vy
< " S s0- 4708 ;
- £ PNEPNEYN n
3 85 A/ 0/"—’_ =t s’ 307 =} 0.9
5l " g 40- [E-1 L =
Y
& 80 £ = ol Sos \
Basgline DR@100: 79.27% @ 30- [h
£, Y g 30 £ 20° z ™~
87 < = £ . —
=} . @ 0.7 ———
S .0 —0— w/ MultiDim 5 20- a - 3
2 w/ Differ = # lo- Z o6
R65- & =i SAGA S 10- [& —
Baseline DR@100 15 [| e
60 Obi ! . : . 07 TI0T20T0a0s0 0 10 20 30 40 50
5 IOT ZOC 30 S_“J 50 510 20 30 40 50 Test Case Size Test Case Size
est Case Size Test Case Size
NowCoder
@ 95 ora1% (0) (. ucasmam S (€) -+~ Baseline wioier (d) o~ Bascline ™/ Differ
) _pnem A 60 Baseline AUC@S0: 0.3847 o 59.66% w/MultiDim —+— SAGA w/MultiDim —+— SAGA
o’ Q o 407
590 ¢ g » [e ¥
Q ¢ A bk . b . o o LSRRy .
= / 'S A [/) Soos- =LLL LI
<} ¢ (N . L r's
A 40 A P 30; ¥ P <
K5 f/ g L e oo o & 0.90-
=] f p = Baseline VAcc@100: 30.4; = a .y
o Bageline DR@100: 83.93% 8 - = 70: A B .
S80- —0— w/ MultiDim < ’ a2 42 70850 "
3 / Diff 20 & [£ 4 \
8 4 wi Diffor 5 p o W/l t & Zos0l e
% 5. d 4 SAGA = & wi Differ 10- G 1) ~——
a Baseline DR@100 5 = SAGA I 2 sk —
Baseline S N T T T ¥ T Y T :
510 20 30 40 50 >0 .. L | : - B VI VR ™ 07020 30 0TS0
5 5 ; . ’
Test Case Size 510 20 30 40 50 Test Case Size Test Case Size

Test Case Size

Figure 9: SAGA performance on Codeforces (CF) and Nowcoder (NC) problems from the full
TCGBench dataset: (a) Detection Rate, (b) Verifier Accuracy (with AUC@50), (c) DEPC, and
(d) Diversity Ratio, compared to Baseline (Input-Interpreter) and SAGA’s analytical components
(Multidimensional Analysis and Differential Analysis). Dotted lines in (a) & (b) show respective
baseline performance at n = 100.

F SAGA Performance on Full TCGBench

To demonstrate SAGA’s broader applicability beyond the AtCoder subset shown in Figure 6 (which
used the full TCGBench for that visualization), Figure 9 presents SAGA’s performance on the
Codeforces and Nowcoder portions of the complete TCGBench dataset. SAGA consistently replicates
its superior performance, exhibiting enhanced efficacy (DR, Acc) and superior test suite quality
(DEPC, Diversity Ratio) compared to the baseline and its individual analytical components across
these platforms as well. This consistent pattern of improvement underscores the fundamental benefits
of SAGA’s structured, insight-driven approach to TCG.

20

To further demonstrate SAGA’s broad applicability and robustness, Figure 10 presents its Detection
Rate (DR) and Verifier Accuracy (VAcc) when paired with different LLM backbones (Qwen2.5-
Coder-7B-Instruct, Qwen2.5-72B-Instruct, and DeepSeek-V3-0324) on the Codeforces and Nowcoder
portions of the full TCGBench dataset, compared against the Input-Interpreter baseline (using
DeepSeek-V3). Across both platforms and all LLM backbones, SAGA consistently and significantly
outperforms the baseline in DR and VAcc at various test case sizes. Notably, even SAGA with
the smaller Qwen2.5-Coder-7B often surpasses the baseline that utilizes the larger DeepSeek-V3,
highlighting SAGA’s ability to effectively guide diverse LLMs. While larger SAGA backbones
generally yield higher absolute performance, the consistent uplift provided by the SAGA framework
across different models and problem sources underscores its fundamental benefits and general
applicability for advanced TCG.

Atcoder

90.0%

DR (%)

80.0%

40%

20%

50 100
Test Case Size

0%

CodeForce

90.0% ==
e

80.0%

‘ 25%

20 50
Test Case Size

0%

100

sove 95.0%
90.0%

85.0%

Nowcoder

gl

100

Test Cdse Size

[1 SAGA-Qwen-Coder (DR)
[1 SAGA-Qwen72B (DR)

1 SAGA-DeepSeek-V3 (DR) —*— SAGA-Qwen-Coder (VAcc) SAGA-DeepSeek-V3 (VAcc)

Baseline (DR) SAGA-Qwen72B (VAcc) Baseline (VAcc)

Figure 10: SAGA performance with different LLM backbones (Qwen-Coder, Qwen-72B, DeepSeek-
V3) compared to the Baseline (Input-Interpreter with DeepSeek-V3) on Codeforces and Nowcoder
portions of the full TCGBench dataset. Metrics: Detection Rate (DR) and Verifier Accuracy (VAcc)
at varying test case sizes. Dashed lines indicate baseline performance.

G Detailed Performance Analysis on TCGBench-Lite by Difficulty

To provide a more granular understanding of how different Test Case Generation (TCG) methods
perform across varying levels of problem complexity, Figure 11 illustrates the Verifier Accuracy
(VAcc@50) and Detection Rate (DR@50) of SAGA, its analytical components (Multidimensional
Analysis only, denoted "w/ MultiDim"; Differential Analysis only, denoted "w/ Differ"), and baseline
TCG methods (TestChain, EvalPlus, and Random Input-Interpreter) on the Easy, Medium, and Hard
problem subsets within TCGBench-Lite.

Easy Medium Hard
60% 55.50% § 40.0% 30.0%
50.00% 49.15% 33.24% 25.06%
3 30.0% 28.17% 2192% 21.25%
0 40% 38.10% 30.0%
®40% i 24.69% 200% 18.47%
“ % [
g 21.89% 20.0% 15 -
> 20% 10.54% 11,33 % 100%] 2%
10.0% m 5.56%
0% 0.0% 0.0%
100% 9 Se1v osave] 100% 100%
91.7%
90.4% 89.9% 88.6% 0
90%1 " g6.0% 90% 87.1% 90% 87.0% gs6v0 85.3%
=3
w0 80% 80% 78.0% 80%
® 76.0%
2 0 o '
o 7% 70% “7/ 70%
ez 7% w 9% “ 5%
60% 60% 60%
S0% = < 50% < 50% . <
& & S & \\“ & xé \\“’
O & ﬂ‘i o o“ S
< < v < % <
Q Q Q
[[TestChain [EvalPlus [Random [SAGA [w/MultiDim [w/ Differ l

Figure 11: Performance comparison (VAcc@50 and DR@50) of SAGA, its components, and
baseline TCG methods across Easy, Medium, and Hard problem subsets of TCGBench-Lite. SAGA
consistently outperforms baselines across all difficulties, and its full framework generally surpasses
its individual analytical components, especially on harder problems.

21

Key Observations from Figure 11:

* Consistent Superiority of SAGA: Across all difficulty tiers (Easy, Medium, Hard) and for both
VAcc@50 and DR@50, the full SAGA framework consistently outperforms all baseline methods
(TestChain, EvalPlus, Random). This underscores SAGA’s robustness and its ability to generate
more effective test suites regardless of problem complexity. For instance, on Hard problems, SAGA
achieves a VAcc @50 of 25.06%, substantially higher than the Random baseline (18.47%) and other
methods. A similar trend is observed for DR@50, where SAGA reaches 87.0% on Hard problems.

» Impact of Problem Difficulty on Baselines: The performance of baseline methods, particularly
TestChain and EvalPlus, degrades more noticeably as problem difficulty increases. For example,
EvalPlus’s VAcc@50 drops from 38.10% on Easy problems to a mere 5.56% on Hard problems.
This suggests that these methods may struggle to generate effective test cases for more complex
scenarios or subtle bugs prevalent in harder problems. The Random Input-Interpreter shows more
resilience than TestChain and EvalPlus on harder problems but still falls short of SAGA.

* Synergy of SAGA’s Analytical Components: While both Multidimensional Analysis ("w/ Mul-
tiDim") and Differential Analysis ("w/ Differ") components of SAGA individually outperform
the baselines, the full SAGA framework generally achieves the best performance or is highly
competitive.

— On Easy problems, SAGA’s VAcc@50 (55.59%) is notably higher than "w/ MultiDim" (50.00%)
and "w/ Differ" (49.15%), indicating that the combination of insights from both correct and
incorrect solutions is beneficial even for simpler problems.

— For Medium problems, SAGA (VAcc@50: 33.24%) again leads, showing a clear advantage over
relying on only one type of human prior.

— On Hard problems, the synergy is particularly evident. SAGA’s VAcc @50 (25.06%) is superior
to "w/ MultiDim" (21.92%) and "w/ Differ" (21.25%). This suggests that for complex problems
with elusive bugs, leveraging diverse insights from both correct solution structures and patterns
of common errors is crucial for generating highly discriminative test suites.

A similar synergistic effect is generally observed for DR @50, where the full SAGA framework
often provides the highest or near-highest detection rates.

* Effectiveness of Differential Analysis on Harder Problems: Interestingly, the "w/ Differ"
component (Differential Analysis leveraging Syrong) shows relatively strong performance on Hard
problems compared to its performance on Easy problems, particularly for VAcc@50. This might
imply that analyzing patterns from incorrect submissions is especially valuable for uncovering the
types of subtle or complex errors that characterize more difficult problems.

* Limitations of Simpler Priors: The performance of "Random" (Input-Interpreter) and even
"EvalPlus" (which uses human solutions for mutation) on Medium and Hard problems highlights
that merely having access to human solutions or employing random generation is insufficient.
SAGA’s structured approach to analyzing and strategically leveraging these human priors is what
drives its superior performance, especially as complexity increases.

H Supplementary Experimental Analyses

To further explore mechanisms for robust test suite construction and the value of diverse generation
strategies, we present two additional studies: an analysis of mixing random test cases from different
LLMs, and an ablation study on SAGA’s knowledge sources.

H.1 Efficacy of Mixing Random Test Cases from Different Language Models

Our theoretical framework highlights that test suite quality is influenced by individual test potency (p)
and inter-test case correlation (p.g). We investigated managing peg by mixing random test cases (akin
to the Input-Interpreter paradigm from Section 3.2) sourced from different LLMs (V3: DeepSeek-V3-
0324, 72B: Qwen2.5-72B-Instruct, Coder: Qwen2.5-Coder-7B-Instruct). The hypothesis is that tests
from different models may exhibit lower inter-source correlation, leading to improved combined suite
characteristics. Figure 12 shows the AUC@50 when mixing random tests, with diagonal elements
representing single-LLM suites.

Observations

22

Atcoder/VAcc@50 Atcoder/DivRatio@50 Atcoder/AUC@50

o. 187 o. a0 o 01308
] n 11.37 [s 76.07 8- 01585 0.0821
& & &
5 5
] 13.01 9.96 g e 73.15 80.65 T 01438 0.0831 0.0711
5] 5]
V3 738 Coder V3 738 Coder V3 738 Coder
CodeForce/VAcc@50 CodeForce/DivRatio@50 CodeForce/AUC@50
o 02442 0. 5296 oo 02014
- 0.1975 B 58.6 55.28 8- 02629 0.1691
& S
5 5
02474 02082 T 5457 55.52 56.2 T 02747 0.1965 0.1704
5] 5]
V3 738 Coder V3 738 Coder V3 738 Coder
NowCoder/VAcc@50 NowCoder/DivRatio@50 NowCoder/AUC@50
2. 2622 2. 7526 o 02134
R 367 2591 8 mm 73.99 8- 0288 0.1965
5 5 5
bl 51 2534 2 76 74.37 77.06 2 02574 0.2544 02017
5] 5] 5]
V3 738 Coder V3 728 Coder V3 728 Coder

Figure 12: Heatmap illustrating AUC@50 performance of mixed random test suites. Diagonal
elements: suites from a single model (V3, 72B, Coder). Off-diagonal (i,j): mixing random tests from
model i and model j.

* Benefit of Model-Source Diversity: Mixing random tests from two different LLMs frequently
yields superior AUC@50 compared to using tests from only one, across AtCoder, Codeforces,
and Nowcoder datasets. For instance, on Codeforces, mixing V3 (AUC@50: 0.2014) with 72B
(0.1691) results in a mixed AUC@50 of 0.2629, surpassing both. This suggests complementary
biases even in random generation.

* Reduced Effective Correlation: The improvements imply that combining tests from different
models likely lowers peg compared to single-source suites. Enhanced diversity allows the combined
suite to cover a broader error spectrum, increasing AUC @50.

* Surpassing Stronger Components: Often, the mixed suite outperforms even the stronger individ-
ual model in the pair (e.g., V3+72B on Codeforces). This robustly shows different LLMs contribute
unique, valuable random tests, highlighting complementary strengths.

Take-away: Diversifying the source of even "naive" random tests reduces correlation and improves
test suite quality, supporting our theoretical framework. While SAGA achieves this more directly via
structured analysis, this experiment underscores the general impact of minimizing peg.

H.2 Ablation Study: Impact of Human Knowledge Source Volume in SAGA

To dissect SAGA’s knowledge source contributions, we conducted an ablation study on the Codeforces
portion of TCGBench. We modified SAGA by removing its Differential Analysis component (insights
from incorrect solutions, Syrong) entirely. Instead, we doubled the volume of correct human solutions
(Shuman) fed into SAGA’s Multidimensional Analysis component, creating a "Multidim-Enhanced"
version. The aim was to see if increasing one type of human insight could compensate for omitting
another. Table 5 compares the original SAGA with this "Multidim-Enhanced" configuration.

Analysis of Ablation Results (Table 5):

* Degradation in Core Effectiveness: Despite doubling Syyman input, the "Multidim-Enhanced"
version shows a clear drop in VAcc @50 (from 47.08% to 38.73%) and AUC@50 (from 0.3195 to
0.2744) compared to the full SAGA. This suggests insights from incorrect solutions via Differential
Analysis are crucial for verifier quality and cannot be fully compensated by merely increasing the
volume of correct solutions for Multidimensional Analysis.

23

Table 5: Ablation Study on Codeforces (TCGBench): SAGA vs. Multidim-Enhanced (Double Spyman
for Multidimensional Analysis, No Differential Analysis).

Configuration DR@50 VAcc@50 AUC@50 DivRatio@50
SAGA (Multidim. + Differ.) 90.89% 47.08% 0.3195 0.697
Multidim-Enhanced 88.09% 38.73% 0.2744 0.701

* Diversity vs. Effectiveness: While the Diversity Ratio is comparable or slightly higher
for "Multidim-Enhanced", this raw diversity doesn’t translate to better overall verifier quality
(AUC@50). This reinforces that the type of diversity and the nature of uncovered error patterns
(targeted by Differential Analysis) are critical, not just diversity as a raw count.

» Implications for SAGA’s Design: This strongly supports SAGA’s dual-pronged approach of
integrating insights from both correct and incorrect human solutions. The unique error patterns
revealed by Differential Analysis appear vital for building high-quality, discriminative verifiers,
and their contribution is not simply replicable by scaling up the input to Multidimensional Analysis
alone.

I Model Performance on CodeCompass

To further illustrate the utility of CodeCompass as a challenging benchmark for evaluating LLM
code generation capabilities, Table 6 summarizes the Pass@ 1 performance of several contemporary
LLMs. The evaluation was conducted separately for C++ and Python problem instances within
CodeCompass, utilizing its SAGA-enhanced verifier suite.

The results demonstrate a clear differentiation among models in both languages, underscoring
CodeCompass’s ability to effectively rank and assess current code generation models. The challenging
nature of the SAGA-generated test cases in CodeCompass provides a rigorous testbed for future
model development and comparison.

Table 6: Performance of Various LLMs on CodeCompass (Pass@1) for C++ and Python.

Model Pass@1 on CodeCompass (C++) Pass@1 on CodeCompass (Python)
Qwen2.5-Coder-32B-Instruct 15.93% 12.59%
Qwen2.5-72B-Instruct 17.04% 14.81%
GPT-40 (2024-11-20) 20.74% 14.44%
DeepSeek-V3 24.81% 23.33%
QWQ-32B 31.85% 26.30%
DeepSeek-Chat-R1 38.15% 34.07%
Qwen3-235B-A22B 43.70% 36.30%

From Table 6, it is evident that CodeCompass effectively differentiates LLM performance across
both C++ and Python. While relative model rankings show some consistency, language-specific
performance variations are also notable, highlighting the benchmark’s capacity to reveal nuanced
capabilities. The generally moderate Pass @1 rates underscore the challenging nature of CodeCompass
due to its SAGA-enhanced test suites, making it a valuable resource for rigorous multi-lingual code
generation assessment.

J TCGCoder-7B Training Details

TCGCoder-7B, our specialist 7-billion-parameter model for Test Case Generation (TCG), was fine-
tuned from Qwen2.5-Coder-7B-Instruct [45, 17]. The training dataset, distinct from our evaluation
sets to prevent data leakage, comprised 15,000 early-stage programming problems from Codeforces
and NowCoder, processed by our SAGA framework (Section 4) to generate structured outputs (Python
Case Scripts, Math Explanations, Self-Validation code, per Figure 5). The fine-tuning aimed to distill
SAGA’s TCG reasoning into TCGCoder-7B. Key training configurations included 3 epochs, a global
batch size of 16, an initial learning rate of 5e-6 (minimum 3e-7), a max sequence length of 61,335

24

tokens, and the qwen2 chat template. Training utilized Fully Sharded Data Parallel (FSDP) across 2
nodes, each with 8 GPUs.

K Case Study: SAGA Framework and Metrics in Action

To provide a concrete illustration of our methodology, this section presents a case study demonstrating
both the SAGA framework in action and the precise calculation of our proposed evaluation metrics.

K.1 TIlustrative Example of the SAGA Framework

We demonstrate SAGA’s dual-pronged analytical approach using the "Christmas Trees" competitive
programming problem. The task is to count the number of trees planted at intervals of M starting
from coordinate A, that fall within the range [L, R].

SAGA systematically leverages both correct and incorrect human solutions to generate a comprehen-
sive verifier.

1. Multidimensional Analysis (Leveraging Correct Solutions, Spyman) First, by examining a
correct human solution, the LLM deconstructs its defensive logic. It identifies the core mathematical
condition (A + k - M € [L, R]), analyzes explicit parameter ranges (e.g., —10'® < A < 10'8), and
transforms implicit strategies into formal testing directives. This includes defining boundary values
(e.g., testing when L = A + k - M) and stress strategies. Guided by these directives, SAGA generates
targeted Python Case Scripts, such as gen_TC2() to test extreme boundary values and gen_TC3 ()
for the L = R edge case.

2. Differential Analysis (Leveraging Incorrect Solutions, Syyong) Complementing this, SAGA
performs Differential Analysis by comparing a correct solution with a known incorrect one to pinpoint
specific failure modes. For the same problem, the LLM identifies a critical_gap corresponding to
an "Off-by-one error in boundary calculation." It deduces that this failure occurs specifically when
the lower bound L is exactly on a tree’s position. To exploit this, SAGA generates a targeted test case,
gen_TC1("0 5 10 20"), where the incorrect solution would fail by one count. Other generated
scripts target different identified gaps, such as handling negative ranges or potential overflows with
extreme values.

3. Synthesis and Verification SAGA systematically applies both analytical dimensions across
a large number of human-provided solutions (both correct and incorrect) for each problem. This
generates a comprehensive set of Python Case Scripts. These scripts are then executed to produce a
large volume of test inputs, which undergo self-validation to ensure adherence to problem constraints.
After deduplication, the resulting test suite is verified against a ground-truth human solution to
form the final, robust verifier. This structured process ensures the test suite is diverse, targeted,
and systematically covers critical logic and subtle failure modes far more effectively than random
generation.

K.2 Illustrative Example of Metric Calculation

To clarify the computation of our core metrics, we use a simple, reproducible example. Consider a
problem P1 for which we have N, = 3 known incorrect solutions, each with a specific bug:

 S1: Fails on negative numbers.

* S2: Fails due to integer overflow.

* S3: Also fails on negative numbers.

Now, suppose a TCG method generates a test suite 1" with 7 test cases, producing the following
outcomes:

1. Error Pattern Vector, DEPC, and Diversity Ratio: The error pattern vector v(¢;) for each test
case is a binary vector of dimension IV, = 3, where the j-th element is 1 if the test case causes the
j-th incorrect solution to fail.

DEPC (Distinct Error Pattern Coverage) is the number of unique, non-zero error pattern vectors.
Here, the set of unique non-zero vectors is {‘[1,0, 1]*, [0, 1, 0]‘}. Therefore, DEPC(T") = 2.

25

Table 7: Test case outcomes for problem P1.
Test Case Input Fails S1? Fails S2? Fails S3?

tl -5 Yes No Yes
2 999999999 No Yes No
t3 -10 Yes No Yes
t4 0 No No No
t5 -1 Yes No Yes
to6 1 No No No
t7 -20 Yes No Yes

Table 8: Error Pattern Vectors for the test suite 7T'.

Test Case Error Pattern Vector v(t;) | Test Case Error Pattern Vector v(t)
t1 ‘11,0, 17 t5 ‘11,0, 1]

t2 ‘0, 1, 0] t6 ‘[0, 0, 0]°¢
t3 1,0, 1]¢ t7 ‘11,0, 1]
4 ‘[0, 0, 0]

The Diversity Ratio is DEPC(T') /n, where n is the total number of test cases. For this suite, the
Diversity Ratio is 2/7 ~ 0.286. This indicates that, on average, it takes 3.5 test cases to discover one
unique bug pattern, highlighting redundancy in tests t3, t5, t7 and the ineffectiveness of t4, t6.

2. Detection Rate (DR) and Verifier Accuracy (VAcc): Detection Rate (DR) is a solution-level
metric. For each incorrect solution, we determine if the test suite finds the bug (a binary outcome).

* For S1: Does T detect the bug? Yes (e.g., t1 works). Outcome = 1.
* For S2: Does T detect the bug? Yes (t2 works). Outcome = 1.
* For S3: Does T detect the bug? Yes (e.g., t1 works). Outcome = 1.

The final reported DR is the average of these outcomes: DR = (1+1+1)/3 = 1.0 or 100%.

Verifier Accuracy (VAcc) is a stricter, problem-level metric. It is 1 if and only if the test suite can
detect a failure in every known incorrect solution (i.e., if the average DR is 100%). In this example,
since the average DR is 100%, VAcc(T) = 1.

L Observation: Analysis with a State-of-the-Art Reasoning Model

To explore the impact of advanced reasoning capabilities, we integrated SAGA with a powerful
reasoning model, Qwen3-235B-A22B. Counter-intuitively, this led to a degradation in overall perfor-
mance. A subsequent manual analysis revealed this was not due to a failure in reasoning, but rather a
practical engineering constraint. For many complex problems, the model’s extensive chain-of-thought
process exceeded our deployment’s maximum sequence length (64k tokens), resulting in truncated
and unusable script outputs. This observation suggests that while powerful, such large-scale models
require significant computational resources to fully leverage their reasoning potential in complex
generation tasks. Our choice of a smaller default backbone thus reflects a pragmatic balance between
performance and accessibility for reproducible research.

M Limitations and Future Work

Our primary limitation is SAGA’s current reliance on a "golden" ground-truth solution as an interpreter.
While effective in domains like competitive programming where oracles are available, this dependency
restricts its direct application in general software engineering. Echoing insightful reviewer feedback,
a key direction for future work is to adapt SAGA for oracle-less settings. We propose exploring a
pseudo-labeling approach where an initial set of diverse test cases—whose quality can be assessed
using metrics like DEPC introduced herein—act as "voters" to identify high-confidence "pseudo-
gold" solutions from a pool of candidates. These can then seed the SAGA framework, removing the
need for a pre-verified oracle and significantly broadening its applicability.

26

	Introduction
	Related Work
	Evaluating Verifier Quality: Metrics and TCG Paradigms
	Problem Definition
	Investigating Current TCG Paradigms and Their Limitations

	SAGA: A Human-LLM Collaborative Framework for Advanced TCG
	The SAGA Framework: Integrating Human Expertise
	Experimental Validation of SAGA
	Main Results and Analysis on TCGBench-Lite

	Towards Advanced Applications of SAGA
	Conclusion
	Acknowledgment
	Related Works
	Advancements and Challenges in LLM-based Code Generation and Evaluation
	Methodologies for Test Case Generation (TCG)

	Formulation and Interpretation of Advanced Evaluation Metrics
	Distinct Error Pattern Coverage (DEPC) and Diversity Ratio
	Normalized Area Under the Accuracy-Number of test cases Curve (AUC-AccN)

	Theoretical Analysis of Detection Rate
	Modeling Correlated Heterogeneous Bernoulli Trials
	Upper Bound and Saturation within the Model
	Interpretation and Implications for Performance Metrics

	TCGBench: Foundational Dataset for TCG Research
	TCGBench-Lite and CodeCompass: Curated Set for Evaluation
	SAGA Performance on Full TCGBench
	Detailed Performance Analysis on TCGBench-Lite by Difficulty
	Supplementary Experimental Analyses
	Efficacy of Mixing Random Test Cases from Different Language Models
	Ablation Study: Impact of Human Knowledge Source Volume in SAGA

	Model Performance on CodeCompass
	TCGCoder-7B Training Details
	Case Study: SAGA Framework and Metrics in Action
	Illustrative Example of the SAGA Framework
	Illustrative Example of Metric Calculation

	Observation: Analysis with a State-of-the-Art Reasoning Model
	Limitations and Future Work

