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ABSTRACT

Open Set Domain Adaptation (OSDA) faces two critical challenges: the emergence
of unknown classes in the target domain and changes in observed distributions
across domains. Although numerous studies have proposed advanced algorithms,
recent experimental results demonstrate that the classical Empirical Risk Mini-
mization (ERM) approach still delivers state-of-the-art performance. However,
few theories can effectively explain this disputed phenomenon. To address the
theoretical gap, we focus on constructing a causal theoretical framework for OSDA.
We formulate the novel concepts of the Fully Informative Causal Invariance Model
(FICIM) and the Partially Informative Causal Invariance Model (PICIM). Subse-
quently, We derive an OSDA theoretical bound to prove that the ERM performs
well when the source domain follows FICIM, while it performs poorly when the
source domain follows PICIM. The different results may be attributed to the vary-
ing amounts of available information when bounding the target domain’s stable
expected risk. Finally, across different datasets, we conduct extensive experiments
on the FICIM and PICIM source domains to validate the effectiveness of our
theoretical results.

1 INTRODUCTION

Open Set Domain Adaptation (OSDA) represents a realistic challenge in domain adaptation (

, ). There is a great need to solve OSDA in the real world. For instance, autonomous driving
Al is often trained in simulated environments but must operate in complex real-world scenarios that
may involve unseen targets ( , ; , ). Chatbots can become more intelligent
via detecting unknown expressions and prompting users to explain them ( , ).
Furthermore, if Al overlooks unknown instances, it may become overly confident, resulting in serious
hallucinations and safety issues ( , ; s ).

OSDA is more challenging than other domain
adaptation problems, as illustrated in Fig. 1.

The first challenge is that unknown classes ap- Known classes
pear in the target domain. The second chal- f—ﬁl
lenge is the observed distributions of data which -

changes across domains. Existing domain adap-

tation studies rely on strong assumptions on ob-
served distributions of inputs and labels. One t Q =
key assumption is the covariate shift assump- * o

tion ps(x) # pr(x) while ps(y[x) = pr(y[x)
( , ), which states that the condi- Source d Target d
tional distribution of the labels (given the in-
put x) is invariant across domains. However, Figure 1: In this OSDA scenario, 1) the unknown
such assumptions are too restrictive for high- classes appear in the target domain, 2) the digit
dimensional data due to dimension redundancy ~color is a latent attribute correlated with the image
and the lack of direct causal relationships or cor- X and digit label Y, 3) the digit color is positively
relations between the original high-dimensional —correlated with the label in the source domain and
data and the prediction task ( , ; 1is negatively correlated with the label in the target
, ; , ; ). domain, 4) ps(y|x) # pr(y|x) due to the correla-
Although most of the existing literature has tion between color and label.
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claimed improved performance of OSDA using different algorithms ( , ;

; , ), the performance gains have been reported
to be overestlmated W1th the class1c Emplrlcal Risk Minimization (ERM) method remaining state-
of-the-art ( s : s ). This performance
controversy motivates us to develop a theoretlcal risk decomposmon

To address the above issues, we propose a theoretlcal framework based on the invariant causal
mechanisms ( s R ) from causal
theory to understand how stable causal mechamsms fac111tate knowledge transfer and explain why
algorithms like ERM succeed in some scenarios while failing in others. This framework includes
two models: the Fully Informative Causal Invariance Model (FICIM) and the Partially Informative
Causal Invariance Model (PICIM). Via distinguishing FICIM and PICIM, we can better define the
conditions under which domain adaptation methods are effective and derive bounds on the expected
risk in the target domain.

More technically, we define the stable expected risk with invariant connections across domains and
derive a theoretical bound of the stable expected risk for OSDA. Furthermore, our bound explains
which risk minimization strategies should be employed under which conditions. Our theory addresses
the theoretical performance controversy between ERM and other methods: 1) The ERM of a source
domain following FICIM can provide sufficient information to bound the stable expected risk of the
target domain; 2) The stable expected risk of the target domain cannot be bounded by the ERM of a
source domain following PICIM. In addition, generating source domain data that adheres to FICIM
is beneficial for model training or fine-tuning, especially for large language models (LLMs). We
conduct extensive experiments on multiple FICIM and PICIM datasets to validate the reliability of
our theoretical results.

The significant contributions of this work are summarized as follows:

* We propose a novel causal framework and formalize the FICIM and PICIM causal models
for domain adaptation. This causal framework and model can provide a solid theoretical
foundation for domain adaptation problems.

* We propose a causal bound for the OSDA. This bound can guide the development of new
algorithms for OSDA problems.

* We prove that when the source domain follows the FICIM, ERM is sufficient for model
training. Our work demonstrates the feasibility of constructing artificial FICIM datasets
instead of natural datasets for training.

* Our theoretical work on domain adaptation can guide the generation of diverse and repre-
sentative training datasets using LLMs, enhancing model generalization and adaptability
through a focus on causal relationships and data selection. Additionally, our theory can guide
the selection of high-quality datasets for efficient pre-training and fine-tuning of LLMs.

2 RELATED WORK

In this section, we first introduce OSDA and Open Set Recognition (OSR) theories. Then, we review
DA from a causal view. For detailed information on related works, please refer to Appendix B.

2.1 OSDA AND OSR THEORIES

Our research problem is within the field of OSDA. A similar concept related to OSDA is OSR (

, ). Hence we refer readers to ( , ) for comprehensive
surveys of OSDA and OSR. Early theoretical studies on OSR formalized the relationship between the
known and unknown classes using the open space risk ( , ) and
extreme value theory ( , ), but they did not provide theoretlcal guarantees. Moreover,
none of the above-mentioned works can solve our problem because they need a strict assumption that
at least one observed distribution does not change across domains.

'As shown in Fig. 1, the information that determines the image label is solely the shape of the digit in the
image, not the background color. Changing the color does not affect the image label.
imag he background color. Changing the color d ffect the image label



Under review as a conference paper at ICLR 2025

2.2 DA FROM A CAUSAL VIEW

Existing studies primarily assume invariant predictors or rely on different causal assumptions to
address domain adaptation problems ( , ). Although Invariant Risk
Minimization (IRM) ( R ) methods are commonly used for learning robust representations,
research has shown that they do not necessarily outperform ERM ( , ;
s ). Desplte some success with these methods ( ;

, ), they fail to provide a theoretical understandlng of nonhnear
high- dlmensmnal data, and only consider a variation of the PICIM in our work as their causal
structure, whereas we consider the FICIM and PICIM.

3 A CAUSAL FRAMEWORK OF DOMAIN ADAPTATION

3.1 NOTATIONAL PRELIMINARIES

We denote €2, o7, and P as the original sample space, o —algebra on (2, and probability measure,
respectively. Then, (02, o7, IP) is a probability space. We use capital letters such as X to denote random
elements and boldface letters such as x to denote value vectors. Calligraphic capital letters such as X
are used for space. Random elements are measurable maps. for instance, X : (2, &) — (X, A).
For simplicity, we use notations including Px, Pxy, and P x|y to denote the marginal, joint, and
conditional distributions, respectively. Moreover, p is the probability density function. For more
symbol annotations and terminology, see Table 5 in Appendix A.

3.2 CAUSAL ASSUMPTIONS

Causahty research indicates that real-world data distributions stem from underlylng causal mecha-
nisms that are typically invariant across domains ( ).

( ) formalized this into the causal invariance principle, assertlng that causal generation
mechanisms remain consistent across different domains. For high-dimensional data X—such as
text, images, or audlo—lt S commonly assumed that X is a nonlinear function of latent attributes
A( , ). However, not all attributes in A are
invariant causes of X or the target label Y. Some attributes, like noise or background color, may
affect X but not Y. Therefore, we partition A into two subsets: the causally invariant attributes C
and the variation attributes V', where C' maintains invariant relationships with both X and Y. We
formalize this with the following assumption:

Assumption 1. (Causal invariance assumption) For high-dimensional data X and its prediction
target Y, the latent attribute set A between X and Y can be divided into the causally invariant
attribute set C' and variation attribute set V. Attributes belonging to C should satisfy P(Y|C') and
P(X|C) being invariant across domains. Attributes belonging to V should satisfy that P(Y'|V') or
P(X|V) varies across domains.

Based on this, we define:

Definition 1. (Probability Generation Model (PGM)). We define the probability generation model
for high-dimensional data as certain statistical probability descriptions of the data generation
process, i.e., PGM = (Pc,Px|c, Py|c, Pvic, Pyvx) on high-dimensional data X and target Y’
with causally invariant attributes C' and variation attributes V.

This assumption is supported across various fields ( , ; , ). For example,
in computer vision, images from the same class share causally invariant attributes, while variation
attributes provide class-independent features like color and background ( , ).

By constructing a probability model with separated latent attributes, we can better describe the data
generation process. For example, when high-dimensional data is collected from different sensors
with varying characteristics, the PGM accounts for variations by incorporating causally invariant
attributes (e.g., physical properties) and variation attributes (e.g., sensor-specific features).
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3.3 INVARIANT CONNECTIONS ACROSS DOMAINS

Traditional domain definitions focus on observed distributions or labeling functions associated with
XandY ( , ), which may not capture essential differences
involving latent attributes in h1gh dlmenswnal data. Instead, we aim to mathematically characterize
the invariant relationship between the source and target domains. Therefore, to address this issue, we
define:

Definition 2. (Domain). A domain d includes a series of observed data distributions P9 that are
generated by a domain-specific PGM; = <]P"é, ]P’gl(‘c, ]P’gl,lc, IP"‘i,‘C, IP’%I,VX>. For the convenience of

subsequent use, we construct a domain set D = {dy, da, ...} where every domain d; € D is generated
by PGMy,.

This definition allows us to express invariant relationships between domains:
Proposition 1. (Domain invariance) Given two arbitrary domains d;, d; € D, we have an invariant
relationship IP’X‘C = ]P’ch and IP’YlC = ]P’ch.

Proof. Using Definition 2, we can directly derive the domain invariance proposition from Assump-
tion 1. O

To address the unknown relationship between Y and V, we introduce two causal models shown in
Fig. 2:
Definition 3. (Fully Informative Causal Invariance Model (FICIM)) A causal model is considered

to be FICIM if Py ¢ is invariant across domains and the relationship between'Y and V' is not present
or not relevant.

Definition 4. (Partially Informative Causal Invariance Model (PICIM)) A causal model is con-
sidered to be PICIM if Py ¢ varias across domains and there exists an unknown or uncertain
relationship between'Y and V.

Y Y
/ /N
C «---»>V C <---»V
\ »’/ \ »’/
X ---—» Z X --—» 7
(a) FICIM (b) PICIM

Figure 2: The causal graph structure of FICIM and PICIM.

Discussion. In FICIM, C' influences both X and Y, while V' may affect X but not Y. In PICIM, C'
still influences X and Y, but V' may also have an effect on Y. Unlike the Fully Informative Invariant
Features (FIIF) and Partially Informative Invariant Features (PIIF) in ( , ), our model
focuses on the latent attributes C' and V' that are fundamental to data generation, distinguishing C
from V based on domain invariance. In FICIM, Py ¢,y = Py |c; in PICIM, Py ¢ v # Py c:

Proposmon 2. (Properties for causal diagrams) If a domain d; € D follows the FICIM, Pd:

vicv =
Y|C If a domain d; follows the PICIM, IP’ Yicv # ]P’ch
Proof. Obviously, the proposition can be obtained from the causal Markov condition (
, ). O

We formalize the invariant connections as:

Theorem 1. (Invariant connections for causal information of observed data) Given two arbitrary
domains d;,d; € D following the FICIM or PICIM, there exists a random element X ¢ that can
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be sampled from a function f : C x [0,1] — X and T follows a uniform distribution U|0, 1]; i.e.,
XY = f(C,T), such that :

d; d;
Py|xc (Y‘X) = py7‘Xc (Y|X)'

This theorem indicates that focusing on the causal information derived from invariant attributes C'
allows us to establish invariant predictive relationships across domains.

4 PROPOSED BOUND FOR OSDA

4.1 MOTIVATION AND DEFINITIONS

In OSDA, the primary goal is to train a classifier using data from a source domain that can accurately
identify known classes and distinguish between known and unknown classes in a target domain. We
focus on the challenging case of a single-source domain problem. Specifically, we consider a source
domain S and a target domain 7" from the domain set D, i.e., S,T € D, satisfying the properties
defined in Definition 2.

Motivation problem. (Learning for OSDA). Given a single source domain S € D and a target
domain T € D, we observe a training dataset Dg = {(x;,y;)} X5, that is obtained from S and the
label space Vs C Yr is known; that is, the testing samples in the target domain belong to unknown
classes that do not appear in the source domain. The goal is to identify a known class label and to
separate known samples from unknown samples in the target domain T'.

To address this problem, we need a theoretical risk decomposition for the target domain. We define
the expected risk as follows:

Definition 5. (Expected risk conditional on the domain). Given a random element'Y and a fitted
element Y of space Y from domain d; € D, we formulate the following definitions for an arbitrary
loss function £ : Y x Y — Rt :

1. The expected risk is defined as:

R, (Y) = Epu ((3.).

For simplicity, we omit { in the subsequent form ofRf;i, that is, Rg; == Rfli.

2. Given a random element U of space U that is jointly distributed with 'Y with an arbitrary mapping
Y U — )Y, the quantity

3. Given R4, (Y |U), the minimum expected risk of predictingY given U is
R, (Y|U) = i?pf Ry, (Y|U).

Definition 6. (Stable expected risk conditional on domain). Given a domain d; € D, the stable

expected risk is defined as:
R (Y]XY) = Epa, U(f(x).y),
Xty

where X is the causal information of the observed data that can be sampled from a function
f:Cx[0,1] = X satisfying
pxe(x) =pe(c) Ve eC.

Discussion. According to Proposition 1, the relationship between the causal attributes C and Y is
stable across domains. While the complete set of latent attributes C'V" provides sufficient information
for predicting Y, relying on them may not yield stable minimum risk in the target domain due to the
instability of Py oy without label information from the target domain. To achieve a stable minimum
risk, we focus on the invariant causal connections derived from the observed data, specifically using
the causal component X ¢ associated with C.
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4.2 THEORETICAL RESULTS

This section presents the main theoretical results, which not only emphasize the importance of
causal invariance in achieving effective domain adaptation but also provide bounds on the stable
expected risk in both closed-set and open-set domain adaptation scenarios. Full proofs are included
in Appendix C.

Theorem 2. (Theoretical bound of stable expected risk under closed-set domain adaptation). Given
a single source domain S € D and a target domain T € D, and further assuming the label space
Vs = Yr = Y, we obtain a theoretical bound of the semantic controlled risk Ry (Y |X©), where
X can be sampled from a function f : C x [0,1] — Xr as follows:

RT(Y\XC) < (14 B8)Rs(Y|XY),

where 3 = sup C € CpTC(c) 7[ pS C(c) — 1, under the condition that there exist positive constants
0 <m < M such that m < p* C )pc()ngoraHCECs.

Intuition. This result builds upon existing works focusing on generalization bounds in closed-
set domain adaptation, such as ERM, causal conditional shift, and discrepancy distance. Our
approach innovatively emphasizes the importance of causal relationships and invariance in the
data generation process, contributing to enhancing domain adaptation capabilities in practical
applications.

Theorem 3. (Theoretical bound of stable expected risk under OSDA). Given a single source domain
S € D and a target domain T € D, and further assuming the label space Ys C Yr and setting y“*
fo represent the unknown target classes Yr \ Vs, we can obtain a theoretical bound of the stable
expected risk Ry (Y| X ) under OSDA, as follows:

Rr(Y|XC) < (1+B8)Rs(Y]XC) / (F ),y )pEoy (%, v )dx,

(1) Risk of known target classes

(2) Risk of unknown target classes

where 3 = supgcc, P& (c)/pé(c) — 1, under the condition that there exist positive constants
0 < m < M such that m < pTC(c), pZ(c) < M forall c € Cs.

Intuition. The bound in Theorem 3 consists of two terms: the risk of known target classes
and the risk of unknown target classes. This decomposition clarifies the components of the
stable expected risk in the target domain and guides the minimization process.

Remark 1. For Theorem 3, the second term of the bound [ ((f(x),y"*)p%cy (x, y*¥)dx can be
X

minimized by the optimal representation Z§ = % (X) that is obtained by the ERM of a source
domain S:

it [ 2700,y ey (3" i
X

= inf [ £g(e5(0)). ¥ ey (x.y"*)dx

X
with the assumption that
F=God VfeF,geG,ped.

Intuition. The bound in Theorem 3 suggests that a good model for handling OSDA should
i) seek a classifier f% = g o % that minimizes the stable expected risk Rs(Y|X %) of the
source domain, and ii) determine an optimal open set classifier g7 for separating the knowns
and unknowns based on the representations ¢ §(X7).

Next, we will discuss under what conditions performing ERM solely in the source domain is sufficient.
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Theorem 4. For Theorem 3, conducting the ERM on a FICIM source domain can provide enough
information to bound the stable expected risk of the target domain Ry (Y |X©).

Intuition. Since the causal attributes C' contain all information about the outcome variable
Y, and the variation V' adds no extra information about Y, the ERM on the source domain
yields R%(Y|X) = R5(Y|X ). Consequently, ERM on a FICIM source domain provides
sufficient information to find an optimal open-set classifier, adequately bounding the stable
expected risk Ry (Y| X ) in the target domain.

Theorem S. For Theorem 3, conducting the ERM on a PICIM source domain cannot bound the
stable expected risk of target domain Ry (Y |X©).

Intuition. The key distinction between the theorem of the PICIM source domain and Theorem
4 lies in the capacity of the variation V to predict Y within causal models, as the additional
information in V- may be detrimental in the target domain. Consequently, the expected risk
Rr(Y|X¢) in the target domain is contingent upon the amount of additional information in
V', with a preference for scenarios where V' contains less additional information.

Remark 2. Given a target domain T € D, we obtain a useful decomposition of the minimum
expected risk as follows:

C C C
Rp(Y|X) = Rp(Y[X™) — [R7(Y]|XY) = Rp(Y|XY)].
—_——
(1) Minimum stable expected risk (2) Uncontrollable spurious benefit

Intuition. This remark is straightforward: minimizing R%.(Y'|X) is equivalent to minimizing
R:(Y|XCV). By adding and subtracting R (Y| X ), we see that the target risk equals the
minimum stable expected risk minus the spurious benefit from variation information. Since
this benefit is independent of the source domain, it’s reasonable to replace the objective of
minimizing the total expected risk with that of minimizing the stable expected risk.

5 EXPERIMENTS

First, we conducted comprehensive Table 1: Description of all our tasks.

OSDA and OOD tasks? on the CM- Tnput (%) Label (Y)  Variation auribute (V) Tnvariant attribute (C)
NIST dataset to validate our proposed Crnist 10,1} Color Digit
Synthetic data {0,1} {0,...,7}

Service, Noise,
Ambiance, Food

theory. Next, we performed experi-
ments on synthetic data, showcasing
different special cases, all of which are explained by our unified theoretical framework, demonstrating
the applicability of our theoretical results. Finally, we conducted experiments on restaurant review
(text) data and applied our theoretical findings to instruction fine-tuning of large models. These
experiments fully demonstrate our two final theoretical results: 1) performing ERM on a FICIM
source domain provides enough information to bound the stable expected risk of the target domain
((Theorem 4)), and 2) performing ERM on a PICIM source domain cannot bound the stable expected
risk of the target domain (Theorem 5). Table 1 provides an overview of the tasks we experiment with.

Restaurant review | Restaurant rating Food-mention

5.1 OS-CMNIST DATASET

Experimental Setup. We constructed our open-set CMNIST (OS-CMNIST) dataset following the

dealing method of CMNIST ( , ) to satisfy the setting demand of the OSDA and
OQOD detection task. To ensure a fair comparison, we adopted the same loss function and model
architecture as used in existing studies ( , ). To fully demonstrate the validity of

2OSDA primarily focuses on how to handle these unknown categories in the target domain while maintaining
good performance on known categories, whereas OOD detection emphasizes distinguishing between known and
unknown categories without necessarily involving the specific learning of classes.
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our theoretical results, we constructed two sets of data ( FICIM group and PICIM group). For the
FICIM group, the key parameters were Corr(V,C)g = 0.8, Corr(Y,C)s = 1, Corr(V,C)r =
0.1. For the PICIM group, the key parameters were Corr(V,C)s = 0.8, Corr(Y,C)g = 0.75,
Corr(V,C)r = 0.1. For detailed experimental setup, results, and analysis, please refer to Appendix
D.1.

Results. As indicated in Table 2, training with ERM on the FICIM source domain under different
loss functions could achieve nearly perfect performance for the CS-ACC, AUROC, and OSCR of
the target domain, which supports Theorem 4. We demonstrate Theorem 5 by observing that the
CS-ACC, AUROC, and OSCR declined sharply from the FICIM source domain to the PICIM source
domain. That is, training with ERM on the PICIM source domain resulted in a model that performed
worse on the target domain than on the FICIM source domain.

Table 2: Performance comparison of FICIM and PICIM source domain on CMNIST.

Method CS-ACC AUROC OSCR
ARPLoss ( FICIM | 99.63 £0.01 95.52+1.01 95.38£1.03
’ PICIM | 64.30 +£0.32 52.224+1.19 42.37£0.46
ARPLOoss+CS ( FICIM | 99.66 £0.04 96.47+0.22 96.34 +£0.25
PICIM | 67.69 +0.82 53.07+0.70 40.93 £0.58
RPLOSS ( FICIM | 99.51 £0.01 91.65+2.95 91.48+2.94
’ PICIM | 64.23 +£2.00 53.76 £1.75 45.05£0.70
Softmax FICIM | 99.48 £0.01 94.20+0.55 94.03 £0.54
PICIM | 62.15+£0.99 52.814+1.59 43.23£0.57
GCPL ( ) FICIM | 99.60 £0.01 95.98+0.17 95.84 £0.18
’ PICIM | 66.10£2.71 53.02+2.71 43.67+1.35

5.2 SYNTHETIC DATA

Experimental Setup. To further validate the effectiveness of our theoretical framework, we
conducted experiments on synthetic data. Following the experimental setups of existing studies
( , ), we generate synthetic data for a binary classification problem where |V| = 8
(cardinality of varying attribute V). We sample P (V'|Y) to simulate varying degrees of spurious
correlations. Then we draw x = [X*, X, from a Gaussian distribution,

* 2
x| ty, | |07 Ta 0
el (B e )

In this case the counterfactual X; (v) for the sample x; is obtained by adding p — ftv, t0 Xgpy,i. TO
corrupt our augmentation, we instead add &; (v — gy, ) where &; is drawn from a truncated Gaussian
centered at A € (0, 1). We train models with a fixed sample size and evaluate the trained models’
performance on unconfounded distribution P, to examine the interplay between spurious correlation
strength (measured by mutual information I (Y; V). Different mutual information values I (Y;V)
represent varying degrees of PICIM source domain. When the mutual information is zero, it indicates
FICIM source domain. For detailed experimental setup, results, and analysis, please refer to Appendix
D.2.

Results. As shown in Fig. 3, under different corruptions, the model’s performance decreases.
Compared to corruptions, spurious correlations have a greater impact on the model’s performance.
This further demonstrates that training with ERM on the PICIM source domain results in worse
performance on the target domain compared to the FICIM source domain. Moreover, by employing
certain augmentation techniques and methods, modifying the training mechanism of the model can
mitigate the differences caused by the two data generation processes.
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(a) OOD AUC (b) OOD ACC (c) OOD F1

Figure 3: Model performance with different parameter settings on synthetic data. Lower values of A
correspond to stronger corruptions of the augmentations.

5.3 RESTAURANT REVIEWS DATA

Experimental Setup. We use the CEBaB dataset ( s ), which consists of short
restaurant reviews and ratings from OpenTab1e3, including evaluations for food, service, noise,
ambiance, and an overall rating. We used the train-exclusive split of the dataset, which contains
1, 755 examples. We focus on an experimental setup: a modified version called CeBAB-Spurious,
where there is a spurious correlation between the labels Yand variable attributes V.

To construct CeBAB-Spurious, we leveraged the availability of both the original and perceived ratings
for each review in CeBAB. The original rating represents the reviewer’s initial thoughts when writing
the review, while the perceived rating indicates whether the review contains information about various
restaurant attributes (e.g., food, service, noise, ambiance) and their associated sentiment. We utilized
this unique data structure to capture reviewers’ writing styles. Some reviewers are concise and
provide limited descriptions, while others are more detailed and include more information. Inspired
by existing research ( , ), we introduced a new attribute called food-mention to signify
the presence of food-related information in a review. If the perceived food rating is either negative or
positive, we assign a value of 1 to the food-mention attribute; otherwise, it is set to 0. We sample
the data such that the correlation between food-mention and outcomes is 0.45. Please note that
the sampled data follows the PICIM, while the data from counterfactual interventions using GPT-4
( , ) follows the FICIM. For detailed experimental setup, results, and analysis, please
refer to Appendix D.3.

Results. As shown in Table 3 and Table 4, when debiasing different restaurant features, our theoretical
results effectively explain the model’s performance differences under various data generation mecha-
nisms. The main conclusions include the following two points: (1) Based on common knowledge,
restaurant noise has a causal relationship with overall restaurant ratings. In this case, when we debias
for restaurant noise, the model is unable to leverage these useful causal signals, leading to an increase
in the minimum stable expected risk. Essentially, by removing the noise, the model can no longer
capture the useful information embedded in it, resulting in reduced stability in its predictions. (2)
Food mention is a spurious feature, meaning it has no direct causal relationship with restaurant
ratings. By debiasing for food mentions, the model eliminates the influence of irrelevant, spurious
correlations. This helps improve the model’s performance, as it can focus more on the true causal
signals relevant to the task, without being distracted by unrelated features.

5.4 EFFICIENT FINE-TUNING

Experimental Setup. To further validate that our theory can guide the selection of high-quality data
for efficient pre-training and fine-tuning of large models, we construct instruction pairs based on
restaurant reviews to fine-tune different large models (LLaMA3-8B, ChatGLM4-9B, and Qwen2-7B
). For specific experimental setting, the construction of instruction pairs, and more results, please
refer to the Appendix D.3.

3https://www.opentable.com/
*https://modelscope.cn/home.
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Table 3: Performance comparison of FICIM and Table 4: Performance comparison of FICIM and
PICIM source domain on food-mention of restau- PICIM source domain on Restaurant noise of

rant reviews.

restaurant reviews.

Methods ACC Fl Precision Methods ACC Fl Precision
. ~ FICIM | 72.00 £0.01 71.53£0.20 71.60 £ 0.47 - — . FICIM | 79.00 £2.61 7841 +3.92 78.27 246
Corr(V.Y) =045 | piopy | 67.00+3.01 63.79+3.38 67.21 +2.77 Corr(C.Y) =045 propy | 66.00£1.60 67.97£2.60 7108 =2.77
o | FICIM | 70.04£0.75 67.46 £2.17 67.08 £2.26 . _ FICIM | 70.00 £ 1.51 69.78 £ 2.47 69.53 £ 0.85
Corr(V.Y) =040 | propy | 68109+ 1.02 6441+2.38 65.94+101  COT(OY) =040 propg | 6471350060 65.00=2.41  67.24 + 4.06
Corr (V,Y) = 0.35 | [ICIM [ 7032 E 101 6791 £0.79 7153 £ 0.05 Corr (CY) — 035 FICM [ T950 £ 135 79315003 7927 £3.07
: 1) =09 pICIM | 68.13+£2.12 65.56+£0.95 68.41 +2.69 ’ S Y) =090 pICIM | 71.00 £ 1.55  66.64+2.28  65.08 4 2.97
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Figure 4: Performance comparison of fine-tuning based on food-mention (the upper part of the figure)
and restaurant reviews (the lower part of the figure). —P indicates fine-tuning based on the PICIM
source domain, while —F indicates fine-tuning based on the FICIM source domain.

Results. As shown in Fig. 4, as the amount of fine-tuning data increases, the model performance
improves. The growth trends in performance vary for different large language models. Relatively
speaking, the performance of LLaMA3 is somewhat inferior in our task. More importantly, under
the FIFCM source domain, fine-tuning GLM with 2,000 samples achieves performance comparable
to fine-tuning Qwen2 and LLaMA3 with 5,000 samples. Additionally, in GLM, under the FIFCM
mechanism, 1,000 samples can achieve the performance obtained after fine-tuning the model with
5,000 samples under the PICIM mechanism. This further indicates that our theoretical results can
guide the efficient fine-tuning or even pre-training of LLMs.

6 CONCLUSIONS

We have proposed a causal bound for OSDA of high-dimensional data. Using this bound, we theoreti-
cally proved that the FICIM and PICIM source domains can explain the performance difference of
ERM: (1) The ERM when the source domain follows FICIM can provide sufficient information to
bound the stable expected risk of the target domain. (2) The ERM when the source domain follows
PICIM cannot bound the stable expected risk of the target domain. We demonstrated the effectiveness
of our theoretical results by conducting comparative experiments on FICIM and PICIM datasets,
and showed that state-of-art open-set algorithms performed poorly when only the PICIM dataset
was used. Our theoretical and experimental results revealed the limitation of existing algorithms for
OSDA, including OSR. We anticipate that our study may pave the way for new algorithm designs for
OSDA and other simpler domain adaptation challenges, as it provides fundamental knowledge for
these problems.
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A NOTATION AND TERMINOLOGY

Symbol | Description

N The Caussian distribution

I Identity matrix

x* Core feature

Xspu Spurious feature

Corr The correlation coefficient between two variables

Ks The correlation coefficient between two variables on source domain
F Function space

Ng The number of samples in the training set

A The noise intensity

Table 5: Symbol Notations and Their Descriptions

B RELATED WORK

In this section, we first introduce OSDA and OSR theories. Then, we review domain adaptation from
a causal view.

B.1 OSDA AND OSR THEORIES

Our research problem is within the field of OSDA. A similar concept related to OSDA is OSR (

s ). Hence we refer readers to ( s ) for comprehensive surveys of OSDA and
OSR. Early theoretical studies on OSR formalized the relatlonshlp between the known and unknown
classes using the open space risk ( , ; )
and extreme value theory ( s ; s ), but they d1d not provide theoretlcal
guarantees.
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( ) provided the sample complexity for guaranteeing the detection rate of OSR, whereas
( ) proposed a generalization bound for OSR based on the PAC theory, which
demonstrated the theoretical existence of an OSR algorithm. ( ) constructed
an unbiased risk estimator by exploiting unlabeled training data to approximate the underlying
distribution of the unknown classes. These bounds provided by ( , ; ;
, ) highlight the need to find an augmented domain to represent a group of novel

classes.

The class-incremental domain adaptation paradigm proposed by ( , ), which is almost
the same as the OSDA, derived a bound for the target-domain risk by considering the target-shared
risks and target-private risks independently. ( ) proposed a theoretical bound for the
OSDA problem first. However, these bounds in ( R ) and ( s ) can not
explain why or when ERM performs well for OSDA.

Moreover, none of the above-mentioned works can solve our problem because they need a strict
assumption that at least one observed distribution does not change across domains.

B.2 DA FROM A CAUSAL VIEW

The framework of Structural Causal Models (SCMs) ( , ) has motivated many interesting
works on causal discovery and causal inference. Inspired by SCMs, our work mainly uses the principle
of Invariant Causal Prediction (ICP). ICP considers the invariance of the conditional distribution of
the target variable Y given its direct causes, which has been articulated numerous times ( ,

) ; ) ; , ; R ) and
has been formulated by ( , ; , ). ( );
( ); ( ) relate domain adaptation with the invariant causal prediction

principle, which inspires our work. These works mentioned above mostly assume that the observed
predictors or a subset of observed predictors are causally invariant.

Although IRM ( ; , ) methods aim to learn robust and invariant
representations, recent studres have shown that they may not always outperform the ERM objective

, ). This observation highlights
the need for a deeper understandrng of the performance and limitations of both IRM and ERM in the
context of high-dimensional data and domain adaptation problems.

The concept of our causal framework is similar to that of ( , ; ;
). In comparlson

( ) assumed the mdependence of the latent semantlc varlables and other latent variables,
which differs from our dependence assumption. ( ) adopted linear structural
causal models to study complicated domain adaptation problems, which did not provide a theoretical
understanding of nonlinear high-dimensional data. ( ); ( ) only considered
a variation of the PICIM in our work as their causal structure, whereas we consider the FICIM and
PICIM.

Moreover, the above methods do not solve the OSDA problem, which is the crucial problem of our
study.

C THEORETICAL PROOF

We begin with an important lemma by following Lemma 3.22 of ( , ) to prove Theorem
Al
Lemma A.1. ( , ) Given random variables X € X, C € C from a domain d; € D; i.e.,

the Markov chain is X — C, there exists a random element X that can be sampled from a function
f:Cx[0,1] — X. Furthermore, T follows a uniform distribution U[0,1]; i.e., X¢ = f(C,T), such
that the joint probability density function of X and C satisfies

p‘;{"'cyc(x,c) = pglac(x,c) forany (x,¢) € X x C.
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( , ) presents the proof for the above conclusion. As X € X and X© € X, we can
obtain another property for X©,

p;l;clc(x|c) = p;lg‘c(x|c) SJorany (x,c) € X xC.

Theorem A.1. (Theorem 1) Given two arbitrary domains d;,d; € D following the FICIM or PICIM,
there exists a random element X © that can be sampled from a function f : C x [0,1] — X. Moreover,
T follows a uniform distribution U[0,1] : i.e., X© = f(C,T), such that

di 4
DPy|xc (Y‘X) = pyj‘xc (Y|x)'

Proof. Given the FICIM or PICIM, we obtain the Markov chain X — C' — Y. According to Lemma
A.1 and Proposition 1, there exists a random element X C that can be sampled from a function
f:Cx[0,1] — X, such that

p%C‘C(X‘C) :pigc‘c(}dc)' (1)

Now, we can rewrite the conditional probability pdyi‘ o (¥[x) as follows:

B fc p%c(ﬂc)p%c‘c(x‘c)dc

d.

Prixe P = - @
vixe (Y[x) o o oe

_ Je pdyi\c(ﬂc)pigo‘c(X\c)dc "
fcp;lgc‘c(X‘C)dC

:pil/j‘xc(y|X), (4)

where Eq. (3) is derived from Eq. (1) and Eq. (4) follows by noting that the denominators are equal
due to Eq. (1).

O

Theorem A.2. (Theorem 2) Given a single source domain S € D and a target domain T € D, and
further assuming the label space Ys = Yr = )Y, we obtain a theoretical bound of the semantic
controlled risk Ry (Y |X©), where X© can be sampled from a function f : C x [0,1] — Xr as
follows:

Rp(Y|XY) < (1+ B)Rs(Y|XY),

where 3 = sup¢.cc p&(c)/pe(c) — 1.
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Proof.
RT(Y|XC)
// Y)pke(x )p}T’\XC(Y|X)dydx )
//6 Y)Pxe (X)py xe (y|x)dydx ©
//E y)pxe(x )pigf\XC(Y|X)dydx
//Z y)pxe(x )pxsf\xc(ﬂx)dydx
//E y)pke (x )pé\XC(ﬂX)dydx
//E y)pie(x )pig’\XC(ﬂX)dydx
:RS(Y|XC) o
//g y)p5e (X)p5 C(y|x)(p§(0(x) 1)dydx
S Pxe(x)
// pxc( )(p{/\xc (y]x) —pi‘xc (y]x))dydx
:Rs(Y|Xc) .
//E (X)pyxe ( |X)(p§c(x) ~ 1)dydx
pXC Py | xclyY p?}c(x) v
_(1+B)RS(Y|XC)’ N
where 8 = supyceyPie(X)/Pyc(x) — 1 = supgeepé(c)/pe(c) — 1 from Lemma

A.l1. Eq. (5) follows the definition of the expected risk. @~ We can obtain Eq. (6) by
adding and subtracting two construction terms [[ £( f(x),y)pf(c(x)pil ve(y|x)dydx and

ffﬂ y)pyeo(x )pf,lxc(y|x)dydx, respectively. The first part of Eq. (7) is the definition

of the final part of Eq. (6). We obtain the second part of Eq. (7) by combining the third and fourth
parts of Eq. (6). The final term of Eq. (7) is the combination of the first and second parts of Eq. (6).
Eq. (8) can be obtained by py|yc(y|x) = py xc(y[x) from Theorem A.1. By setting the
supxcex Pke(x)/pSc(x) in the second part of Eq. (7) to be upper bounded by a constant 3 + 1,
we obtain the inequality Eq. (9). O

Theorem A.3. (Theorem 3) Given a single source domain S € D and a target domain T € D, and
further assuming the label space Ys C Y1 and setting y"* to represent the unknown target classes
YVr \ Vs, we obtain a theoretical bound of the stable expected risk Ry (Y| X C) under OSDA, as
follows:

Rr(Y|X®) < (1+B)Rs(Y|XC) + / 0(F (), 7" )pEoy (x, v )dx,

(1) Risk of known target classes X

(1) Risk of unknown target classes

where 3 = supgee, é(c)/p2(c) — 1.
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Proof.
Rp(Y|X©)
//g Y)Pxe (X)py xe (y|x)dydx 10)
X8
//E y)Pke (x )pSTf|XC(Y|X)dydx
X, Yuk
//g y)pxe (x )pin|XC(Y\X)dydx
X8
/g Mpkey (%, y*F)dx
1+B)Rs(Y\XC) )
/6 pXCY(X yY )d X,

where Eq. (10) is obtained by setting y“* to represent Y1 \ Vs, and Eq. (11) follows from Theorem
A.2 such that 8 = supccc, po(c)/pZ(c) — 1. O

Proposition A.1. Given a domain d; € D and d; following the FICIM, there exists a random element
X that can be sampled from a function f : C x [0,1] — X, and T follows a uniform distribution
U[0,1], i.e., X¢ = f(C,T), such that

Ry, (Y|X) = Ry, (Y]X).

Proof. The Markov chain for d; can be reduced to X4, — C' — Yj,. There exists XdC; sampled from a
function f : C x [0,1] — Xg,. At this point, using Lemma A.1, we obtain

di d;
Peio =Pxc- (12)
From the FICIM property illustrated in Proposition 2, we obtain
d; d;
PX|C PX\CY (13)
d.
PXC\C PXC|CY (14)
From Eq. (12), Eq. (13), and Eq. (14), we obtain
d; d;
PXicy = PXeojoy (15)
which directly derives
d; d;
PYoy = PYecy- (16)
By integrating both sides of Eq. (16) with respect to C, we obtain
Py =Py (17)
Thus, we can confirm that
* — : 1
Ri,(YIX)= inf_ Bpo ((f(p(x)).y) (18)
= 1 . 1
feg}iep Epgcyf(f(so(X))vy) (19)
= Ry, (Y[X), (20)
where Eq. (18) and Eq. (20) follow from Definition 5, and Eq. (19) follows from Eq. (17). L]
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Proposition A.2. Given an arbitrary domain d; € D and d; following the PICIM, if we construct a
new space CV by directly connecting space C and V), there exists a random element XV that can
be sampled from a function f : CV x [0,1] — Xy; and T follows uniform distribution U0, 1], i.e
XC¢ = f(CV,T), such that

Ry, (Y]X) = Ry, (Y|XY).

Proof. The key difference between the FICIM and PICIM is that we do not have P Xjoy = Pi(c oy

for the PICIM. However, if we construct a new element C'V' by combining C' and V', we can obtain
the causal structure X — C'V — Y. Subsequently, we obtain

PYov = PXjovy: @1
Using this equation, similar to the proof of Proposition A.1, we obtain
Ry (Y|X) = R, (Y]XY).
O

Lemma A.2. (Remark 1) For Theorem A.3, the second term of the bound
f 0(f(x),y"*)pkcy (x, y"“*)dx can be minimized by the optimal representation Z% = ¢%(X) that

lS obtained by ERM of a source domain S:
it [ €00,y ey (3" )i

feFr
X

= inf [ £g(e5(00)). y" ey (x.y"*)dx

X

with the assumption that
]—':Qo(I) vfefagengeé‘

Proof. The optimal feature classifier of the target domain based on the optimal source domain feature
extractor is set as

g5 = arginf / Ho(@5(0)) ¥ ey (x, y™*)dx.

geg
‘We obtain
int / 603"y G,y
/5 QT )pXCY(X y* )d (22)
= inf / g (509), 5™ pE ey (x, 55 )dx. (23)
X

Eq. (22) is obtained by the definition of infimum and Eq. (23) is determined by our setting of g7.. The
optimal classifier that separates the unknown and known labels from X is set as

fr =(gropr)”
= arginf /f(g(w(X))’y“k)pﬁcy(& y"“*)dx.

geG,ped
X
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Let 7 : 25 — XS can be any one-to-one function that exists in a weak condition |X5| > |2%| > 2.
As aresult,

inf | £(f(x),y"")pkey (x, y"F)dx

feF
X
= nf / Ug((x)), ¥ " pxey (x,y"")dx (24)
X
= / fr(x), y" M )pk oy (x, y"*)dx (25)
X
- / (3 (5 (0)), Loy (5, y**)dx 26)
X
> / g (0(0)), " )phey (x, y™*)dx @7)
X
= int [ tg(e5 )y ey (x )i @9
X

Eq. (24) is obtained by the assumption F = G o ®. Eq. (25) is determined by the setting of the
optimal f7.. Eq. (26) is obtained from the existence of 7. Eq. (27) and Eq. (28) follow from the
definition of g7 and infimum.

The combination of the opposite direction inequalities from Eq. (23) and Eq. (28) leads to the equality
conclusion of this lemma. O

Theorem A.4. (Theorem 4) For Theorem A.3, conducting the ERM on a FICIM source domain
provides enough information to bound the stable expected risk of target domain Ry(Y | X©).
Proof. From Proposition A.1, we obtain
Ry, (Y]X) = R, (Y]|X©)
for d; € D, and d; follows the FICIM.
As a source domain S € D and S follows the FICIM, we obtain
R5(Y]X) = R5(Y|X°).
Subsequently, for Theorem A.3, the first term Rg(Y|X®) can be minimized by ERM of a FICIM
source domain S. Owing to Lemma A.2, the second term [ £(f(x),y"*)p% oy (x, y*¥)dx can be

x
minimized by the optimal representation Z§ = ¢ (X) that is obtained by ERM of a source domain

S.

Hence, the ERM of a FICIM source domain provides sufficient information to conduct subsequent
searching for an optimal open-set classifier that provides adequate information to bound the stable
expected risk of target domain Rr (Y| X ). O

Theorem A.5. (Theorem 5) For Theorem A.3, conducting the ERM on a PICIM source domain can
not bound the stable expected risk of target domain Ry (Y |X©).
Proof. From Proposition A.2, we obtain
Ry (Y|X) = R, (Y]X°Y)
for d; € D and d; follows the PICIM.
As a source domain S € D and S follows the PICIM, we obtain
R5(Y]X) = Ry(Y|XY).
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Without further assumptions, we do not obtain R%5(Y|X¢) = R5(Y|XCV). Thus, we do not
have R%(Y|X¢) = R5(Y|X). Therefore, for Theorem A.3, the first term Rg(Y|X %) cannot be
minimized by ERM of a PICIM source domain S. Hence, the ERM of a PICIM source domain cannot
bound the stable expected risk of target domain Ry (Y |X ). O

Theorem A.6. (Remark 2) Given a target domain T € D, we determine a useful decomposition of
the minimum expected risk as follows:

* * C * C * cv
Rp(Y[X) = Rp(Y]X") —[Rp(Y|X") = Rp(Y[X™7)].
—_— (29)
(1) Minimum semantic controlled risk (2) Uncontrolable spurious benefit

Proof. We assume w.l.0.g that domain 7" follows the PICIM. The results under this assumption can
easily be generalized to the situation of the FICIM by setting C'V = C. From T" € D and Proposition
A.2, we obtain

Rp(Y|X) = Rp(Y|XY). (30)
We directly prove this theorem by adding and subtracting a term R (Y| X©). O

D EXPERIMENTAL DETAILS

This section provides further details about the three datasets and implementation details. All experi-
mental results are the averages and variances obtained after running the experiments five times. The
implementation is built upon the code open-sourced by ( ); ( ).

D.1 OS-CMNIST DATA
D.1.1 DATASET

We constructed our open-set CMNIST (OS-CMNIST) dataset following the dealing method of
CMNIST ( , ) to satisfy the setting demand of the OSDA task. We selected MNIST
as our experimental dataset as it is an ideally clear dataset that does not include other attributes to
determine the labels apart from the grayscale digits. A critical step in the creation of the OS-CMNIST
training (source) domain was the random sampling of known and unknown classes from MNIST. If
the data of the known classes were processed using the same method as CMNIST, we could obtain
the PICIM source domain.

Comparison groups. We designed the following common steps to construct the OS-CMNIST
dataset: first, randomly sample K known classes and 10 — K unknown classes from MNIST; second,
assign a causal shape code C' to the known classes based on the digit: C' = 0 for a random half of the
K classes and C' = 1 for the other half; third, perform the same operation for unknown classes as in
the second step.

Based on the known classes of the OS-CMNIST dataset, we constructed two comparison groups of
the source domain, as follows:

* FICIM source domain: First, sample the variation color attribute code V' by flipping C'
with a probability 1 — Corr(V, C); second, color the image green if V = 1 orred if V = 0.

» PICIM source domain: First, obtain the final class label Y by flipping C' with a probability
1 = Corr(Y,C); second, sample the color attribute code V' by flipping Y with a probability
1 — Corr(V,Y); finally, color the image greenif V' =1 orred if V' = 0.

In this case, Corr(-,-) represents the correlation between two variables. As the binary label of
a variable is changed by flipping another variable, the correlation relationship is the same for
Corr(-,+) < 0.5 and Corr(-,-) > 0.5. It is known that these two variables are independent when
Corr(-,-) = 0.5. When Corr(-,-) > 0.5, a greater Corr(-,-) indicates a stronger correlation. When
Corr(-,-) < 0.5, a smaller Corr(-,-) indicates a stronger correlation. If Corr(-,-) = 1 or = 0,
the two variables are perfectly positively correlated or negatively correlated. Note that the only
difference between the FICIM and PICIM in our construction is that Corr(Y, C') = 1 for the FICIM,
whereas Corr(Y, C) < 1 for the PICIM, which match the causal structure effectively. To ensure the
comparability of the two groups further, we set a constant kg = Corr(V,C)s = Corr(V,Y)s to
represent the ratio of information acquired by color code V' for the source domain.
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D.1.2 EXPERIMENT SETTINGS

The aim of our main experiment was to demonstrate the influence of the ERM of a FICIM or PICIM
source domain for the stable expected risk of the target domain.

Structure of target domain. As we aimed to examine the influence of the stable expected risk,
the performance of the target domain should be most strongly related to the stable expected risk.
According to Remark 2, the minimum risk R%.(Y'|X) is equal to the minimum stable expected risk
R:(Y|X©) for a FICIM target domain. Thus, we set the causal model of the target domain as the
FICIM model. To obtain a FICIM target domain, we constructed two groups of six known classes,
similar to the FICIM source domain, and added a group of four unknown classes with random colors.

Loss function. Similar to existing research ( s ), we adopted various loss functions,
including ARPLoss, ARPLoss cs, RPLoss, GCPL, and Softmax loss function.

Network structure. We used the ResNet network architecture with 34 layers, and the state-of-the-art
OSR algorithm from ( s ) to validate our theoretical results. We set the training
parameters as follows: 40 epochs with a batch size of 64, the Momentum SGD optimizer, and a
learning rate starting from 0.1 and decreasing by a factor of 0.1 every 30 epochs in the training
process.

Parameters of domain adaptation. We set Corr(Y,C)g = 1 for the FICIM source domain and
Corr(Y,C)s = 0.75 for the PICIM source domain to satisfy the properties of the FICIM and PICIM.
Moreover, we set ks = 0.8 and Corr(V, C')r = 0.1 to create distribution shifts between the source
and target domains.

Metrics. Similar to ( ; s ), we combined three metrics to measure
the classification performance in the target domain: closed-set accuracy (CS-ACC), area under the
ROC curve (AUROC), and open-set classification rate (OSCR). For CS-ACC, AUROC, and OSCR,
the larger value indicates better performance.

FICIM PICIM with Corr(V,C)r=0.1 PICIM with Corr(V, C)r=0.5
100 ,mymwmnmmmmm e mm e 100 —-=- CS-ACC 100 4 —--- CS-ACC
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Figure 5: Performance metrics and loss values for FICIM and PICIM source domain. Left: FICIM
source domain on target domain with Corr(V,C)r = 0.1. Medium: PICIM source domain on
target domain with Corr(V,C)r = 0.1. Right: PICIM source domain on target domain with
Corr(V,C)r = 0.5.
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D.1.3 MAIN RESULTS

We plotted the curves of the epochs versus the performance metrics and loss value (Fig. 5) to verify
the effectiveness of ERM on the FICIM and PICIM. It can be observed from the bottom three panels
of Fig. 5 that all of these loss values converged over the epochs, but the FICIM loss converged
faster. The top left panel of Fig. 5 indicates that the CS-ACC was near perfect for the ERM on the
FICIM source domain, and the OSCR was entirely dependent on the AUROC. Moreover, the OSCR
and AUROC were above 90% most of the time, which demonstrates that the ERM of the FICIM
could bound the stable expected risk of the OSDA. A comparison of the top three panels indicates
that training on the PICIM source domain always performed worse than that on the FICIM, which
supports the belief that the ERM of the PICIM could not bound the stable expected risk of the OSDA.
An interesting observation for the PICIM source domain from the middle and right panels of Fig. 5
is that a stronger correlation between the shape C' and color V' for the target domain resulted in
a stronger relationship between the CS-ACC and AUROC. When the V' and C were independent,
that is, Corr(V,C) = 0.5, the CS-ACC and AUROC were nearly independent. This observation
challenges the opinion that the closed-set and open-set performances are highly correlated ( ,

). In contrast, the results from Fig. 5 demonstrate that the closed-set and open-set performance
were highly correlated in two scenarios: when the source domain was the FICIM source domain
and when both conditions were satisfied simultaneously; that is, the source domain was the PICIM
source domain, and the target domain exhibited strong correlations between the variation and causal
attributes.

It can be observed from Fig. 5 that the performance was almost stable from the 40th epoch. Thus, we
compared the cross-sectional performance data of the FICIM and PICIM source domains at the 40th
epoch. As indicated in Table 2, training with ERM on the FICIM source domain could achieve nearly
perfect performance for the CS-ACC, AUROC, and OSCR of the target domain, which supports
Theorem 4. We demonstrate Theorem 5 by observing that the CS-ACC, AUROC, and OSCR declined
sharply from the FICIM source domain to the PICIM source domain. That is, training with ERM on
the PICIM source domain resulted in a model that performed worse on the target domain than on the
FICIM source domain.

Additional results. To validate the effectiveness of our theoretical results in OOD tasks, we
considered two different OOD scenarios. As shown in Table 6 and Table 7, there are significant
performance differences between the models in the FICIM and PICIM scenarios, particularly in the
TNR metric. This further confirms that the ERM of the FICIM could bound the stable expected risk
of the OSDA.

Table 6: Distinguishing in- and out-of-distribution test set data for image classification under various
validation setups. The known label categories are [6, 3, 4, 2, 8, 9], while the unknown label categories
are [5,0,7, 1].

Method TNR AUROC DTACC AUIN AUOUT
ARPLOSS FICIM | 81.184+0.19 95.46£0.19 90.04£0.19 96.43£0.19 93.03£0.19
PICIM | 3.13+0.19 52.22+1.19 56.88 +£0.08 66.63+0.67 39.1740.88
FICIM | 84.444+1.02 95.93£0.23 91.35+0.32  96.454+0.31 93.70 +£0.47

ARPLOSS*CS | propv | 4444046 53.074070 54404033 64.7540.67  40.97-+ 0.50
RPLOSS FICIM | 75942567 O1.9713.76 87.8203.80 92.6753.50 90.13% 341
PICIM | 2714163 53764175 60254092 69.042051 39.3642.20
ot FICIM | 806415527 95.0001.45 89.6202.35 96.01L1.04 92.80L1.72
PICIM | 3474059 53054109 56894101 66.684051 39.75 £1.00
p— FICIM | 774425506 92351272 87.6843.07 93.1142.02 9040L2.42

PICIM | 2.94+091 53.57£1.64 58.58+0.67 67.95+0.69 39.56+1.27

The results of five randomized trials with 40 epochs were averaged. For the FICIM group, the key
parameters were k = 0.8, Corr(V,C)r = 0.1. For the PICIM group, the key parameters were
k=0.8,Corr(Y,C)s = 0.75,Corr(V,C)p = 0.1.
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Table 7: Distinguishing in- and out-of-distribution test set data for image classification under various
validation setups. The known label categories are [3, 7, 4, 0, 8, 5], while the unknown label categories
are [2, 6,9, 1].

Method TNR AUROC DTACC AUIN AUOUT
ARPLOSS FICIM | 88.16£0.79 97.34+£0.05 92.20£0.31 98.15£0.06  95.7740.29
PICIM | 3.13£0.66 52.22+2.73 56.88£2.24 66.63£3.05 39.17+1.67
ARPLoss+CS FICIM | 89.41£1.06 97.66£0.18 92.90£0.43 98.38+£0.15  96.25+0.26
PICIM | 4.82+046 51.47£1.779 52.33£1.19 61.18£1.63 41.73+1.12
RPLOSS FICIM | 90.93+0.37 97.67+£0.27 93.39£0.38 98.11£0.41 96.71 £0.27
PICIM | 2.254£0.70 52.41+£2.43 59.24+1.81 65.61£1.65 39.331+1.63
Softmax FICIM | 87.41+0.81 97.30£0.11 92.09+0.27 98.11+0.05 95.884+0.26
PICIM | 3.724+0.21 50.01+£2.73 53.72£2.779 60.40£3.92 39.80+1.05
GCPL FICIM | 91.32+0.55 96.74+£0.13 93.49+0.43 96.61£0.28  95.88+0.15
PICIM | 2.58+£0.55 51.70£2.94 57.32£1.77 64.96£1.55 39.42+1.96

D.1.4 SENSITIVITY ANALYSES

This section presents extensive additional experiments. By modifying several key control variables,
such as the number of unknown classes, kg, Corr(V, C')r, and loss functions, while keeping other
variables consistent with the main experiment, we tested the sensitivity of our theoretical results to
uncertainties under different conditions.
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Figure 6: Performance variation trend comparison between FICIM and PICIM with number of
unknown classes (openness).

The first important sensitivity parameter to consider was the number of unknown classes, which is a
proxy variable of openness. ( ) first introduced the concept of openness for the
OSR problem. For a fixed number of testing classes, increasing the number of unknown classes in the
training stage increases the openness. Hence, we used the number of unknown classes belonging to
{1,...,8} as the proxy variable of openness. Note that the FICIM and PICIM settings were the same
as those in Table 2 except for the unknown classes. The openness results of Fig. 6 were obtained from
models that were trained for 40 epochs. Fig. 6 indicates that the FICIM source domain tended to
perform much better than the PICIM source domain for all numbers of unknown classes, and hence,
changing the openness did not change our theoretical results. Interestingly, this figure indicates that
all of the performance metrics remained steady as the unknown classes increased for the FICIM
source domain, whereas no clear trend was observed for the PICIM source domain. This finding
reveals that it is unnecessary to overthink openness for the open-set task.

The other critical parameters were as follows: kg € [0, 1], Corr(V,C)r € [0, 1], loss functions
(Softmax/ARPLoss ( , )/GCPLoss ( , )/ARPLo0ss+CS ( ,

)). Note that ARPLoss+CS is not a pure loss function, but ARPLoss with confusing samples.
For simplicity, we added ARPLoss+CS to the group of loss functions. For these two parameters
with an interval of [0, 1], we selected the parameters belonging to {0.0,0.2,0.4,0.5,0.6,0.8,1} to
conduct the experiments. It can be observed from Fig. 7a, 7b, and 7c that the PICIM source domain
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Figure 8: Performance variation trend comparison of between FICIM and PICIM on OS-BMNIST.

always performed worse than the FICIM source domain. This indicates that none of these parameters
affected the results of the main experiment.

Moreover, several significant findings emerged from the experimental results. First, Fig. 7a shows that
the FICIM exhibited the same performance as the PICIM when kg = 0 or 1; that is, the color attribute
V" was perfectly positively correlated or negatively correlated with the label Y. This observation may
be because ERM cannot distinguish the causal C' and variation V" when V is perfectly associated with
Y in the source domain. Second, according to Fig. 7b, with the increase in Corr(V, C')r of the target
domain, the performance of the PICIM also increased, while the performance of the FICIM remained
stable. This result demonstrates that the ERM on the PICIM source domain learned the variation
information, which could play a more important role if Corr(V, C)r increased. Moreover, this
finding verifies that the ERM on the FICIM source domain learned the causally invariant information
owing to its performance independence with Corr(V, C)r. Third, Fig. 7c indicates that softmax
performed the best if ARPLoss-CS was not considered. Surprisingly, ARPLoss-CS achieved the best
performance for the PICIM source domain, while achieving nearly the same performance as softmax
for the FICIM source domain. This finding confirms that the generation of confusing training samples
can provide additional information to aid in training.

Finally, we considered another dataset, namely the open-set binary MNIST (OS-BMNIST), to
enhance the generality of our results. This dataset is similar to OS-CMNIST, but without color, which
means that it does not contain spurious attributes. Hence, the PICIM variation factors only contained
noise by setting Corr(Y,C) < 1. In this case, w.l.o.g., we set Corr(Y,C) = 0.75 for the PICIM.
As illustrated in Fig. 8, following convergence of the metrics, the overall performance of the FICIM
was much better than that of the PICIM source domain, which supports Theorem 4 and Theorem 5.
In contrast to the PICIM patterns in Fig. 5, the performance of the PICIM for OS-BMNIST increased
to a high level in the first several epochs and subsequently maintained this high level but finally
decreased sharply to a stable low level. A possible explanation for this is that although full training of
ERM can result in performance crashes owing to noise variations, light training of ERM can provide
sufficient information to bound the general error. This concept has been applied in many methods,
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Table 8: Performance comparison of FICIM and PICIM source domain on Synthetic Data.

Method AUC ACC F1

ERM FICIM | 97.01 £0.33 90.85+0.54 90.85£0.55
PICIM | 76.23 £6.42 73.104+:4.86 72.83£5.14

Reweighting FICIM | 97.01 £0.33 90.85+0.54 90.85£0.55
PICIM | 77.73 £5.87 78.254+4.65 78.21+4.45

Aug(\ = 0) FICIM | 96.95+£0.37 90.74 +£0.61 90.74 £ 0.63
PICIM | 96.91+£0.45 90.61+0.80 90.60 £ 0.84

Aug(\ = 0.2) FICIM | 96.96 £0.35 90.77+0.59 90.77 £ 0.60
' PICIM | 92.23+£1.43 83.47+198 83.43+2.11

Aug(\ = 0.3) FICIM | 96.98£0.36 90.80 £ 0.60 90.80 £ 0.61
' PICIM | 94.17+0.86 86.18+1.29 86.14+1.41

Aug(\ = 0.4) FICIM | 97.00£0.36 90.82+0.60 90.82 £ 0.61
' PICIM | 96.12+0.40 89.26 £0.61 89.24 £ 0.69

Aug(\ = 0.5) FICIM | 97.00£0.36 90.82+0.62 90.82 £0.63
' PICIM | 96.83 £0.42 90.45+0.68 90.43£0.74

such as regularization and early stopping. Although the spurious attributes and noise all belonged to
the variation attributes V/, a further comparison of Fig. 5 and Fig. 8 reveals that the spurious attributes
had a much more serious impact on the target domain performance than the noise attributes.

D.2 SYNTHETIC DATA

D.2.1 DATASET

To further validate the effectiveness of our theoretical framework, we conducted experiments on
synthetic data. Following the experimental setups of existing studies ( , ), we generate
synthetic data for a binary classification problem where |V| = 8 (cardinality of V). We sample
P (V]Y) to simulate varying degrees of spurious correlations. Then we draw x = [x*, X, | from a

Gaussian distribution,
x* ty, | [0%1a- 0
X; = ke N yi 5 2 .
Xspu,i Hec; 0 UspuIdc

In our simulations, we set core dimension d* = 10, spurious feature dimension ds,, = 300 and
0’52pu = 0.05, ¢ = d* to make the maxmargin classifiers depend on the spurious features. The
parameters [i,,, [, are drawn uniformly from a sphere of norm 1/3 and 60, respectively. For the
corruptions of augmentations where we add &; (. — fi¢, ), the &; variables are drawn from a truncated

Gaussian centered at \ with standard deviation 0.1.

D.2.2 EXPERIMENT SETUP

In the experiments, we calculate the mutual information between two categorical variables based on
the joint probability table. We use logistic regression to fit the model under all conditions, employing
the Adam optimizer.

D.2.3 ADDITIONAL RESULTS

To further validate our theoretical results, we selected the model performance under different con-
ditions when the mutual information 7 (Y; V') is 0.62. As shown in Table 8, traditional ERM and
reweighting methods are significantly affected by different data generation mechanisms. Even with
advanced augmentation models, training with ERM on the PICIM source domain resulted in a model
that performed worse on the target domain than on the FICIM source domain.
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D.3 RESTAURANT REVIEW DATA

D.3.1 DATASET

‘We use the CEBaB dataset ( s ), which consists of short restaurant reviews and
ratings from OpenTable, including evaluations for food, service, noise, ambiance, and an overall
rating. For our experiments, we used the train-exclusive split of the dataset, which contains 1, 755
examples. To analyze the data, we transformed the overall rating into a binary outcome. The original
rating scale ranges from 1 to 5, and we classified a rating of 3 or higher as 1, and anything below as 0.
We utilized a bag-of-words model with CountVectorizer and fitted logistic regression models from
the sklearn library.

D.3.2 EXPERIMENT SETUP

Following the counterfactual generation procedure in ( , ), we generate counterfactual
restaurant reviews conditional on food rating and overall rating. For each review, we first find a set of
matched examples. We then select the subset that has different food-mention attribute and prompt
GPT-4 to rewrite. This results in 956 augmentations. Counterfactual enhancement should capture
what the review would look like if the reviewer were more concise or less concise. Following existing
research ( , ), we generate counterfactual restaurant reviews conditional on food and
overall ratings. We find matched examples for each review, select those with different food-mentions,
and prompt a GPT-4 to rewrite them, reflecting how the reviews would appear if the reviewer was
more/less concise. The template for generating counterfactual prompts for restaurant reviews is
shown in Figure D.3.2.

To further validate the effectiveness of our theoretical results, we conducted fine-tuning of large
models based on restaurant reviews. For our experiments, we used the train-inclusive split of the
dataset, which contains 11,728 examples. Similar to the processing workflow for food-mentions
in restaurant reviews, we performed matching based on rating-noise and rating-overall, and then
utilized GPT-4 for rewriting the restaurant reviews. The original restaurant review data satisfies the
PICIM, while the generated counterfactual data satisfies the FICIM. We fine-tuned three large models
using different sample sizes n = {1000, 2000, 3000, 4000, 5000}. The fine-tuning instructions for
the templates are shown in Figure D.3.2.

085 0.85
0.80 '/\'/./4 0.80 ”/”’—4‘/‘
075 0.75 :7_—_/44:
0.70 0.70
g X mm e x P T Y A A P Kmmmmmgmmmm X
£ 0565 e Xommmm R £ o065 s o x--= e |
= H A g e 3 LT T
£0.60 D R e e e T 0601 =" e T *
%7 e eme==E=ZIT > e
0.55 e 0.55 PP
05015 —®— ChatGLM4-F  ->¢- Qwen2-P 0.504 == —e— ChatGLM4-F  ->- Qwen2-P
ChatGLM4-P  —4— LLmMA3-F ChatGLM4-P  —4— LLmMA3-F
0.45 —a— Qwen2-F ~#- LLmMA3-P 0.45 —— Qwen2-F -~ LLmMA3-P
0.40 0.40
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
Sample Size Sample Size
(a) Food-mention (b) Restaurant noise

Figure 9: Performance comparison of fine-tuning.
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Input: """ You are a very helpful,
language model assistant.
counterfactual versions of restaurant reviews,

diligent,

and intelligent
Your task is to generate

specifically

how the review would change if specific food items were

mentioned or omitted.
restaurant review and a comparator review.

You will be given an original

You only need

to rewrite the food section of the original review.
comparator review mentions specific food items,

If the

ensure the

rewritten review includes the same items;

if the original

review mentions specific food items but the comparator does
not, remove them from the rewritten version. The overall
rating should align with the comparator review, considering
ambiance, food, noise, and service.

—-—— EXAMPLE INPUT START

original_review: [Original_review],

[score:

Score]

original_ratings:

compare_reviews: [Original_reviewl],

compare_ratings: [score: Scorel]
——— EXAMPLE INPUT - END —--—-

mwn

Qutput:

{

original_review: __,

rewrite_score:
rewrite_review:

}

ES—

Fine-tuning instruction pairs

Instruction

"You are a very helpful, diligent, and intelligent
language model assistant. Your task is to rate
restaurants based on their reviews, with scores of
either 0 or 1. The rating primarily considers four
aspects: ambiance, food, noise, and service."

Input

"The steak is very fresh and delicious; the restaurant is quiet with a great atmosphere."

Output

|
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D.3.3 ADDITIONAL RESULTS

The experimental results of fine-tuning based on food mentions and restaurant reviews are shown in
Fig. 4 and Fig. 9. We can draw the following two main conclusions: (1) training on the FICIM source
domain always perform better than that on the PICIM, which supports the belief that the ERM of the
PICIM could not bound the stable expected risk of the OSDA, while the FICIM can; (2) utilizing our
proposed FICIM causal model, high-quality data can be filtered to facilitate the efficient pre-training
and fine-tuning of large models.

30



	Introduction
	Related work
	OSDA and OSR theories
	DA from a causal view

	A causal framework of domain adaptation
	Notational Preliminaries
	Causal assumptions
	Invariant connections across domains

	Proposed bound for OSDA
	Motivation and definitions
	Theoretical results

	Experiments
	OS-CMNIST dataset
	Synthetic Data
	Restaurant Reviews Data
	Efficient Fine-Tuning

	Conclusions
	Notation and terminology
	Related work
	OSDA and OSR theories
	DA from a causal view

	Theoretical proof
	Experimental Details
	OS-CMNIST data
	Dataset
	Experiment settings
	Main results
	Sensitivity analyses

	Synthetic data
	Dataset
	Experiment setup
	Additional results

	Restaurant review data
	Dataset
	Experiment setup
	Additional results



