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ABSTRACT

Open Set Domain Adaptation (OSDA) faces two critical challenges: the emergence
of unknown classes in the target domain and changes in observed distributions
across domains. Although numerous studies have proposed advanced algorithms,
recent experimental results demonstrate that the classical Empirical Risk Mini-
mization (ERM) approach still delivers state-of-the-art performance. However,
few theories can effectively explain this disputed phenomenon. To address the
theoretical gap, we focus on constructing a causal theoretical framework for OSDA.
We formulate the novel concepts of the Fully Informative Causal Invariance Model
(FICIM) and the Partially Informative Causal Invariance Model (PICIM). Subse-
quently, We derive an OSDA theoretical bound to prove that the ERM performs
well when the source domain follows FICIM, while it performs poorly when the
source domain follows PICIM. The different results may be attributed to the vary-
ing amounts of available information when bounding the target domain’s stable
expected risk. Finally, across different datasets, we conduct extensive experiments
on the FICIM and PICIM source domains to validate the effectiveness of our
theoretical results.

1 INTRODUCTION

Open Set Domain Adaptation (OSDA) represents a realistic challenge in domain adaptation (Fang
et al., 2020). There is a great need to solve OSDA in the real world. For instance, autonomous driving
AI is often trained in simulated environments but must operate in complex real-world scenarios that
may involve unseen targets (Li et al., 2023; Oza et al., 2023). Chatbots can become more intelligent
via detecting unknown expressions and prompting users to explain them (Abdaljaleel et al., 2024).
Furthermore, if AI overlooks unknown instances, it may become overly confident, resulting in serious
hallucinations and safety issues (Xu et al., 2023; Zhu et al., 2024).

Known classes

Source domain Target domain

Unknown classes
OSDA ACC OSCR

Corr(Y,C)S=0.4
Corr(Y,C)T=0.4 99.63 94.28

Corr(Y,C)S=0.4
Corr(Y,C)T=0.1 63.17 41.26

Figure 1: In this OSDA scenario, 1) the unknown
classes appear in the target domain, 2) the digit
color is a latent attribute correlated with the image
X and digit label Y , 3) the digit color is positively
correlated with the label in the source domain and
is negatively correlated with the label in the target
domain, 4) pS(y|x) ̸= pT (y|x) due to the correla-
tion between color and label.

OSDA is more challenging than other domain
adaptation problems, as illustrated in Fig. 1.
The first challenge is that unknown classes ap-
pear in the target domain. The second chal-
lenge is the observed distributions of data which
changes across domains. Existing domain adap-
tation studies rely on strong assumptions on ob-
served distributions of inputs and labels. One
key assumption is the covariate shift assump-
tion pS(x) ̸= pT (x) while pS(y|x) = pT (y|x)
(Pan et al., 2010), which states that the condi-
tional distribution of the labels (given the in-
put x) is invariant across domains. However,
such assumptions are too restrictive for high-
dimensional data due to dimension redundancy
and the lack of direct causal relationships or cor-
relations between the original high-dimensional
data and the prediction task (Niyogi, 2013;
Bengio et al., 2013; Wang et al., 2021; 2024).
Although most of the existing literature has
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claimed improved performance of OSDA using different algorithms (Fang et al., 2020; Chen et al.,
2021; Zhou et al., 2021; Qu et al., 2024; Yang et al., 2024), the performance gains have been reported
to be overestimated, with the classic Empirical Risk Minimization (ERM) method remaining state-
of-the-art (Vaze et al., 2022; Wu et al., 2023; Vaze et al., 2024; Qu et al., 2024). This performance
controversy motivates us to develop a theoretical risk decomposition.

To address the above issues, we propose a theoretical framework based on the invariant causal
mechanisms (Fan et al., 2023; Yuan et al., 2024; Yao et al., 2024; Zhang et al., 2024) from causal
theory to understand how stable causal mechanisms1 facilitate knowledge transfer and explain why
algorithms like ERM succeed in some scenarios while failing in others. This framework includes
two models: the Fully Informative Causal Invariance Model (FICIM) and the Partially Informative
Causal Invariance Model (PICIM). Via distinguishing FICIM and PICIM, we can better define the
conditions under which domain adaptation methods are effective and derive bounds on the expected
risk in the target domain.

More technically, we define the stable expected risk with invariant connections across domains and
derive a theoretical bound of the stable expected risk for OSDA. Furthermore, our bound explains
which risk minimization strategies should be employed under which conditions. Our theory addresses
the theoretical performance controversy between ERM and other methods: 1) The ERM of a source
domain following FICIM can provide sufficient information to bound the stable expected risk of the
target domain; 2) The stable expected risk of the target domain cannot be bounded by the ERM of a
source domain following PICIM. In addition, generating source domain data that adheres to FICIM
is beneficial for model training or fine-tuning, especially for large language models (LLMs). We
conduct extensive experiments on multiple FICIM and PICIM datasets to validate the reliability of
our theoretical results.

The significant contributions of this work are summarized as follows:

• We propose a novel causal framework and formalize the FICIM and PICIM causal models
for domain adaptation. This causal framework and model can provide a solid theoretical
foundation for domain adaptation problems.

• We propose a causal bound for the OSDA. This bound can guide the development of new
algorithms for OSDA problems.

• We prove that when the source domain follows the FICIM, ERM is sufficient for model
training. Our work demonstrates the feasibility of constructing artificial FICIM datasets
instead of natural datasets for training.

• Our theoretical work on domain adaptation can guide the generation of diverse and repre-
sentative training datasets using LLMs, enhancing model generalization and adaptability
through a focus on causal relationships and data selection. Additionally, our theory can guide
the selection of high-quality datasets for efficient pre-training and fine-tuning of LLMs.

2 RELATED WORK

In this section, we first introduce OSDA and Open Set Recognition (OSR) theories. Then, we review
DA from a causal view. For detailed information on related works, please refer to Appendix B.

2.1 OSDA AND OSR THEORIES

Our research problem is within the field of OSDA. A similar concept related to OSDA is OSR (Geng
et al., 2021). Hence we refer readers to (Geng et al., 2021; Yang et al., 2024) for comprehensive
surveys of OSDA and OSR. Early theoretical studies on OSR formalized the relationship between the
known and unknown classes using the open space risk (Wang et al., 2023; Rastegar et al., 2024) and
extreme value theory (Petit et al., 2023), but they did not provide theoretical guarantees. Moreover,
none of the above-mentioned works can solve our problem because they need a strict assumption that
at least one observed distribution does not change across domains.

1As shown in Fig. 1, the information that determines the image label is solely the shape of the digit in the
image, not the background color. Changing the color does not affect the image label.
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2.2 DA FROM A CAUSAL VIEW

Existing studies primarily assume invariant predictors or rely on different causal assumptions to
address domain adaptation problems (Magliacane et al., 2018; Li et al., 2024). Although Invariant Risk
Minimization (IRM) (Liu et al., 2024) methods are commonly used for learning robust representations,
research has shown that they do not necessarily outperform ERM (Rosenfeld et al., 2021; Buchholz
et al., 2024). Despite some success with these methods (Chen & Bühlmann, 2021; Sun et al., 2021;
Liu et al., 2021; Huang et al., 2024), they fail to provide a theoretical understanding of nonlinear
high-dimensional data, and only consider a variation of the PICIM in our work as their causal
structure, whereas we consider the FICIM and PICIM.

3 A CAUSAL FRAMEWORK OF DOMAIN ADAPTATION

3.1 NOTATIONAL PRELIMINARIES

We denote Ω, A , and P as the original sample space, σ−algebra on Ω, and probability measure,
respectively. Then, (Ω,A ,P) is a probability space. We use capital letters such asX to denote random
elements and boldface letters such as x to denote value vectors. Calligraphic capital letters such as X
are used for space. Random elements are measurable maps. for instance, X : (Ω,A ) → (X ,B).
For simplicity, we use notations including PX , PXY , and PX|Y to denote the marginal, joint, and
conditional distributions, respectively. Moreover, p is the probability density function. For more
symbol annotations and terminology, see Table 5 in Appendix A.

3.2 CAUSAL ASSUMPTIONS

Causality research indicates that real-world data distributions stem from underlying causal mecha-
nisms that are typically invariant across domains (Pearl & Mackenzie, 2018; Schölkopf, 2022). Liu
et al. (2021) formalized this into the causal invariance principle, asserting that causal generation
mechanisms remain consistent across different domains. For high-dimensional data X—such as
text, images, or audio—it’s commonly assumed that X is a nonlinear function of latent attributes
A (Locatello et al., 2019; 2020; Von Kügelgen et al., 2021). However, not all attributes in A are
invariant causes of X or the target label Y . Some attributes, like noise or background color, may
affect X but not Y . Therefore, we partition A into two subsets: the causally invariant attributes C
and the variation attributes V , where C maintains invariant relationships with both X and Y . We
formalize this with the following assumption:

Assumption 1. (Causal invariance assumption) For high-dimensional data X and its prediction
target Y , the latent attribute set A between X and Y can be divided into the causally invariant
attribute set C and variation attribute set V . Attributes belonging to C should satisfy P(Y |C) and
P(X|C) being invariant across domains. Attributes belonging to V should satisfy that P(Y |V ) or
P(X|V ) varies across domains.

Based on this, we define:

Definition 1. (Probability Generation Model (PGM)). We define the probability generation model
for high-dimensional data as certain statistical probability descriptions of the data generation
process, i.e., PGM = ⟨PC ,PX|C ,PY |C ,PV |C ,PY V X⟩ on high-dimensional data X and target Y
with causally invariant attributes C and variation attributes V .

This assumption is supported across various fields (Liang et al., 2018; Yue et al., 2021). For example,
in computer vision, images from the same class share causally invariant attributes, while variation
attributes provide class-independent features like color and background (Liang et al., 2018).

By constructing a probability model with separated latent attributes, we can better describe the data
generation process. For example, when high-dimensional data is collected from different sensors
with varying characteristics, the PGM accounts for variations by incorporating causally invariant
attributes (e.g., physical properties) and variation attributes (e.g., sensor-specific features).

3
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3.3 INVARIANT CONNECTIONS ACROSS DOMAINS

Traditional domain definitions focus on observed distributions or labeling functions associated with
X and Y (Ben-David et al., 2010; Fang et al., 2020), which may not capture essential differences
involving latent attributes in high-dimensional data. Instead, we aim to mathematically characterize
the invariant relationship between the source and target domains. Therefore, to address this issue, we
define:

Definition 2. (Domain). A domain d includes a series of observed data distributions Pd that are
generated by a domain-specific PGMd = ⟨PdC ,PdX|C ,P

d
Y |C ,P

d
V |C ,P

d
Y V X⟩. For the convenience of

subsequent use, we construct a domain setD = {d1, d2, ...} where every domain di ∈ D is generated
by PGMdi .

This definition allows us to express invariant relationships between domains:

Proposition 1. (Domain invariance) Given two arbitrary domains di, dj ∈ D, we have an invariant
relationship PdiX|C = PdjX|C and PdiY |C = PdjY |C .

Proof. Using Definition 2, we can directly derive the domain invariance proposition from Assump-
tion 1.

To address the unknown relationship between Y and V , we introduce two causal models shown in
Fig. 2:

Definition 3. (Fully Informative Causal Invariance Model (FICIM)) A causal model is considered
to be FICIM if PY |C is invariant across domains and the relationship between Y and V is not present
or not relevant.

Definition 4. (Partially Informative Causal Invariance Model (PICIM)) A causal model is con-
sidered to be PICIM if PY |C varias across domains and there exists an unknown or uncertain
relationship between Y and V .

X

C V

Y

Z

(a) FICIM

X

C V

Y

Z

(b) PICIM

Figure 2: The causal graph structure of FICIM and PICIM.

Discussion. In FICIM, C influences both X and Y , while V may affect X but not Y . In PICIM, C
still influences X and Y , but V may also have an effect on Y . Unlike the Fully Informative Invariant
Features (FIIF) and Partially Informative Invariant Features (PIIF) in (Ahuja et al., 2021), our model
focuses on the latent attributes C and V that are fundamental to data generation, distinguishing C
from V based on domain invariance. In FICIM, PY |C,V = PY |C ; in PICIM, PY |C,V ̸= PY |C :

Proposition 2. (Properties for causal diagrams) If a domain di ∈ D follows the FICIM, PdiY |CV =

PdiY |C . If a domain di follows the PICIM, PdiY |CV ̸= PdiY |C .

Proof. Obviously, the proposition can be obtained from the causal Markov condition (Janzing &
Schölkopf, 2010).

We formalize the invariant connections as:

Theorem 1. (Invariant connections for causal information of observed data) Given two arbitrary
domains di, dj ∈ D following the FICIM or PICIM, there exists a random element XC that can

4
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be sampled from a function f : C × [0, 1] → X and T follows a uniform distribution U [0, 1]; i.e.,
XC = f(C, T ), such that :

pdi
Y |XC (y|x) = p

dj
Y |XC (y|x).

This theorem indicates that focusing on the causal information derived from invariant attributes C
allows us to establish invariant predictive relationships across domains.

4 PROPOSED BOUND FOR OSDA

4.1 MOTIVATION AND DEFINITIONS

In OSDA, the primary goal is to train a classifier using data from a source domain that can accurately
identify known classes and distinguish between known and unknown classes in a target domain. We
focus on the challenging case of a single-source domain problem. Specifically, we consider a source
domain S and a target domain T from the domain set D, i.e., S, T ∈ D, satisfying the properties
defined in Definition 2.
Motivation problem. (Learning for OSDA). Given a single source domain S ∈ D and a target
domain T ∈ D, we observe a training dataset DS = {(xi,yi)}NS

i=1 that is obtained from S and the
label space YS ⊂ YT is known; that is, the testing samples in the target domain belong to unknown
classes that do not appear in the source domain. The goal is to identify a known class label and to
separate known samples from unknown samples in the target domain T .

To address this problem, we need a theoretical risk decomposition for the target domain. We define
the expected risk as follows:
Definition 5. (Expected risk conditional on the domain). Given a random element Y and a fitted
element Ŷ of space Y from domain di ∈ D, we formulate the following definitions for an arbitrary
loss function ℓ : Y × Y → R+ :

1. The expected risk is defined as:

Rℓdi(Y ) := E
P

di
Y

ℓ(ŷ,y).

For simplicity, we omit ℓ in the subsequent form of Rℓdi, that is, Rdi := Rℓdi.

2. Given a random element U of space U that is jointly distributed with Y with an arbitrary mapping
ψ : U → Y , the quantity

Rdi(Y |U) := E
P

di
Y U

ℓ(ψ(u),y).

3. Given Rdi(Y |U), the minimum expected risk of predicting Y given U is

R∗
di(Y |U) := inf

ψ
Rdi(Y |U).

Definition 6. (Stable expected risk conditional on domain). Given a domain di ∈ D, the stable
expected risk is defined as:

Rdi(Y |XC) = E
P

di
XCY

ℓ(f(x),y),

where XC is the causal information of the observed data that can be sampled from a function
f : C × [0, 1] → X satisfying

pXC (x) = pC(c) ∀c ∈ C.

Discussion. According to Proposition 1, the relationship between the causal attributes C and Y is
stable across domains. While the complete set of latent attributes CV provides sufficient information
for predicting Y , relying on them may not yield stable minimum risk in the target domain due to the
instability of PY |CV without label information from the target domain. To achieve a stable minimum
risk, we focus on the invariant causal connections derived from the observed data, specifically using
the causal component XC associated with C.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 THEORETICAL RESULTS

This section presents the main theoretical results, which not only emphasize the importance of
causal invariance in achieving effective domain adaptation but also provide bounds on the stable
expected risk in both closed-set and open-set domain adaptation scenarios. Full proofs are included
in Appendix C.
Theorem 2. (Theoretical bound of stable expected risk under closed-set domain adaptation). Given
a single source domain S ∈ D and a target domain T ∈ D, and further assuming the label space
YS = YT = Y , we obtain a theoretical bound of the semantic controlled risk RT (Y |XC), where
XC can be sampled from a function f : C × [0, 1] → XT as follows:

RT (Y |XC) ≤ (1 + β)RS(Y |XC),

where β = supC ∈ CpTC(c)/pSC(c)− 1, under the condition that there exist positive constants
0 < m ≤M such that m ≤ pTC(c), pSC(c) ≤M for all c ∈ CS .

Intuition. This result builds upon existing works focusing on generalization bounds in closed-
set domain adaptation, such as ERM, causal conditional shift, and discrepancy distance. Our
approach innovatively emphasizes the importance of causal relationships and invariance in the
data generation process, contributing to enhancing domain adaptation capabilities in practical
applications.

Theorem 3. (Theoretical bound of stable expected risk under OSDA). Given a single source domain
S ∈ D and a target domain T ∈ D, and further assuming the label space YS ⊂ YT and setting yuk

to represent the unknown target classes YT \ YS , we can obtain a theoretical bound of the stable
expected risk RT (Y |XC) under OSDA, as follows:

RT (Y |XC) ≤ (1 + β)RS(Y |XC)︸ ︷︷ ︸
(1) Risk of known target classes

+

∫
X

ℓ(f(x),yuk)pTXCY (x,y
uk)dx

︸ ︷︷ ︸
(2) Risk of unknown target classes

,

where β = supC∈CS
pTC(c)/p

S
C(c) − 1, under the condition that there exist positive constants

0 < m ≤M such that m ≤ pTC(c), pSC(c) ≤M for all c ∈ CS .

Intuition. The bound in Theorem 3 consists of two terms: the risk of known target classes
and the risk of unknown target classes. This decomposition clarifies the components of the
stable expected risk in the target domain and guides the minimization process.

Remark 1. For Theorem 3, the second term of the bound
∫
X
ℓ(f(x),yuk)pTXCY (x,y

uk)dx can be

minimized by the optimal representation Z∗
S = φ∗

S(X) that is obtained by the ERM of a source
domain S:

inf
f∈F

∫
X

ℓ(f(x),yuk)pTXCY (x,y
uk)dx

= inf
g∈G

∫
X

ℓ(g(φ∗
S(x)),y

uk)pTXCY (x,y
uk)dx

with the assumption that
F = G ◦ Φ ∀f ∈ F , g ∈ G, φ ∈ Φ.

Intuition. The bound in Theorem 3 suggests that a good model for handling OSDA should
i) seek a classifier f∗S = g∗S ◦ φ∗

S that minimizes the stable expected risk RS(Y |XC) of the
source domain, and ii) determine an optimal open set classifier g∗T for separating the knowns
and unknowns based on the representations φ∗

S(XT ).

Next, we will discuss under what conditions performing ERM solely in the source domain is sufficient.

6
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Theorem 4. For Theorem 3, conducting the ERM on a FICIM source domain can provide enough
information to bound the stable expected risk of the target domain RT (Y |XC).

Intuition. Since the causal attributes C contain all information about the outcome variable
Y , and the variation V adds no extra information about Y , the ERM on the source domain
yields R∗

S(Y |X) = R∗
S(Y |XC). Consequently, ERM on a FICIM source domain provides

sufficient information to find an optimal open-set classifier, adequately bounding the stable
expected risk RT (Y |XC) in the target domain.

Theorem 5. For Theorem 3, conducting the ERM on a PICIM source domain cannot bound the
stable expected risk of target domain RT (Y |XC).

Intuition. The key distinction between the theorem of the PICIM source domain and Theorem
4 lies in the capacity of the variation V to predict Y within causal models, as the additional
information in V may be detrimental in the target domain. Consequently, the expected risk
RT (Y |XC) in the target domain is contingent upon the amount of additional information in
V , with a preference for scenarios where V contains less additional information.

Remark 2. Given a target domain T ∈ D, we obtain a useful decomposition of the minimum
expected risk as follows:

R∗
T (Y |X) = R∗

T (Y |XC)︸ ︷︷ ︸
(1) Minimum stable expected risk

− [R∗
T (Y |XC)−R∗

T (Y |XCV )]︸ ︷︷ ︸
(2) Uncontrollable spurious benefit

.

Intuition. This remark is straightforward: minimizing R∗
T (Y |X) is equivalent to minimizing

R∗
T (Y |XCV ). By adding and subtracting R∗

T (Y |XC), we see that the target risk equals the
minimum stable expected risk minus the spurious benefit from variation information. Since
this benefit is independent of the source domain, it’s reasonable to replace the objective of
minimizing the total expected risk with that of minimizing the stable expected risk.

5 EXPERIMENTS

Table 1: Description of all our tasks.
Input (X) Label (Y) Variation attribute (V) Invariant attribute (C)
Cmnist {0, 1} Color Digit

Synthetic data {0, 1} {0, . . . , 7} -

Restaurant review Restaurant rating Food-mention Service, Noise,
Ambiance, Food

First, we conducted comprehensive
OSDA and OOD tasks2 on the CM-
NIST dataset to validate our proposed
theory. Next, we performed experi-
ments on synthetic data, showcasing
different special cases, all of which are explained by our unified theoretical framework, demonstrating
the applicability of our theoretical results. Finally, we conducted experiments on restaurant review
(text) data and applied our theoretical findings to instruction fine-tuning of large models. These
experiments fully demonstrate our two final theoretical results: 1) performing ERM on a FICIM
source domain provides enough information to bound the stable expected risk of the target domain
((Theorem 4)), and 2) performing ERM on a PICIM source domain cannot bound the stable expected
risk of the target domain (Theorem 5). Table 1 provides an overview of the tasks we experiment with.

5.1 OS-CMNIST DATASET

Experimental Setup. We constructed our open-set CMNIST (OS-CMNIST) dataset following the
dealing method of CMNIST (Arjovsky et al., 2020) to satisfy the setting demand of the OSDA and
OOD detection task. To ensure a fair comparison, we adopted the same loss function and model
architecture as used in existing studies (Chen et al., 2021). To fully demonstrate the validity of

2OSDA primarily focuses on how to handle these unknown categories in the target domain while maintaining
good performance on known categories, whereas OOD detection emphasizes distinguishing between known and
unknown categories without necessarily involving the specific learning of classes.

7
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our theoretical results, we constructed two sets of data ( FICIM group and PICIM group). For the
FICIM group, the key parameters were Corr(V,C)S = 0.8, Corr(Y,C)S = 1, Corr(V,C)T =
0.1. For the PICIM group, the key parameters were Corr(V,C)S = 0.8, Corr(Y,C)S = 0.75,
Corr(V,C)T = 0.1. For detailed experimental setup, results, and analysis, please refer to Appendix
D.1.

Results. As indicated in Table 2, training with ERM on the FICIM source domain under different
loss functions could achieve nearly perfect performance for the CS-ACC, AUROC, and OSCR of
the target domain, which supports Theorem 4. We demonstrate Theorem 5 by observing that the
CS-ACC, AUROC, and OSCR declined sharply from the FICIM source domain to the PICIM source
domain. That is, training with ERM on the PICIM source domain resulted in a model that performed
worse on the target domain than on the FICIM source domain.

Table 2: Performance comparison of FICIM and PICIM source domain on CMNIST.

Method CS-ACC AUROC OSCR

ARPLoss (Chen et al., 2021) FICIM 99.63± 0.01 95.52± 1.01 95.38± 1.03
PICIM 64.30± 0.32 52.22± 1.19 42.37± 0.46

ARPLoss+CS (Chen et al., 2021) FICIM 99.66± 0.04 96.47± 0.22 96.34± 0.25
PICIM 67.69± 0.82 53.07± 0.70 40.93± 0.58

RPLOSS (Chen et al., 2020) FICIM 99.51± 0.01 91.65± 2.95 91.48± 2.94
PICIM 64.23± 2.00 53.76± 1.75 45.05± 0.70

Softmax FICIM 99.48± 0.01 94.20± 0.55 94.03± 0.54
PICIM 62.15± 0.99 52.81± 1.59 43.23± 0.57

GCPL (Yang et al., 2020) FICIM 99.60± 0.01 95.98± 0.17 95.84± 0.18
PICIM 66.10± 2.71 53.02± 2.71 43.67± 1.35

5.2 SYNTHETIC DATA

Experimental Setup. To further validate the effectiveness of our theoretical framework, we
conducted experiments on synthetic data. Following the experimental setups of existing studies
(Feder et al., 2023), we generate synthetic data for a binary classification problem where |V | = 8
(cardinality of varying attribute V). We sample P (V |Y ) to simulate varying degrees of spurious
correlations. Then we draw x = [x∗, xspu] from a Gaussian distribution,

xi =

[
x∗

xspu,i

]
∽ N

([
µyi
µci

]
,

[
σ2Id∗ 0
0 σ2

spuIdc

])
,

In this case the counterfactual x̂i (v) for the sample xi is obtained by adding µv − µvi
to xspu,i. To

corrupt our augmentation, we instead add ξi (µv − µvi
) where ξi is drawn from a truncated Gaussian

centered at λ ∈ (0, 1). We train models with a fixed sample size and evaluate the trained models’
performance on unconfounded distribution P⊥ to examine the interplay between spurious correlation
strength (measured by mutual information I (Y ;V )). Different mutual information values I (Y ;V )
represent varying degrees of PICIM source domain. When the mutual information is zero, it indicates
FICIM source domain. For detailed experimental setup, results, and analysis, please refer to Appendix
D.2.

Results. As shown in Fig. 3, under different corruptions, the model’s performance decreases.
Compared to corruptions, spurious correlations have a greater impact on the model’s performance.
This further demonstrates that training with ERM on the PICIM source domain results in worse
performance on the target domain compared to the FICIM source domain. Moreover, by employing
certain augmentation techniques and methods, modifying the training mechanism of the model can
mitigate the differences caused by the two data generation processes.
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Figure 3: Model performance with different parameter settings on synthetic data. Lower values of λ
correspond to stronger corruptions of the augmentations.

5.3 RESTAURANT REVIEWS DATA

Experimental Setup. We use the CEBaB dataset (Abraham et al., 2022), which consists of short
restaurant reviews and ratings from OpenTable3, including evaluations for food, service, noise,
ambiance, and an overall rating. We used the train-exclusive split of the dataset, which contains
1, 755 examples. We focus on an experimental setup: a modified version called CeBAB-Spurious,
where there is a spurious correlation between the labels Y and variable attributes V .

To construct CeBAB-Spurious, we leveraged the availability of both the original and perceived ratings
for each review in CeBAB. The original rating represents the reviewer’s initial thoughts when writing
the review, while the perceived rating indicates whether the review contains information about various
restaurant attributes (e.g., food, service, noise, ambiance) and their associated sentiment. We utilized
this unique data structure to capture reviewers’ writing styles. Some reviewers are concise and
provide limited descriptions, while others are more detailed and include more information. Inspired
by existing research (Feder et al., 2023), we introduced a new attribute called food-mention to signify
the presence of food-related information in a review. If the perceived food rating is either negative or
positive, we assign a value of 1 to the food-mention attribute; otherwise, it is set to 0. We sample
the data such that the correlation between food-mention and outcomes is 0.45. Please note that
the sampled data follows the PICIM, while the data from counterfactual interventions using GPT-4
(Achiam et al., 2023) follows the FICIM. For detailed experimental setup, results, and analysis, please
refer to Appendix D.3.

Results. As shown in Table 3 and Table 4, when debiasing different restaurant features, our theoretical
results effectively explain the model’s performance differences under various data generation mecha-
nisms. The main conclusions include the following two points: (1) Based on common knowledge,
restaurant noise has a causal relationship with overall restaurant ratings. In this case, when we debias
for restaurant noise, the model is unable to leverage these useful causal signals, leading to an increase
in the minimum stable expected risk. Essentially, by removing the noise, the model can no longer
capture the useful information embedded in it, resulting in reduced stability in its predictions. (2)
Food mention is a spurious feature, meaning it has no direct causal relationship with restaurant
ratings. By debiasing for food mentions, the model eliminates the influence of irrelevant, spurious
correlations. This helps improve the model’s performance, as it can focus more on the true causal
signals relevant to the task, without being distracted by unrelated features.

5.4 EFFICIENT FINE-TUNING

Experimental Setup. To further validate that our theory can guide the selection of high-quality data
for efficient pre-training and fine-tuning of large models, we construct instruction pairs based on
restaurant reviews to fine-tune different large models (LLaMA3-8B, ChatGLM4-9B, and Qwen2-7B
4). For specific experimental setting, the construction of instruction pairs, and more results, please
refer to the Appendix D.3.

3https://www.opentable.com/
4https://modelscope.cn/home.
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Table 3: Performance comparison of FICIM and
PICIM source domain on food-mention of restau-
rant reviews.

Methods ACC F1 Precision

Corr (V, Y ) = 0.45
FICIM 72.00± 0.01 71.53± 0.20 71.60± 0.47
PICIM 67.00± 3.01 63.79± 3.38 67.21± 2.77

Corr (V, Y ) = 0.40
FICIM 70.04± 0.75 67.46± 2.17 67.08± 2.26
PICIM 68.09± 1.02 64.41± 2.38 65.94± 1.91

Corr (V, Y ) = 0.35
FICIM 70.32± 1.04 67.91± 0.79 71.53± 0.05
PICIM 68.13± 2.12 65.56± 0.95 68.41± 2.69

Corr (V, Y ) = 0.30
FICIM 70.00± 2.36 67.07± 2.19 73.21± 2.62
PICIM 67.00± 1.24 64.95± 1.75 67.50± 0.91

Table 4: Performance comparison of FICIM and
PICIM source domain on Restaurant noise of
restaurant reviews.

Methods ACC F1 Precision

Corr (C, Y ) = 0.45
FICIM 79.00± 2.61 78.41± 3.92 78.27± 2.46
PICIM 66.00± 1.60 67.97± 2.69 71.08± 2.77

Corr (C, Y ) = 0.40
FICIM 70.00± 1.51 69.78± 2.47 69.53± 0.85
PICIM 64.13± 0.60 65.00± 2.41 67.24± 4.06

Corr (C, Y ) = 0.35
FICIM 79.50± 1.35 79.31± 0.43 79.27± 3.07
PICIM 71.00± 1.55 66.64± 2.28 65.08± 2.97

Corr (C, Y ) = 0.30
FICIM 75.32± 4.06 74.89± 3.19 74.27± 3.42
PICIM 72.11± 3.41 69.46± 5.05 69.64± 1.29
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Figure 4: Performance comparison of fine-tuning based on food-mention (the upper part of the figure)
and restaurant reviews (the lower part of the figure). −P indicates fine-tuning based on the PICIM
source domain, while −F indicates fine-tuning based on the FICIM source domain.

Results. As shown in Fig. 4, as the amount of fine-tuning data increases, the model performance
improves. The growth trends in performance vary for different large language models. Relatively
speaking, the performance of LLaMA3 is somewhat inferior in our task. More importantly, under
the FIFCM source domain, fine-tuning GLM with 2,000 samples achieves performance comparable
to fine-tuning Qwen2 and LLaMA3 with 5,000 samples. Additionally, in GLM, under the FIFCM
mechanism, 1,000 samples can achieve the performance obtained after fine-tuning the model with
5,000 samples under the PICIM mechanism. This further indicates that our theoretical results can
guide the efficient fine-tuning or even pre-training of LLMs.

6 CONCLUSIONS

We have proposed a causal bound for OSDA of high-dimensional data. Using this bound, we theoreti-
cally proved that the FICIM and PICIM source domains can explain the performance difference of
ERM: (1) The ERM when the source domain follows FICIM can provide sufficient information to
bound the stable expected risk of the target domain. (2) The ERM when the source domain follows
PICIM cannot bound the stable expected risk of the target domain. We demonstrated the effectiveness
of our theoretical results by conducting comparative experiments on FICIM and PICIM datasets,
and showed that state-of-art open-set algorithms performed poorly when only the PICIM dataset
was used. Our theoretical and experimental results revealed the limitation of existing algorithms for
OSDA, including OSR. We anticipate that our study may pave the way for new algorithm designs for
OSDA and other simpler domain adaptation challenges, as it provides fundamental knowledge for
these problems.
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A NOTATION AND TERMINOLOGY

Symbol Description
N The Caussian distribution
I Identity matrix
x∗ Core feature
xspu Spurious feature
Corr The correlation coefficient between two variables
κS The correlation coefficient between two variables on source domain
F Function space
NS The number of samples in the training set
λ The noise intensity

Table 5: Symbol Notations and Their Descriptions

B RELATED WORK

In this section, we first introduce OSDA and OSR theories. Then, we review domain adaptation from
a causal view.

B.1 OSDA AND OSR THEORIES

Our research problem is within the field of OSDA. A similar concept related to OSDA is OSR (Geng
et al., 2021). Hence we refer readers to (Geng et al., 2021) for comprehensive surveys of OSDA and
OSR. Early theoretical studies on OSR formalized the relationship between the known and unknown
classes using the open space risk (Scheirer et al., 2014; Wang et al., 2023; Rastegar et al., 2024)
and extreme value theory (Rudd et al., 2017; Petit et al., 2023), but they did not provide theoretical
guarantees.
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Liu et al. (2018) provided the sample complexity for guaranteeing the detection rate of OSR, whereas
Fang et al. (2021) proposed a generalization bound for OSR based on the PAC theory, which
demonstrated the theoretical existence of an OSR algorithm. Zhang et al. (2020) constructed
an unbiased risk estimator by exploiting unlabeled training data to approximate the underlying
distribution of the unknown classes. These bounds provided by (Liu et al., 2018; Fang et al., 2021;
Zhang et al., 2020) highlight the need to find an augmented domain to represent a group of novel
classes.

The class-incremental domain adaptation paradigm proposed by (Kundu et al., 2020), which is almost
the same as the OSDA, derived a bound for the target-domain risk by considering the target-shared
risks and target-private risks independently. Fang et al. (2020) proposed a theoretical bound for the
OSDA problem first. However, these bounds in (Kundu et al., 2020) and (Fang et al., 2020) can not
explain why or when ERM performs well for OSDA.

Moreover, none of the above-mentioned works can solve our problem because they need a strict
assumption that at least one observed distribution does not change across domains.

B.2 DA FROM A CAUSAL VIEW

The framework of Structural Causal Models (SCMs) (Pearl, 2009) has motivated many interesting
works on causal discovery and causal inference. Inspired by SCMs, our work mainly uses the principle
of Invariant Causal Prediction (ICP). ICP considers the invariance of the conditional distribution of
the target variable Y given its direct causes, which has been articulated numerous times (Pearl, 2009;
Pearl & Mackenzie, 2018; Peters et al., 2016; Rojas-Carulla et al., 2018; Pfister et al., 2019) and
has been formulated by (Peters et al., 2016; Heinze-Deml et al., 2018). Rojas-Carulla et al. (2018);
Magliacane et al. (2018); Li et al. (2024) relate domain adaptation with the invariant causal prediction
principle, which inspires our work. These works mentioned above mostly assume that the observed
predictors or a subset of observed predictors are causally invariant.

Although IRM (Arjovsky et al., 2020; Liu et al., 2024) methods aim to learn robust and invariant
representations, recent studies have shown that they may not always outperform the ERM objective
(Nagarajan et al., 2020; Rosenfeld et al., 2021; Buchholz et al., 2024). This observation highlights
the need for a deeper understanding of the performance and limitations of both IRM and ERM in the
context of high-dimensional data and domain adaptation problems.

The concept of our causal framework is similar to that of (Cai et al., 2019; Chen & Bühlmann, 2021;
Sun et al., 2021; Liu et al., 2021; Huang et al., 2024; Carvalho et al., 2024). In comparison, Cai
et al. (2019) assumed the independence of the latent semantic variables and other latent variables,
which differs from our dependence assumption. Chen & Bühlmann (2021) adopted linear structural
causal models to study complicated domain adaptation problems, which did not provide a theoretical
understanding of nonlinear high-dimensional data. Sun et al. (2021); Liu et al. (2021) only considered
a variation of the PICIM in our work as their causal structure, whereas we consider the FICIM and
PICIM.

Moreover, the above methods do not solve the OSDA problem, which is the crucial problem of our
study.

C THEORETICAL PROOF

We begin with an important lemma by following Lemma 3.22 of (Kallenberg, 2002) to prove Theorem
A.1.

Lemma A.1. (Kallenberg, 2002) Given random variablesX ∈ X , C ∈ C from a domain di ∈ D; i.e.,
the Markov chain is X − C, there exists a random element XC that can be sampled from a function
f : C × [0, 1] → X . Furthermore, T follows a uniform distribution U [0, 1]; i.e., XC = f(C, T ), such
that the joint probability density function of XC and C satisfies

pdi
XC ,C

(x, c) = pdiX,C(x, c) for any (x, c) ∈ X × C.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(Kallenberg, 2002) presents the proof for the above conclusion. As X ∈ X and XC ∈ X , we can
obtain another property for XC ,

pdi
XC |C(x|c) = pdiX|C(x|c) for any (x, c) ∈ X × C.

Theorem A.1. (Theorem 1) Given two arbitrary domains di, dj ∈ D following the FICIM or PICIM,
there exists a random element XC that can be sampled from a function f : C × [0, 1] → X . Moreover,
T follows a uniform distribution U [0, 1] : i.e., XC = f(C, T ), such that

pdi
Y |XC (y|x) = p

dj
Y |XC (y|x).

Proof. Given the FICIM or PICIM, we obtain the Markov chain X − C − Y . According to Lemma
A.1 and Proposition 1, there exists a random element XC that can be sampled from a function
f : C × [0, 1] → X , such that

pdi
XC |C(x|c) = p

dj
XC |C(x|c). (1)

Now, we can rewrite the conditional probability pdi
Y |XC (y|x) as follows:

pdi
Y |XC (y|x) =

∫
C p

di
Y |C(y|c)p

di
XC |C(x|c)dc∫

C p
di
XC |C(x|c)dc

(2)

=

∫
C p

di
Y |C(y|c)p

dj
XC |C(x|c)dc∫

C p
dj
XC |C(x|c)dc

(3)

= p
dj
Y |XC (y|x), (4)

where Eq. (3) is derived from Eq. (1) and Eq. (4) follows by noting that the denominators are equal
due to Eq. (1).

Theorem A.2. (Theorem 2) Given a single source domain S ∈ D and a target domain T ∈ D, and
further assuming the label space YS = YT = Y , we obtain a theoretical bound of the semantic
controlled risk RT (Y |XC), where XC can be sampled from a function f : C × [0, 1] → XT as
follows:

RT (Y |XC) ≤ (1 + β)RS(Y |XC),

where β = supC∈C p
T
C(c)/p

S
C(c)− 1.
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Proof.

RT (Y |XC)

=

∫∫
X ,Y

ℓ(f(x),y)pTXC (x)p
T
Y |XC (y|x)dydx (5)

=

∫∫
X ,Y

ℓ(f(x),y)pTXC (x)p
T
Y |XC (y|x)dydx (6)

−
∫∫
X ,Y

ℓ(f(x),y)pTXC (x)p
S
Y |XC (y|x)dydx

+

∫∫
X ,Y

ℓ(f(x),y)pTXC (x)p
S
Y |XC (y|x)dydx

−
∫∫
X ,Y

ℓ(f(x),y)pSXC (x)p
S
Y |XC (y|x)dydx

+

∫∫
X ,Y

ℓ(f(x),y)pSXC (x)p
S
Y |XC (y|x)dydx

=RS(Y |XC) (7)

+

∫∫
X ,Y

ℓ(f(x),y)pSXC (x)p
S
Y |XC (y|x)(

pTXC (x)

pS
XC (x)

− 1)dydx

+

∫∫
X ,Y

ℓ(f(x),y)pTXC (x)(p
T
Y |XC (y|x)− pSY |XC (y|x))dydx

=RS(Y |XC) (8)

+

∫∫
X ,Y

ℓ(f(x),y)pSXC (x)p
S
Y |XC (y|x)(

pTXC (x)

pS
XC (x)

− 1)dydx

≤(1 + β)RS(Y |XC), (9)

where β = supXC∈X p
T
XC (x)/p

S
XC (x) − 1 = supC∈C p

T
C(c)/p

S
C(c) − 1 from Lemma

A.1. Eq. (5) follows the definition of the expected risk. We can obtain Eq. (6) by
adding and subtracting two construction terms

∫∫
X ,Y

ℓ(f(x),y)pTXC (x)p
S
Y |XC (y|x)dydx and∫∫

X ,Y
ℓ(f(x),y)pSXC (x)p

S
Y |XC (y|x)dydx, respectively. The first part of Eq. (7) is the definition

of the final part of Eq. (6). We obtain the second part of Eq. (7) by combining the third and fourth
parts of Eq. (6). The final term of Eq. (7) is the combination of the first and second parts of Eq. (6).

Eq. (8) can be obtained by pTY |XC (y|x) = pSY |XC (y|x) from Theorem A.1. By setting the
supXC∈X p

T
XC (x)/p

S
XC (x) in the second part of Eq. (7) to be upper bounded by a constant β + 1,

we obtain the inequality Eq. (9).

Theorem A.3. (Theorem 3) Given a single source domain S ∈ D and a target domain T ∈ D, and
further assuming the label space YS ⊂ YT and setting yuk to represent the unknown target classes
YT \ YS , we obtain a theoretical bound of the stable expected risk RT (Y |XC) under OSDA, as
follows:

RT (Y |XC) ≤ (1 + β)RS(Y |XC)︸ ︷︷ ︸
(1) Risk of known target classes

+

∫
X

ℓ(f(x),yuk)pTXCY (x,y
uk)dx

︸ ︷︷ ︸
(1) Risk of unknown target classes

,

where β = supC∈CS
pTC(c)/p

S
C(c)− 1.
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Proof.

RT (Y |XC)

=

∫∫
X ,YS

ℓ(f(x),y)pTXC (x)p
T
Y |XC (y|x)dydx (10)

+

∫∫
X ,Yuk

ℓ(f(x),y)pTXC (x)p
T
Y |XC (y|x)dydx

=

∫∫
X ,YS

ℓ(f(x),y)pTXC (x)p
T
Y |XC (y|x)dydx

+

∫
X

ℓ(f(x),yuk)pTXCY (x,y
uk)dx

≤(1 + β)RS(Y |XC) (11)

+

∫
X

ℓ(f(x),yuk)pTXCY (x,y
uk)dx,

where Eq. (10) is obtained by setting yuk to represent YT \ YS , and Eq. (11) follows from Theorem
A.2 such that β = supC∈CS

pTC(c)/p
S
C(c)− 1.

Proposition A.1. Given a domain di ∈ D and di following the FICIM, there exists a random element
XC that can be sampled from a function f : C × [0, 1] → Xdi and T follows a uniform distribution
U [0, 1], i.e., XC = f(C, T ), such that

R∗
di(Y |X) = R∗

di(Y |XC).

Proof. The Markov chain for di can be reduced to Xdi − C − Ydi . There exists XC
di

sampled from a
function f : C × [0, 1] → Xdi . At this point, using Lemma A.1, we obtain

Pdi
XC |C = Pdi

X|C . (12)

From the FICIM property illustrated in Proposition 2, we obtain

Pdi
X|C = Pdi

X|CY (13)

Pdi
XC |C = Pdi

XC |CY . (14)

From Eq. (12), Eq. (13), and Eq. (14), we obtain

Pdi
X|CY = Pdi

XC |CY , (15)

which directly derives
Pdi
XCY = Pdi

XCCY
. (16)

By integrating both sides of Eq. (16) with respect to C, we obtain

Pdi
XY = Pdi

XCY
. (17)

Thus, we can confirm that

R∗
di(Y |X) = inf

f∈F,φ∈Φ
E

P
di
XY

ℓ(f(φ(x)),y) (18)

= inf
f∈F,φ∈Φ

E
P

di
XCY

ℓ(f(φ(x)),y) (19)

= R∗
di(Y |XC), (20)

where Eq. (18) and Eq. (20) follow from Definition 5, and Eq. (19) follows from Eq. (17).
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Proposition A.2. Given an arbitrary domain di ∈ D and di following the PICIM, if we construct a
new space CV by directly connecting space C and V , there exists a random element XCV that can
be sampled from a function f : CV × [0, 1] → Xdi and T follows uniform distribution U [0, 1], i.e.,
XC = f(CV, T ), such that

R∗
di(Y |X) = R∗

di(Y |XCV ).

Proof. The key difference between the FICIM and PICIM is that we do not have Pdi
X|CY = Pdi

XC |CY
for the PICIM. However, if we construct a new element CV by combining C and V , we can obtain
the causal structure X − CV − Y . Subsequently, we obtain

Pdi
X|CV = Pdi

X|CV Y . (21)

Using this equation, similar to the proof of Proposition A.1, we obtain

R∗
di(Y |X) = R∗

di(Y |XCV ).

Lemma A.2. (Remark 1) For Theorem A.3, the second term of the bound∫
X
ℓ(f(x),yuk)pTXCY (x,y

uk)dx can be minimized by the optimal representation Z∗
S = φ∗

S(X) that

is obtained by ERM of a source domain S:

inf
f∈F

∫
X

ℓ(f(x),yuk)pTXCY (x,y
uk)dx

= inf
g∈G

∫
X

ℓ(g(φ∗
S(x)),y

uk)pTXCY (x,y
uk)dx

with the assumption that
F = G ◦ Φ ∀f ∈ F , g ∈ G, φ ∈ Φ.

Proof. The optimal feature classifier of the target domain based on the optimal source domain feature
extractor is set as

g∗T = arg inf
g∈G

∫
X

ℓ(g(φ∗
S(x)),y

uk)pTXCY (x,y
uk)dx.

We obtain

inf
f∈F

∫
X

ℓ(f(x),yuk)pTXCY (x,y
uk)dx

≤
∫
X

ℓ(g∗T (φ
∗
S(x)),y

uk)pTXCY (x,y
uk)dx (22)

= inf
g∈G

∫
X

ℓ(g(φ∗
S(x)),y

uk)pTXCY (x,y
uk)dx. (23)

Eq. (22) is obtained by the definition of infimum and Eq. (23) is determined by our setting of g∗T . The
optimal classifier that separates the unknown and known labels from XC is set as

f∗T =(gT ◦ φT )∗

= arg inf
g∈G,φ∈Φ

∫
X

ℓ(g(φ(x)),yuk)pTXCY (x,y
uk)dx.
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Let τ : Z∗
S → XC

T can be any one-to-one function that exists in a weak condition |XC
T | ≥ |Z∗

S | ≥ 2.
As a result,

inf
f∈F

∫
X

ℓ(f(x),yuk)pTXCY (x,y
uk)dx

= inf
g∈G,φ∈Φ

∫
X

ℓ(g(φ(x)),yuk)pTXCY (x,y
uk)dx (24)

=

∫
X

ℓ(f∗T (x),y
uk)pTXCY (x,y

uk)dx (25)

=

∫
X

ℓ(f∗T (τ(φ
∗
S(x))),y

uk)pTXCY (x,y
uk)dx (26)

≥
∫
X

ℓ(g∗T (φ
∗
S(x)),y

uk)pTXCY (x,y
uk)dx (27)

= inf
g∈G

∫
X

ℓ(g(φ∗
S(x)).y

uk)pTXCY (x,y
uk)dx (28)

Eq. (24) is obtained by the assumption F = G ◦ Φ. Eq. (25) is determined by the setting of the
optimal f∗T . Eq. (26) is obtained from the existence of τ . Eq. (27) and Eq. (28) follow from the
definition of g∗T and infimum.

The combination of the opposite direction inequalities from Eq. (23) and Eq. (28) leads to the equality
conclusion of this lemma.

Theorem A.4. (Theorem 4) For Theorem A.3, conducting the ERM on a FICIM source domain
provides enough information to bound the stable expected risk of target domain RT (Y |XC).

Proof. From Proposition A.1, we obtain

R∗
di(Y |X) = R∗

di(Y |XC)

for di ∈ D, and di follows the FICIM.

As a source domain S ∈ D and S follows the FICIM, we obtain

R∗
S(Y |X) = R∗

S(Y |XC).

Subsequently, for Theorem A.3, the first term RS(Y |XC) can be minimized by ERM of a FICIM
source domain S. Owing to Lemma A.2, the second term

∫
X
ℓ(f(x),yuk)pTXCY (x,y

uk)dx can be

minimized by the optimal representation Z∗
S = φ∗

S(X) that is obtained by ERM of a source domain
S.

Hence, the ERM of a FICIM source domain provides sufficient information to conduct subsequent
searching for an optimal open-set classifier that provides adequate information to bound the stable
expected risk of target domain RT (Y |XC).

Theorem A.5. (Theorem 5) For Theorem A.3, conducting the ERM on a PICIM source domain can
not bound the stable expected risk of target domain RT (Y |XC).

Proof. From Proposition A.2, we obtain

R∗
di(Y |X) = R∗

di(Y |XCV )

for di ∈ D and di follows the PICIM.

As a source domain S ∈ D and S follows the PICIM, we obtain

R∗
S(Y |X) = R∗

S(Y |XCV ).
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Without further assumptions, we do not obtain R∗
S(Y |XC) = R∗

S(Y |XCV ). Thus, we do not
have R∗

S(Y |XC) = R∗
S(Y |X). Therefore, for Theorem A.3, the first term RS(Y |XC) cannot be

minimized by ERM of a PICIM source domain S. Hence, the ERM of a PICIM source domain cannot
bound the stable expected risk of target domain RT (Y |XC).

Theorem A.6. (Remark 2) Given a target domain T ∈ D, we determine a useful decomposition of
the minimum expected risk as follows:

R∗
T (Y |X) = R∗

T (Y |XC)︸ ︷︷ ︸
(1) Minimum semantic controlled risk

− [R∗
T (Y |XC)−R∗

T (Y |XCV )]︸ ︷︷ ︸
(2) Uncontrolable spurious benefit

.
(29)

Proof. We assume w.l.o.g that domain T follows the PICIM. The results under this assumption can
easily be generalized to the situation of the FICIM by setting CV = C. From T ∈ D and Proposition
A.2, we obtain

R∗
T (Y |X) = R∗

T (Y |XCV ). (30)
We directly prove this theorem by adding and subtracting a term R∗

T (Y |XC).

D EXPERIMENTAL DETAILS

This section provides further details about the three datasets and implementation details. All experi-
mental results are the averages and variances obtained after running the experiments five times. The
implementation is built upon the code open-sourced by Chen et al. (2021); Feder et al. (2023).

D.1 OS-CMNIST DATA

D.1.1 DATASET

We constructed our open-set CMNIST (OS-CMNIST) dataset following the dealing method of
CMNIST (Arjovsky et al., 2020) to satisfy the setting demand of the OSDA task. We selected MNIST
as our experimental dataset as it is an ideally clear dataset that does not include other attributes to
determine the labels apart from the grayscale digits. A critical step in the creation of the OS-CMNIST
training (source) domain was the random sampling of known and unknown classes from MNIST. If
the data of the known classes were processed using the same method as CMNIST, we could obtain
the PICIM source domain.

Comparison groups. We designed the following common steps to construct the OS-CMNIST
dataset: first, randomly sample K known classes and 10−K unknown classes from MNIST; second,
assign a causal shape code C to the known classes based on the digit: C = 0 for a random half of the
K classes and C = 1 for the other half; third, perform the same operation for unknown classes as in
the second step.

Based on the known classes of the OS-CMNIST dataset, we constructed two comparison groups of
the source domain, as follows:

• FICIM source domain: First, sample the variation color attribute code V by flipping C
with a probability 1− Corr(V,C); second, color the image green if V = 1 or red if V = 0.

• PICIM source domain: First, obtain the final class label Y by flipping C with a probability
1−Corr(Y,C); second, sample the color attribute code V by flipping Y with a probability
1− Corr(V, Y ); finally, color the image green if V = 1 or red if V = 0.

In this case, Corr(·, ·) represents the correlation between two variables. As the binary label of
a variable is changed by flipping another variable, the correlation relationship is the same for
Corr(·, ·) < 0.5 and Corr(·, ·) > 0.5. It is known that these two variables are independent when
Corr(·, ·) = 0.5. When Corr(·, ·) > 0.5, a greater Corr(·, ·) indicates a stronger correlation. When
Corr(·, ·) < 0.5, a smaller Corr(·, ·) indicates a stronger correlation. If Corr(·, ·) = 1 or = 0,
the two variables are perfectly positively correlated or negatively correlated. Note that the only
difference between the FICIM and PICIM in our construction is that Corr(Y,C) = 1 for the FICIM,
whereas Corr(Y,C) < 1 for the PICIM, which match the causal structure effectively. To ensure the
comparability of the two groups further, we set a constant κS = Corr(V,C)S = Corr(V, Y )S to
represent the ratio of information acquired by color code V for the source domain.
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D.1.2 EXPERIMENT SETTINGS

The aim of our main experiment was to demonstrate the influence of the ERM of a FICIM or PICIM
source domain for the stable expected risk of the target domain.

Structure of target domain. As we aimed to examine the influence of the stable expected risk,
the performance of the target domain should be most strongly related to the stable expected risk.
According to Remark 2, the minimum risk R∗

T (Y |X) is equal to the minimum stable expected risk
R∗
T (Y |XC) for a FICIM target domain. Thus, we set the causal model of the target domain as the

FICIM model. To obtain a FICIM target domain, we constructed two groups of six known classes,
similar to the FICIM source domain, and added a group of four unknown classes with random colors.

Loss function. Similar to existing research (Chen et al., 2021), we adopted various loss functions,
including ARPLoss, ARPLoss cs, RPLoss, GCPL, and Softmax loss function.

Network structure. We used the ResNet network architecture with 34 layers, and the state-of-the-art
OSR algorithm from (Chen et al., 2021) to validate our theoretical results. We set the training
parameters as follows: 40 epochs with a batch size of 64, the Momentum SGD optimizer, and a
learning rate starting from 0.1 and decreasing by a factor of 0.1 every 30 epochs in the training
process.

Parameters of domain adaptation. We set Corr(Y,C)S = 1 for the FICIM source domain and
Corr(Y,C)S = 0.75 for the PICIM source domain to satisfy the properties of the FICIM and PICIM.
Moreover, we set κS = 0.8 and Corr(V,C)T = 0.1 to create distribution shifts between the source
and target domains.

Metrics. Similar to (Dhamija et al., 2018; Chen et al., 2021), we combined three metrics to measure
the classification performance in the target domain: closed-set accuracy (CS-ACC), area under the
ROC curve (AUROC), and open-set classification rate (OSCR). For CS-ACC, AUROC, and OSCR,
the larger value indicates better performance.

AUROC and OSCR curve overlap

Figure 5: Performance metrics and loss values for FICIM and PICIM source domain. Left: FICIM
source domain on target domain with Corr(V,C)T = 0.1. Medium: PICIM source domain on
target domain with Corr(V,C)T = 0.1. Right: PICIM source domain on target domain with
Corr(V,C)T = 0.5.
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D.1.3 MAIN RESULTS

We plotted the curves of the epochs versus the performance metrics and loss value (Fig. 5) to verify
the effectiveness of ERM on the FICIM and PICIM. It can be observed from the bottom three panels
of Fig. 5 that all of these loss values converged over the epochs, but the FICIM loss converged
faster. The top left panel of Fig. 5 indicates that the CS-ACC was near perfect for the ERM on the
FICIM source domain, and the OSCR was entirely dependent on the AUROC. Moreover, the OSCR
and AUROC were above 90% most of the time, which demonstrates that the ERM of the FICIM
could bound the stable expected risk of the OSDA. A comparison of the top three panels indicates
that training on the PICIM source domain always performed worse than that on the FICIM, which
supports the belief that the ERM of the PICIM could not bound the stable expected risk of the OSDA.
An interesting observation for the PICIM source domain from the middle and right panels of Fig. 5
is that a stronger correlation between the shape C and color V for the target domain resulted in
a stronger relationship between the CS-ACC and AUROC. When the V and C were independent,
that is, Corr(V,C) = 0.5, the CS-ACC and AUROC were nearly independent. This observation
challenges the opinion that the closed-set and open-set performances are highly correlated (Vaze et al.,
2022). In contrast, the results from Fig. 5 demonstrate that the closed-set and open-set performance
were highly correlated in two scenarios: when the source domain was the FICIM source domain
and when both conditions were satisfied simultaneously; that is, the source domain was the PICIM
source domain, and the target domain exhibited strong correlations between the variation and causal
attributes.

It can be observed from Fig. 5 that the performance was almost stable from the 40th epoch. Thus, we
compared the cross-sectional performance data of the FICIM and PICIM source domains at the 40th
epoch. As indicated in Table 2, training with ERM on the FICIM source domain could achieve nearly
perfect performance for the CS-ACC, AUROC, and OSCR of the target domain, which supports
Theorem 4. We demonstrate Theorem 5 by observing that the CS-ACC, AUROC, and OSCR declined
sharply from the FICIM source domain to the PICIM source domain. That is, training with ERM on
the PICIM source domain resulted in a model that performed worse on the target domain than on the
FICIM source domain.

Additional results. To validate the effectiveness of our theoretical results in OOD tasks, we
considered two different OOD scenarios. As shown in Table 6 and Table 7, there are significant
performance differences between the models in the FICIM and PICIM scenarios, particularly in the
TNR metric. This further confirms that the ERM of the FICIM could bound the stable expected risk
of the OSDA.

Table 6: Distinguishing in- and out-of-distribution test set data for image classification under various
validation setups. The known label categories are [6, 3, 4, 2, 8, 9], while the unknown label categories
are [5, 0, 7, 1].

Method TNR AUROC DTACC AUIN AUOUT

ARPLoss FICIM 81.18±0.19 95.46±0.19 90.04±0.19 96.43±0.19 93.03±0.19
PICIM 3.13±0.19 52.22±1.19 56.88 ±0.08 66.63±0.67 39.17±0.88

ARPLoss+CS FICIM 84.44±1.02 95.93±0.23 91.35±0.32 96.45±0.31 93.70 ±0.47
PICIM 4.44±0.46 53.07±0.70 54.40±0.33 64.75±0.67 40.97± 0.50

RPLOSS FICIM 75.94±5.67 91.97±3.76 87.82±3.80 92.67±3.50 90.13± 3.41
PICIM 2.71±1.63 53.76±1.75 60.25±0.92 69.04±0.51 39.36±2.20

Softmax FICIM 80.64±5.27 95.09±1.45 89.62±2.35 96.01±1.04 92.80±1.72
PICIM 3.47±0.59 53.05±1.09 56.89±1.01 66.68±0.51 39.75 ±1.00

GCPL FICIM 77.44±5.06 92.35±2.72 87.68±3.17 93.11±2.02 90.40±2.42
PICIM 2.94±0.91 53.57±1.64 58.58±0.67 67.95±0.69 39.56±1.27

The results of five randomized trials with 40 epochs were averaged. For the FICIM group, the key
parameters were κ = 0.8, Corr(V,C)T = 0.1. For the PICIM group, the key parameters were
κ = 0.8, Corr(Y,C)S = 0.75, Corr(V,C)T = 0.1.
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Table 7: Distinguishing in- and out-of-distribution test set data for image classification under various
validation setups. The known label categories are [3, 7, 4, 0, 8, 5], while the unknown label categories
are [2, 6, 9, 1].

Method TNR AUROC DTACC AUIN AUOUT

ARPLoss FICIM 88.16±0.79 97.34±0.05 92.20±0.31 98.15±0.06 95.77±0.29
PICIM 3.13±0.66 52.22±2.73 56.88±2.24 66.63±3.05 39.17±1.67

ARPLoss+CS FICIM 89.41±1.06 97.66±0.18 92.90±0.43 98.38±0.15 96.25±0.26
PICIM 4.82±0.46 51.47±1.79 52.33±1.19 61.18±1.63 41.73±1.12

RPLOSS FICIM 90.93±0.37 97.67±0.27 93.39±0.38 98.11±0.41 96.71 ±0.27
PICIM 2.25±0.70 52.41±2.43 59.24±1.81 65.61±1.65 39.33±1.63

Softmax FICIM 87.41±0.81 97.30±0.11 92.09±0.27 98.11±0.05 95.88±0.26
PICIM 3.72±0.21 50.01±2.73 53.72±2.79 60.40±3.92 39.80±1.05

GCPL FICIM 91.32±0.55 96.74±0.13 93.49±0.43 96.61±0.28 95.88±0.15
PICIM 2.58±0.55 51.70±2.94 57.32±1.77 64.96±1.55 39.42±1.96

D.1.4 SENSITIVITY ANALYSES

This section presents extensive additional experiments. By modifying several key control variables,
such as the number of unknown classes, κS , Corr(V,C)T , and loss functions, while keeping other
variables consistent with the main experiment, we tested the sensitivity of our theoretical results to
uncertainties under different conditions.
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Figure 6: Performance variation trend comparison between FICIM and PICIM with number of
unknown classes (openness).

The first important sensitivity parameter to consider was the number of unknown classes, which is a
proxy variable of openness. Scheirer et al. (2013) first introduced the concept of openness for the
OSR problem. For a fixed number of testing classes, increasing the number of unknown classes in the
training stage increases the openness. Hence, we used the number of unknown classes belonging to
{1, . . . , 8} as the proxy variable of openness. Note that the FICIM and PICIM settings were the same
as those in Table 2 except for the unknown classes. The openness results of Fig. 6 were obtained from
models that were trained for 40 epochs. Fig. 6 indicates that the FICIM source domain tended to
perform much better than the PICIM source domain for all numbers of unknown classes, and hence,
changing the openness did not change our theoretical results. Interestingly, this figure indicates that
all of the performance metrics remained steady as the unknown classes increased for the FICIM
source domain, whereas no clear trend was observed for the PICIM source domain. This finding
reveals that it is unnecessary to overthink openness for the open-set task.

The other critical parameters were as follows: κS ∈ [0, 1], Corr(V,C)T ∈ [0, 1], loss functions
(Softmax/ARPLoss (Chen et al., 2021)/GCPLoss (Yang et al., 2020)/ARPLoss+CS (Chen et al.,
2021)). Note that ARPLoss+CS is not a pure loss function, but ARPLoss with confusing samples.
For simplicity, we added ARPLoss+CS to the group of loss functions. For these two parameters
with an interval of [0, 1], we selected the parameters belonging to {0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1} to
conduct the experiments. It can be observed from Fig. 7a, 7b, and 7c that the PICIM source domain
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Figure 7: Performance variation trend comparison of FICIM and PICIM
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Figure 8: Performance variation trend comparison of between FICIM and PICIM on OS-BMNIST.

always performed worse than the FICIM source domain. This indicates that none of these parameters
affected the results of the main experiment.

Moreover, several significant findings emerged from the experimental results. First, Fig. 7a shows that
the FICIM exhibited the same performance as the PICIM when κS = 0 or 1; that is, the color attribute
V was perfectly positively correlated or negatively correlated with the label Y . This observation may
be because ERM cannot distinguish the causal C and variation V when V is perfectly associated with
Y in the source domain. Second, according to Fig. 7b, with the increase in Corr(V,C)T of the target
domain, the performance of the PICIM also increased, while the performance of the FICIM remained
stable. This result demonstrates that the ERM on the PICIM source domain learned the variation
information, which could play a more important role if Corr(V,C)T increased. Moreover, this
finding verifies that the ERM on the FICIM source domain learned the causally invariant information
owing to its performance independence with Corr(V,C)T . Third, Fig. 7c indicates that softmax
performed the best if ARPLoss-CS was not considered. Surprisingly, ARPLoss-CS achieved the best
performance for the PICIM source domain, while achieving nearly the same performance as softmax
for the FICIM source domain. This finding confirms that the generation of confusing training samples
can provide additional information to aid in training.

Finally, we considered another dataset, namely the open-set binary MNIST (OS-BMNIST), to
enhance the generality of our results. This dataset is similar to OS-CMNIST, but without color, which
means that it does not contain spurious attributes. Hence, the PICIM variation factors only contained
noise by setting Corr(Y,C) < 1. In this case, w.l.o.g., we set Corr(Y,C) = 0.75 for the PICIM.
As illustrated in Fig. 8, following convergence of the metrics, the overall performance of the FICIM
was much better than that of the PICIM source domain, which supports Theorem 4 and Theorem 5.
In contrast to the PICIM patterns in Fig. 5, the performance of the PICIM for OS-BMNIST increased
to a high level in the first several epochs and subsequently maintained this high level but finally
decreased sharply to a stable low level. A possible explanation for this is that although full training of
ERM can result in performance crashes owing to noise variations, light training of ERM can provide
sufficient information to bound the general error. This concept has been applied in many methods,
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Table 8: Performance comparison of FICIM and PICIM source domain on Synthetic Data.

Method AUC ACC F1

ERM FICIM 97.01± 0.33 90.85± 0.54 90.85± 0.55
PICIM 76.23± 6.42 73.10± 4.86 72.83± 5.14

Reweighting FICIM 97.01± 0.33 90.85± 0.54 90.85± 0.55
PICIM 77.73± 5.87 78.25± 4.65 78.21± 4.45

Aug(λ = 0) FICIM 96.95± 0.37 90.74± 0.61 90.74± 0.63
PICIM 96.91± 0.45 90.61± 0.80 90.60± 0.84

Aug(λ = 0.2) FICIM 96.96± 0.35 90.77± 0.59 90.77± 0.60
PICIM 92.23± 1.43 83.47± 1.98 83.43± 2.11

Aug(λ = 0.3) FICIM 96.98± 0.36 90.80± 0.60 90.80± 0.61
PICIM 94.17± 0.86 86.18± 1.29 86.14± 1.41

Aug(λ = 0.4) FICIM 97.00± 0.36 90.82± 0.60 90.82± 0.61
PICIM 96.12± 0.40 89.26± 0.61 89.24± 0.69

Aug(λ = 0.5) FICIM 97.00± 0.36 90.82± 0.62 90.82± 0.63
PICIM 96.83± 0.42 90.45± 0.68 90.43± 0.74

such as regularization and early stopping. Although the spurious attributes and noise all belonged to
the variation attributes V , a further comparison of Fig. 5 and Fig. 8 reveals that the spurious attributes
had a much more serious impact on the target domain performance than the noise attributes.

D.2 SYNTHETIC DATA

D.2.1 DATASET

To further validate the effectiveness of our theoretical framework, we conducted experiments on
synthetic data. Following the experimental setups of existing studies (Feder et al., 2023), we generate
synthetic data for a binary classification problem where |V | = 8 (cardinality of V). We sample
P (V |Y ) to simulate varying degrees of spurious correlations. Then we draw x = [x∗, xspu] from a
Gaussian distribution,

xi =

[
x∗

xspu,i

]
∽ N

([
µyi
µci

]
,

[
σ2Id∗ 0
0 σ2

spuIdc

])
.

In our simulations, we set core dimension d∗ = 10, spurious feature dimension dspu = 300 and
σ2

spu = 0.05, σ = d∗ to make the maxmargin classifiers depend on the spurious features. The
parameters µyi , µci are drawn uniformly from a sphere of norm 1/3 and 60, respectively. For the
corruptions of augmentations where we add ξi (µc − µci), the ξi variables are drawn from a truncated
Gaussian centered at λ with standard deviation 0.1.

D.2.2 EXPERIMENT SETUP

In the experiments, we calculate the mutual information between two categorical variables based on
the joint probability table. We use logistic regression to fit the model under all conditions, employing
the Adam optimizer.

D.2.3 ADDITIONAL RESULTS

To further validate our theoretical results, we selected the model performance under different con-
ditions when the mutual information I (Y ;V ) is 0.62. As shown in Table 8, traditional ERM and
reweighting methods are significantly affected by different data generation mechanisms. Even with
advanced augmentation models, training with ERM on the PICIM source domain resulted in a model
that performed worse on the target domain than on the FICIM source domain.
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D.3 RESTAURANT REVIEW DATA

D.3.1 DATASET

We use the CEBaB dataset (Abraham et al., 2022), which consists of short restaurant reviews and
ratings from OpenTable, including evaluations for food, service, noise, ambiance, and an overall
rating. For our experiments, we used the train-exclusive split of the dataset, which contains 1, 755
examples. To analyze the data, we transformed the overall rating into a binary outcome. The original
rating scale ranges from 1 to 5, and we classified a rating of 3 or higher as 1, and anything below as 0.
We utilized a bag-of-words model with CountVectorizer and fitted logistic regression models from
the sklearn library.

D.3.2 EXPERIMENT SETUP

Following the counterfactual generation procedure in (Feder et al., 2023), we generate counterfactual
restaurant reviews conditional on food rating and overall rating. For each review, we first find a set of
matched examples. We then select the subset that has different food-mention attribute and prompt
GPT-4 to rewrite. This results in 956 augmentations. Counterfactual enhancement should capture
what the review would look like if the reviewer were more concise or less concise. Following existing
research (Feder et al., 2023), we generate counterfactual restaurant reviews conditional on food and
overall ratings. We find matched examples for each review, select those with different food-mentions,
and prompt a GPT-4 to rewrite them, reflecting how the reviews would appear if the reviewer was
more/less concise. The template for generating counterfactual prompts for restaurant reviews is
shown in Figure D.3.2.

To further validate the effectiveness of our theoretical results, we conducted fine-tuning of large
models based on restaurant reviews. For our experiments, we used the train-inclusive split of the
dataset, which contains 11,728 examples. Similar to the processing workflow for food-mentions
in restaurant reviews, we performed matching based on rating-noise and rating-overall, and then
utilized GPT-4 for rewriting the restaurant reviews. The original restaurant review data satisfies the
PICIM, while the generated counterfactual data satisfies the FICIM. We fine-tuned three large models
using different sample sizes n = {1000, 2000, 3000, 4000, 5000}. The fine-tuning instructions for
the templates are shown in Figure D.3.2.
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Figure 9: Performance comparison of fine-tuning.
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Prompt

Input: """ You are a very helpful, diligent, and intelligent
language model assistant. Your task is to generate
counterfactual versions of restaurant reviews, specifically
how the review would change if specific food items were
mentioned or omitted. You will be given an original
restaurant review and a comparator review. You only need
to rewrite the food section of the original review. If the
comparator review mentions specific food items, ensure the
rewritten review includes the same items; if the original
review mentions specific food items but the comparator does
not, remove them from the rewritten version. The overall
rating should align with the comparator review, considering
ambiance, food, noise, and service.

--- EXAMPLE INPUT - START ---

original_review: [Original_review],
original_ratings: [score: Score]

compare_reviews: [Original_review1],
compare_ratings: [score: Score1]

--- EXAMPLE INPUT - END ---

"""

Output:
{
original_review: __,
rewrite_score: __,
rewrite_review: __
}

Fine-tuning instruction pairs

Instruction

"You are a very helpful, diligent, and intelligent
language model assistant. Your task is to rate
restaurants based on their reviews, with scores of
either 0 or 1. The rating primarily considers four
aspects: ambiance, food, noise, and service."

Input

"The steak is very fresh and delicious; the restaurant is quiet with a great atmosphere."

Output

1
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D.3.3 ADDITIONAL RESULTS

The experimental results of fine-tuning based on food mentions and restaurant reviews are shown in
Fig. 4 and Fig. 9. We can draw the following two main conclusions: (1) training on the FICIM source
domain always perform better than that on the PICIM, which supports the belief that the ERM of the
PICIM could not bound the stable expected risk of the OSDA, while the FICIM can; (2) utilizing our
proposed FICIM causal model, high-quality data can be filtered to facilitate the efficient pre-training
and fine-tuning of large models.
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