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Abstract
Algorithm selection aims to identify the optimal
performing algorithm before execution. Exist-
ing techniques typically focus on the observed
correlations between algorithm performance and
meta-features. However, little research has ex-
plored the underlying mechanisms of algorithm
selection, specifically what characteristics an algo-
rithm must possess to effectively tackle problems
with certain feature values. This gap not only
limits the explainability but also makes existing
models vulnerable to data bias and distribution
shift. This paper introduces directed acyclic graph
(DAG) to describe this mechanism, proposing a
novel modeling paradigm that aligns more closely
with the fundamental logic of algorithm selection.
By leveraging DAG to characterize the algorithm
feature distribution conditioned on problem fea-
tures, our approach enhances robustness against
marginal distribution changes and allows for finer-
grained predictions through the reconstruction of
optimal algorithm features, with the final deci-
sion relying on differences between reconstructed
and rejected algorithm features. Furthermore, we
demonstrate that, the learned graph and the pro-
posed counterfactual calculations offer our ap-
proach with both model-level and instance-level
explainability.

1. Introduction
With the advancement of information technology, a multi-
tude of algorithms has emerged across various fields, mak-
ing automated algorithm selection increasingly vital. This
necessity arises from the fact that a single algorithm often
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struggles to perform well across all scenarios (Tornede et al.,
2023; Pio et al., 2024). The goal of automated algorithm
selection is to identify the most suitable algorithm for each
specific problem instance, thereby enhancing performance
in terms of accuracy (Ruhkopf et al., 2023) and time effi-
ciency (Kostovska et al., 2023). Early methods focused on
identifying suitable meta-features to characterize problems,
such as statistical characteristics (Hutter et al., 2014) and
probing features (Nudelman et al., 2004). These approaches
employed machine learning techniques to meta-learn which
algorithm performs best for a given problem instance (Ab-
dulrahman et al., 2018). More recent studies have also
recognized the importance of algorithm meta-features, such
as hyperparameters (Tornede et al., 2020) and code-related
features (Pulatov et al., 2022; Wu et al., 2024). Details of
existing techniques are provided in Appendix A.1.

However, regardless of whether algorithm features are in-
cluded in the meta-features, existing methods predominantly
construct empirical models based on observed correlations
between algorithm performance and meta-features (Ker-
schke et al., 2019; Xu et al., 2008). These approaches over-
look the underlying mechanism that drives the algorithm
selection task, i.e.: What characteristics an algorithm
needs to solve a problem with specific feature values. By
exploring this mechanism, we can align more closely with
the foundational logic of algorithm selection, moving be-
yond mere predictions of the optimal algorithm or algorithm
performance based on meta-features. This granular model-
ing approach not only facilitates a more effective utilization
of algorithm features but also allows for deeper insights into
model decisions at the feature level, rather than solely from
the perspective of performance comparison.

Moreover, the core of this mechanism lies in modeling the
conditional distribution of algorithm features based on prob-
lem features, rather than relying on the marginal distribution
of meta-features for optimal algorithm prediction. This shift
can address a significant challenge in current techniques:
their vulnerability to changes in marginal distribution. This
issue is prevalent in all models during deployment, as the
marginal distribution in algorithm selection is inherently
dynamic (Van Rijn et al., 2014; 2018). As illustrated in Fig-
ure 1(a), ongoing technological advancements continuously
create new application domains and candidate algorithms,
leading to fluctuating strengths and weaknesses among them.
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Figure 1. Illustration of the impact of neglecting underlying mechanisms: (a) Shifts in the popularity of classical algorithms over the past
decade, highlighting data bias in algorithm selection tasks; (b) An example of problem distribution shift, where meta-training data are
small-scale problems collected from uniform distribution, while the test problems are high-dimensional with imbalanced distribution;
(c) Two levels of the lacking explainability-unveiling the decision-making mechanisms of the “black box” models, and providing
counterfactual explanations for the selection outcomes.

Consequently, the meta-training data collected at any point
may not accurately reflect the evolving distribution of prob-
lems and algorithms. Furthermore, discrepancies between
training and deployment environments are widespread (Wu
et al., 2024). For instance, as shown in Figure 1(b), the
meta-training data may come from relatively small-scale,
uniformly distributed problems, while the deployment en-
vironment could involve high-dimensional and imbalanced
problems. Additionally, meta-training data is often skewed
towards mainstream algorithms, resulting in inadequate rep-
resentation for lesser-known or newly proposed alternatives.

This paper introduces causality to describe this underlying
mechanism, taking a significant step towards robustness
and explainability. Herein, the causal relationships imply
that: Because certain problem features are present, the most
suitable algorithm must exhibit specific characteristics to
effectively address the problem. Under reasonable assump-
tions, we employ the structural equation model (Bongers
et al., 2021) to construct a directed acyclic graph (DAG)
that captures the conditional distribution in the algorithm se-
lection task. Hence, the identified variable relations remain
robust against both covariate and label shifts (Bühlmann,
2020; Oberst et al., 2021), thereby mitigating the impact of
changes in problem and algorithm distributions. Inspired
by the gradient-based causal learning and recommendation
(Zheng et al., 2018; He et al., 2022), deep neural networks
are employed to identify the reconstruction mechanism in

meta-training data, quantifying the strength of causality
among variables. The reconstructed algorithm features can
represent the feature values of the most suitable algorithm
for solving a problem instance. Our framework ranks can-
didate algorithms by comparing the reconstructed features
of the selected algorithm with those of the rejected ones,
leading to a final selection. During training, the model opti-
mization is guided by a combination of reconstruction error,
acyclicity constraints, sparsity penalty, and ranking error.

Beside the performance superiority, causal modeling
paradigm offers multi-level explainability for algorithm
selection. First, the construction of the DAG visually il-
lustrates the interdependencies among variables, while the
structural equation model (Pearl, 2012) provides feature-
level predictions for the “most suitable algorithm,” clearly
demonstrating the comprehensive mechanism underlying
the model decision. Furthermore, counterfactual explana-
tions (Guidotti, 2022) for each individual problem instance
can be achieved by manipulating problem features within
the structural equations, as illustrated in Figure 1(c). The
goal of manipulation is to identify the minimal interventions
required to alter the algorithm selection outcome for each
problem instance, clarifying which feature values make the
selected algorithm most suitable for solving this problem
instance. Following the principle of Occam’s Razor (Ras-
mussen & Ghahramani, 2000), we measure the minimal
intervention from the perspectives of explanation complex-
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ity and explanation strength, where complexity pertains to
the number of modified features, while strength relates to the
magnitude of the changes induced by the intervention. By
solving this optimization problem, we can ultimately derive
the counterfactual explanations for each problem instance.

In this paper, we propose the DAG-based algorithm selection
(DAG-AS)1. Our key contributions are summarized as:

• Robustness: DAG-AS models the invariant causal
mechanisms underlying algorithm selection process,
which not only enables more accurate selection deci-
sions, but also enhances robustness against common
forms of data bias and distribution shifts that may exist
across the problem and algorithm sets.

• Explainability: Centered around the learned graph,
DAG-AS provides multi-level explainability. At the
model level, it effectively unveils the “black box” by
elucidating variable relationships through the causal
graph and detailing the computational logic via struc-
tural equations. At the instance level, DAG-AS
achieves counterfactual explanations that reveal how
specific feature values influence the selection decision.

• We demonstrate the superiority of DAG-AS in terms
of accuracy, robustness, and explainability using the
ASlib benchmark. Our analysis of the causal graph
underscored the importance of considering algorithm
features and causal mechanisms.

2. DAG-based Algorithm Selection
We introduce the unified notation used in this paper to dis-
cuss the causal relationships among these features within the
framework of causal graphs (Pearl, 2016). We employ the
calligraphic notation P to represent the joint probability dis-
tribution, and the script notation G = {V, E} to denote the
DAG, where V and E represent the node set and edge set of
G, respectively. The adjacency matrix of G is denoted asM,
whereMij = 1 indicates the existence of an edge from the
i-th node to the j-th node, i.e., (i, j) ∈ E , and 0 otherwise.
The definitions of all causal learning-related terms involved
in this paper can be found in Appendix A.2. Algorithm
selection task also involves different feature types. We use
P and A to represent the problem set and algorithm set,
respectively. The bold notations PF and AF are employed
to denote the problem feature set and algorithm feature set,
with V = PF ∪ AF. Specifically, PFi(p) represents the i-th
feature of the p-th problem, and AFj(a) represents the j-th
feature of the a-th algorithm. Furthermore, when describing
the model, we use Wi and σi to denote the parameter matrix
and activation function of the i-th layer, respectively.

1The implementation of DAG-AS is available at https://
github.com/wuxingyu-ai/DAG-AS.

2.1. Analysis of Distribution in Algorithm Selection

This subsection explores the viability of employing causal
models in the algorithm selection task. We will first analyze
the alignment between two distinct modeling approaches
within the context of algorithm selection. Subsequently, we
present Theorem 2.4, which demonstrates that under specific
assumptions, utilizing a structural causal model enables
accurate modeling of the conditional probability distribution
for each algorithm feature. Moreover, this causal framework
facilitates the feasible prediction of the optimal algorithm
feature given the problem features.

In the realm of algorithm selection, the most widely adopted
strategy relies on problem feature-based methods, where the
distribution learned is denoted as P(A|PF) (Kerschke et al.,
2019), representing the mapping from problem feature space
to candidate algorithm set. On the other hand, some studies
have incorporated algorithm features into the selection pro-
cess, typically learning the distribution P(A|PF,AF) (Pula-
tov et al., 2022) or P(S|PF,AF) (Wu et al., 2024), where S
is a binary variable indicating whether the algorithm associ-
ated with AF should be selected for the problem associated
with PF. The relationship between P(S = 1|PF,AF) and
P(AF|PF, S = 1) can be described according to the Bayes’
Theorem:

P(AF|PF, S = 1) =
P(S = 1|PF,AF)P(AF|PF)

P(S = 1|PF)
(1)

In the context of algorithm selection, P(AF|PF) repre-
sents the likelihood of each algorithm being considered
for each problem and is assumed to follow a uniform dis-
tribution. P(S = 1|PF) is also a constant. Therefore,
we can attempt to model P(AF|PF, S = 1) as a substi-
tute for P(S = 1|PF,AF). Although these two distribu-
tions carry similar information, their dependency on the
marginal distribution differs from a modeling perspective.
P(S = 1|PF,AF) relies on the joint distribution P(PF,AF),
where the model’s input space includes both problem and
algorithm features. Thus, both covariate and label shifts
can impact the model’s performance (Park et al., 2023). In
contrast, P(AF|PF, S = 1) directly models the conditional
distribution, aligning with the underlying mechanism advo-
cated in this paper. As long as this underlying mechanism
remains unchanged, the model can maintain resilience to
variations in the marginal probability distributions P(PF) or
P(AF). To model P(AF|PF, S = 1), we first propose three
assumptions for the DAG G in algorithm selection tasks:
Assumption 2.1. There exists a DAG G = {V, E} on V ⊂
PF ∪ AF, and for any variable AFi ∈ AF, the in-degree of
AFi satisfies deg−(AFi) > 0.
Assumption 2.2. For any variable AFi ∈ AF, Ch(AFi) ∩
PF = ∅.
Assumption 2.3. Informative algorithm features AF are
available for the algorithm selection task.
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The first two assumptions are primarily constructed based
on the distinctive characteristics of the algorithm selection
task, ensuring the directional flow of model computations
and simplifying the model structure. Specifically, Assump-
tion 2.1 guarantees that each algorithm feature is predictable,
with no exogenous variables present. This is because the
prediction of exogenous variables relies on external environ-
mental factors, which are only influenced by noise terms in
a structural causal model. Reconstructing algorithm features
based on these noise terms would introduce uncertainties
into the algorithm selection model. Assumption 2.2 primar-
ily restricts the directionality of causal links within the DAG
G, ensuring that the computations in the model flow from
problem features to algorithm features. This alignment re-
flects the core requirement of the algorithm selection, which
is to determine the most suitable algorithm based on the
given problem features. The few ignored directed edges
from algorithm features to problem features do not affect
the performance of the proposed model, as we are not con-
cerned with the reconstruction accuracy of problem features.
Assumption 2.3 implies that we can obtain algorithm-related
characteristics that carry meaningful information for differ-
entiating the performance of different algorithms on various
problem instances. This assumption serves as a fundamen-
tal basis for DAG-AS. For specific details on how to obtain
algorithm features, please refer to Appendix A.1.

Grounded in these assumptions, we present Theorem 2.4,
which discusses the feasibility of employing causal models
to solve the algorithm selection task.

Theorem 2.4. Assume that the joint density function of
P(PF,AF) is continuous and strictly positive on a compact
and convex subset of RPF∪AF, and zero elsewhere. And
there exists a DAG G such that P(PF,AF|S = 1) can be
factorized as P(V) =

∏
Vi∈V P(Vi | Pa(Vi)) according

to G. Under Assumption 2.1, any variable AFi ∈ AF is
not an exogenous variable in G, and there exists a continu-
ous function set f = {f1, f2, · · · , f|AF|} with compact sup-
port in R|PF|×[0,1] such that each P(AFi|Pa(AFi), S = 1)
equals the corresponding fi with uniform distributed noise
on [0, 1].

Proof. Please refer to Appendix B.

Theorem 2.4 establishes that if the underlying distribution
can be modeled as a DAG, then each algorithm feature can
be associated with a function that accurately captures its con-
ditional probability distribution. Furthermore, this function
serves as a mapping from problem features to algorithm fea-
tures. By modeling the causal relationships, the proposed
model can learn the optimal feature values for the most
proper algorithm given the problem features, which is the
core premise of our approach. We now proceed to construct

a model that can learn the DAG and enable the prediction of
the optimal algorithm features for a given problem instance.

2.2. Model Framework of DAG-AS

Our proposed model builds upon a neural network frame-
work that incorporates causal learning principles to recon-
struct features. The core of our model is the Causal Learn-
ing Network, which aims to learn the causal dependencies
between variables, including problem features PF and algo-
rithm features AF. According to Definition 1 in Appendix
A, their joint probability distribution over the features can
be factorized to |PF∪AF| distinct conditional distributions,
which are then modeled by their parent variables and noise
terms to account for observed and unobserved factors, re-
spectively. Specifically, the generative process for the prob-
lem feature PFi and algorithm feature AFican be described
as:

PFi = fi(Pa(PFi)) + ϵPF
i ,Pa(PFi) ⊆ PF (2)

AFi = gi(Pa(AFi)) + ϵAF
i ,Pa(AFi) ⊆ PF ∪ AF (3)

where fi and gi are nonlinear functions representing the
causal mechanisms, and ϵPF

i and ϵAF
i are noise terms captur-

ing the unobserved variables. The noise terms are assumed
to follow a Uniform distribution.

Problem Features Best-performed Algorithm Features

Causal Graph Parameter Matrix

Causal Learning Network

Read from the Network:

Reconstructed Problem Features and Algorithm Features

∅

f g

Figure 2. Causal learning module for algorithm selection.

As shown in Figure 2, the functions f and g in Eq. (2)
and Eq. (3) are denoted using the colors gold and blue,
respectively. The input layer comprises nodes representing
the features of problem and its best-performed algorithm.
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To accurately capture the complex, nonlinear causal rela-
tionships between the features, we employ a multi-layer
neural network. This network allows for the modeling of
intricate dependencies that simpler models might miss. The
l-th layers, associated with weight matrices W (l) and acti-
vation functions σ(l), transform the inputs through a series
of nonlinear operations. The problem feature reconstruc-
tion network (f ) and the algorithm feature reconstruction
network (g) are defined as follows:

ˆPFi = f(PF)←

W
(i)
Lf

σ
(i)
Lf−1

(
. . . σ

(i)
1

(
W

(i)
1 [PF; ϵPF

i ]
))

,

ÂFi = g(PF,AF)←

W
(i)
Lg

σ
(i)
Lg−1

(
. . . σ

(i)
1

(
W

(i)
1 [PF;AF; ϵAF

i ]
))

,

(4)

where Lf and Lg denotes the number of layers in the prob-
lem and algorithm feature reconstruction networks, and [∗]
denotes the concatenation of problem features, algorithm
features, and noise.

The adjacency matrixM of the DAG, which represents the
causal structure among the features, is determined through
the weight parameters of the first layer of the neural network.
Specifically, the non-zero entries in the weight matrix W1

of the first layer indicate the presence of directed edges
between nodes:

Mij =

{
1 if W (j)

1 i ̸= 0,

0 if W (j)
1 i = 0.

(5)

where W (j)
1 i is the i-the element of W (j)

1 , corresponding to
the network parameter of j-th feature. This method ensures
that the learned causal structure directly influences the pa-
rameterization of the neural network, leading to a consistent
and interpretable model of the underlying data.

Based on the causal learning module, ÂF represents the
ideal feature values that the best-performing algorithm
should have for a given problem. As shown in Figure 3,
after obtaining the reconstructed algorithm features, ÂF and
the original algorithm features AF are each passed through
a multi-layer neural network to generate the problem and
algorithm representation vectors,

RPF = hPF(ÂF)←WLPFσLPF

(
. . . σ1

(
W1ÂF

))
, (6)

RAF = hAF(AF)←WLAFσLAF (. . . σ1 (W1AF)) , (7)

The similarity between the problem representation RPF and
the algorithm representation RAF is computed through an-
other multi-layer neural network:

s(RPF,RAF) = NNsim([RPF;RAF]), (8)

where NNsim is the Similarity Computation Module used
to calculate the similarity score, and [RPF;RAF] denotes the
concatenation of the problem and algorithm representations.

Inspired by (He et al., 2022), the loss function of our model
comprises causal learning loss and algorithm selection loss.
The causal learning loss includes three components: re-
construction loss, sparsity loss, and acyclicity loss (Zheng
et al., 2018). The reconstruction loss ensures that the re-
constructed problem and algorithm features [P̂F, ÂF] are
as close as possible to the original features [PF,AF]. This
loss captures the fidelity of the causal learning module and
ensures that the reconstructed features maintain the essential
characteristics of the original features. Mathematically,

Lreconstruction = ∥[PF,AF]− [P̂F, ÂF]∥2F , (9)

where ∥ · ∥2F denotes the Frobenius norm. This term pe-
nalizes the squared difference between the original and re-
constructed features, encouraging the model to accurately
capture the underlying relationships. By minimizing this
loss, the model learns to generate algorithm features that
are representative of the best algorithm for a given problem.
The sparsity loss encourages the adjacency matrix M of
the DAG to be sparse. In a causal graph, sparsity is often
desirable as it implies fewer direct dependencies between
features, making the graph more interpretable and reducing
the risk of overfitting. The sparsity loss is defined as:

Lsparsity = ∥M∥0, (10)

where ∥M∥0 denotes the number of non-zero elements in
the adjacency matrix. To address the non-convex and non-
differentiable nature of the ℓ0 norm, in practical deployment
one can use the ∥M∥1 norm as an approximation. The
acyclicity loss ensures that the learned adjacency matrix
M represents a DAG, which is a fundamental requirement
for causal graphs. Acyclicity guarantees that there are no
cyclic dependencies among the features, which is crucial
for maintaining the logical consistency of causal learning
and defined as:

Lacyclicity = tr(eM⊙M)− |PF ∪ AF|, (11)

where tr(·) denotes the trace of a matrix, andM⊙M is the
Hadamard product (element-wise product) of the adjacency
matrix with itself. The algorithm selection loss focuses on
optimizing the ranking of algorithms for a given problem.
We employ the Bayesian Personalized Ranking loss (Rendle
et al., 2009) defined as:

Lselection = −
∑

(p,a+,a−)

lnσ
[
s(RPF(p),RAF(a

+))−

s(RPF(p),RAF(a
−))
]
,

(12)

where s(·, ·) is the similarity score between the problem rep-
resentation RPF(p) and the algorithm representation RAF(a),
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Figure 3. Framework of DAG-based algorithm selection.

a+ is the best-performing algorithm, a− is one of the re-
jected algorithm, and σ(·) is the sigmoid function. The BPR
loss works by comparing the similarity scores of the best
algorithm a+ and a randomly selected other algorithm a−

for the same problem p. By maximizing the difference in
similarity scores in favor of a+, the model learns to rank the
best algorithm higher.

The overall loss function is the weighted average of the
causal learning loss and algorithm selection loss:

L = αLreconstruction + βLsparsity + γLacyclicity + δLselection,
(13)

where α, β, γ, and δ are hyperparameters. In DAG-AS,
the reconstruction of problem features is optional. If the
focus is solely on algorithm selection results, it suffices to
ensure the reconstruction of algorithm features. However, if
a more accurate global causal graph is required, the recon-
struction of both types of features is essential. The learned
DAG will be recorded as an intermediate result to generate
explanations in Section 3.1.

2.3. Discussion on Applicability of DAG-AS

Based on the introduction of the DAG-AS method, this sub-
section aims to promptly discuss the applicable scenarios
of DAG-AS. The key requirement for applying DAG-AS
is the availability of the general configuration for the AS
task, encompassing problem features, algorithm features,
and performance data. In datasets that possess a rich set of
informative features highly relevant to the algorithm’s per-
formance, DAG-AS is better positioned to capture the causal
relationships. Nevertheless, like any method, DAG-AS has
its weaknesses. We believe that the following three scenar-
ios may not be suitable for DAG-AS: (1) When the features
themselves lack informativeness or when the causality be-
tween problem features and algorithm features is extremely
weak. (2) When the data violates the causal sufficiency
assumption. (3) When the causal relationships within the
dataset are overly complex.

It should be noted, however, that cases (2) and (3) can po-

tentially be rectified by enhancing DAG-AS. In the field
of causal learning, there are numerous specialized models
crafted to handle complex causal relations, such as those
dealing with multivariable or nonlinear causality (Wu et al.,
2019; 2022). Moreover, there are studies centered on iden-
tifying causality in scenarios where the causal sufficiency
(Wu et al., 2023) assumption is violated. To boost the perfor-
mance of DAG-AS, more advanced causal learning models
can be employed to substitute Eq.(6) and (7).

3. Explainability of DAG-AS
3.1. Model-level Explanation

The model-level explainability is achieved through a de-
tailed analysis of the DAG, which provides insights into
how various problem features influence algorithm selection
decisions, and enables us to understand the model’s inner
workings and the rationale behind its algorithm choices. We
can dissect this explainability into three key aspects: vi-
sualizing relationships, assessing feature importance, and
analyzing algorithm-specific influences.

Firstly, the learned graph allows for a visualization of the
relationships within all features. In this context, the ad-
jacency matrixM represents the directed edges between
nodes, whereMij = 1 indicates a directed edge from nodes
i to j. This matrix enables us to visualize how problem fea-
tures PF and algorithm features AF are interconnected. Sec-
ondly, the structure of the causal graph reveals the in-degree
and out-degree of each feature, which indicate their impor-
tance in the decision-making process. For example, problem
features with zero out-degrees or algorithm features with
zero in-degrees, can be considered redundant or irrelevant,
demonstrating the feature selection capability inherent in the
causal graph. Thirdly, the causal graph is closely related to
the final performance of algorithm selection. By examining
specific properties exhibited by the DAG, we can explain
or estimate the predictive and generalization capabilities
of models based on the graph. For instance, when certain
causal relationships contradict established domain knowl-
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edge or when the causal graph fails to adequately represent
variable relationships, the model’s performance may deteri-
orate accordingly. Additionally, an excessively dense causal
graph may negatively impact the model’s ability to general-
ize. In the experimental section, we will demonstrate how
the causal graph aids us in achieving these explanations.

3.2. Instance-level Explanation

This subsection explores the counterfactual explainability of
DAG-AS by leveraging interventions (Pearl, 2010) on input
features, which allows us to understand the influence from
problem features to algorithm features during the algorithm
selection process. We introduce perturbations δPF to prob-
lem features. To formalize our approach, the Do-Calculus
(Huang & Valtorta, 2006), denoted as do(·), is used to repre-
sent interventions. The intervention on problem features can
be represented as: P(S = 1 | do(PF = p + δPF),AF), indi-
cating the probability that AF is the optimal-performance
algorithm features under the intervention do(PF = p+δPF),
where p denotes the values of PF before intervention. The
goal is to find the minimal perturbations δPF that satisfy
some interventional constraint denoted as h(P(S = 1 |
PF,AF),P(S = 1 | do(PF = p + δPF),AF)).

This approach allows us to understand the causal effect of
changes in problem features on the algorithm selection deci-
sion. Given the DAG-AS model f(PF,AF), the distribution
before and after intervention can be observed in the model
output, i.e., the previous output f(PF,AF) and the coun-
terfactual output fδ = f(PF + δPF,AF). Afterwards, the
interventional constraint can be represented as h(f, fδ). Our
goal is to understand how minimal intervention in PF can
lead to expected selection changes in h(f, fδ). This can be
formulated as an optimization problem, where we minimize
the perturbations subject to a constraint on the change in the
model’s output as follows:

min
δPF

∥δPF∥22 + λ∥δPF∥0

s.t. ∃a ∈ A,∀a′ ∈ A− {a},
f(PF,AF(a′))− f(PF,AF(a)) < ε,

∃a′ ∈ A− {a},
fδ(PF + δPF,AF(a′))− fδ(PF + δPF,AF(a)) > ε.

(14)
Here, we minimize δPF from two perspectives: the overall
magnitude of the intervention and the number of manipu-
lated variables, inspired by the principle of Occam’s Razor.
∥δPF∥2 represents the ℓ2-norm of the perturbations, indi-
cating its magnitudes. The terms ∥δPF∥0 represents the
ℓ0-norm, indicating the number of intervened problem fea-
tures. The parameter λ balances the trade-off between the
magnitude and sparsity of the perturbations. The constraint
h(f, fδ, ε) in Eq. (14) states that there exists a candidate
algorithm a′, such that after intervening on the problem

features, the optimal algorithm chosen by DAG-AS will
change from algorithm a to algorithm a′. The counterfac-
tual explanation we derive is:

If the features of problem p are slightly decreased /
increased by |δPF|, then the most suitable algorithm
will change from algorithm a to algorithm a′.

The fδ in Eq. (14) is calculated based on a counterfactual
computation procedure for DAG-AS model. Due to the
nonlinear nature of the structural equations in DAG-AS,
implemented through neural networks, we need to adjust
the traditional steps accordingly, following three main steps:
Abduction, Intervention, and Prediction (Pearl, 2010).

Given the observed evidence, i.e., the observed values of
PF and AF, we first infer the values of the exogenous noise
terms ϵPF

i and ϵAF
i in the Abduction step. This step involves

solving the neural network equations to find the noise terms
that match the observed values, where the primary challenge
is handling the nonlinear functions here. For complex mul-
tilayer neural networks, deriving an analytical solution is
generally quite challenging. This is due to the fact that the
nonlinear activation functions and the multilayer structure
render the direct computation of the noise term a nonlinear
optimization problem. As a consequence, we employ numer-
ical methods, such as gradient descent, to iteratively solve
for the solution here. The specific process can be found
in Appendix C. After solving for all the exogenous vari-
ables corresponding to a given problem, we will modify the
DAG-AS model based on the intervention values δPF. For
all the variables that are to be intervened, we will delete the
incoming edges from their parent nodes in the causal graph,
in accordance with the do-operator, and then directly assign
values to these features. The modified model is denoted as
fδ . The intervention step alters the known causal graph and
the underlying structural causal model, allowing us to make
hypotheses about the model’s behavior under manipulation.
Finally, we can then solve for the counterfactual values of
each variable in topological order. The results obtained at
this stage represent the desired counterfactual outcomes.

3.3. Discussion on Explainability of DAG-AS

By applying counterfactual interventions and solving the
optimization problems, we can gain a comprehensive under-
standing of the impact of problem features and the adapta-
tion of algorithm features on the algorithm selection process
in the DAG-AS model. This approach provides interpretable
and actionable insights into the decision-making process,
enabling us to identify key factors that influence the match-
ing between problem features and algorithm features. It
is important to note that although this paper does not in-
vestigate interventions on algorithm features, this does not

7



Towards Robustness and Explainability of Automatic Algorithm Selection

imply that such interventions are without significance. Let
a denotes the values of AF before intervention. By exam-
ining P(S = 1 | PF, do(AF = a + δAF)), we can analyze
how to adjust the optimal algorithms in the candidate set
according to δAF given the characteristics PF of the prob-
lem instance, ultimately leading to better solutions for the
problem instance. Interventions on algorithm features hold
practical significance for optimizing the algorithm beyond
the candidate set.

On the other hand, we acknowledge that the explainabil-
ity of our approach may not always be immediately in-
tuitive. For instance, the algorithm features employed in
ASlib are extracted from Abstract Syntax Tree, which are
highly abstract and lack direct physical meaning. The util-
ity of causal graph explanations and algorithm feature in-
terventions hinges on the semantic interpretability of the
features themselves. Specifically, when algorithm features
correspond to intuitive, human-comprehensible attributes,
such as the architectural components (e.g., number of lay-
ers, neuron counts) or hyperparameters (e.g., learning rate)
of deep-learning models, the causal insights derived from
DAG-AS become far more actionable. For example, if the
causal graph identifies that certain problem features (e.g.,
input dimensionality) directly influence the number of neu-
rons in a specific layer of a neural network, this insight
can guide users in tailoring model architectures to problem
characteristics. Such interpretability not only enhances hu-
man understanding of the algorithm selection process but
also provides empirical guidance for optimizing candidate
algorithms or debugging the DAG-AS model itself. This
highlights the importance of feature semantics in unlocking
the full potential of our causal framework for both explana-
tion and algorithm design.

4. Experiments
Benchmarks and Comparing Algorithms (Detailed in
Appendix D.1): This study employs the ASlib (Algorithm
Selection Library) benchmark (Bischl et al., 2016) to evalu-
ate various algorithm selection methods, providing a unified
dataset with problem instances from multiple domains and
their corresponding algorithm performance data. To validate
DAG-AS’s effectiveness, we test across all datasets that con-
tain algorithm features, utilizing ten ASlib datasets detailed
in Table 2 in Appendix D.1. Notably, algorithm features
for the BNSL-2016 dataset were extracted using a large
language model-based method (Wu et al., 2024). We mea-
sure algorithm performance using the PAR10 score, which
compares actual running times to a predetermined cutoff
time, assigning penalties for timeouts. A lower PAR10 score
indicates a more effective algorithm selection method. Ad-
ditionally, we evaluate five established methods, including
ISAC (Kadioglu et al., 2010), MCC (multi-class classifica-

tion) (Xu et al., 2011), SATzilla11 (Xu et al., 2011), SNNAP
(Collautti et al., 2013), and SUNNY (Amadini et al., 2014),
alongside two baselines: the virtual best solver (VBS) and
the single best solver (SBS), aiming to clarify their perfor-
mance. Ideally, the performance of these methods should
fall between those of SBS and VBS, with closer alignment
to VBS indicating a more effective approach.

Performance Comparison (Detailed in Appendix D.2): In
this experiment, each scenario was repeated 10 times for fair
comparison, using 80% of instances for training and 20%
for testing, with batch sizes of 1000 and 100, respectively.
The results, as shown in Table 1, revealed that DAG-AS
achieved the lowest PAR10 values in 8 out of 10 datasets,
outperforming baseline algorithms and demonstrating ro-
bustness across various tasks, particularly in 5 datasets like
GRAPHS-2015 and MAXSAT19-UCMS. This underscores
the practical value of incorporating causality into algorithm
selection. However, in datasets GLUHACK-18 and SAT03-
16-INDU, DAG-AS lagged behind methods like MCC and
SATzilla11, attributed to the difficulty of capturing causal
relationships with limited training samples, leading to better
performance by traditional correlation-based methods.

Ablation Study (Detailed in Appendix D.3): In this abla-
tion study, we evaluated three variants of DAG-AS to assess
the impact of the causal learning module and DAG design
on model performance. The variants included: (1) Without
Causality, where the causal module is removed, leading to
direct matching of problem and algorithm features; (2) With
Directed Cyclic Graph, retaining the causal module but al-
lowing cycles in the graph; and (3) With Directed Acyclic
Graph, the full version of DAG-AS with a constrained DAG
structure. Using 10 datasets, results (shown in Figure 5 in
Appendix D.3) indicate that the full DAG-AS variant con-
sistently outperforms the others, especially on datasets like
SAT11-INDU and SAT11-RAND, highlighting the DAG’s
critical role in capturing causal relationships and avoiding
information loops. Conversely, the model without causality
generally underperformed, particularly in datasets such as
GRAPHS-2015 and MAXSAT19-UCMS, confirming that
the absence of causal inference limits understanding of com-
plex tasks. An exception was observed in SAT03-16-INDU,
where focusing on correlations yielded better results due to
challenges in capturing causal structures.

Robustness against Distribution Shift (Detailed in Ap-
pendix D.4): In this experiment, we evaluated the robust-
ness of DAG-AS against various distribution shifts and com-
pared its performance degradation to the best benchmark
methods. We implemented three types of shifts: (1) Shift on
Problem Distribution, where certain problem features were
assigned higher sampling weights during training; (2) Shift
on Optimal Algorithm Distribution, which involved priori-
tizing samples with optimal algorithms; and (3) Distribution
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Table 1. Evaluation results on ASlib benchmarks with algorithm features.
Scenario VBS SBS ISAC MCC SATzilla11 SNNAP SUNNY DAG-AS

BNSL-2016 211.09 8849.64 (6.32±1.42)×103 (3.79±1.38)×103 (2.00±0.76)×103 (37.37±3.46)×103 (3.86±1.29)×103 (1.81±0.57)×103
GLUHACK-18 906.39 17829.03 (15.56±4.40)×103 (8.10±4.19)×103 (8.11±3.91)×103 (20.44±4.58)×103 (10.51±3.92)×103 (15.53±3.74)×103
GRAPHS-2015 2.37×106 3.59×107 (8.20±3.20)×106 (11.23±3.79)×106 (8.90±3.18)×106 (64.32±46.91)×106 (7.56±3.50)×106 (5.42±2.13)×106

MAXSAT19-UCMS 126.93 8991.26 (4.20±2.01)×103 (4.00±1.40)×103 (3.77±1.35)×103 (9.43±1.44)×103 (3.37±1.91)×103 (2.15±1.04)×103
SAT03-16-INDU 823.02 5198.46 (4.73±0.84)×103 (4.47±0.63)×103 (4.27±0.58)×103 (10.41±1.88)×103 (4.46±0.78)×103 (8.15±0.73)×103
SAT11-HAND 1789.23 13028.87 (12.13±7.33)×103 (9.50±3.28)×103 (7.54±2.39)×103 (29.58±6.08)×103 (11.40±3.84)×103 (4.69±2.24)×103
SAT11-INDU 1108.52 9704.52 (8.03±3.06)×103 (6.40±3.51)×103 (6.79±3.05)×103 (15.21±3.84)×103 (6.54±3.61)×103 (3.06±1.36)×103
SAT11-RAND 1248.49 9433.79 (9.02±3.13)×103 (2.82±1.68)×103 (5.22±1.85)×103 (35.07±3.66)×103 (2.21±1.14)×103 (1.89±1.06)×103
SAT18-EXP 1705.43 11945.73 (10.39±4.41)×103 (9.76±4.17)×103 (8.95±3.16)×103 (44.09±3.06)×103 (8.11±3.65)×103 (8.07±1.49)×103

TSP-LION2015 44.63 189.65 (1.12±0.35)×103 (2.67±0.48)×103 (1.84±0.42)×103 (10.22±1.61)×103 (0.78±0.16)×103 (0.48±0.21)×103

Shift by Removing Algorithms, where some candidate al-
gorithms were omitted from the training data. Using nine
ASlib benchmarks with uniformly provided algorithm fea-
tures, we analyzed performance loss for each method under
these shifts, as illustrated in Figure 6. DAG-AS consistently
outperformed other algorithms across all shifts, particularly
excelling in optimal algorithm distribution shifts, demon-
strating its ability to leverage algorithm feature information
effectively. While it maintained a competitive edge in most
datasets during problem distribution shifts, it showed slight
underperformance on the SAT18-EXP dataset. Neverthe-
less, DAG-AS remained robust, especially when algorithms
were removed during training, as its causal learning module
helped mitigate the impact of missing candidates.

Demonstration of Model-level Explainability (Detailed
in Appendix D.5): In the algorithm selection scenario, de-
riving a causal graph like Figure 8 that reflects the rela-
tionships between problem and algorithm features enhances
DAG-AS’s accuracy and allows for meaningful causal in-
terpretations. This study first analyzes feature importance
in the causal graph by measuring the betweenness central-
ity (Barrat et al., 2004) of features (as shown in Figure
7), revealing that algorithm features generally have higher
centrality values, indicating their significance in algorithm
selection. Next, we explore causal relationships among
algorithm features (as shown in Figure 8), finding interde-
pendencies that vary across datasets, which helps identify
predictive features and improve performance. Additionally,
we assess the influence of problem features on algorithm
features (as shown in Figure 9), noting that datasets with
denser causal relationships, like MAXSAT19-UCMS and
SAT11-HAND, correlate with better DAG-AS performance.
In contrast, sparser relationships in datasets like SAT03-16-
INDU can lead to underperformance. However, in simpler
datasets with ample training data, such as TSP-LION2015,
DAG-AS can still excel despite sparse causal relationships,
highlighting its ability to focus on critical influences.

Demonstration of Instance-level Explainability (Detailed
in Appendix D.6): DAG-AS constructs a causal graph that
facilitates counterfactual explanations through targeted in-
terventions. A demonstration experiment on the GRAPHS-
2015 dataset illustrates this explainability by solving an opti-

mization problem to determine minimal intervention values
that can alter selection results, under constraints of a maxi-
mum 20% feature intervention and a magnitude below 10%.
The experiment identified 79 instances where the algorithm
selection changed, with heatmaps Figure 10 showing total
intervention magnitudes and specific feature interventions.
For example, in Instance 1846, interventions on certain fea-
tures shifted the selection from one candidate algorithm to
another, highlighting the sensitivity of specific features to
perturbations. Overall, only 1.36% of samples shifted selec-
tions, indicating DAG-AS’s robust decision-making process.
This analysis emphasizes DAG-AS’s ability to provide inter-
pretable insights and enhance transparency through causal
graph-based reasoning.

5. Conclusion
In this study, we introduce a causal framework for algo-
rithm selection, DAG-AS, which models the underlying
mechanisms that determine algorithm suitability, addressing
the limitations of existing methods. By focusing on the
conditional relationships between problem and algorithm
features, our approach enhances robustness against distribu-
tion changes and explainability of selection decisions. We
propose a counterfactual explanation method that identifies
minimal interventions necessary to achieve changes in al-
gorithm selection decisions. Experimental results on the
ASlib benchmark demonstrate that our model outperforms
traditional techniques in both robustness and explainabil-
ity.Future work could further enhance the efficiency of coun-
terfactual interpretability methods. Additionally, by manipu-
lating algorithm features, the explanation methods proposed
in this paper may help uncover unknown algorithms, thereby
facilitating the design of improved algorithms.
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A. Background
A.1. Background of Algorithm Selection

With the rapid advancement and widespread adoption of information technology, researchers in various fields have designed
a range of algorithms tailored to specific types of problems, each showing different levels of performance across various
instances of those problems. Due to the diversity of problems, a single algorithm often fails to perform well across all
scenarios (Pihera & Musliu, 2014; Xu et al., 2011). However, selecting the best algorithm for a specific problem instance is
a complex and time-consuming process. To meet this challenge, research in algorithm selection (Rice, 1976) has become
increasingly important. The primary goal is to identify the most suitable algorithm from a pool of candidates, ultimately
enhancing performance on specific tasks, whether in terms of accuracy (Ruhkopf et al., 2023) and time efficiency (Kostovska
et al., 2023). In recent years, algorithm selection methods have become essential for tackling complex problems and driving
technological advancements, with applications across various fields, such as machine learning (Luo, 2016) and combinatorial
optimization (Pihera & Musliu, 2014).

Early algorithm selection methods sought suitable meta-features to characterize a given task, such as the statistical
characteristics of the input dataset (Hutter et al., 2014) or probing features derived from the short execution of well-known
solver (Nudelman et al., 2004). By exploring the relationship between these meta-features and the performance of different
algorithms, machine learning techniques were employed to meta-learn which algorithm performs best on new problem
instances. These methods often formulate the algorithm selection task as either a performance regression or a multi-class
classification problem. Specifically, regression-based techniques (Xu et al., 2008) directly predict the performance of
each algorithm based on the problem feature set. Conversely, multi-class classification approaches (Cunha et al., 2018;
Abdulrahman et al., 2018) assign scores to algorithms based on their relative suitability for a specific problem and select
the most appropriate algorithm based on these scores. In addition, several other methodologies have been proposed. For
instance, some studies formalize algorithm selection as a collaborative filtering problem (Mısır & Sebag, 2017; Fusi et al.,
2018) and utilize a sparse matrix with performance data available for only a few algorithms on each problem instance. And
similarity-based methods (Amadini et al., 2014; Kadioglu et al., 2010) select algorithms based on the similarity between
the current problem instance and previously encountered instances. There are also some hybrid methods (Hanselle, 2020;
Fehring et al., 2022) combine multiple techniques above.

On the other hand, some studies (Hough & Williams, 2006; Tornede et al., 2020; Hilario et al., 2009; Pulatov et al., 2022;
de Nobel et al., 2021; Wu et al., 2024) have recognized the role of algorithm meta-features, such as hyperparameters
(Hough & Williams, 2006; Tornede et al., 2020), model structure information (Hilario et al., 2009), code-related statistical
features (Pulatov et al., 2022), abstract syntax tree features (Pulatov et al., 2022), and and large language model-extracted
code features (Wu et al., 2024). Empirical studies (Pulatov et al., 2022; Wu et al., 2024) indicate that utilizing algorithm
meta-features can enhance a model’s generalization across different algorithms and, in certain cases, improve the accuracy
of algorithm selection. Models based on algorithm features typically concatenate problem features and algorithm features
and employ machine learning algorithms to either regress algorithm performance, predict the most suitable algorithm, or
calculate the matching degree between problem features and algorithm features to make compatibility decisions.

In recent years, research on algorithm selection has focused on various domains, including black-box optimization problems
(Kostovska et al., 2022; Huerta et al., 2022), natural science issues (Chen et al., 2023), software engineering (Richter
et al., 2020), and machine learning (Arena et al., 2024; Dagan et al., 2024). Some studies have also explored feature-free
approaches (Alissa et al., 2023), which are mainly applied to specific senoritas, such as traveling salesman problem (Zhao
et al., 2021) and continuous optimization problem (Seiler et al., 2024).

A.2. Background of Causal Learning

In this subsection, we introduce the fundamental concepts of causal learning, which are essential for understanding the
algorithm selection method based on causality. Causal relationships describe the cause-effect connections between two
events, reflecting the internal mechanisms and rules within a system. A Causal Bayesian Network (CBN) is a framework
that uses a directed acyclic graph (DAG) to explain causal relationships. Its definition is as follows:

Definition A.1. Causal Bayesian Network (CBN (Pearl, 2009)). A Causal Bayesian Network is a directed acyclic graph
G = {V, E} where nodes represent random variables in the set V , and edges in the set E represent causal relationships
between these variables. Each node Vi ∈ V is associated with a conditional probability distribution given its parents Pa(Vi)
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in the graph. The joint probability distribution P over V can be factorized as:

P(V) =
∏
Vi∈V

P(Vi | Pa(Vi)) (15)

A Random Control Trial is an experimental method for causal inference, regarded as the gold standard for inferring causality,
but it is not applicable to the observational data in our scenario. To infer causality from observational data, researchers have
developed data-driven causal inference models called Structural Causal Models (SCMs). SCMs represent causal relationships
through causal graphs (DAGs) and structural equations. The causal graph is a graphical qualitative representation of causal
relationships, while the structural equations quantitatively represent these relationships.

Definition A.2. Structural Causal Model (SCM (Pearl, 2012)). A Structural Causal Model (SCM) consists of a set of
structural equations and a causal graph G that represents the dependencies between variables. Each structural equation
specifies how a particular variable is generated by its parent variables and an error term that captures all unobserved
influences. Formally, an SCM for can be expressed as:

Vi = fi(Pa(Vi), Ui), ∀Vi ∈ V, (16)

where Vi is a variable, Pa(Vi) are the parents of Vi in the causal graph, and Ui ∈ U is an exogenous error term.

SCMs can represent causal relationships among complex multidimensional variables. The variables in V and U are called
endogenous and exogenous variables, respectively. Exogenous variables belong to the external environment of the model and
appear as noise terms, representing influences on endogenous variables that are not influenced by them. Each endogenous
variable is a descendant of at least one exogenous variable, so the root nodes in the causal graph over V in SCM have only
one parent variable, which is an exogenous variable.

The graphical model and structural equations enable SCMs to conveniently compute causal effects and counterfactual queries
from observational data. Pearl developed a comprehensive theory and methods by combining SCMs with do-calculus:

Definition A.3. Causal Effect and Intervention. (Pearl, 2009) The intervention do(T=t) denotes setting the value of
variable T to t, denoted as do(t). The causal effect of variable T on variable Y is a probability distribution function from T
to Y , represented using the do operator as P (Y = y | do(T = t)), abbreviated as P (y | do(t)).

In SCMs, interventions are represented by modifying the structural equations. The intervention do(T = t) replaces the
equation T = fT (Pa(T ), Ut) with T = t in the SCM, and T = t is substituted in the remaining equations. This demonstrates
the modular nature of causal models, where each function equation represents an independent causal mechanism. The
intervention do(T = t) changes only the assignment function containing T , leaving the assignment functions of other
variables unchanged.

Definition A.4. Counterfactuals. (Pearl, 2009) Let T and Y be two variables in V . The counterfactual statement “if T = t,
then Y would be y given U = u” is represented as YT=t(u) = y, where YT=t(u) is the potential outcome of Y given T = t
under the specific context U = u.

In any SCM, if the counterfactual assumption is T = t, the modified model is denoted as SCMt. The counterfactual value
Yt(u) in the model SCM is defined as the value of Y obtained in the new model SCMt when T = t:

Yt(u) = YSCMt
(u) (17)

This definition holds even if T and Y are sets of variables rather than individual variables. In the modified model SCMt, the
values of the variables should satisfy the new model’s specifications.

Understanding these fundamental concepts is crucial for developing and implementing algorithms that leverage causal
knowledge. The formal definitions and mathematical frameworks provide the basis for more advanced applications in causal
learning-based algorithm selection.

B. Proof of Theorem 2.4
Theorem B.1. Assume that the joint density function of P(PF,AF) is continuous and strictly positive on a compact and
convex subset of RPF∪AF, and zero elsewhere. And there exists a DAG G such that P(PF,AF|S = 1) can be factorized as Eq.
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(15) according to G. Under Assumption 2.1, any variable AFi ∈ AF is not an exogenous variable in G, and there exists a
continuous function set f = {f1, f2, · · · , f|AF|} with compact support in R|PF|×[0,1] such that each P(AFi|Pa(AFi), S = 1)
equals the corresponding fi with uniform distributed noise on [0, 1].

Proof. Since the in-degree of any AFi satisfies deg−(AFi) > 0, i.e., |Pa(AFi)| ≥ 1, we can easily prove that there exists
AFi ∈ AF such that its parent set is completely composed of problem features, i.e., Pa(AFi) ⊆ PF. Assume that for
all AFi ∈ AF, Pa(AFi) ̸⊆ PF. This means that for every AFi, there exists at least one algorithm feature Xj such that
Xj ∈ Pa(AFi) and Xj ̸∈ PF. We can then construct a causal chain XN → · · · → X2 → X1, where each Xi is an algorithm
feature and Xi ∈ Pa(Xi−1). However, due to the acyclicity requirement, no variable can be its own ancestor or descendant.
Therefore, when N > |AF|, there will be no new algorithm features to satisfy deg−(XN ) > 0, which contradicts the
assumption that the in-degree of any AFi is positive. Therefore, we can conclude that ∃AFi s.t. Pa(AFi) ⊆ PF.

Let us divide the nodes in G into two sets, A and B, where A is initialized as PF and B is initialized as AF. Next, we find
the first node AFi in B such that Pa(AFi) ⊆ A, and perform the following operations:

A← A ∪ AFi, B← B− AFi (18)

We then repeat this process to find the next AFi in B such that Pa(AFi) ⊆ A, and so on. This gives us a topological
ordering π : AF → {1, 2, . . . , |AF|}. Along this topological ordering (AFπ(1),AFπ(2), . . . ,AFπ(|AF|)), we will now use
mathematical induction to prove as follows:

For AFπ(1), we can construct a function to describe the corresponding decomposed distribution: P(AFπ(1)|Pa(AFπ(1)), S =
1). Consider the conditional cumulative distribution function:

F1(AFπ(1)|Pa(AFπ(1)) = z1, , S = 1) = P(AFπ(1) < x1|Pa(AFπ(1)) = z1, , S = 1). (19)

where xi and zi are arguments of the function Fi, denoting the value of AFπ(i) and Pa(AFπ(i)). Since the joint density
function is strictly positive, F1 is strictly continues and monotonic wrt x1. Therefore, its inverse, the quantile function
F−1
1 (Pa(AFπ(1)), ϵ) : dom(Pa(AFπ(1)))× [0, 1], where ϵ represents the noise term in the causal model and dom(∗) denotes

the domain of the corresponding variable, satisfies the properties in Theorem 1.

Assume that for AFπ(i−1), we can find a function that satisfies Theorem 1. We now prove the case for AFπ(i): Take the
conditional cumulative distribution function Fi(AFπ(i)|Pa(AFπ(i)) = zi, S = 1) and its inverse F−1

i (Pa(AFπ(i)), ϵ) :
dom(Pa(AFπ(i))) × [0, 1]. By the topological ordering rule, all of the parent nodes of AFπ(i) are included in A. There-
fore, F−1

i (Pa(AFπ(i)), ϵ) = F−1
i ({F−1

j }
i−1
j=1, ϵ). Since F−1

j (j ∈ {1, . . . , i − 1}) can be found to satisfy Theorem 1,
F−1
i ({F−1

j }
i−1
j=1, ϵ) also satisfies the properties in Theorem 1. (Q.E.D.)

C. Calculate the Exogenous Variables for Counterfactual Explainability
Given the observed evidence, i.e., the observed values of PF and AF, we first infer the values of the exogenous noise terms
ϵPF
i and ϵAF

i in the Abduction step. This step involves solving the neural network equations to find the noise terms that match
the observed values, where the primary challenge is handling the nonlinear functions here. For complex multilayer neural
networks, deriving an analytical solution is generally quite challenging. This is due to the fact that the nonlinear activation
functions and the multilayer structure render the direct computation of the noise term a nonlinear optimization problem. As
a consequence, we employ numerical methods, such as gradient descent, to iteratively solve for the solution here. For the
noise term ϵPF

i of the problem feature PFi, we need to solve for the gradient∇ϵPF
i in order to iteratively compute the value

of ϵPF
i with rate η, i.e., the (t + 1)-th iteration is given by: ϵPF

i (t + 1) = ϵPF
i (t) − η∇ϵPF

i . Since the loss function for the
prediction of PFi can be represented as:

LPF =
1

2
∥PFi − P̂Fi∥2, (20)

the gradient ∇ϵPF
i can be expressed as:

∇ϵPF
i =

∂LPF

∂ϵPF
i

=

(
∂LPF

∂[P̂F; ϵPF
i ]

)
|PF|+1

, (21)
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where |PF|+ 1 denotes the focused dimension of ∂LPF/∂[P̂F; ϵPF
i ]. Let z(l) denotes the input to the activation function at

the l-th layer, then
∂LPF

∂[P̂F; ϵPF
i ]

= W
(i)
1

T
· ∂LPF

∂z(1)
, (22)

where the value of ∂LPF
∂z(1) could be obtained by the following recurrence relation:

∂LPF

∂z(L)
= (PFi − P̂Fi)σ

(L)′(z(L))

∂LPF

∂z(l)
=

(
W(l+1)T ∂LPF

∂z(l+1)

)
⊙ σ(l)′(z(l))

(23)

For the noise term ϵAF
i of the algorithm feature AFi, we need to replace the LPF with LAF = 1

2∥AFi − ÂFi∥2,, and the
gradient ∇ϵAF

i can be expressed as:

∇ϵAF
i =

∂LAF

∂ϵAF
i

=

(
∂LAF

∂[P̂F; ÂF; ϵAF
i ]

)
|PF∪AF|+1

, (24)

In addition to the numerical methods mentioned above, we also provide the analytical solution for a single-layer linear
network, which can be used for the rapid computation of the noise term in the context of linear modeling:

ϵPF
i =

WT
d PFi −WT

d W¬dPF
WT

d Wd

ϵAF
i =

WT
d AFi −WT

d W¬d[PF;AF]
WT

d Wd

(25)

where Wd denotes the d-th column of the unique parameter matrix W in the network, and W¬d represents the matrix W
with the d-th dimension removed. After solving for all the exogenous variables corresponding to a given problem, we will
modify the DAG-AS model based on the provided intervention information.

D. Detailed Experiments
In this section, we evaluate the performance of our proposed DAG-AS algorithm across multiple benchmark datasets from
the ASlib library. The experimental analysis is designed to comprehensively assess the effectiveness of DAG-AS in various
aspects, including its overall performance, robustness, and explainability. We conduct five major types of experiments
to ensure a thorough evaluation: We first perform a performance comparison to benchmark DAG-AS against five classic
algorithm selection methods across ten datasets in Section D.2. Then, an ablation study is carried out in Section D.3 to
examine the impact of causal structures on the performance of DAG-AS, comparing results with and without the inclusion
of causal graphs (both directed and undirected). We investigate the generalization ability of DAG-AS in Section D.4 by
evaluating its performance under different types of distribution shifts. Finally, a causal graph analysis is conducted to delve
into the causal relationships identified by DAG-AS for each dataset in Section D.5, and the explainability of DAG-AS
is showcased by demonstrating its ability to generate counterfactual explanations using the GRAPHS-2015 dataset in
Section D.6. Through these experiments, we aim to demonstrate not only the superior performance of DAG-AS but also its
robustness and explainability in the field of algorithm selection.

D.1. ASlib Benchmarks and Comparing Algorithms

Evaluation Benchmarks: The ASlib (Algorithm Selection Library) benchmark (Bischl et al., 2016) is a standardized dataset
designed to provide a unified benchmark for evaluating and comparing the performance of various algorithm selection
methods. As one of the most widely used benchmarks in the field of algorithm selection, ASlib encompasses problem
instances from diverse domains along with their corresponding algorithm performance data. Each problem instance is
described by a set of features that reflect the properties and constraints of the problem, with some datasets also including
algorithm features. Given that this paper aims to uncover the causal relationships between problem features and algorithm
features, we validate the effectiveness of DAG-AS by testing across all available datasets with algorithm features. The ten
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ASlib datasets cover a range of domains and scales, with statistical information presented in Table 2. Notably, the algorithm
features for the BNSL-2016 dataset are not provided by ASlib; instead, they were extracted from the code of candidate
algorithms using the large language model-based feature extraction method proposed in (Wu et al., 2024).

Table 2. The statistical property of experimental benchmarks.
ASlib Scenario |P| |A| |PF| |AF| Cutoff Time

BNSL-2016 1179 8 86 75 7200
GLUHACK-18 353 8 50 75 5000
GRAPHS-2015 5725 4 35 75 100000000

MAXSAT19-UCMS 572 7 54 75 1800
SAT03-16-INDU 2000 8 483 75 5000
SAT11-HAND 296 11 115 75 5000
SAT11-INDU 300 18 115 75 5000
SAT11-RAND 600 8 115 75 5000
SAT18-EXP 353 37 50 75 5000

TSP-LION2015 31060 4 122 75 3600

The involved scenarios in this paper focus on the solution time of candidate algorithms, and therefore, we use the PAR10
score to measure the performance of different algorithms. Specifically, the PAR10 for instance p is calculated as follows:

PAR10(p) =

{
tp if tp ⩽ C
10 · C else . (26)

For each problem instance p, the actual running time tp of the selected algorithm is compared to a predetermined cutoff
time C, as provided in Table 2. If the selected algorithm finds a solution within the cutoff time, the actual running time
is recorded; otherwise, a penalty of ten times the cutoff time, 10 · C, is incurred. Finally, the PAR10 score is obtained by
averaging the results across all problem instances. The PAR10 score takes into account both the solution time and timeout
situations, with a lower PAR10 score indicating a more effective algorithm selection method.

Comparing Algorithms: This study evaluates five established algorithm selection methods: ISAC (Kadioglu et al., 2010),
MCC (multi-class classification) (Xu et al., 2011), SATzilla11 (Xu et al., 2011), SNNAP (Collautti et al., 2013), and SUNNY
(Amadini et al., 2014). In addition to these methods, we also compare two key performance benchmarks: the virtual best
solver (VBS) and the single best solver (SBS). VBS represents the optimal approach, as it selects the best algorithm for
each specific problem instance. In contrast, SBS is a straightforward method that picks the algorithm with the best overall
performance without differentiating between instances. By evaluating the algorithm selection methods against SBS and
VBS, we can gain a clearer understanding of their performance. Ideally, the performance of these methods should fall
between those of SBS and VBS, with closer alignment to VBS indicating a more effective approach.

D.2. Performance Comparison

In this experiment, we employed multiple ASlib benchmark datasets to evaluate the performance of DAG-AS on algorithm
selection tasks. To ensure a fair comparison between the proposed DAG-AS and existing classical methods, each algorithm
selection scenario was repeated 10 times. The training set consisted of 80% of the samples randomly selected from the
dataset. The batch sizes for training and testing were set to 1000 and 100, respectively. Both problem features and algorithm
features were fed into the model, and the final performance was compared based on the PAR10 scores of the different
models, as shown in Table 3.

By analyzing the overall results, we found that DAG-AS achieved the best performance in 8 out of the 10 datasets,
obtaining the lowest PAR10 values. This indicates that DAG-AS outperformed other baseline algorithms in most tasks,
demonstrating strong robustness and wide applicability to different types of algorithm selection problems. In particular,
DAG-AS significantly outperformed other methods in datasets such as GRAPHS-2015, MAXSAT19-UCMS, SAT11-HAND,
SAT11-INDU, and TSP-LION2015. This strongly highlights the practical value of incorporating causality into algorithm
selection. By leveraging a causal graph structure, DAG-AS enhances the model’s understanding of complex problems and
decision-making capabilities, effectively utilizing the causal relationships between problem features and algorithm features
to improve the accuracy of algorithm selection.
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Table 3. Evaluation results on ASlib benchmarks with algorithm features.
Scenario VBS SBS ISAC MCC SATzilla11 SNNAP SUNNY DAG-AS

BNSL-2016 211.09 8849.64 (6.32±1.42)×103 (3.79±1.38)×103 (2.00±0.76)×103 (37.37±3.46)×103 (3.86±1.29)×103 (1.81±0.57)×103
GLUHACK-18 906.39 17829.03 (15.56±4.40)×103 (8.10±4.19)×103 (8.11±3.91)×103 (20.44±4.58)×103 (10.51±3.92)×103 (15.53±3.74)×103
GRAPHS-2015 2.37×106 3.59×107 (8.20±3.20)×106 (11.23±3.79)×106 (8.90±3.18)×106 (64.32±46.91)×106 (7.56±3.50)×106 (5.42±2.13)×106

MAXSAT19-UCMS 126.93 8991.26 (4.20±2.01)×103 (4.00±1.40)×103 (3.77±1.35)×103 (9.43±1.44)×103 (3.37±1.91)×103 (2.15±1.04)×103
SAT03-16-INDU 823.02 5198.46 (4.73±0.84)×103 (4.47±0.63)×103 (4.27±0.58)×103 (10.41±1.88)×103 (4.46±0.78)×103 (8.15±0.73)×103
SAT11-HAND 1789.23 13028.87 (12.13±7.33)×103 (9.50±3.28)×103 (7.54±2.39)×103 (29.58±6.08)×103 (11.40±3.84)×103 (4.69±2.24)×103
SAT11-INDU 1108.52 9704.52 (8.03±3.06)×103 (6.40±3.51)×103 (6.79±3.05)×103 (15.21±3.84)×103 (6.54±3.61)×103 (3.06±1.36)×103
SAT11-RAND 1248.49 9433.79 (9.02±3.13)×103 (2.82±1.68)×103 (5.22±1.85)×103 (35.07±3.66)×103 (2.21±1.14)×103 (1.89±1.06)×103
SAT18-EXP 1705.43 11945.73 (10.39±4.41)×103 (9.76±4.17)×103 (8.95±3.16)×103 (44.09±3.06)×103 (8.11±3.65)×103 (8.07±1.49)×103

TSP-LION2015 44.63 189.65 (1.12±0.35)×103 (2.67±0.48)×103 (1.84±0.42)×103 (10.22±1.61)×103 (0.78±0.16)×103 (0.48±0.21)×103

Figure 4. Hyperparameter analysis on SAT11-INDU.

At the same time, we also observed that in some datasets, such as GLUHACK-18 and SAT03-16-INDU, DAG-AS did
not perform as well as other methods, with MCC and SATzilla11 achieving the best performance, respectively. The main
reason is that causal relationships between problem features and algorithm features in these two datasets are more difficult
to capture. With a limited number of training samples, DAG-AS was unable to sufficiently learn the patterns associated with
these causal relationships. Instead, the correlations exhibited in the data were more easily captured, which led to DAG-AS
underperforming compared to traditional correlation-based methods on these datasets.

Hyperparameter analysis: We conducted a hyperparameter analysis on the SAT11-INDU dataset to investigate the impact
of the three hyperparameters in Eq.(15) on the performance of DAG-AS. In the first experiment, we analyzed the balance
between the reconstruction loss and the two causal learning constraints by varying α and β, while fixing γ = 1. The second
experiment focused on the balance between the causal learning loss and the algorithm selection loss by adjusting γ, with
β = 1 and α = 0.0001 kept constant. Results are shown in Figure 4. From the left-hand figure, the color-coded visualization
(cooler colors indicating lower PAR10 scores) reveals a range of α and β values where DAG-AS sustains good performance.
For the right-hand figure, as γ changes, the PAR10 score does not exhibit extreme fluctuations, indicating DAG-AS is
not overly sensitive to γ within the tested range. Notably, when γ is around 1.4–2.2, the PAR10 score attains relatively
low values, showcasing excellent performance. Overall, these results demonstrate that DAG-AS maintains relatively good
performance across a broad spectrum of these hyperparameters, underscoring the model’s robustness. This robustness is
vital as it minimizes reliance on meticulous hyperparameter tuning, enhancing DAG-AS’s adaptability to diverse problem
scenarios.

D.3. Ablation Study

In this ablation study, we compare three variants of DAG-AS to further validate the impact of the causal learning module and
the DAG design on model performance. The three model variants compared in the experiment are as follows: (1) Without
Causality: The causal learning module is removed, and algorithm selection is performed directly based on matching problem
features and algorithm features. (2) With Directed Cyclic Graph: The causal learning module is retained, but cycles are
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Ablation Study of Causal Structures

BNSL-2016 (
 10

3 )

GLUHACK-18 (
 10

4 )

GRAPHS-2015 (
 10

6 )

MAXSAT19-UCMS (
 10

3 )

SAT03-16-IN
DU (

 10
3 )

SAT11-HAND (
 10

3 )

SAT11-IN
DU (

 10
3 )

SAT11-RAND (
 10

3 )

SAT18-EXP (
 10

3 )

TSP-LION2015 (
 10

3 )
0

2

4

6

8

10

PA
R

10

Without Causality
With Directed Cyclic Graph
With Directed Acyclic Graph

Figure 5. Ablation study on ASlib benchmarks.

allowed in the causal graph (i.e., the causal graph is a directed cyclic graph), meaning the learning process is not constrained
by the DAG structure. (3) With Directed Acyclic Graph: This is the full version of DAG-AS, where the causal graph is
constrained to be a DAG, ensuring no cycles exist between causal relations, enhancing the modeling of the relationships
between problem and algorithm features through causal inference. The 10 datasets split into training and test sets, as well as
the overall experimental process, follows the same procedure as in previous experiments.

As shown in Figure 5, we can clearly observe that the case with directed acyclic graph (i.e., the entire DAG-AS) demonstrates
superior performance on most datasets, which indicates that the identification of causal relationships and the DAG structure
design significantly enhance model performance in algorithm selection tasks. Compared to the case with directed cyclic
graph, DAG-AS shows a notable advantage across all datasets, especially on the SAT11-INDU and SAT11-RAND datasets,
suggesting that the DAG is essential for capturing causal relationships in complex tasks. The acyclic nature of the causal
structure ensures the unidirectionality of causal relationships, which is crucial for avoiding information loops and redundancy,
helping the DAG-AS learn more accurate relational patterns. On the other hand, in the case without causality, where the
causal learning module is removed, the model generally performs worse across most datasets. The performance gap is
particularly evident on GRAPHS-2015, MAXSAT19-UCMS, SAT11-HAND, SAT11-INDU, and SAT11-RAND datasets,
indicating that the absence of causal inference greatly limits the model’s understanding of the complexity of the task.
However, there is one exception: on the SAT03-16-INDU dataset, the model without the causal learning module outperforms
DAG-AS, which further validates that the performance deficit of DAG-AS on SAT03-16-INDU is due to its failure to capture
the causal structure in this dataset. In cases where complex causal relationships cannot be learned due to limited training
data, focusing on correlations may yield better performance.

Overall, this ablation study strongly validates the importance of the causal learning module and the DAG design in enhancing
DAG-AS’s performance in algorithm selection tasks. The causal graph helps better model the relationships between problem
features and algorithm features, and the DAG constraint, particularly in complex tasks, helps prevent overfitting to causal
information, thereby improving the accuracy of algorithm selection.

D.4. Robustness Against Distribution Shift

In this experiment, we aimed to evaluate the robustness of DAG-AS under different types of distribution shifts and compare
its performance degradation against other benchmark algorithms. The experiment focuses on observing how DAG-AS and
its competitors handle performance loss when there is a shift in distribution. We designed three types of distribution shifts:
(1) Shift on Problem Distribution: We selected 20% of the problem features and assigned higher sampling weights to certain
feature values during the training sample selection process, while keeping the feature sampling random in the test samples.
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(a) Shift on Problem Distribution.
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(b) Shift on Optimal Algorithm Distribution.
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Figure 6. The generalization performance in the case with distribution shift.

(2) Shift on Optimal Algorithm Distribution: We intervened in the marginal distribution of the optimal algorithms during the
training sample collection, giving higher sampling weights to samples where certain candidate algorithms achieve optimal
performance, while maintaining random sampling in the test samples. (3) Distribution Shift by Removing Algorithms: We
directly removed several candidate algorithms from the training data, while retaining them in the test data. To ensure fair
comparison, we choose the 9 ASlib benchmarks, where the algorithm features are uniformly provided. Since all algorithms
experience performance loss under distribution shift, we present the proportion of performance loss for each competitor
under each distribution shift, as shown in Figure 6. For the baseline comparison, we selected the algorithm with the lowest
performance loss for each dataset. The results of the three types of distribution shifts are as presented in Figure 6.

Across all three types of distribution shifts, DAG-AS consistently outperformed the best benchmark algorithms, although
the magnitude of the performance advantage varied depending on the type of shift. In general, the causal learning module of
DAG-AS enabled it to demonstrate strong resilience to these shifts. However, DAG-AS exhibited a particularly notable
advantage when dealing with algorithm distribution shifts, which emphasizes its ability to leverage algorithm feature
information more effectively than other methods.

Specifically, for the problem distribution shift, DAG-AS showed a competitive edge across most datasets, with lower
performance loss compared to benchmark algorithms. This advantage stems from DAG-AS’s ability to model the causal
relationships between problem features and algorithm features, allowing it to remain robust even when the problem
distribution is biased. However, DAG-AS showed a slight disadvantage on the SAT18-EXP dataset, where its performance
loss was higher than the benchmark algorithm, indicating that its resilience to problem feature shifts may not be uniformly
strong across all datasets. In contrast, the shift on optimal algorithm distribution demonstrated the greatest strength of
DAG-AS. These results highlight DAG-AS’s superior ability to handle biases in the optimal algorithm distribution, as it can
more effectively utilize algorithm feature information to mitigate the impact of skewed training samples. This highlights
DAG-AS’s ability to infer the relationships between algorithms and problem features, thus avoiding overfitting to biased
algorithm distributions. Finally, for the distribution shift by removing algorithms, all models faced substantial performance
degradation due to the removal of candidate algorithms during training. Nonetheless, DAG-AS still demonstrated superior
robustness compared to the benchmark algorithms. The causal inference module allowed DAG-AS to better infer the
likely performance of missing algorithms by relying on the remaining algorithm features, thus maintaining competitive
performance during testing when the removed algorithms were reintroduced.

D.5. Demonstration of the Model-level Explainability

In the algorithm selection scenario, obtaining a causal graph that reflects the relationships between problem features and
algorithm features not only helps DAG-AS achieve more accurate results but also enables us to derive many meaningful
conclusions through causal interpretation. By analyzing the learned causal relationships, we can gain deeper insights into
the underlying interactions between features and improve the decision-making process in algorithm selection.

Feature Importance in the Causal Graph: The first part of this experiment focuses on analyzing the importance of all
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Figure 7. Betweenness centrality of features.

problem and algorithm features in the causal graph across different datasets. We measure the betweenness centrality of
each feature in the DAG, as shown in Figure 7. From the results, it is evident that high betweenness centrality values
are predominantly associated with algorithm features, while the betweenness centrality of problem features remains
relatively similar across different datasets. This observation highlights the importance of algorithm features in the context of
algorithm selection. Algorithm features provide more informative cues than mere algorithm categories and often serve as
outcome variables in causal relationships. By interpreting these relationships, the model can establish a more compact and
interpretable representation of the interactions between problem features, leading to better overall performance in algorithm
selection.

Table 4. The correspondence between the IDs and names of algorithm features. All names are consistent with those in the ASlib benchmark.
Algorithm features not included in the table have no edges in the causal graph across all data and are considered invalid features.
ID Name ID Name ID Name ID Name
0 Lines..Average. 1 Lines..Total. 2 Size..Average. 3 Size..Total.
4 Number.of.files 5 Cyclomatic..Average. 6 Cyclomatic..Total. 7 Max.Indent..Average.
8 Max.Indent..Total. 9 nb nodes 10 nb edges 11 degree max

12 degree mean 13 degree variance 14 degree entropy 15 transitivity
16 clustering mean 17 clustering variance 18 paths max 19 path mean
20 path variance 21 path entropy 22 Stmt 23 Type
24 Decl 25 Attribute 26 Operator 27 Literal
28 edge ss 29 edge st 30 edge sd 31 edge sa
32 edge so 33 edge sl 34 edge ts 35 edge tt
36 edge td 37 edge ds 38 edge dt 39 edge dd
40 edge as 41 edge at 42 edge ad 43 edge os
44 edge od 45 edge oo 46 edge ls 47 edge ld
48 edge lo 49 op short 50 op int 51 op long
52 op long long 53 op float 54 op double 55 op bit
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Figure 8. Causality between algorithm features. The correspondence between the IDs and names of algorithm features are provided in
Table 4.

Causal Relationships Among Algorithm Features: Next, we investigate the causal relationships between algorithm
features across nine datasets. All valid algorithm features, along with their names and IDs, are recorded in Table 4. The
remaining features are considered invalid, as they have no edges in the causal graph across all data. We averaged the
causal graphs obtained from all datasets and visualized the most confident causal links in Figure 8. In this figure, nodes
with the highest 10% in-degree and out-degree are highlighted in green and orange, respectively. The causal graphs reveal
widespread interdependencies among algorithm features within the ASlib benchmark, though these relationships tend to be
sparse. This sparsity suggests a balance between the predictive power and redundancy of the algorithm feature data. As
problem features vary across datasets, the importance of different algorithm features shifts accordingly. By modeling this
relationship through causal graphs, the model can abstract the most predictive algorithm features and identify key variable
relationships, enhancing its performance in algorithm selection.

Impact of Problem Features on Algorithm Features: To further analyze the influence of problem features on algorithm
features, we focused on the cause sets of algorithm features in the causal graph of each dataset. Figure 9 illustrates the
proportion of problem features directly influencing algorithm features, relative to the total number of problem features
in each dataset. Since both problem and algorithm features in ASlib are manually designed, and the design of problem
features varies across datasets, this result allows us to evaluate the rationality of feature design by observing the density of
causal relationships in each dataset. We found that datasets with denser causal relationships, such as MAXSAT19-UCMS,
SAT11-HAND, SAT11-INDU, and SAT18-EXP, also exhibited a larger performance advantage for DAG-AS. This indicates
that causal relationships are prevalent between problem and algorithm features in these datasets, and leveraging these causal
relationships allows DAG-AS to better exploit the potential of algorithm features. In contrast, in datasets with sparser causal
relationships, such as SAT03-16-INDU and GLUHACK-18, the advantage of DAG-AS was diminished, and in some cases,
DAG-AS even underperformed compared to benchmark algorithms. In these datasets, the causal learning module was only
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Figure 9. Influence from problem features to algorithm features.

able to identify a limited number of causal relationships, resulting in models that lacked robustness. This outcome suggests
that we can estimate the performance of DAG-AS in specific scenarios by analyzing the learned causal graphs.

One notable exception is the TSP-LION2015 dataset, where DAG-AS still achieved the best performance despite the causal
relationships being relatively sparse. This can be attributed to the nature of the dataset: TSP-LION2015 is a relatively simple
benchmark with a large number of training samples and only four candidate algorithms. The abundance of training data
enabled DAG-AS to retain the most critical causal relationships while filtering out redundant ones, allowing it to maintain a
significant performance advantage. This case demonstrates that in simpler scenarios with sufficient training data, DAG-AS
can still excel even when causal relationships are sparse, as it can effectively focus on the most influential relationships.

D.6. Demonstration of the Instance-level Explainability

In the algorithm selection modeling process, DAG-AS generates a causal graph that enables the derivation of counterfactual
explanations through interventions based on this graph. This section focuses on a demonstrative experiment conducted on
the GRAPHS-2015 dataset to showcase this explainability.

We solve the optimization problem outlined in Eq (17) in the main text to determine the minimal intervention values that can
alter DAG-AS’s selection results. To streamline the problem and narrow the scope, we impose specific constraints: (1) a
maximum of 20% of the features can be intervened upon; (2) the intervention’s magnitude must be less than 10%, with
the modified values remaining within the valid range of their respective variables. Under these constraints, we identify 79
instances where the algorithm selection result can be shifted from selecting one algorithm to another, as illustrated in Figure
10. The first heatmap on the left depicts the total intervention magnitude for each sample, with darker colors indicating
larger interventions. The second heatmap on the right shows the intervention magnitudes for each feature across samples,
where white indicates no intervention, and color gradients from light yellow to deep blue or red reflect small to large positive
or negative interventions, respectively. The arrows between the heatmaps indicate decision changes by DAG-AS, such as
“a→ b,” which denotes a transition from selecting algorithm a to algorithm b.

Case Study of Instance 1846: Taking Instance 1846 as an example, applying interventions of -0.00796, -0.00339, -0.07072,
-0.00342, 0.00252, -0.00003, and -0.05042 to features 10, 11, 13, 14, 16, 26, and 28 respectively alters its optimal algorithm
choice from candidate algorithm 3 to candidate algorithm 1. Conversely, applying interventions of 0.01116, 0.00685,
0.07201, 0.02622, 0.19386, -0.00242, and -0.15107 to features 2, 3, 5, 6, 8, 19, and 21 changes the choice from candidate
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Figure 10. Demonstration of counterfactual explainability on GRAPHS-2015 dataset. The correspondence between the IDs and names of
algorithm features are provided in Table 4. Algorithm IDs 0, 1, 2, and 3 correspond to glasgow2, lad, supplementallad, and vf2 in the
GRAPHS-2015 dataset, respectively.

algorithm 3 to candidate algorithm 0.

Insights from the Heatmaps: The heatmaps indicate that small interventions on certain variables can effectively prompt
DAG-AS to make different selection choices. Features 11, 13, 14, 16, 19, and 26 exhibit high sensitivity to perturbations,
requiring minimal changes to influence DAG-AS’s decision-making. Although features 2, 3, 5, 6, and 8 are less sensitive,
their significant interventions can still lead to different outcomes. Overall, only 1.36% of all samples can shift their selection
results under the defined limits and range of interventions. Notably, aside from Instance 1846, which exhibited two possible
direction shifts, all other samples transitioned towards a single candidate algorithm. This underscores the robustness of
DAG-AS’s decision-making process.

This analysis highlights DAG-AS’s capability to offer interpretable insights through causal graph-based counterfactual
reasoning. By strategically applying minimal interventions, we can gain a deeper understanding of how specific features
influence algorithm selection, thereby enhancing the transparency and reliability of DAG-AS in practical applications.
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