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ABSTRACT

Machine learning algorithms are increasingly being deployed for high-stakes sce-
narios. A sizeable proportion of currently deployed models make their decisions in
a black box manner. Such decision-making procedures are susceptible to intrinsic
biases, which has led to a call for accountability in deployed decision systems. In
this work, we focus on user-specified accountability of decision-making processes
of black box systems. Previous work has formulated this problem as run time
fairness monitoring over decision functions. However, formulating appropriate
specifications for situation-appropriate fairness metrics is challenging. We con-
struct AVOIR, an automated inference-based optimization system that improves
bounds for and generalizes prior work across a wide range of fairness metrics.
AVOIR offers an interactive and iterative process for exploring fairness violations
aligned with governance and regulatory requirements. Our bounds improve over
previous probabilistic guarantees for such fairness grammars in online settings.
We also construct a novel visualization mechanism that can be used to investigate
the context of reported fairness violations and guide users towards meaningful
and compliant fairness specifications. We then conduct case studies with fairness
metrics on three different datasets and demonstrate how the visualization and im-
proved optimization can detect fairness violations more efficiently and ameliorate
the issues with faulty fairness metric design.

1 INTRODUCTION

The use of advanced analytics and artificial intelligence (AI), along with its many benefits, poses im-
portant threats to individuals and broader society at large. Hirsch et al. (2020) identify: invasion of
privacy; manipulation of vulnerabilities; bias against protected classes; increased power imbalances;
error; opacity and procedural unfairness; displacement of labor; pressure to conform, and intentional
and harmful use as some of the key areas of concern. A core part of the solution to mitigate such
risks is the need to make organizations accountable and ensure that the data they leverage and the
models they build and use are both inclusive of marginalized groups and resilient against societal
bias. Deployed AI and analytic systems are complex multi-step processes that can produce several
sources of risk at each step. At each of these stages, determining accountability in the decision mak-
ing in AI processes requires a determination of who is accountable, for what, to whom, and under
what circumstances (Nissenbaum, 1996; Cooper et al., 2022). A more comprehensive overview of Contextualizing

wrt Nissenbaumthe mechanisms that can support accountability with respect to the different stages of design of a
machine learning system ca be found in the work of Cooper et al. (2022). We center our analy-
sis on the sub problem of auditing barriers towards investigating claims surrounding mathematical
guarantees of automated decision making processes. Governments across the world are wrestling
with the implementation of auditing regulation and practices for increasing the accountability of de-
cision processes. Recent examples include the New York City auditing requirements for AI hiring
tools (Vanderford, 2022), European data regulation (GDPR 2018), accountability bills 2019; 2021
and judicial reports 2018. These societal forces have led to the emergence of checklists (Mitchell
et al., 2019; Sokol & Flach, 2020), metrics of fairness (Verma & Rubin, 2018), and recently, algo-
rithms and systems that observe and audits the behavior of AI algorithms. Such ideas date back to the
1950s (Moore, 1956) but research has largely been sporadic until very recently with the widespread
use of AI-based decision making giving rise to the vision of algorithmic auditing (Galdon Clavell
et al., 2020). We present a framework for Auditing and Verifying fairness Online through Interactive

1



Under review as a conference paper at ICLR 2023

Concentration Bound

Confidence Sets
Inference Engine

Monitoring System

Optimization Objective
Tree Visualization

Constrained Optimization Solver

Figure 1: Shaded nodes describe our contributions in the AVOIR framework.

Refinement (AVOIR) 1. AVOIR builds upon the ideas on distributional probabilistic fairness guaran-
tees (Albarghouthi & Vinitsky, 2019; Bastani et al., 2019), generalizing them to real-world data. An
overview of AVOIR is provided in Figure 1.

1.1 PRELIMINARIES

Machine learning testing (Zhang et al., 2020) is an avenue that can be used to expose undesired be-
havior and improve the trustworthiness of machine learning systems. Fairness criteria quantify the
relationship between the outcome metric across multiple subgroups or similar individuals among
the population. Formal definitions of fairness focus on observational criteria, i.e., those that can
be written down as a probability statement involving the joint distribution of the features, sensitive
attributes, decision making function, and actual outcome. Our framework, AVOIR, supports imple-
menting a large range of group fairness criteria, including demographic parity (Calders et al., 2009),
equal opportunity (Hardt et al., 2016), disparate mistreatment (Zafar et al., 2017), and various com-
binations of these criteria. As an example, suppose r ∈ {0, 1} denotes the return value of a binary
decision function (say, candidate selection for a job), and s is an indicator denoting whether a can-
didate belongs to a minority population. The 80%-rule for disparate impact (EEOC, 1979; Feldman
et al., 2015)is a fairness criterion which states that

Pr[r = 1|s]
Pr[r = 1|¬s]

≥ 0.8

When implemented in the AVOIR DSL grammar, the above 80%-rule would be the specification Section to intro-
duce the terms.E[r |S==s] / E[r |S!= s] >= 0.8. Here, the term E[r |S!=s ]/E[r |S == s] is a subexpression of the

specification. The smallest units involving an expectation (eg., E[r |S!=s]) are denoted as an ele-
mentary subexpressions. Our algorithm works by using adaptive concentration sets (Zhao et al.,
2016; Howard et al., 2021) to build estimates for elementary subexpressions, and then deriving the
estimates for expressions that combine them. We aim to derive statistical guarantees about fairness
criteria based on estimates from observed outputs. For example, letX be an observed Bernoulli r.v2,
then an assertion ϕX = (E[X], ε, δ) over X , corresponds to an estimate satisfying

ϕX ≡ Pr[|E[X]− E[X]| ≥ ε] ≤ δ (1)

where E[X] denotes an empirical estimate of E[X]. We then use assertions ϕX , ϕY to assert claims
for expressions involving X,Y . For example, for the 80%-rule, assertions over X/Y . A specifica-
tion involves either a comparison of expressions with constants (eg., X/Y > 0.8), or a combination
of multiple such comparisons. Such a specification may be True (T ) or False (F ) with some prob-
ability. For a given specification ψ, we denote the claim that P [ψ = F ] ≥ 1 − δ as ψ : (F, δ),
where δ denotes the failure probability of a guarantee. Given a stream of (observations, outcomes
from the decision functions), and a specified threshold probability δ, we will continue to refine the
estimate for a given specification until we reach the threshold. We focus on fairness criteria that
can be expressed using Bernoulli r.v. as it allows the simplification of probabilities into expectation,
as Pr[r = 1] = E[r]. Specifications involving variables that take more than two values can be
implemented using transformations and boolean operators (examples in Appendix H).

2



Under review as a conference paper at ICLR 2023

1.2 RELATED WORK

There are a plethora of fairness criteria and subtle changes in their definition can change the im-
plications on decision making (Castelnovo et al., 2021). Practitioners need support when select-
ing, designing, and guaranteeing fairness for deployed machine learning algorithms. Prior work
on fairness has helped develop nuanced notions and algorithms to help train more ‘fair’ machine
learning models. These include group fairness measures such as, inter alia, minimizing disparate
impact (Calders et al., 2009; Feldman et al., 2015), maximizing the equality of opportunity (Hardt
et al., 2016) In contrast with group fairness notions, causal notions of fairness Kusner et al. (2017)
and individualized notions of fairness Dwork et al. (2012) provide alternative statistical mechanisms
for understanding discriminatory behaviors of automated decision systems. Thomas et al. (2019)
proposed the Seldonian Framework as a generic mechanism for model users to design algorithms
that help train machine learning models that can regulate them against undesirable behaviors.

We focus on the problem of detecting and diagnosing whether systems designed under any frame-
work follow any prescribed regulatory constraints that are supported within the grammar of AVOIR.
That is, we are agnostic to the design itself; rather, we are interested in testing the adherence of mod- More nuanced

comparisonels to specified criteria. We use a probabilistic framework to verify this behavior. Alternative frame-
works such as the AI Fairness 360 (Bellamy et al., 2019) provide mechanisms to quantify fairness
uncertainty, though they are restricted to pre-supported metrics. Uncertainty quantification (Ghosh
et al., 2021b; Ginart et al., 2022) is an alternative mechanism to provides adaptive guarantees, how-
ever, existing work is designed for commonly used outcome metrics such as accuracy, F1-score, etc.,
rather than for fairness metrics. Justicia (Ghosh et al., 2021a) optimizes uncertainty for fairness met-
rics estimates using stochastic SAT solvers but can only be applied to a limited class of tree-based
classification algorithms.

Prior work on fairness testing is most closely related to AVOIR. Fairness testing (Galhotra et al.,
2017) provides a notion of causal fairness and generates tests to check the fairness of a given
decision-making procedure. Given a specific definition of fairness, Fairtest (Tramèr et al., 2017)
and Verifair (Bastani et al., 2019) build a comprehensive framework for investigating fairness in
data-driven pipelines. Fairness-aware Programming (FP) (Albarghouthi & Vinitsky, 2019) com-
bined the two demands of machine learning testing and fairness auditing to make fairness a first-
class concern in programming. Fairness-aware programming applies a runtime monitoring system
for a decision-making procedure with respect to an initially stated fairness specification. The overall
failure probability of an assertion is computed as the sum of failure probabilities of each constituting
sub-expression (using the union bound). FP does not provide any specific mechanism for splitting

1AVOIR in French means “to have” and this acronym reflects both our aspirational goal to achieve fairness
in advanced analytics and AI but also reflects what is currently verifiable given a dataset, a model and a fairness
specification.
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(a) At the same concentration ε, lower failure prob-
ability δ for the majority class.

⟨spec⟩ ::= ⟨ETerm⟩ ⟨comp-op⟩ c
| ⟨spec⟩ ∧ ⟨spec⟩
| ⟨spec⟩ ∨ ⟨spec⟩

⟨ETerm⟩ ::= E[⟨E⟩]
| E[⟨E⟩|⟨E⟩]
| c ∈ R
| ⟨ETerm⟩ {+,−,×,÷} ⟨ETerm⟩

(b) ⟨E⟩ refers to pure expressions and ⟨comp − op⟩
is any comparison operator ∈ {>,<,=, ̸=}.

Figure 2: (Left) Failure probability of Bernoulli r.v. being concentrated around its mean for different
n. H = (online) Hoeffding, AH = Adaptive Hoeffding. (Right) Modified Grammar for Specification.
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uncertainty, and Verifair splits it equally across all constituent elementary subexpressions. Thus, as-
sertion bounds for subexpressions in both FP and Verifair are split inefficiently. Proving guarantees
for overall uncertainty across multiple groups can be ameliorated by balancing it across subexpres-
sions with differences in the number of observed samples. For example, consider Bernoulli r.vsX1,2

for which we derive concentration guarantees Pr[|E[Xi] − E[Xi]| ≥ εi] ≤ δi after ti observations.
From the Hoeffding inequality, δ = 2e−2tε2 . We can claim tighter guarantees for X2 if t2 > t1 as Clarify the con-

centration.the failure probability is lower at the same concentration ε. That is, ε1 = ε2, t2 > t1 =⇒ δ1 > δ2.
Varying ε across subexpressions to minimize the overall δ = δ1+δ2 allows convergence in fewer it-
erations. This observation motivates us to optimize over sub-expressions and provide tighter overall
concentration for compound expressions. Adaptive versions of these inequalities also have similar
patterns (see Figure 2a).

1.3 AVOIR: KEY CONTRIBUTIONS

We now summarize our contributions vis-à-vis FP and Verifair. (1) We build up AVOIR in the
framework of confidence sets (Howard et al., 2021) which enables the adaptive optimization of δ
across subexpressions. Note that FP provides examples with equal splits across two terms though
it makes no specific prescription of splits. Verifair splits uncertainty equally across all elementary
subexpressions. (2) The confidence sets framework allows us to move away from assuming a known
data distribution or alternatively, fitting a density estimator over the population prior to fairness
testing, required in Verifair. (3) We augment the bound propagation rules to facilitate the online
optimization process and allow propagation of constraints along with assertions at each iteration. (4) New contributions

section.We build an inference engine that supports automated inference of propagation rules for wide range
of metrics. In Section 3, we provide examples of inference over specifications involving over two
subexpressions, which are not possible without extending the implementations provided by previous
work. As a baseline, we also implement bound inference rules from Verifair (denoted AVOIR-VF).
(5) We support interactive diagnosis of fairness specification violations using visual cues associated
with convergence of subexpressions. We demonstrate the use of these cues to help drive the design
of specifications in Section 3.2, which show how a user may have audited their original claim and
refined mathematical bounds.

2 AVOIR FRAMEWORK

2.1 LANGUAGE SPECIFICATION

We describe AVOIR’s Domain Specific Language (DSL) used for specifying fairness metrics. Con-
crete examples of implemented specifications in AVOIR’s DSL are provided in Section 3. We focus
on binary decision making functions; their outputs can be characterized by Bernoulli r.v.s. Note
that for such a Bernoulli r.v. X , E[X] = Pr[X = 1] and hereafter, these are used interchangeably.
Fairness specifications are implemented as decorators over decision functions. Consider a decision
function f : X → {0, 1}, where X = (X1, . . . , Xk) denotes a real-valued input vector. We use
R = f(X) to simplify the remainder of the definitions.

• To support expressions beyond those that produce binary outputs, we use the grammar to
construct Bernoulli r.vs. For example, a ν-threshold based real-valued output, R′ = (R >
ν) and a multi-class output, for class j, R′ = (R == j) correspond to Bernoulli r.vs. Expanded defini-

tions• Expressions involving R and Xi act as the arguments <E> to construct an <ETerm>. For
example E[R > 0|X1 +X2 > a] is an elementary subexpression and an <ETerm>

c terms represent constant real values, used, for example, as bounds for expressions. The grammar
provided in Figure 2b can be then used to construct various group fairness criteria. We modified the
grammar from prior work to include two additional operations. First, we added a given argument
to the expectation term, which allows a user to specify conditional probabilities directly, in contrast
to specifying it as a ratio of joint/marginal probabilities.

E(A ∨ (B = b))

E(B = b)
→ E(A, given = (B = b))
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which is used to represent E[A|B = b], simplifying expressions used for group fairness specifica-
tion. Additionally, we add binary comparison operators <,>,==, ! =, which further simplifies the
process of writing specifications.

2.2 PROPAGATING BOUNDS

Generating the bounds for a specification requires propagating guarantees from elementary subex-
pressions. Assuming that observed values for each <E> correspond to an underlying random vari-
able X , a probabilistic guarantee ϕX consists of an empirical estimate E[X], a concentration bound
εX , and a failure probability δX , such that Pr[|E[X]− E[X]| ≥ εX ] ≤ δX . We refer to expressions
of this form as elementary subexpressions. A fairness specification will typically consist of mul-
tiple such elementary expressions, denoted as compound expressions. For compound expressions,
we must infer the implied guarantees that can be provided, with corresponding constraints. Each
inference rule corresponds to a derivation in the DSL grammar. Inference rules have preconditions
and postconditions that follow the general expression⋃

{r|r ∈ {ϕ, ψ,C}}⋃
{s|s ∈ {ϕ, ψ,C}}

where ϕ denotes a claim for a subexpression, ψ for a <spec>, E and ε are the mean and concen-
tration terms associated with a subexpression claim, C denotes a constraint. For example, consider Updated the lan-

guage to show the
assumptions

starting with the assumptions X : (E[X], εX , δX), Y : (E[Y ], εY , δY ). Then we have

|E[X]± E[Y ]− (E[X]± E[Y ])| = |(E[X]− E[X])± (E[Y ]− E[Y ])|
≤ |E[X]− E[X]|+ |E[Y ]− E[Y ]|
≤ εX + εY

i.e., we can derive X ± Y :
(
E[X]± E[Y ], εX + εY , δX + δY

)
. Some derivations also lead to

rules that require constraints. For instance, assume X : (E[X], εX , δX),E[X] > c. Then we
have Pr[X < E[X] − εX ] > 1 − δ If we add the constraint that E[X] − εX ≥ c, we have
Pr[X < c] > 1− δ, thus,

X : (E[X], εX , δX) =⇒ ψ ≡ X > c : (T, δX)

under the constraint {E[X]− εX ≥ c}

The full set of inference rules required for the DSL is provided in the appendix (Figure 5). The im-
plementation in AVOIR follows these rules but can be extended to other rule inference templates that
support the DSL. We note that these rules extend the ones implemented by VeriFair (VF)3 (Bastani
et al., 2019) with constraints that enable the optimizations required in AVOIR (see Appendix A).

2.3 OPTIMIZING BOUNDS

2.3.1 AVOIR ALGORITHM

The pseudocode for the optimization procedure in AVOIR is described in the appendix (Algo-
rithm 1). The input to the algorithm is the reporting threshold probability ∆ and a specification
ψ. We then infer a symbolic optimization problem is inferred corresponding to the failure probabili-
ties and constraints derived from concentration bounds. At each step, the OBSERVE(X) function is
called with new observation of every elementary subexpression and observed output. The running
mean and counts of observations are updated. The final optimization problem OPT corresponding
to each specification is a nonlinear constrained optimization problem. We use the COIN-OR im-
plementation of IPOPT (Wächter & Biegler, 2006), accessed though the Pyomo (Hart et al., 2011)
interface to solve this problem at each step. If a solution is successfully found for OPT, the algo-
rithm terminates, with the estimate for the specification having reached the required threshold. If no
solution is found, the estimates continue to be updated with δi = ∆ for each elementary subexpres-
sion. The main intuition behind the algorithm is to create a confidence sequence corresponding to

3Verifair
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the estimates at each time step. The OPT corresponding to a specification:

min
δi

n∑
i=1

δi

s.t. gk(δ1,...,n,E[X1], . . . ,E[Xn]) ≤ εk

0 ≤ δi ≤ 1

(2)

where gk and εk are the functions/bounds derived using the transformations carried out through the
DSL inference rules (further details in Appendix A.2).

Definition 1. For δ ∈ (0, 1), a (1 − δ) confidence sequence is a sequence of confidence sets,
usually intervals (CIt)

∞
t=1,, say CIt :=(Lt,Rt) ⊆ R satisfying a uniform convergence guarantee.

After observing the tth unit, we calculate an updated confidence set CIt for an unknown quantity of
interest θt with the coverage property Pr(∀t ≥ 1, θt : θt ∈ CIt) ≥ 1− δ (Howard et al., 2021).

In this paper, we focus on the mean of r.v.s E[X] that constitute estimates for elementary subex-
pressions as the quantities of interest. We use adaptive concentration inequalities to construct these
confidence sequences. Any adaptive concentration inequality that can be applied to a r.v. X ∈ {0, 1}
such that

Pr[|Et[X]− E[X]| ≥ ε(t, δ)] ≤ δ (3)

can be used in AVOIR. Here, Et[X] denotes the empirical estimate of E[X] after the tth observa-
tion. For the purpose of comparison with previous work (eg., VF), we use the Adaptive Hoeffding
Inequality (Zhao et al., 2016), which will be referred to as AIN hereafter.

Theorem 1. The sequence of estimates generated by AVOIR form a confidence set.

The proof follows from the fact that AVOIR always estimates using a failure probability higher than
that which is provided by AIN, and hence applying a union bound ensures that the estimates are a
confidence set. The full proof is provided in Appendix C.

Corollary 1.1. The estimates for the overall specification ψ form a confidence sequence converging
to ψ : (b,∆), b ∈ {T, F}.

Proof. We initialize the main specification with the required failure probability ∆. The termina-
tion condition requires

∑
δi ≤ ∆. From Theorem 1 we can infer that the confidence sequence

corresponding to the termination achieves the required threshold ∆, and therefore, is valid.

2.3.2 IMPROVEMENTS OVER BASELINE

In all prior work (Albarghouthi et al., 2017; Albarghouthi & Vinitsky, 2019; Bastani et al., 2019), δi
for each elementary subexpressions is set to ∆/n, where n is the number such term in the specifica-
tion. This simplification is carried out using the assumption Aδ := δi = δj∀i, j for all elementary Introduce Aδ
subexpressions. As we do not make this assumption, we can prove the following key theorem.

Definition 2. We define the specification stopping time T for a confidence sequence as the smallest
time t such that, given a threshold ∆ and a specification ψ, we can terminate any inference algorithm
to claim that Pr[∀t ≥ 1, ψt = ψ̂T ] ≥ 1−∆, where ψ̂T is the estimate of ψ at time T .

Theorem 2. Given a threshold probability ∆ for a specification ψ, let the stopping time for AVOIR
be T and stopping time with the Aδ assumption be T +. Then T ≤ T +

See Appendix D for the proof.

Concrete Example Consider a Bernoulli r.v R corresponding to the output of a binary decision
function, with s being an indicator of class membership. Let X = r ∨ s and Y = r ∨ ¬s be r.vs
corresponding to a positive decision for the majority and minority classes, respectively. Suppose we
aim to estimate ψ :=X − Y < εT

We demonstrate the improvements possible using our approach by instantiating this example with
data. Suppose we want the upper bound of the failure probability ∆ = 0.1 for the specification.
Consider a set of observations such that E[X] = 0.8, nX = 1550 and E[Y ] = 0.5, nY = 310.
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(a) No solution exists with additional constraint
Aδ : δX = δY = ∆/2 - common assumption in
prior work.

(b) Bounds for first half of a gender-fairness speci-
fication generated by AVOIR-OB and AVOIR-VF.

Figure 3: (Left) AVOIR finds a solution for a theoretical scenario with δX+δY ≤ ∆ under constraint
εX + εY ≤ εT (Right) For RateMyProfs, a real-world dataset, the vertical lines show the step at
which the methods can provide a guarantee of failure for the upper bounds with ∆ <= 0.05.

Figure 3a shows that no solution is feasible for the optimization problem withAδ . However, AVOIR
can find a solution. For the optimal solution, δ2 ≈ 2.35δ1, which aligns with our intuition from
section 1.2 about allocating higher failure probability to terms with the majority of observations.
The optimization problem inferred by AVOIR:

min
δX ,δY

δX + δY

s.t. εX + εY ≤ E[X]− E[Y ]− εT

0 ≤ δX,Y ≤ 1

(4)

2.4 VISUALIZATION FOR INTERACTIVE REFINEMENT

Using our specification framework as a backend, we built an interactive application for analysis and
refinement of specifications provided in our grammar. Specifically, fairness specifications can be
naturally parsed into a tree because of the structure of the grammar. Each node of the tree represents
some sub-expression in the syntax tree of the overall specification. These nodes allow a user of
AVOIR to interactively audit and tune the specification definition. To create the visualization, we
use Vega (Satyanarayan et al., 2015), a declarative JSON-based visualization grammar. We log the
estimates during runs of AVOIR and then output the grammar in a tabular JSON-format that contains
a row for each grammar element and its associated evaluations. This tabular data is used by our Vega
specification to produce the visualizations. By selecting one of the nodes in the syntax tree, a user
can see a plot of the evaluation values associated with the selected grammar element. This allows
for comparison of multiple grammar elements. The ability to analyze and compare these evaluation
values provides context surrounding specification violations, and assists the user in interacting with
and deciding how to refine a specification We provide a detailed example of how these interactions
can help AVOIR users choose an appropriate fairness metric in Section 3.

3 CASE STUDIES

The following text describes two real-world scenarios for AVOIR. We implement Verifair inference
rules in the AVOIR (denoted as AVOIR-VF) framework, which allows us to sidestep the assumptions
of a having a known data generating distribution, making it more efficient than Verifair. We denote Explaining

AVOIR-VFAVOIR-OB as the implementation which also utilizes the constraints and optimization framework.
An important case study on the COMPAS dataset can be found in Appendix G.
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3.1 RATE MY PROFS

In this section, we provide a detailed black-box machine learning model (ML) based case study on
a real-world dataset. In this case study, we use the rate my professors (RMP) dataset released by
Keymanesh et al. (2021). This dataset includes professor names and reviews for them written by
students in their classes, ratings, and certain self-reported attributes of the reviewer. Ratings are
provided on a five-point scale (1-5 stars). We use the preprocessing described in Keymanesh et al.
(2021) to infer the gender attribute for the professors. This dataset is divided into an 80-20 split
(train-test). We then train a BERT-based transformer model Devlin et al. (2019) on the training split.
We use the implementation from the simpletransformers4 package. The loss function chosen is the
mean-squared error from the true ratings. On the test set, we track a gender-fairness specification in
the model outputs:

(E[r > 3 | gender = F] / E[r > 3 | gender = M < 1.2) &
(E[r > 3 | gender = M)] / E[r > 3 | gender = F] > 0.8)

We set the failure probability ∆ = 0.05. OPT is run after each batch (5 items/batch). Figure 3b
shows that AVOIR-OB5 can provide a guarantee in 2.5% fewer iterations than AVOIR-VF. Note
also that the OB guarantee provided tries to optimize for the failure probability while staying under
the required threshold, remaining closer to the required threshold in subsequent steps.

3.2 ADULT INCOME

In this case study we use the Adult income dataset (Kohavi, 1996) which has been used frequently in
prior fairness-related work. The historical dataset labels individuals from the 1994 census as having
a high-income (> 50, 000 a year) or not (≤ 50, 000 a year). In this case study, we look at a column of
data as a black-box measurement (internally, we use a materialized view, details in Appendix G.1).

US Federal laws mandate against race and sex based discrimination. Thus, the specification we
start our analysis with is a group fairness property that monitors the difference of the proportions of
individuals with sex recorded as male that have a high income to females that have a high income
should be less than 0.5. In addition, we ensure that the difference between individuals with race
marked as white and those without should have a difference of less than 0.5. The associated specifi-
cation is given below, where h is an indicator for whether an individual is high-income is the binary
classification output of our model:

(E[h | sex=M] − E[h | sex=F] < 0.5) & \
(E[h | race=W] − E[h | race!=W] < 0.5)

In this example, we set the failure threshold probability ∆ = 0.15

When run with this specification, the generated materialized view cannot achieve the required bound.
We can then use our iterative refinement visualization tool to analyze different components of the
specification. A developer would first interact with the left subtree of the specification. Due to
paucity of space, this visualization is presented in Appendix G.2. The plot for the corresponding
data is shown in Figure 4a shows that guarantees cannot converge under the threshold with the given
number of data samples. The developer can now choose to either reduce the guarantee (i.e. reduce
δ) or increase the threshold. Next, analyzing the right subtree, the race group fairness term can be
guaranteed to be under the threshold (Figure 4b). Using this information, the developer can make
an intelligent decision to increase the threshold on the group fairness for term for sex. Suppose
they increase it to 0.55 and rerun the analysis. OB is able provide a guarantee at this threshold
within 870 steps, whereas VF can provide it at 960 steps, demonstrating a relative improvement
of about 10.35%. Additionally, the optimal δ split across the terms are ≈ (0.135, 0.36 ∗ 104)
which is far from the equal split allocated by VF. The reason for this split is because increasing the
threshold for the first time provides the optimizer with additional legroom to better distribute the
failure probabilities between the two terms.

4https://simpletransformers.ai/
5OB = Optimized Bounds
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(a) Group fairness for sex. Difference in ratio of high
income earners in left subtree for initial specification.

(b) Group fairness for race (difference in ratio of high
income earners) in right subtree for initial specifica-
tion.

Figure 4: (Left) Red dotted lines the upper bound of the value cannot be guaranteed to be under the
threshold at the specified failure probability. (Right) Guarantee possible with given data.

4 DISCUSSION & FUTURE WORK

The case studies presented in the previous section demonstrate the ability of our tools to provide
vital context when deciding how to refine a model or fairness specification. Although this contex-
tual information makes decisions easier, it is not always clear how one should alter a specification in
light of a violation and its relevant context. To assist in these decisions, we are currently examining
ways work to suggest edits that are likely to achieve the desired intent of a developer. Using our vi-
sual analysis tool for refinement, we can gather edits from developers and then use that data to learn
iterative changes to the syntax tree of the specification. In addition to improving the usability of our
tools for making fairness specification refinements, we also envision a more scalable framework.
Our case studies look at a single model with respect to a single dataset. However, real-world de- Non stationary

data is future
work

ployment of machine learning often contain many clients with models and datasets that may evolve
and drift over time. We take it as future work to study the efficient monitoring of machine learning
behavior with respect to a fairness specification in a distributed context, enabling horizontal scala-
bility. We believe techniques such as decoupling the observation of data and the reporting results
from the monitoring of the results are promising and can lead to the desired scalability.

5 CONCLUSION

We present the AVOIR framework for easily defining and monitoring fairness specifications online
and aids in the interactive refinement of specifications. AVOIR is easy to integrate within modern
database systems but can also serve as a standalone system evaluating whether black box machine
learning models are meeting specific fairness criteria on specific datasets (including both structured
and unstructured data) as described in our case studies. AVOIR extends the grammar from Fairness
Aware Programming Albarghouthi & Vinitsky (2019) with operations that enhance expressiveness.
In addition we derive probabilistic guarantees that improve the confidence with which specification
violations are reported. To assist in refinement of specifications, we develop an interactive visual
analysis application within AVOIR. Through case studies, we demonstrate that AVOIR can provide
users with insights that contribute directly to refinement decisions. Our framework builds the foun-
dation for further improvements to the fairness specification, auditing and verification workflow.
We plan to extend this work to provide intelligent specification refinement suggestions and support
distributed machine learning settings. We also plan to explore the use of AVOIR for fair ranking
problems and tailored database integration.

9
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6 REPRODUCIBILITY

To enhance the reproducibility of our work, on the theoretical side, all proofs (with the necessary
assumptions) are provided in the appendix. Specifically, proofs for the inference engine are in Ap-
pendix A, and proofs for the correctness of bounds are provided in Appendix C. Theorem 2, which
shows how AVOIR improves over prior work is proved in Appendix D. To reproduce the results
of the case studies in the paper, each case study is encapsulated inside a Jupyter notebook. These
notebooks are attached along with the source code for AVOIR. In addition, all datasets used for
generating results for the case studies are also attached in the submitted supplementary documen-
tation. Finally, the model weights used for the RateMyProfs study for exact reproduction are pro-
vided in a dropbox folder hosted at https://www.dropbox.com/sh/n5o4vswnkxv34zr/
AABthgLMaYL3MuA0KC39Z1G8a?dl=0.

REFERENCES

Aws Albarghouthi and Samuel Vinitsky. Fairness-aware programming. In Proceedings of the Con-
ference on Fairness, Accountability, and Transparency, pp. 211–219, 2019.

Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V Nori. Fairsquare: probabilis-
tic verification of program fairness. Proceedings of the ACM on Programming Languages, 1
(OOPSLA):1–30, 2017.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In Ethics of Data and
Analytics, pp. 254–264. Auerbach Publications, 2016.

Abolfazl Asudeh, H. V. Jagadish, Julia Stoyanovich, and Gautam Das. Designing fair ranking
schemes. In Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim
Kraska (eds.), Proceedings of the 2019 International Conference on Management of Data, SIG-
MOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pp. 1259–1276.
ACM, 2019.

Osbert Bastani, Xin Zhang, and Armando Solar-Lezama. Probabilistic verification of fairness prop-
erties via concentration. Proceedings of the ACM on Programming Languages, 3(OOPSLA):
1–27, 2019.

R. K. E. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan, P. Lohia, J. Martino,
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A INFERENCE RULES

In Figure 5, we provide a set of rules that can be used to determining the constraints and guarantees
associated with a specification. We represent

X ⊙ Y : (E, ε, δ) ≡ Pr (|E[X]⊙ E[Y ]− E| ≥ ε) ≤ δ

where ⊙ represents a binary operator. Constraints are represented in curly brackets {}.

The proof of correctness for each inference rule starts from the assumptions above the horizontal line
and derives the assertions below. These proofs use ideas similar to those in Bastani et al. (2019). We
reproduce the proofs in Appendix A.1 here for completeness. Note that the assertions in the base AIN
case (elementary subexpressions) can be arrived at by applying the Adaptive Hoeffding INequality,
(AIN).

A.1 INFERENCE RULES WITH CONSTRAINTS

In Section 2.2 we provided the proofs forX±Y ,X > c. In the following text we provide the proofs
for the remainder of the inference rules.

Product Starting with ϕX = X : (E[X], εX , δX), ϕY = Y : (E[Y ], εY , δY ). First, from union
bound, both of these hold true with probability at least 1− δX − δY . Then,

|E[X]| = |E[X]− E[X] + E[X]|
≤ ||E[X]|+ |E[X] + E[X]|
≤ ||E[X]|+ εX

We have

|E[X]E[Y ]− E[XY ]| = |E[X]E[Y ]− E[X]E[Y ]| (as X,Y Bernoulli)

= |E[X]E[Y ]− E[X]E[Y ] + E[X]E[Y ]− E[X]E[Y ]|
= |E[X](E[Y ]− E[Y ]) + E[Y ](E[X] − E[X])|
≤ |E[X]||(E[Y ]− E[Y ])|+ |E[Y ]||(E[X] − E[X])|
≤ |E[X]|εY + |E[Y ]|εX
≤ |E[X]|εY + (|E[Y ]|+ εY )εX

= |E[X]|εY + |E[Y ]|εX + εXεY

Therefore, X × Y : (E[X]E[Y ], εXεY + E[X]εY + E[Y ]εX , δX + δY )

13
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X :
(
E[X], εX , δX

)
, Y :

(
E[Y ], εY , δY

)
X ± Y :

(
E[X]± E[Y ], εX + εY , δX + δY

)
X :

(
E[X], εX , δX

)
, Y :

(
E[Y ], εY , δY

)
X × Y : (E[X]E[Y ], εXεY + E[X]εY + E[Y ]εX , δX + δY )

X :
(
E, ε, δ

)
,E− ε > 0

X−1 :
(
E−1

, ε
E(E−ε) , δ

) (Inverse)
X :

(
E, ε, δ

)
X−1 :

(
E−1

, ε
E(E−ε) , δ

)
, {E− ε > 0}

(Inverse Constr.)

X :
(
E, ε, δ

)
,E− ε > c

ψ ≡ X > c : (T, δ)
(True)

X :
(
E, ε, δ

)
,E+ ε < c

ψ ≡ X < c : (F, δ)
(False)

X :
(
E, ε, δ

)
ψ ≡ X > c : (T, δ), {E− ε > c}

(True Constr.)

X :
(
E, ε, δ

)
ψ ≡ X < c : (T, δ), {E+ ε < c}

(False Constr.)

ψ1 : (B1, δ1), ψ2 : (B2, δ2)

ψ1 ∧ ψ2 : (B1 ∧ B2, δ1 + δ2)
(and)

ψ1 : (B1, δ1), ψ2 : (B2, δ2)

ψ1 ∨ ψ2 : (B1 ∨ B2, δ1 + δ2)
(or)

ψ1 : (B1, δ1), {C11,...,1k}, ψ2 : (B2, δ2), {C21,...,2m}
ψ1 ∧ ψ2 : (B1 ∧ B2, δ1 + δ2), {C11,...,1k, C21,...,2m}

(and constr.)

ψ1 : (B1, δ1), {C11,...,1k}, ψ2 : (B2, δ2)

ψ1 ∨ ψ2 : (B1 ∨ B2, δ1 + δ2), {C11,...,1k} ∨ {C21,...,2m}
(or constr.)

Figure 5: Inference rules used to guarantees for expressions.The inference rules for each compound
expression build on the union bound, triangle inequality, and structural induction approach described
by Bastani et al. (2019).
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Inverse/Inverse constr. Assume X :
(
E, ε, δ

)
and E− ε > 0. Instead, in the constrained case, we

start with only the prior assumption i.e., X :
(
E, ε, δ

)
Then,

|E[X]| = |E[X]− E[X] + E[X]|
≤ |E[X]− E[X]|+ |E[X]|
≤ εX + |E[X]|

i.e., |E[X]| ≤ εX + |E[X]|. Also,

|E[X]−1 − E[X]−1| =
∣∣∣∣E[X]−1 − E[X]−1

E[X]E[X]−1

∣∣∣∣
≤ ε

|E[X]||E[X]|

≤ ε

|E[X]|(E[X]− εX)

where the last step follows from the previous derivation and if E[X]− εX > 0. The latter condition
enforces that the sign of the inequality does not change. VF adds this as a precondition; we add it as
a post-constraint.

Boolean Operators Starting from ψ1 : (b1, δ1), ψ2 : (b2, δ2), we can apply the union bound for
ψ1 ∧ψ2, ψ1 ∨ψ2 to derive the rules for and/or. Similarly, constraints follow the semantics specified
by the rules as they also follow from the union bound.

A.2 INFERRED OPTIMIZATION PROBLEM

For a given overall specification ψ, suppose (εi, δi), i ∈ {1, . . . , n} represents the concentration
bounds associated with each constituent elementary subexpression. Using the aforementioned infer-
ence rules, we can derive the overall δT =

∑
i

δi, along with a set of (say) K constraints

gk(ε1, . . . , εn,E[X1], . . . ,E[Xn]) ≤ εk

where
εk =

∣∣ck − E[f(E[X1], . . . ,E[Xn])]
∣∣

denotes the maximum allowed margin for the kth inequality subexpression (i.e. having form
<ETerm> <comp-op> c). The objective is to minimize the overall failure probability δT . The
overall optimization problem can then be formulated as shown in 2, having n optimization variables
δi and 2n + K constraints (bounds on δi provide the 2n constraints). A developer using AVOIR
inputs a required acceptable upper bound of failure probability ∆. If the solution to the optimization
problem δ∗T =

∑
i δi ≤ ∆, then the optimization can conclude with the required confidence in the

proved guarantee. At this point, the developer may choose to terminate AVOIR. However, using
Corollary 4.1, they may continue to run and refine the estimates.

B CONCENTRATION BOUNDS

The adaptive Hoeffding inequality (Zhao et al., 2016; Bastani et al., 2019).
Theorem 3. Given a Bernoulli random variable X with distribution PX . Let {Xi ∼ PX}, i ∈ N be
i.i.d samples of X . Let

Et[X] =
1

t

t∑
i=1

Xi.

Let T be a random variable on N ∪ {∞} such that Pr[T <∞] = 1, and let

ε(δ, t) =

√
3
5 log (log1.1 t+ 1) + 5

9 log (24/δ)

t
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Then, for any δ ∈ R+, we have

Pr[|ET [X]− E[X]| ≤ ε(δ, T )|] ≥ 1− δ

.

Theorem 3 provides a mechanism for choosing the stopping time using arbitrary methods for a fixed
δ. Note that in general, any adaptive concentration inequality suffices; we use the Hoeffding inequal-
ity that does not depend on the empirical variance but is frequently used in scenarios dealing with
bounded r.vs. However, we use confidence intervals to visualize the evolution of sub-expressions
(and overall specification) over the sequence of observations. For doing so, we require an additional
result

Theorem 4. (Zhao et al., 2016, Proposition 1, Lemma 1) Let Sn =
∑n
i=1Xi be a random walk

from i.i.d. random variables X1, . . . , Xt ∼ D. For any δ > 0,

Pr[ST ≥ f(T )] ≤ δ

for any stopping time T if and only if

Pr [∃n, St ≥ f(t)] ≤ δ

Corollary 4.1. For any δ > 0,

Pr[|ET [X]− E[X]| ≤ ε(δ, T )|] ≥ 1− δ

for any stopping time T if and only if

Pr
[
∀t, |Et[X]− E[X]| ≤ ε(δ, t)|

]
≥ 1− δ

Proof. Follows directly from applying Theorem 4 to Theorem 3.

Intuitively, Theorem 3 holds since we can choose an adversarial stopping rule for T that terminates
as soon as the boundary for ε(δ, t) is crossed (Zhao et al., 2016). Thus, when we establish a bound
with a stopping rule, as long as the underlying distribution remains unchanged, the bound will hold
prior to and after the stopping rule is enforced. Theorem 4.1 implies that once we choose an optimal
bound for each subexpression, we can extend the bounds derived using Theorem 3 to following
observations with the guarantees for the subexpressions still holding true.

C CONFIDENCE SEQUENCES

In this section, we show that the estimates generated from AVOIR form a confidence set (Theo-
rem 1). First, we assume the existence of a concentration sequence for the mean of each elementary
subexpression (eg., Theorem 3 can provide one). That is, we need a function ε(t, δ) such that

Pr[∀t ≥ 1, |Et[X]− E[X]| ≤ ε(t, δX)] ≥ 1− δX . (5)

For convenience of exposition, we denote such adaptive inequality functions as AIN. For any AIN
to be usable with AVOIR, we require ε(t, δ) to be monotonically non-increasing in δ and n. We
expect this to be the case for most AIN, since increasing the number of observations of increasing
the failure threshold should allow for additional concentration around the mean. For example, the
adaptive Hoeffding inequality (Theorem 3) follows this assumption. Second, we assume that, except
in degenerate cases, AVOIR terminates (see corollary 4.2 for termination criteria). We now prove
Theorem 1.

Proof. First, we will prove that the estimates for elementary subexpressions are a confidence se-
quence. Following this, using the inference rules from Appendix A, we will show that the estimates
for every compound expression are also a confidence sequance.
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Elementary subexpressions Consider a specification ψ consisting of elementary subexpressions
X1, . . . , Xn. At stopping time T , let

ϕTXi
:=Xi : (ET [Xi], ε(T , δXi

), δXi
) (6)

be the stopping time estimates. Then, from the termination criterion, a solution to the optimization
problem OPT exists, i.e,

∆ ≥
∑
i

δXi (7)

The sequence of bounds claimed by AVOIR are

εXi
(t) =

{
ε(∆, t), t < T ,
ε(δXi , t), t ≥ T (8)

From equation 7 and the optimization constraint δi ∈ [0, 1] we have ∆ ≥ δXi . From the non-
decreasing behavior of AIN

ε(∆, t) ≤ ε(δi, t) (9)

Now

Pr[∀t ≥ 1, |Et[Xi]− E[Xi]| ≤ εXi
(t)]

= 1− Pr[∃t ≥ 1, |Et[Xi]− E[Xi]| > εXi(t)]

= 1− Pr

⋃
t≥1

{
|Et[Xi]− E[Xi]| > εXi

(t)
}

= 1− Pr

T −1⋃
t=1

{
|Et[Xi]− E[Xi]| > εXi

(t)
}
∪

⋃
t≥T

{
|Et[Xi]− E[Xi]| > εXi

(t)
}

(associativity of ∪)

= 1− Pr

T −1⋃
t=1

{
|Et[Xi]− E[Xi]| > ε(∆, t)

}
∪

⋃
t≥T

{
|Et[Xi]− E[Xi]| > ε(δXi , t)

}
(From 8)

= 1− Pr

[T −1⋃
t=1

{
|Et[Xi]− E[Xi]| > ε(δXi

, t) ∪ |Et[Xi]− E[Xi]| ∈ (ε(∆, t), ε(δXi
, t)]

}
∪

⋃
t≥T

{
|Et[Xi]− E[Xi]| > ε(δXi

, t)
} (Using 9)

= 1− Pr

T −1⋃
t=1

{
|Et[Xi]− E[Xi]| ∈ (ε(∆, t), ε(δXi

, t)]
}
∪
⋃
t≥1

{
|Et[Xi]− E[Xi]| > ε(δXi

, t)
}

(Rearranging)

≥ 1− Pr

⋃
t≥1

{
|Et[Xi]− E[Xi]| > ε(δXi

, t)
}

= 1− Pr
[
∃t ≥ 1, |Et[Xi]− E[Xi]| > ε(δXi

, t)
]

≥ 1− δXi

where the last step follows from the definition of the adaptive concentration bound used. Thus,
εXi(t) defines a 1− δXi confidence sequence for E[Xi].
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Compound subexpressions Consider a non-specification compound <ETerm> Cj consisting
of elementary subexpressions with indices Cj = {{j1, j2, . . . , jM}} as the decision r.v.s, i.e,
Xj1 . . . , XjM . Note that Cj is a multiset as the same expression could occur multiple times within
Cj . At stopping time T ,

ϕTCj
: (ET [Cj ], δCj , εCj ) (10)

where ET [Cj ], δCj , εCj are the corresponding values computed through the inference rules. In
general, we denote by

Et[Cj ], δCj
(t), εCj

(t) = INFER(ϕtXj1
, . . . , ϕtXjM

) (11)

the values inferred at time step t, where INFER denotes the inference rules. Now,

Pr[∃t ≥ 1, |E[Cj ]− E[Cj ]| > εCj (t)]

≤ Pr

[
M⋃
i=1

∃t ≥ 1,¬ϕtXji

]
(From 11)

≤
∑
i∈Cj

Pr
[
∃t ≥ 1,¬ϕtXji

]
(union bound)

=
∑
i∈Cj

Pr
[
∃t ≥ 1, |Et[Xji ]− Et[Xji | > εXji

(t)
]

(definition of ϕtXji
)

≤
∑
i∈Cj

δXji
(elementary subexpressions)

≤ δCj
(applying 11 for t = T )

Therefore εCj (t) defines a 1− δCj confidence sequence for E[Cj ]

A similar proof can be constructed for any <spec>. Consider any specification ψk. Let

ψtk : (b̂ψk
(t), δψk

(t)) (12)

where b̂ψk
(t) ⊆ {T, F} is the inferred value and δψk

(t) corresponds to the confidence for the
assertion at time t. Let the elementary subexpressions involved be Xk1 , . . . , XkD corresponding to
the index multiset Bk = {{k1, . . . , kD}}. Denote bψk

as the true value of ψk, and δψk
as the inferred

threshold at stopping time T . From INFER, we have

b̂k(t), δψk
(t) = INFER(ϕtXk1

, . . . , ϕtXkD
) (13)

We have
Pr[∃t ≥ 1, bk ̸∈ b̂k(T )]

≤ Pr

[
D⋃
i=1

∃t ≥ 1,¬ϕtXki

]
(From 13)

≤
∑
i∈Bk

Pr
[
∃t ≥ 1,¬ϕtXki

]
(union bound)

=
∑
i∈Bj

Pr
[
∃t ≥ 1, |Et[Xki ]− Et[Xki | > εXki

(t)
]

(definition of ϕtXki
)

≤
∑
i∈Bj

δXki
(elementary subexpressions)

≤ δψk
(applying 11 for t = T )

Thus, bψk
(t) is a 1− δψk

confidence sequence for bψk

D OPTIMALITY

Proof. Under Aδ , at the stopping time T +, δ+i = ∆/n, with
n∑
i=1

δ+i = ∆.

18



Under review as a conference paper at ICLR 2023

As δ+i are propagated using INFER (without constraint rules), we know that they must satisfy the
constraints of the optimization problem 2. At time T + AVOIR would find solution δ∗i such that

minimizes
n∑
i=1

δi.

n∑
i=1

δ∗i ≤
n∑
i=1

δ+i = ∆

Thus, AVOIR would terminate at step T +, but may find a feasible solution at an earlier step, i.e.
T ≤ T +.

Corollary 4.2. Under mild conditions, AVOIR terminates in finite steps with an assertion over the
required specification.

Proof. We know that the stopping time T ≤ T +, the stopping time for AVOIR. Thus, AVOIR
would terminate whenever Verifiar can. For completeness, we provide the conditions under which
Verifair terminates. Note that c ∈ R corresponds to a constant threshold involved in specification, Clarified c
also presented in the grammar and bound proagation rules.

• For every subexpression Ck occurring in the specification such that it is involved in the
inverse or inverse constr. rules (i.e., E[Ck]−1), E[Ck] ̸= 0, Ck ̸= 0

• For every subexpression Ck such that it occurs a True/False type inequality (such as Ck >
c), E[Ck] ̸= c, Ck ̸= c

E IMPLEMENTATION

We built a python library to create specifications that can be implemented as a decorator over de-
cision functions. The front end interactive application was implemented using streamlit6 and the
visualizations were built in Vega Satyanarayan et al. (2015). Each term in the DSL is implemented
through a corresponding python class. New input/output observations are monitored to update all
the terms in a specification. Inference for evaluating the value and bounds is carried out via operator
overloading in these classes. In line with previous work (Albarghouthi et al., 2017; Bastani et al.,
2019; Albarghouthi & Vinitsky, 2019) on distributional verification, we use rejection sampling for
conditional probability estimation.

E.1 VISUAL ANALYSIS

Using our specification framework as a backend, we built an interactive application for analysis
and refinement of specifications provided in our grammar. Given a user provided machine learning
model, dataset, and specification the application simulates a stream of observations to the provided
model. Following the simulation, a visualization is provided that represents the specification as a
syntax tree where each node of the tree corresponds to an element of our grammar. Figure 6 shows
the visualization.

Note that for each observation made by our machine learning model, the specification is evaluated
to check for violations. Each grammar element that makes up the specification is evaluated as well,
and thus each grammar element is associated with the value it evaluates to for a given observation.
For specifications <spec>, there is a boolean value associated with each observation, whereas an
expectation term, <ETerm>, is associated with a real value. By selecting one of the nodes in the
syntax tree, a user can see a plot of the evaluation values associated with the selected grammar el-
ement. We call these plots evaluation plots and two can be observed at a time each with shared
scales along the horizontal axis which denotes observations over time. This allows for comparison

6https://streamlit.io/
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Algorithm 1 AVOIR Algorithm

Input: ∆, ψ ▷∆, Specification
Output: Ts time step when the value of ψ can be guaranteed with probability ≥ 1−∆

1: for Xi ∈ ψ do
2: δXi = ∆ ▷ Set initial value ∀i
3: SXi = 0 ▷ Sum of observations
4: nXi

= 0 ▷ Number of observations
5: end for
6: T = 0 ▷ Time step
7: Initialize OPTψ ▷ Initialize Optimization Problem (Fig. 5)
8: procedure OBSERVE(X)
9: for Xi ∈ X do

10: SXi = SXi +Xi

11: nXi = nXi + 1
12: E[Xi] = SXi

/nXi

13: Initialize δXi
as a symbolic variable

14: Assign ε(δXi
, nXi

) symbolic variable
15: end for
16: Propagate δXi

using the inference rules
17: Initialize constraints gK in OPTψ using the computed values
18: δ∗T = Solve(OPTψ)
19: if δ∗T ≤ ∆ then
20: δXi = δ∗T [Xi]
21: return Ts = T
22: end if
23: T = T + 1
24: end procedure

of multiple grammar elements. The ability to analyze and compare these evaluation values provides
context surrounding specification violations, and assists the user in deciding how to refine a speci-
fication. The case studies in section 3 demonstrate the usefulness of the context provided by these
visualizations.

F AVOIR IN DATABASE SETTING

In the database literature researchers Nargesian et al. (2021), have explored an approach to tailoring
data integration strategies to ensure that the data set used for analysis has an appropriate represen-
tation of relevant (demographic) groups and it meets desired distribution requirements. The authors
describe how to acquire such data in an approximate cost-optimal manner for several realistic set-
tings. This work is orthogonal to our work and yet AVOIR can potentially integrate with the authors
approach to examine if fairness criteria are being met during the integration process. In other studies
on fairness researchers Yang et al. (2018); Asudeh et al. (2019); Sun et al. (2019), have considered
the problem of personalized fair ranking functions and discuss approaches to determine if a proposed
ranking function satisfies a set of desired fairness criteria and, if it does not, to suggest modifications
that do. AVOIR attempts to solve a more general purpose problem (not limited to any particular
fairness criteria) and is agnostic to the specific model (treats it as a blackbox). While we have not
examined the performance of AVOIR for fair ranking problems, it is something we plan to examine
in the future.

To demonstrate how AVOIR can be integrated within a database system we use pandas7 dataframes
to simulate the application of AVOIR in the database setting. Specifically, we wrap pandas
dataframes with a python ‘Database’ class, and provide a query mechanism to create materialized
views. Queries are provided in the form of python functions that take a dataframe as input and
output a corresponding dataframe. The corresponding view thus generated can be updated with in-
sertion/update/deletion of data. The specification is added as a decorator inside the refresh function,

7https://pandas.pydata.org/
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Figure 6: Tree of initial specification before refinement in the adult income dataset.

allowing AVOIR to track specifications in a database setting. Note that this tie-in with pandas is only
for ease of implementation; the inference engine and optimization can be extended to any database
engine.

G ADDITIONAL CASE STUDIES

G.1 MATERIALIZED VIEWS

A materialized view is constructed by querying the dataset to select for employees of the federal
government. We simulate the materialized view using a pandas8 dataframe wrapped in a python
class to monitor updates and run AVOIR for any monitored specification.

G.2 INTERACTION THROUGH VEGA

Figure 6 shows a subtree of the specification visualized through Vega. A developer analyzing this
spec can click on the top pink node to see the evolution of the sex fairness part of the specification
and superimpose the threshold. The threshold is set to be evaluated with every 5 new data points
added to the materialized view. Clicking on the corresponding element in the right subtree, the
developer can see Figure 4b.

G.3 COMPAS RISK ASSESSMENT VIA MATERIALIZED VIEWS

The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) recidivism
risk score data is a popular dataset for assessing machine bias of commercial tools used to assess a
criminal defendant’s likelihood to re-offend. The data is based on recidivism (re-offending) scores
derived from a software released by Northpointe and widely used across the United States for making
sentencing decisions. In 2016, Angwin et al. (2016) released an article and associated analysis code
critiquing machine bias associated with race present in the COMPAS risk scores for a set of arrested
individuals in Broward County, Florida over a period of two years. The analysis concluded that there
were significant differences in the risk assessments of African-American and Caucasian individuals.
Northpointe pushed back in a report (Dieterich et al., 2016) strongly rejecting the claims made by
the ProPublica article; instead, they claimed that Angwin et al. (2016) made several statistical and

8https://pandas.pydata.org/
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(a) (ProPublica) COMPAS, “Sample A” False
Positive Rate Bias specification required to above
the 10% =⇒ 0.9 threshold converges to a value
that can be guaranteed to be under the required
threshold.

(b) (Northpointe) “Sample B” analysis done by
Northpointe using False Discovery Rate that op-
posed the ProPublica reports.

Figure 7: COMPAS dataset case study.

technical errors in the report. In this case study, we use AVOIR to study the claims made by the two
aforementioned reports. First, we start with the data released by ProPublica and load it into a pandas-
simulated DB. We then create a materialized view that corresponds to the preprocessing steps used
in the publicly available ProPublica analysis notebook9. We look at “Sample A” (Dieterich et al.,
2016), where the analysis of the “not low” risk assessments using a logistic regression model reveals
a high coefficient associated with the factor associated with race being African-American. In terms
of a fairness metric, this corresponds to false positive rate (FPR) balance (predictive equality) (Verma
& Rubin, 2018) metrics. The associated specification in AVOIR grammar would be

E[hrisk | race=African−American & recid=0] /
E[hrisk | race=Caucasian & recid=0] < 1.1

Where hrisk is an indicator for high risk assessments made by the black-box COMPAS tool as
defined by Angwin et al. (2016), recid is an indicator for re-offending within 2 years of first arrest,
and a 10%-rule is used as the threshold. We choose a failure threshold probability of ∆ = 0.1, with
the optimization run after every batch of 5 samples. AVOIR finds that when the decisions are made
in a sequential, online fashion, the assertion for violation of the specification cannot be made with
the required failure guarantee.

By analyzing the components using the visualization tool, one can glean that AVOIR is unable to
optimize since the lower FPR in the denominator (FPR for Caucasian individuals) increasing the
overall variance and limiting the ability to optimize for guarantees. We follow this analysis by using
the reciprocal specification, i.e.,

E[hrisk | race=Caucasian & recid=0] /
E[hrisk | race=African−American & recid=0] > 0.9

we find that indeed, the specification is violated with a confidence of over 1 − ∆ = 0.9 proba-
bility, and AVOIR can detect this violation within about half the number of available assessments
(3350 steps) when run in an online setting. Figure 7a demonstrates the progression of the tracked
expectation term. Thus, if deployed with the corrected specification, AVOIR would be able to alert
Northpointe of a violation/potentially-biased decision making tool.

The Northpointe report (Dieterich et al., 2016) makes several claims about the shortcomings of this
analysis, but one of the primary claims is that Angwin et al. (2016) used an analysis based on “Model

9https://github.com/propublica/compas-analysis
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Metric Name Definition DSL

Statistical Parity
Pr[d = 1|G = m] = Pr[d = 1|G = f ] E[d|G = m]/E[d|G = f ] < c(Dwork et al., 2012)

Predictive Parity
Pr[Y = 1|d = 1, G = m] = Pr[Y = 1|d = 1, G = f ] E[Y = 1|d = 1, G = f ]− E[Y = 1|d = 1, G = m] > c(Chouldechova, 2017)

Equal Opportunity
Pr[d = 0|Y = 1, G = m] = Pr[d = 0|Y = 1, G = f ] E[d = 0|Y = 1, G = m]− E[d = 0|Y = 1, G = f ] < c(Hardt et al., 2016)

Equalized Odds Pr[d = 1|Y = i, G = m] = Pr[d = 1]Y = i, G = f ], (E[d = 1|Y = 1, G = f ]− E[d = 1|Y = 1, G = m] > c1)&
(Hardt et al., 2016) i = 0, 1 (E[d = 1|Y = 0, G = f ]− E[d = 1|Y = 0, G = m] > c2)

Table 1: Examples of supported metrics.

Errors” rather than “Target Population Errors”. In Fairness metric terms, this refers to the difference
between a False Positive Rate (FPR) balance vs False Discovery Rate (FDR) balance, i.e. balancing
for predictive parity over predictive equality. In probabilistic terms, the difference amounts to com-
paring P (Ŷ = 1|Y = 0, g = 1, 2) (FPR) vs P (Y = 0|Ŷ = 1, g = 1, 2) (FDR), where Ŷ refers
to the decision made by the algorithm, Y refers to the true value, and g = 1, 2 reflects group mem-
bership (Verma & Rubin, 2018). This analysis is run on the dataset subset dubbed “Sample B”. To
test their hypothesis, we run reproduce the corresponding preprocessing steps and run both versions
(numerator and denominator being Caucasian) versions of the corresponding specification under the
same setup as earlier. We find that despite the point estimate being within the required threshold,
neither version can be guaranteed with the required confidence with the given data. Due to paucity
of space, we describe only one of the two variants with the corresponding figure (Figure 7b).

E[recid=0 | race=Caucasian & hrisk ] /
E[recid=0 | race=African−American & hrisk] > 0.9

We note that the Northpointe report (Dieterich et al., 2016) does not provide confidence intervals
for their claim either. Further, even though the report does not release associated code, the point
estimates of the False Discovery Rates (FDRs) match those present in the report which increases our
confidence in our AVOIR-based analysis.

The back and forth exchange has been the subject of much discussion in both academic and journal-
istic publications (Feller et al., 2016; Washington, 2018). Seminal work by Kleinberg et al. (2017)
proved the impossibility of simultaneously guaranteeing certain combinations of fairness metrics.
While AVOIR cannot solve this problem, its usage can help provide explicit guarantees on defined
metrics. The specification grammar also provides a simple mechanism for independent replication
of claims. We conclude this case study by noting that AVOIR lends itself to successful analysis that
is not possible with the Verifair implementation available online.

H SUPPORTED METRICS

We provide a non-exhaustive list of statistical group-based fairness criteria and show an exact/ap-
proximate equivalent in the AVOIR DSL in Table 1. We use the following notation, adapted from
Verma & Rubin (2018):

G: Protected or sensitive attribute. For demonstration purposes, we will use the values m and
f to denote majority and minorty classes.

X: Features describing each individual

Y : True label for X

S: Probability Pr[Y |X,G] predicted for a certain class c

d: Predicted decision for X , usually derived from X

c: A threshold to test the specification. For ratios based approximations, this would be a
number 1 ± ε for some small ε > 0. For difference based approxiamtions, this number
would be some small ε > 0. When multiple terms are present, we use ci to denote the ith
threshold. New section
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We assume that the decision function f tracked by AVOIR as a signature that takes X,G, Y as input
and produces S or d as output. Note that in their python implementation, = would be replaced by
== and | by the given keyword.
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