

000
001 GRASP ANY REGION: TOWARDS PRECISE, CON-
002 TEXTUAL PIXEL UNDERSTANDING FOR MULTIMODAL
003 LLMS
004
005
006

007 **Anonymous authors**
008 Paper under double-blind review
009
010
011

012 **ABSTRACT**
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

While Multimodal Large Language Models (MLLMs) excel at *holistic* understanding, they struggle in capturing the dense world with complex scenes, requiring fine-grained analysis of intricate details and object inter-relationships. Region-level MLLMs have been a promising step. However, previous attempts are generally optimized to understand given regions *in isolation*, neglecting crucial global contexts. To address this, we introduce **Grasp Any Region (GAR)** for *comprehensive* region-level visual understanding. Empowered by an effective ROI-aligned feature replay technique, **GAR** supports (1) precise perception by leveraging necessary global contexts, and (2) modeling interactions between multiple prompts. Together, it then naturally achieves (3) advanced compositional reasoning to answer specific free-form questions about any region, shifting the paradigm from passive description to active dialogue. Moreover, we construct **GAR-Bench**, which not only provides a more accurate evaluation of single-region comprehension, but also, more importantly, measures interactions and complex reasoning across *multiple regions*. Extensive experiments have demonstrated that **GAR-1B** not only maintains the state-of-the-art captioning capabilities, *e.g.*, outperforming DAM-3B +4.5 on DLC-Bench, but also excels at modeling relationships between multiple prompts with advanced comprehension capabilities, even surpassing InternVL3-78B on GAR-Bench-VQA. More importantly, our *zero-shot* **GAR-8B** even outperforms in-domain VideoRefer-7B on VideoRefer-Bench^Q, indicating its strong capabilities can be easily transferred to videos. Code and data will be released.

033
034 **1 INTRODUCTION**
035
036

037 The ambition of Multimodal Large Language Models (MLLMs) is to endow machines with human-
038 like abilities to perceive, interpret, and reason about the *dense* visual world (Yuan et al., 2024;
039 Lian et al., 2025; Li et al., 2025). To date, renowned state-of-the-art models (Bai et al., 2025; Wu
040 et al., 2024; Wang et al., 2025e; DeepMind, 2025b; OpenAI, 2024a;b; 2025) have made remarkable
041 strides, excel in generating *holistic* descriptions and answering general questions about an *entire*
042 image. However, this global-level perception struggles with the *dense* understanding of cluttered
043 environments, intricate object details, and the complex interplay between multiple entities.
044

045 To address the limitation of global perception, several previous works (Chen et al., 2023; Yuan
046 et al., 2024; Zhang et al., 2024a; Lian et al., 2025; Lin et al., 2025b) argue for a paradigm shift to
047 region-level MLLMs. Specifically, they equip MLLMs with *promptable* and *fine-grained* interactions
048 to achieve targeted region-level understanding, using boxes (Zhang et al., 2024a; Chen et al., 2023)
049 or masks (Yuan et al., 2024; Lian et al., 2025). This mechanism transforms the model from a passive
050 observer of the entire scene into an active participant capable of deep, localized analysis. However,
051 effectively balancing global scene context with fine-grained local details remains challenging, which
052 serves as a fundamental trade-off in region-level MLLMs. Conventional methods (Yuan et al., 2024;
053 You et al., 2023) that employ pooled local features suffer from insufficient details, while recent
054 models (Lian et al., 2025; Lin et al., 2025b) mainly focus on the ability to generate a descriptive
055 caption for a *single* region, and thus model architectures are generally optimized to understand a
056 given region *in isolation*. This design often neglects crucial global context, *e.g.*, misidentifying a
057

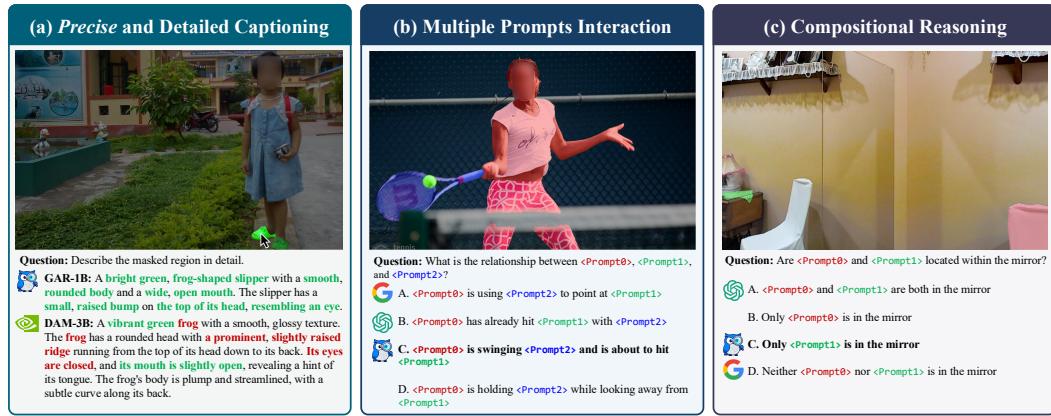


Figure 1: **Illustration of our GAR**, which is superior at *leveraging necessary global context* to (a) generate *precise* captions, where *green* is correct and *red* means wrong, (b) model complex interactions among *multiple prompts*, and perform reasoning such as (c) recognizing non-entities. Colors of $\langle \text{Prompt0} \rangle$, $\langle \text{Prompt1} \rangle$, and $\langle \text{Prompt2} \rangle$ correspond to masks with respective colors. Image source: (a) Shao et al. (2019), (b) Lin et al. (2014), and (c) Mei et al. (2021).

frog-shaped slipper as a real frog in Figure 1a. To this end, we propose **Grasp Any Region (GAR)** for *comprehensive and detailed* region understanding. As shown in Figure 1, key features include:

(1) Precise Perception. Thanks to the leverage of necessary global contexts, GAR achieves a more precise perception of given regions, which is the fundamental capability for region MLLMs. As shown in Figure 1a by aggregating information from the broader, *unmasked* scene, our GAR manages to generate much more accurate descriptions than previous crop-based approaches (Lian et al., 2025).

(2) Interactions between Multiple Prompts. GAR moves beyond the prevailing single-prompt paradigm (Lian et al., 2025), which treats every region of interest as an *isolated entity*. As illustrated in Figures 1b and 1c, GAR manages to model relationships between an arbitrary number of prompts.

(3) Advanced Compositional Reasoning Capabilities. Empowered with the aforementioned features, GAR is naturally equipped with advanced compositional reasoning capabilities, allowing it to answer any specific free-form questions.

To achieve these capabilities, effectively encoding global contexts becomes equally crucial as local detailed features. To this end, we propose an ROI-aligned feature replay technique. Specifically, **GAR** first encodes the full, uncropped image (together with the mask prompt) with AnyRes (Liu et al., 2024). Subsequently, ROI-Align (He et al., 2017) is employed to gather relevant features directly from the global feature map. Those gathered features are *inherently context-aware*, providing sufficient local details while maintaining global information simultaneously. Please refer to Figure 3 for the detailed pipeline.

Furthermore, we introduce **GAR-Bench**, which not only provides a more accurate evaluation of single-region comprehension by constructing multiple-choice questions, but also, more importantly, measures *interaction* and *complex reasoning* across *multiple regions*. It includes test cases that require a model to aggregate information from multiple visual regions to arrive at a correct conclusion, thereby quantifying the ability to interpret the whole scene rather than independent parts.

Empirically, shown in Figure 2, our **GAR-1B** not only outperforms DAM-3B (Lian et al., 2025) and PAM-3B (Lin et al., 2025b) on detailed captioning benchmarks (Lian et al., 2025; You et al., 2023; Lin et al., 2025a), but also excels in general multimodal benchmarks (Wu & Xie, 2024; Tong et al., 2024b; xAI, 2024; Chen et al., 2024a). Interestingly, it even outperforms large-scale models like InternVL3-78B (Zhu et al., 2025) on **GAR-Bench**, demonstrating its advanced comprehension capability in modeling interactions between multiple prompts. More importantly, our *zero-shot* **GAR-8B** even

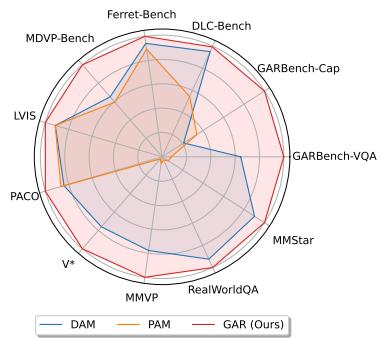


Figure 2: **Performance comparison.** GAR achieves strong performances not only on region-level understanding, but also excels in general multimodal benchmarks.

108 outperforms in-domain VideoRefer-7B on VideoRefer-Bench^Q, indicating its strong comprehension
 109 capabilities can be easily transferred to videos. We hope our work inspires the community to develop
 110 MLLMs that can perceive and understand the dense visual world more effectively.
 111

112 2 RELATED WORKS

114 **Multimodal Large Language Models (MLLMs).** Typical MLLMs (Liu et al., 2023; Li et al., 2024;
 115 Liu et al., 2024; Bai et al., 2025; Zhu et al., 2025; Wu et al., 2024; Lei et al., 2025; Wang et al.,
 116 2025b;c; Tong et al., 2024a; Yang et al., 2024a;b) project visual features extracted from pre-trained
 117 visual encoders (Radford et al., 2021; Zhai et al., 2023) to LLM for understanding multimodal
 118 contents. However, these models usually lack precise localization capabilities (Lian et al., 2025; Lin
 119 et al., 2025b) and struggle to understand specific regions. One potential solution is to “think with
 120 images” (OpenAI, 2025; Wang et al., 2025d;a). But these agentic models require complex multi-turn
 121 conversations, while we mainly focus on precise perception within a single-turn dialogue.

122 **Region-Level MLLMs.** Different from conventional image-level comprehension, localized un-
 123 derstanding requires MLLMs to capture regional attributes. Previous methods either utilize visual
 124 markers (Yang et al., 2023), bounding boxes (Zhang et al., 2024a; Chen et al., 2023; You et al., 2023;
 125 Rasheed et al., 2024; Lee et al., 2024; Ma et al., 2024), or segmentation masks (Yuan et al., 2024;
 126 Lian et al., 2025), to represent regions-of-interests within an image. We simply regard masks as visual
 127 prompts, since masks have less ambiguity than other representations. Beyond prompt representations,
 128 effectively balancing global scene context with local details remains an open problem. Existing
 129 methods struggle to master both. Methods like DAM (Lian et al., 2025) excel at local perception
 130 but lack a holistic view of the global context. Conversely, earlier works like GPT4RoI (Zhang et al.,
 131 2024a) and GLaMM (Rasheed et al., 2024), while incorporating the global image, tend to lose crucial
 132 local details by pooling region features into single vectors. **GAR** is designed specifically to solve this
 133 dilemma. Based on this, **GAR** excels in modeling the relationship between an arbitrary number of
 134 visual prompts while effectively maintaining crucial global context and sufficient local details.

135 **Benchmarks for Region-Level Understanding.** Typical region-level benchmarks only evaluate the
 136 *caption* quality for *single prompt* using conventional language-based captioning metrics (You et al.,
 137 2023; Yuan et al., 2024; Zhang et al., 2024b; Guo et al., 2024; Rasheed et al., 2024), model-based
 138 similarities (Chen et al., 2025; Yuan et al., 2024), and LLM-Judged accuracies without the need for
 139 reference captions (Lian et al., 2025). **GAR-Bench** is to systematically evaluate the comprehension
 140 capabilities with multiple visual prompts. It contains a caption protocol to measure the correctness
 141 of descriptions for the relation between visual prompts, and a VQA protocol to evaluate *both* the
 142 basic understanding capability for specific regions, *e.g.*, color and shape, and advanced compositional
 143 reasoning abilities for multiple regions.

144 3 GRASP ANY REGION

145 We start from the *task formulation* in Section 3.1. Subsequently, we introduce our *model architecture*
 146 and *training data pipeline* in Section 3.2 and Section 3.3, respectively. Finally, we introduce our
 147 *benchmark designs* in Section 3.4 to systematically evaluate region-level comprehension capabilities.
 148

149 3.1 TASK FORMULATION

150 The task of grasping any region is a hierarchical challenge from basic perception to complex,
 151 compositional reasoning about specific visual regions. Specifically, given an image $\mathbf{I} \in \mathbb{R}^{H \times W \times 3}$,
 152 where $H \times W$ indicates the resolution, and a set of N binary visual prompts, *e.g.*, masks $\{\mathbf{M}_i\}_{i=1}^N$,
 153 where $\mathbf{M}_i \in \{0, 1\}^{H \times W}$, the objective is to generate a precise text response R that demonstrates a
 154 multi-layered comprehension of the scene, *e.g.*, detailed attributes description and relational caption,
 155 based on the given text instruction T :

$$R = \text{RegionModel}(\mathbf{I}, \{\mathbf{M}_i\}_{i=1}^N, T). \quad (1)$$

156 Specifically, this task is structured in three ascending levels of capability: (1) Generating detailed
 157 descriptions for a *single* region is the foundation, *e.g.*, “describe <Prompt1> in detail”, where
 158 <Prompt1> actually denotes a binary mask and is specified by the user. It requires the model to
 159 accurately perceive and articulate the fine-grained attributes contained strictly within the boundaries
 160

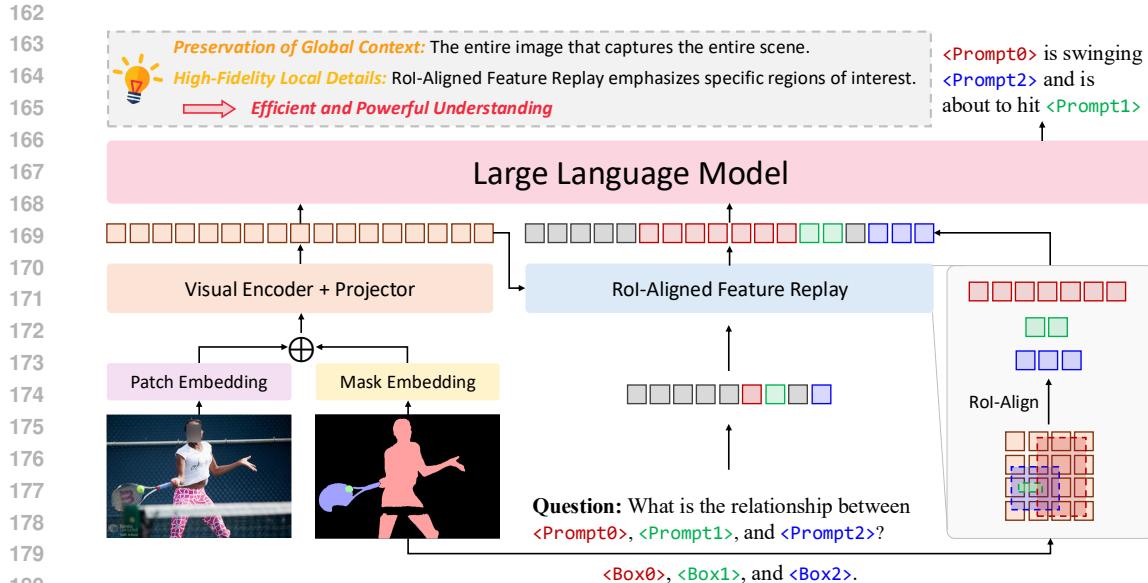


Figure 3: **Illustration of our GAR.** It leverages a single-pass visual encoder to create a holistic feature map of the entire scene, thus preserving global context. Simultaneously, an “ROI-Aligned Feature Replay” mechanism extracts high-fidelity features for specific objects of interest. Both the global context features and the detailed local features are then fed into an LLM to accurately infer complex relationships and interactions between multiple objects within the image.

of a given prompt. (2) The next stage requires understanding the given region with the necessary global contexts. This moves beyond isolated analysis, requesting to aggregate information from the broader, *unmasked* scene. This capability is critical for advanced reasoning tasks such as *position identification* (*i.e.*, locating an object as “the second from the left in the third row”) and *non-entity recognition* (*e.g.*, correctly identifying a reflection in a mirror versus a physical object), where the prompt itself is insufficient for a correct interpretation. (3) Finally, the task culminates in the ability to perceive, understand, and describe the relationship between *multiple* regions. This assesses the capacity for true compositional reasoning by requiring it to articulate the spatial, functional, or interactive connections between *different prompts*.

3.2 MODEL ARCHITECTURE

The task definition above requires overcoming the contextual blindness inherent in models that analyze prompted regions *in isolation*. As established, this myopic focus can lead to fundamental reasoning errors, such as misidentifying a frog-shaped slipper as a real frog because the surrounding bedroom context is ignored. Therefore, our architectural design of Grasp Any Region (**GAR**) is guided by a central principle: to achieve *a fine-grained understanding of the prompted region while simultaneously preserving and leveraging the global context of the entire scene*. Illustrated in Figure 3, we introduce two new components into the architecture: (1) a simple yet effective prompt encoding scheme, and (2) a novel ROI-aligned feature replay technique.

Prompt Encoding and Integration. To integrate spatial guidance into the vision backbone, we introduce a lightweight prompt encoding mechanism similar to Lian et al. (2025) and Sun et al. (2024). The input binary mask, which specifies the region(s) of interest, is first processed by a simple convolutional block (LeCun et al., 1989) to produce a mask embedding. This zero-initialized (Zhang et al., 2023) mask embedding is then added to ViT’s (Dosovitskiy et al., 2021) patch embeddings.

ROI-aligned Feature Replay. To simultaneously provide sufficient local details and maintain necessary global context, we introduce the ROI-aligned feature replay technique. Specifically, our model processes the full, uncropped image (with the encoded mask prompt) with AnyRes (Liu et al., 2024), producing a global feature map that is rich in contextual information. Based on the input mask, we then derive a corresponding bounding box for the region of interest and employ ROI-Align (He et al., 2017) to gather the relevant feature vectors directly from the global feature map. Because the features are extracted from a feature map that was computed over the entire image, *they are inherently*

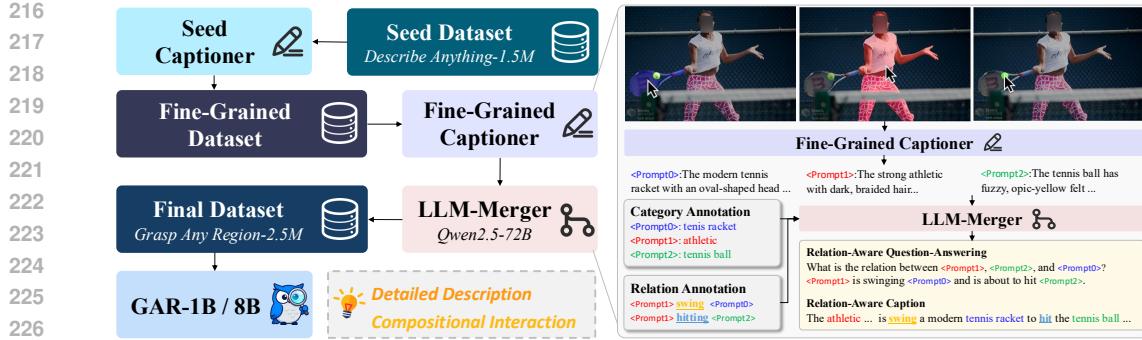


Figure 4: **Illustration of our training data pipeline**, which mainly includes two rounds of captioning and judging. Specifically, (1) starting from using the seed dataset to train a seed captioner, we first construct 456K fine-grained descriptions. Subsequently, (2) we utilize both datasets to obtain a fine-grained captioner, and leverage the annotations of the Panoptic Scene Graph (PSG) dataset (Yang et al., 2022) to provide sufficient relation-aware captions and question-answering pairs. Finally, our GAR models are trained with all three parts.

context-aware, which elegantly avoids the pitfalls of local-only processing in Lian et al. (2025). At the same time, it provides the subsequent language model with a sufficiently detailed, high-resolution representation of the prompted region, enabling it to perform fine-grained understanding. This replay of context-rich features allows GAR to simultaneously “zoom in” on detail without “losing sight” of the bigger picture. Ablations of this design can be found in Table 8, where we demonstrate that this design is capable of both (1) providing sufficient local details and (2) preserving global contexts.

3.3 TRAINING DATA PIPELINE

To enhance model capabilities from basic object recognition with *single* region to complex relational reasoning with *multiple* regions, we design a multi-stage process to generate a large-scale, high-quality dataset, as illustrated in Figure 4. Ablations of each round can be found in Table 10. Prompts for each stage can be found in Appendix G.

Round 1: Enhance Recognition Capability. Initially, we start from the Describe Anything-1.5M dataset (Lian et al., 2025). However, we observe deficiencies in its fine-grained recognition capability, limiting the quality of generated captions for more complex scenarios. To address this, we integrated images and masks provided by Sun et al. (2024), which is a subset of ImageNet-21K (Deng et al., 2009), an extremely fine-grained classification dataset and renowned for its detailed and extensive category labels. We employ the seed captioner to generate descriptions and then utilize an LLM to validate these generated captions against the ground-truth categories, resulting in a refined fine-grained dataset of 456K samples. We utilize both datasets to train a fine-grained captioner.

Round 2: Supporting Multiple Prompts. To further enable understanding multiple prompts, we incorporated the Panoptic Scene Graph (PSG) dataset (Yang et al., 2022), which is rich in relational information. We first query the fine-grained captioner to generate a detailed description for each region. Subsequently, we regard Qwen2.5-72B (Team, 2024) as the LLM-Merger, together with the original annotations provided by the PSG dataset (Yang et al., 2022), to generate: (1) 144K rich object descriptions that explicitly integrate relational context, (2) 144K question-answering pairs designed to probe the understanding of complex relationships, and (3) 126K multiple-choice questions. We construct a relation dataset with 414K samples in total during this stage.

3.4 GAR-BENCH

Finally, we introduce **GAR-Bench**, a comprehensive benchmark suite designed to systematically evaluate the region-level comprehension capabilities of MLLMs *beyond simply describing a single region*. Specifically, it is structured into two primary components: a multi-prompt captioning task (**GAR-Bench-Cap**) and a multifaceted visual question answering task (**GAR-Bench-VQA**). The captioning component is designed to assess a model’s ability to describe the complex relationships and interactions between multiple visual prompts in a cohesive narrative. The VQA component further dissects a model’s understanding into two key areas: (1) its ability to perceive basic attributes

270 for a given prompt, and (2) its capacity for advanced, region-centric compositional reasoning that
 271 requires synthesizing information from the prompt and its surrounding context.
 272

273 **GAR-Bench-Cap** goes beyond isolated object descriptions and measures the ability to perform
 274 *compositional scene understanding*. In this task, a model is provided with an image and *two or*
 275 *more* distinct visual prompts. It contains two sub-tasks: (1) simply describe the relationship, and
 276 (2) generate detailed captions including necessary relationships. For the “*simple*” protocol, models
 277 are directly asked with “what is the relationship between <Prompt1> and <Prompt2>” and are
 278 required to answer the question simply. For the “*detailed*” protocol, for instance, <Prompt1>
 279 highlights a person and <Prompt2> is a bike, the model is not evaluated on its ability to describe
 280 each independently, but rather on its capacity to generate an accurate description of their relation
 281 like, “<Prompt1> is riding <Prompt2>”. The models need to perform spatial reasoning, action
 282 recognition, and semantic integration across disparate image regions, thereby quantifying its ability
 283 to interpret a scene as a cohesive whole rather than a collection of independent parts.

284 **GAR-Bench-VQA** is designed to shift the evaluation from static description to dynamic, interactive
 285 dialogue. This task assesses the ability to answer specific questions about one or more prompted
 286 regions, *directly measuring its comprehension* rather than its descriptive fluency. To provide a
 287 comprehensive and multi-faceted evaluation of the reasoning abilities, we divide it into two distinct
 288 but complementary sub-tasks: “*perception*” and “*reasoning*”.

289 **Perception** evaluates the model’s foundational ability to recognize basic visual attributes of a single
 290 object, serving as a litmus test for its core visual acuity. This task quantifies the ability to perceive the
 291 foundational details. Specifically, for a given visual prompt, the model is asked targeted questions
 292 about its intrinsic visual properties, specifically focusing on color, shape, material, and texture/pattern.

293 **Reasoning** is designed to probe higher-order cognitive abilities. This component challenges the
 294 model to synthesize information from local prompts, global context, and the relationships between
 295 multiple prompts to arrive at logical conclusions. It is composed of several sub-tasks, each targeting
 296 a unique and challenging aspect of visual reasoning:

- 297 • **Position** evaluates the model’s grasp of spatial arrangement and ordinal logic within a global
 298 context. A model is presented with a mask on a single object within a larger group and asked to
 299 identify its *precise position* in a complex, grid-like structure. Answering correctly requires the
 300 model to not only recognize the masked object but also to process the *entire* scene structure.
- 301 • **Non-Entity Recognition** is designed to test this specific capability by requiring the model to
 302 leverage sufficient *global context*. For instance, the given prompt might highlight a reflection in a
 303 mirror, the shadow of a person, a face depicted on a television screen, and so on. The model is
 304 then queried to determine if the prompted region corresponds to a physical entity. Success in this
 305 task demonstrates that the model is performing sophisticated context-aware reasoning rather than
 306 simple pattern matching on the masked pixels alone.
- 307 • **Relation** measures the capacity for complex compositional reasoning across multiple prompts. In
 308 this challenging setup, the model is presented with several visual prompts and must deduce the
 309 intricate spatial or logical relationship between them. A key challenge is *the inclusion of redundant*
 310 *prompts*. To arrive at the correct answer, the model must ignore the potentially distracting information.
 311 It requires the model to build a mental “*scene graph*”, which is essential for comprehending
 312 complex object assemblies and interactions in cluttered, real-world environments.

313 For more benchmark details, including the annotation pipeline and statistics, please refer to Appendix B.1 and Appendix B.2, respectively.

316 4 EXPERIMENTS

317 Owing to page limitations, we only present the key properties in this section. For implementation
 318 details, comparative baselines, and ablation studies, please refer to Appendix C.

319 **Advanced comprehension** requires precisely modeling complex relationships between multiple
 320 prompts. To evaluate this capability, we conducted a comprehensive comparison on our GAR-
 321 Bench-VQA. As demonstrated in Table 1, GAR-8B achieves an impressive overall score of 54.5,
 322 surpassing even the powerful, private, state-of-the-art non-thinking model, GPT-4o (OpenAI, 2024a).
 323 Furthermore, the efficiency and effectiveness of our approach are highlighted by GAR-1B. Despite

324
 325 Table 1: Comparison on **GAR-Bench-VQA**. * indicates this subtask evaluates the interaction between
 326 multiple visual prompts. \dagger means evaluated with the thinking mode. Our **GAR-1B** even outperforms
 327 InternVL3-78B. Moreover, **GAR-8B** surpasses private state-of-the-art non-thinking model GPT-4o.

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Method	Overall	Perception (198)				Reasoning (226)		
			Color (69)	Shape (64)	Texture (29)	Material (36)	Position (64)	Non-Entity* (61)	Relation* (101)
<i>Private General MLLMs</i>									
GPT-4o	53.5	34.8	65.3	48.3	52.8	57.8	60.2	61.4	
o3 \dagger	61.3	58.0	70.3	55.2	63.9	54.7	49.2	71.3	
Gemini-2.5-Pro \dagger	64.2	62.3	68.8	58.6	66.7	64.1	64.9	70.3	
<i>Public General MLLMs</i>									
Qwen2.5-VL-3B	34.4	29.0	25.0	34.5	30.6	43.8	26.2	44.6	
Qwen2.5-VL-7B	41.7	39.1	40.6	44.8	27.8	59.4	36.1	40.6	
Qwen2.5-VL-32B	50.9	46.4	53.1	41.4	30.6	71.9	36.1	58.4	
Qwen2.5-VL-72B	52.8	46.4	50.0	65.5	33.3	68.8	44.3	57.4	
InternVL3-2B	35.1	30.4	21.9	48.3	38.9	48.4	26.2	38.6	
InternVL3-8B	38.9	36.2	37.5	58.6	41.7	51.6	27.9	33.6	
InternVL3-38B	46.5	39.1	40.6	51.7	55.6	60.9	36.1	47.5	
InternVL3-78B	50.5	44.9	54.7	58.6	61.1	53.1	47.5	45.5	
<i>Region MLLMs</i>									
Sa2VA-8B	34.3	39.1	45.3	29.6	30.6	54.7	21.3	21.8	
VP-SPHINX-13B	37.5	33.3	25.0	44.8	38.9	60.9	34.3	32.7	
DAM-3B	38.2	<u>55.1</u>	39.1	41.4	36.1	31.3	36.1	31.7	
PAM-3B \ddagger	2.4	2.9	3.1	6.9	5.6	1.6	1.6	0.0	
GAR-1B	50.6	<u>55.1</u>	<u>46.9</u>	69.0	<u>47.2</u>	21.9	62.3	<u>56.4</u>	
GAR-8B	59.9	59.4	54.7	75.9	52.8	<u>48.4</u>	<u>60.7</u>	68.3	

352 Table 2: Comparison of **localized relational cap-**
 353 **tioning** on our **GAR-Bench-Cap**. We utilize
 354 GPT-4o (OpenAI, 2024a) with cropped images
 355 and masks to judge the correctness of the answer.

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Method	Overall (204)	Simple (97)	Detailed (107)
<i>Private General MLLMs</i>				
GPT-4o	51.5	39.2	62.6	
o3	56.9	37.1	74.8	
Gemini-2.5-Pro	59.3	51.6	66.4	
<i>Public General MLLMs</i>				
Qwen2.5-VL-3B	22.5	9.3	34.6	
Qwen2.5-VL-7B	32.4	12.4	50.5	
Qwen2.5-VL-32B	36.8	17.5	54.3	
InternVL3-2B	29.4	14.4	43.0	
InternVL3-8B	33.8	11.3	54.2	
InternVL3-38B	45.1	29.9	58.9	
<i>Region MLLMs</i>				
DAM-3B	13.1	17.5	10.3	
PAM-3B	21.1	3.1	39.3	
VP-SPHINX-13B	32.3	27.8	39.3	
Sa2VA-8B	45.6	46.4	44.9	
GAR-1B	<u>57.5</u>	<u>56.7</u>	<u>63.6</u>	
GAR-8B	62.2	66.0	64.5	

352 Table 3: Comparison on **detailed localized cap-**
 353 **tioning** on DLC-Bench (Lian et al., 2025). \dagger
 354 indicates using GPT-4o (OpenAI, 2024a) with
 355 extra cropped images as judge, otherwise per-
 356 forming *text-only* judging, where discussions can
 357 be found in Appendix F. \ddagger means our evaluation
 358 with the official checkpoint.

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Method	Avg.	Pos.	Neg.
<i>Private General MLLMs</i>				
Gemini-2.5-Pro	55.8	36.5	75.2	
GPT-4o	61.5	43.4	79.6	
o1	62.5	46.3	78.8	
<i>Region MLLMs</i>				
Shikra-7B	22.2	2.7	41.8	
Ferret-7B	22.4	6.4	38.4	
RegionGPT-7B	27.2	13.0	41.4	
VP-SPHINX-13B	22.5	11.7	33.2	
DAM-3B \ddagger	64.5 \ddagger	47.2 \ddagger	81.8 \ddagger	
GAR-1B	67.9	<u>48.9</u>	87.0	
GAR-8B	<u>67.4</u>	50.2	<u>84.6</u>	
<i>DAM-3B\dagger</i>				
GAR-1B\dagger	77.1	<u>66.2</u>	88.0	
GAR-8B\dagger	<u>77.0</u>	68.0	<u>86.0</u>	

376 its significantly smaller size, it scores 50.6 overall, outperforming large-scale public models like
 377 InternVL3-78B (Zhu et al., 2025). This advantage is particularly evident in fine-grained perception
 378 tasks, where GAR-1B and GAR-8B achieve “Texture” scores of 69.0 and 75.9, respectively.

378
 379 Table 4: *Zero-shot* results on region-level **detailed image captioning**
 380 on Ferret-Bench (You et al., 2023) and and MDVP-
 381 Bench (Lin et al., 2025a). We adopt SAM (Kirillov et al., 2023)
 382 to produce masks conditioned on bounding boxes for MDVP-
 383 Bench (Lin et al., 2025a). All results are our reproduction
 384 using the official checkpoint, as the original judge GPT-4V is
 385 no longer available, and we take GPT-4o as the judge.
 386

Method	Ferret-Bench		MDVP-Bench (Box Caption)		
	Refer. Desc.	Natural	OCR	Multi-Panel	Sceenshot
Osprey-7B	–	107.7	99.4	70.0	81.3
PAM-3B	52.2	71.4	94.3	86.8	84.5
DAM-3B	55.0	87.0	127.7	79.4	76.4
GAR-1B	56.0	152.6	149.6	103.7	115.3
GAR-8B	64.8	178.6	149.1	117.2	123.0

393 Table 6: *Zero-shot* comparison of **detailed localized video captioning** on VideoRefer-Bench^D (Yuan
 394 et al., 2025b). For “single-frame”, we select the target frame and apply AnyRes with
 395 max_num_tiles=16. For “multi-frame”, we uniformly sample 16 frames and turn off AnyRes.
 396

Method	Single-Frame					Multi-Frame				
	Avg.	SC	AD	TD	HD	Avg.	SC	AD	TD	HD
<i>General MLLMs</i>										
LLaVA-OneVison-7B	2.12	2.62	1.58	2.19	2.07	2.48	3.09	1.94	2.50	2.41
Qwen2-VL-7B	2.39	2.97	2.24	2.03	2.31	2.55	3.30	2.54	2.22	2.12
InternVL2-26B	2.84	3.55	2.99	2.57	2.25	3.20	4.08	3.35	3.08	2.28
GPT-4o	2.95	3.34	2.96	3.01	2.50	3.25	4.15	3.31	3.11	2.43
<i>Region MLLMs</i>										
Elysium-7B	1.57	2.35	0.30	0.02	3.59	–	–	–	–	–
Ferret-7B	2.18	3.08	2.01	1.54	2.14	2.23	3.20	2.38	1.97	1.38
Osprey-7B	2.34	<u>3.19</u>	2.16	1.54	<u>2.45</u>	2.41	3.30	2.66	2.10	1.58
Artemis-7B	–	–	–	–	–	2.26	3.42	1.34	1.39	<u>2.90</u>
DAM-8B	–	–	–	–	–	<u>3.34</u>	<u>4.45</u>	3.30	3.03	2.58
GAR-1B	<u>2.72</u>	4.41	2.98	<u>1.09</u>	2.40	2.83	4.38	3.01	1.61	2.30
GAR-8B	2.75	4.41	<u>2.96</u>	1.58	<u>2.45</u>	3.44	4.53	<u>3.25</u>	<u>2.57</u>	3.42

412 **Detailed localized captioning** requires generating detailed descriptions for given regions with
 413 multiple sentences. We benchmark our GAR models on a series of challenging datasets, and the
 414 results consistently demonstrate their state-of-the-art capabilities. As shown in Table 2, on our GAR-
 415 Bench-Cap, GAR-1B and GAR-8B achieve the highest overall scores of 57.5 and 62.2, respectively,
 416 even exceeding that of powerful private models like Gemini-2.5-Pro (DeepMind, 2025b). This
 417 superiority is further confirmed on the DLC-Bench (Lian et al., 2025) in Table 3, where GAR-1B
 418 and GAR-8B again outperform top models like DAM-3B using either LLaMA3.1 (Grattafiori et al.,
 419 2024) or GPT-4o (OpenAI, 2024a) as the judge. The zero-shot performance of our models on Ferret-
 420 Bench (You et al., 2023) and MDVP-Bench (Lin et al., 2025a), detailed in Table 4, is particularly
 421 noteworthy. On both benchmarks, our GAR emerges as the top-performing model across every
 422 single category. Specifically on MDVP-Bench, our models show a commanding lead, with GAR-8B
 423 achieving a score of 178.6 on natural images, a result that is substantially higher than any competitor.
 424 Collectively, these comprehensive evaluations across multiple benchmarks unequivocally establish
 425 **GAR** as the new state-of-the-art for producing rich, accurate, and detailed localized captions.

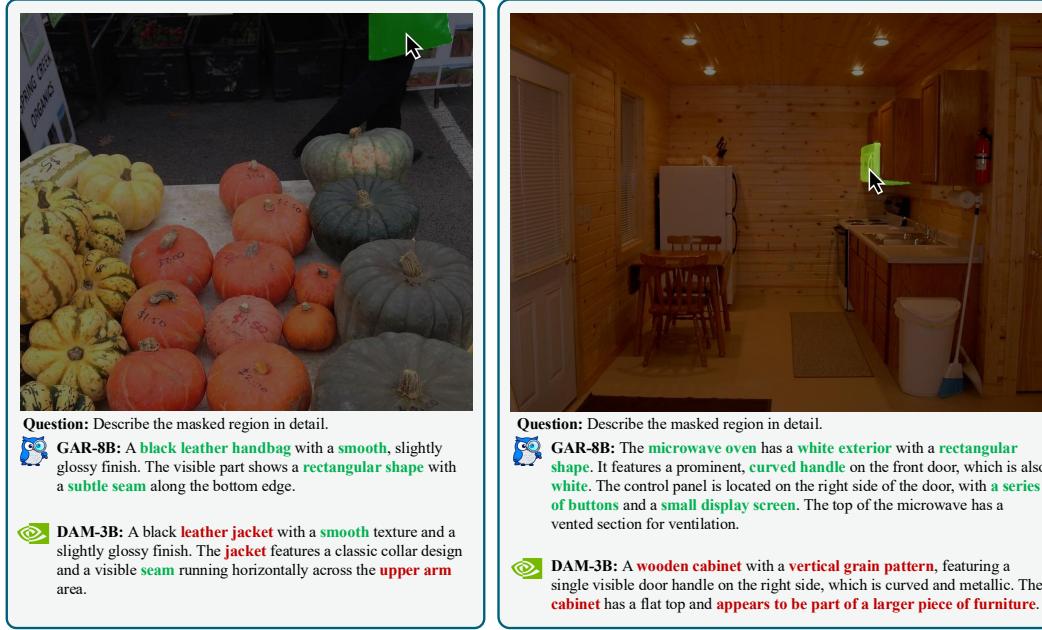
426 **Open-class category-level image recognition** requires the model to recognize the category of
 427 the object and part entities. We evaluate this capability in Table 5. Our GAR-8B demonstrates
 428 a significant leap in performance, establishing a new state-of-the-art. It consistently outperforms
 429 all prior methods across every metric, achieving top scores of 93.6 semantic similarity and 88.7
 430 semantic IoU on LVIS (Gupta et al., 2019), and 95.5 semantic similarity and 91.8 semantic IoU on
 431 PACO (Ramanathan et al., 2023). This indicates its superior ability in both semantic understanding
 432 and precise localization. These results demonstrate the effectiveness of GAR for complex recognition
 433 tasks, showcasing its robust performance in identifying a diverse range of object categories.

378
 379 Table 5: Results of **category-level**
 380 **image recognition** on LVIS (Gupta
 381 et al., 2019) and PACO (Ra-
 382 manathan et al., 2023).
 383

Method	LVIS		PACO	
	Sim.	IoU	Sim.	IoU
Shikra-7B	49.7	19.8	43.6	11.4
GPT4Roi-7B	51.3	12.0	48.0	12.1
Ferret-7B	63.8	36.6	58.7	26.0
Osprey-7B	65.2	38.2	73.1	52.7
DAM-8B	89.0	77.7	84.2	73.2
PAM-3B	88.6	<u>78.3</u>	87.4	<u>74.9</u>
GAR-1B	<u>91.0</u>	<u>68.2</u>	<u>93.2</u>	72.4
GAR-8B	93.6	88.7	95.5	91.8

432
 433 **Table 7: Zero-shot comparison of detailed video understanding on VideoRefer-Bench^Q** (Yuan
 434 et al., 2025b). \dagger indicates trained on *in-domain* VideoRefer-700k with regard to VideoRefer-Bench.
 Notably, *our zero-shot GAR-8B even outperforms in-domain VideoRefer-7B*.

435 436 Method	437 Overall (1000)	438 Basic 439 Questions (235)	440 Sequential 441 Questions (256)	442 Relationship 443 Questions (252)	444 Reasoning 445 Questions (143)	446 Future 447 Predictions (114)
<i>General MLLMs</i>						
448 InternVL2-26B	449 65.0	450 58.5	451 63.5	452 53.4	453 88.0	454 78.9
455 Qwen2-VL-7B	456 66.0	457 62.0	458 69.6	459 54.9	460 87.3	461 74.6
462 LLaVA-OneVision-7B	463 67.4	464 58.7	465 62.9	466 64.7	467 87.4	468 76.3
469 GPT-4o	470 71.3	471 62.3	472 74.5	473 66.0	474 88.0	475 73.7
<i>Region MLLMs</i>						
476 Osprey-7B	477 39.9	478 45.9	479 47.1	480 30.0	481 48.6	482 23.7
483 Ferret-7B	484 48.8	485 35.2	486 44.7	487 41.9	488 70.4	489 <u>74.6</u>
490 VideoRefer-7B \dagger	491 <u>71.9</u>	492 <u>75.4</u>	493 68.6	494 59.3	495 89.4	496 78.1
497 GAR-1B	498 69.9	499 75.0	500 <u>69.9</u>	501 <u>59.7</u>	502 83.2	503 63.7
504 GAR-8B	505 72.0	506 77.2	507 71.0	508 61.7	509 <u>86.6</u>	510 68.1



471 **Figure 5: Qualitative comparisons** on DLC-Bench (Lian et al., 2025), where **green** indicates correct
472 descriptions and **red** means errors.

473
 474 **Extension to videos** is straightforward. Similar to Lian et al. (2025), we simply extend our GAR
 475 models to videos and evaluate them on VideoRefer-Bench^D (Yuan et al., 2025b) and VideoRefer-
 476 Bench^Q (Yuan et al., 2025b) in Table 6 and Table 7, respectively. We uniformly sample 16 frames to
 477 represent a video. Our GAR-8B surpasses DAM-8B (Lian et al., 2025) under the zero-shot setting.
 478 More importantly, as demonstrated in Table 7, *our zero-shot GAR-8B even outperforms in-domain*
 479 *VideoRefer-7B*, demonstrating its strong comprehension capabilities can be easily transferred to
 480 videos. However, as our models are actually trained with images, they get reasonably low scores on
 481 temporally related tasks, *e.g.*, temporal description (TD) in Table 6 and future predictions in Table 7.

482 **Qualitative Results.** We provide qualitative comparisons between our **GAR-8B** with DAM-3B (Lian
 483 et al., 2025) on detailed localized captioning on DLC-Bench (Lian et al., 2025) in Figure 5. As
 484 demonstrated in the figure, our **GAR-8B** is more capable of generating precise descriptions, especially
 485 when the category of the given prompt can be determined only when understanding sufficient global
 contexts. More comparisons can be found in Appendix D.

486 5 CONCLUSION

488 This paper introduces **Grasp Any Region (GAR)**, a family of MLLMs for region understanding, and
 489 **GAR-Bench**, a systematic evaluation framework that not only provides a more accurate evaluation
 490 of single-region comprehension, but also for multi-prompt interaction and advanced compositional
 491 reasoning. On detailed captioning benchmarks (Lian et al., 2025; You et al., 2023; Lin et al., 2025a),
 492 **GAR** demonstrates superior performance over DAM (Lian et al., 2025). More importantly, our **GAR**
 493 achieves advanced comprehension capability in modeling interactions between multiple prompts.
 494 Specifically, on GAR-Bench-VQA, **GAR-1B** even surpasses InternVL3-78B (Zhu et al., 2025).
 495 On VideoRefer-Bench^Q (Yuan et al., 2025b), our *zero-shot* **GAR-8B** even outperforms in-domain
 496 VideoRefer-7B (Yuan et al., 2025b). We hope our work inspires the community to develop MLLMs
 497 that can perceive, interrogate, and understand the dense visual world more effectively.

498 ETHICS STATEMENT

500 Our research is grounded in ethical practices, with particular attention paid to the responsible use
 501 of data. All datasets employed in this study are publicly available and well-established within the
 502 computer vision community. Specifically, our training data includes ImageNet-21K (Deng et al.,
 503 2009) and the PSG (Yang et al., 2022) dataset (with image sources from COCO (Lin et al., 2014),
 504 while our benchmarking was conducted on FSC-147 (Ranjan et al., 2021), RGBD-Mirror (Mei et al.,
 505 2021), and SA-1B (Kirillov et al., 2023). Our use of this data is in accordance with their provided
 506 licenses and intended academic purpose.

508 REPRODUCIBILITY STATEMENT

510 We are committed to ensuring the reproducibility of the research presented in this paper. To this end,
 511 comprehensive implementation details for our models and experiments are provided in Appendix C,
 512 including the training procedures and all hyperparameters used. Furthermore, upon acceptance of
 513 this paper, all source code, datasets, and trained model checkpoints will be made publicly available.

515 REFERENCES

516 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang,
 517 Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

518 Jierun Chen, Fangyun Wei, Jinjing Zhao, Sizhe Song, Bohuai Wu, Zhuoxuan Peng, S-H Gary Chan, and
 519 Hongyang Zhang. Revisiting referring expression comprehension evaluation in the era of large multimodal
 520 models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 521 pp. 513–524, 2025.

522 Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing multimodal
 523 llm’s referential dialogue magic. *arXiv preprint arXiv:2306.15195*, 2023.

525 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao,
 526 Dahua Lin, et al. Are we on the right way for evaluating large vision-language models? *arXiv preprint
 527 arXiv:2403.20330*, 2024a.

528 Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Ekaterina Deyneka, Hsiang-wei Chao, Byung Eun Jeon,
 529 Yuwei Fang, Hsin-Ying Lee, Jian Ren, Ming-Hsuan Yang, et al. Panda-70m: Captioning 70m videos with
 530 multiple cross-modality teachers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 531 Pattern Recognition (CVPR)*, pp. 13320–13331, 2024b.

532 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu,
 533 Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial multimodal models
 534 with open-source suites. *Science China Information Sciences*, 67(12):220101, 2024c.

536 Jang Hyun Cho, Andrea Madotto, Effrosyni Mavroudi, Triantafyllos Afouras, Tushar Nagarajan, Muhammad
 537 Maaz, Yale Song, Tengyu Ma, Shuming Hu, Suyog Jain, et al. Perceptionlm: Open-access data and models
 538 for detailed visual understanding. *arXiv preprint arXiv:2504.13180*, 2025.

539 XTuner Contributors. Xtuner: A toolkit for efficiently fine-tuning llm. <https://github.com/InternLM/xtuner>, 2023.

540 Google DeepMind. Gemini-2.5-flash. <https://deepmind.google/models/gemini/flash/>,
 541 2025a.

542 Google DeepMind. Gemini-2.5-pro. <https://deepmind.google/models/gemini/pro/>, 2025b.

544 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
 545 image database. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 546 (*CVPR*), pp. 248–255. Ieee, 2009.

547 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
 548 Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
 549 Transformers for image recognition at scale. In *International Conference on Learning Representations (ICLR)*,
 550 2021.

551 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
 552 Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv*
 553 *preprint arXiv:2407.21783*, 2024.

554 Qiushan Guo, Shalini De Mello, Hongxu Yin, Wonmin Byeon, Ka Chun Cheung, Yizhou Yu, Ping Luo, and
 555 Sifei Liu. Regionopt: Towards region understanding vision language model. In *Proceedings of the IEEE/CVF*
 556 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 13796–13806, 2024.

557 Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmentation.
 558 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 559 5356–5364, 2019.

561 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *Proceedings of the IEEE/CVF*
 562 *International Conference on Computer Vision (ICCV)*, pp. 2961–2969, 2017.

563 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
 564 Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings of the IEEE/CVF*
 565 *International Conference on Computer Vision (ICCV)*, pp. 4015–4026, 2023.

566 Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and
 567 Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. *Neural computation*, 1(4):
 568 541–551, 1989.

569 Jungbeom Lee, Sanghyuk Chun, and Sangdoo Yun. Toward interactive regional understanding in vision-large
 570 language models. In *Proceedings of the 2024 Conference of the North American Chapter of the Association*
 571 *for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 6416–6429,
 572 2024.

574 Weixian Lei, Jiacong Wang, Haochen Wang, Xiangtai Li, Jun Hao Liew, Jiashi Feng, and Zilong Huang.
 575 The scalability of simplicity: Empirical analysis of vision-language learning with a single transformer. In
 576 *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2025.

577 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei
 578 Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint arXiv:2408.03326*, 2024.

579 Xiangtai Li, Tao Zhang, Yanwei Li, Haobo Yuan, Shihao Chen, Yikang Zhou, Jiahao Meng, Yueyi Sun, Shilin
 580 Xu, Lu Qi, et al. Denseworld-1m: Towards detailed dense grounded caption in the real world. *arXiv preprint*
 581 *arXiv:2506.24102*, 2025.

582 Long Lian, Yifan Ding, Yunhao Ge, Sifei Liu, Hanzi Mao, Boyi Li, Marco Pavone, Ming-Yu Liu, Trevor
 583 Darrell, Adam Yala, et al. Describe anything: Detailed localized image and video captioning. *arXiv preprint*
 584 *arXiv:2504.16072*, 2025.

586 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
 587 C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European Conference on Computer*
 588 *Vision (ECCV)*, pp. 740–755, 2014.

589 Weifeng Lin, Xinyu Wei, Ruichuan An, Peng Gao, Bocheng Zou, Yulin Luo, Siyuan Huang, Shanghang Zhang,
 590 and Hongsheng Li. Draw-and-understand: Leveraging visual prompts to enable mllms to comprehend what
 591 you want. In *International Conference on Learning Representations (ICLR)*, 2025a.

592 Weifeng Lin, Xinyu Wei, Ruichuan An, Tianhe Ren, Tingwei Chen, Renrui Zhang, Ziyu Guo, Wentao Zhang,
 593 Lei Zhang, and Hongsheng Li. Perceive anything: Recognize, explain, caption, and segment anything in
 images and videos. *arXiv preprint arXiv:2506.05302*, 2025b.

594 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in Neural*
 595 *Information Processing Systems (NeurIPS)*, 36:34892–34916, 2023.

596

597 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-
 598 next: Improved reasoning, ocr, and world knowledge. <https://llava-vl.github.io/blog/2024-01-30-llava-next/>, 2024.

599

600 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv preprint arXiv:1608.03983*, 2016.

601

602 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

603

604 Chuofan Ma, Yi Jiang, Jiannan Wu, Zehuan Yuan, and Xiaojuan Qi. Groma: Localized visual tokenization for
 605 grounding multimodal large language models. In *European Conference on Computer Vision (ECCV)*, pp. 417–435. Springer, 2024.

606

607 Haiyang Mei, Bo Dong, Wen Dong, Pieter Peers, Xin Yang, Qiang Zhang, and Xiaopeng Wei. Depth-aware mirror
 608 segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3044–3053, 2021.

609

610

611 OpenAI. Openai-gpt-4o. <https://openai.com/index/gpt-4o-system-card/>, 2024a.

612

613 OpenAI. Openai-o1. <https://openai.com/o1/>, 2024b.

614

615 OpenAI. Openai-o3. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025.

616

617 Jihao Qiu, Yuan Zhang, Xi Tang, Lingxi Xie, Tianren Ma, Pengyu Yan, David Doermann, Qixiang Ye, and
 618 Yunjie Tian. Artemis: Towards referential understanding in complex videos. *Advances in Neural Information Processing Systems (NeurIPS)*, 37:114321–114347, 2024.

619

620 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
 621 Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language
 622 supervision. In *International Conference on Machine Learning (ICML)*, pp. 8748–8763, 2021.

623

624 Vignesh Ramanathan, Anmol Kalia, Vladan Petrovic, Yi Wen, Baixue Zheng, Baishan Guo, Rui Wang, Aaron
 625 Marquez, Rama Kovvuri, Abhishek Kadian, et al. Paco: Parts and attributes of common objects. In
 626 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 7141–
 627 7151, 2023.

628

629 Viresh Ranjan, Udbhav Sharma, Thu Nguyen, and Minh Hoai. Learning to count everything. In *Proceedings of
 630 the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3394–3403, 2021.

631

632 Hanooona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham Cholakkal,
 633 Rao M Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S Khan. Glamm: Pixel grounding large multimodal
 634 model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 13009–13018, 2024.

635

636 Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian Sun.
 637 Objects365: A large-scale, high-quality dataset for object detection. In *Proceedings of the IEEE/CVF
 International Conference on Computer Vision (ICCV)*, pp. 8430–8439, 2019.

638

639 Zeyi Sun, Ye Fang, Tong Wu, Pan Zhang, Yuhang Zang, Shu Kong, Yuanjun Xiong, Dahua Lin, and Jiaqi Wang.
 640 Alpha-clip: A clip model focusing on wherever you want. In *Proceedings of the IEEE/CVF Conference on
 641 Computer Vision and Pattern Recognition (CVPR)*, pp. 13019–13029, 2024.

642

643 Qwen Team. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

644

645 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha Akula,
 646 Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully open, vision-
 647 centric exploration of multimodal llms. *Advances in Neural Information Processing Systems (NeurIPS)*, 37:
 87310–87356, 2024a.

648

649 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide shut? exploring
 650 the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 651 and Pattern Recognition (CVPR)*, pp. 9568–9578, 2024b.

652

653 Han Wang, Yongjie Ye, Yanjie Wang, Yuxiang Nie, and Can Huang. Elysium: Exploring object-level perception
 654 in videos via mllm. In *European Conference on Computer Vision (ECCV)*, pp. 166–185. Springer, 2024a.

648 Haochen Wang, Xiangtai Li, Zilong Huang, Anran Wang, Jiacong Wang, Tao Zhang, Jiani Zheng, Sule Bai,
 649 Zijian Kang, Jiashi Feng, et al. Traceable evidence enhanced visual grounded reasoning: Evaluation and
 650 methodology. *arXiv preprint arXiv:2507.07999*, 2025a.

651 Haochen Wang, Yucheng Zhao, Tiancai Wang, Haoqiang Fan, Xiangyu Zhang, and Zhaoxiang Zhang. Ross3d:
 652 Reconstructive visual instruction tuning with 3d-awareness. *Proceedings of the IEEE/CVF International
 653 Conference on Computer Vision (ICCV)*, 2025b.

654 Haochen Wang, Anlin Zheng, Yucheng Zhao, Tiancai Wang, Zheng Ge, Xiangyu Zhang, and Zhaoxiang Zhang.
 655 Reconstructive visual instruction tuning. In *International Conference on Learning Representations (ICLR)*,
 656 2025c.

657 Jiacong Wang, Zijiang Kang, Haochen Wang, Haiyong Jiang, Jiawen Li, Bohong Wu, Ya Wang, Jiao Ran, Xiao
 658 Liang, Chao Feng, et al. Vgr: Visual grounded reasoning. *arXiv preprint arXiv:2506.11991*, 2025d.

660 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang,
 661 Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution.
 662 *arXiv preprint arXiv:2409.12191*, 2024b.

663 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu, Linglin
 664 Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal models in versatility,
 665 reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025e.

666 Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multimodal llms. In *Proceedings
 667 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 13084–13094, 2024.

668 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma,
 669 Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language models for
 670 advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024.

671 xAI. Grok. 2024.

672 Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark prompting
 673 unleashes extraordinary visual grounding in gpt-4v. *arXiv preprint arXiv:2310.11441*, 2023.

674 Jingkang Yang, Yi Zhe Ang, Zujin Guo, Kaiyang Zhou, Wayne Zhang, and Ziwei Liu. Panoptic scene graph
 675 generation. In *European Conference on Computer Vision (ECCV)*, pp. 178–196. Springer, 2022.

676 Ruofeng Yang, Bo Jiang, Cheng Chen, Baoxiang Wang, Shuai Li, et al. Few-shot diffusion models escape the
 677 curse of dimensionality. *Advances in Neural Information Processing Systems (NeurIPS)*, 37:68528–68558,
 2024a.

678 Ruofeng Yang, Zhijie Wang, Bo Jiang, and Shuai Li. Leveraging drift to improve sample complexity of
 679 variance exploding diffusion models. *Advances in Neural Information Processing Systems (NeurIPS)*, 37:
 680 107662–107702, 2024b.

681 Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-Fu
 682 Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity. *arXiv preprint
 683 arXiv:2310.07704*, 2023.

684 Haobo Yuan, Xiangtai Li, Tao Zhang, Zilong Huang, Shilin Xu, Shunping Ji, Yunhai Tong, Lu Qi, Jiashi Feng,
 685 and Ming-Hsuan Yang. Sa2va: Marrying sam2 with llava for dense grounded understanding of images and
 686 videos. *arXiv preprint arXiv:2501.04001*, 2025a.

687 Yuqian Yuan, Wentong Li, Jian Liu, Dongqi Tang, Xinjie Luo, Chi Qin, Lei Zhang, and Jianke Zhu. Osprey:
 688 Pixel understanding with visual instruction tuning. In *Proceedings of the IEEE/CVF Conference on Computer
 689 Vision and Pattern Recognition (CVPR)*, pp. 28202–28211, 2024.

690 Yuqian Yuan, Hang Zhang, Wentong Li, Zesen Cheng, Boqiang Zhang, Long Li, Xin Li, Deli Zhao, Wenqiao
 691 Zhang, Yueling Zhuang, et al. Videorefer suite: Advancing spatial-temporal object understanding with video
 692 llm. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 693 18970–18980, 2025b.

694 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image
 695 pre-training. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp.
 696 11975–11986, 2023.

697 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models.
 698 In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 3836–3847, 2023.

702 Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao, Wenqi Shao, Wenwei Zhang, Yu Liu, Kai Chen, and Ping
703 Luo. Gpt4roi: Instruction tuning large language model on region-of-interest. In *European Conference on*
704 *Computer Vision (ECCV)*, pp. 52–70. Springer, 2024a.

705 Tao Zhang, Xiangtai Li, Hao Fei, Haobo Yuan, Shengqiong Wu, Shunping Ji, Chen Change Loy, and Shuicheng
706 Yan. Omg-llava: Bridging image-level, object-level, pixel-level reasoning and understanding. *Advances in*
707 *Neural Information Processing Systems (NeurIPS)*, 37:71737–71767, 2024b.

708 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie
709 Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for open-source multimodal
710 models. *arXiv preprint arXiv:2504.10479*, 2025.

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A OVERVIEW

Here is the table of contents of this appendix:

- In Appendix B, we introduce details of our **GAR-Bench**, including the annotation pipeline and statistics.
- In Appendix C, we provide more implementation details as well as experimental results. Detailed ablations of each component can be found in this section.
- In Appendix D, we provide qualitative results on both detailed *image* captioning and understanding, and localized *video* captioning and understanding.
- In Appendix E, we discuss potential limitations and analyze failure cases.
- In Appendix F, we discuss some underlying issues towards the evaluation protocols of DLC-Bench (Lian et al., 2025).
- In Appendix G, we provide all prompts we utilized to construct our dataset.
- Finally in Appendix H, we discuss the use of LLMs in preparing this paper.

B DETAILS OF GAR-BENCH

B.1 ANNOTATION PIPELINE

The construction of **GAR-Bench** follows a rigorous, semi-automated pipeline designed to generate high-quality, diverse, and challenging data. This process combines the strengths of advanced foundation models for initial data generation with the nuanced judgment of a team of 8 MLLM experts for curation, annotation, and quality control.

Image Selection. To ensure the relevance and challenge of our sub-tasks, we begin by carefully curating source images from existing datasets known to contain specific visual patterns. For the “*relation*” tasks, we source images from the Panoptic Scene Graph (PSG) dataset (Yang et al., 2022), which is rich in complex scene graphs and explicit object relationships, providing a natural foundation for multi-prompt interaction queries. For the “*non-entity recognition*” task, we utilize the RGBD-Mirror dataset (Mei et al., 2021), as it specifically contains scenes with mirrors and reflections, allowing us to create unambiguous test cases for distinguishing real objects from illusory ones. For the “*position*” task, we select images from the FSC-147 dataset (Ranjan et al., 2021), which features images with numerous countable objects often arranged in grid-like patterns, making it ideal for evaluating spatial and ordinal reasoning. Other images are from SA-1B (Kirillov et al., 2023).

Mask Labeling. Following image selection, we generate high-quality segmentation masks for all potential objects of interest. This stage is similar to Li et al. (2025), which decomposes complex scenes into different objects, while not containing numerous meaningless, trivial objects like those in the SA-1B (Kirillov et al., 2023) dataset.

Object Selection and Annotation. With a high-quality pool of object masks generated, the annotation team performs the critical tasks of selection and annotation. The experts first reviewed the masks, selecting only those with high segmentation quality that are also qualified for the target sub-task. Concurrently, they are responsible for annotating the ground-truth information required for the benchmark. Specifically, for the “*reasoning*” protocol of **GAR-Bench-VQA**, they meticulously annotate the correct answers for relation, ordering, and entity status. For **GAR-Bench-Cap**, they annotate the ground-truth captions describing the interactions between the selected masked objects.

Automated Attribute Generation. For the “*perception*” protocol of **GAR-Bench-VQA**, we leverage the advanced capabilities of Gemini-2.5-Pro (DeepMind, 2025b). For each selected and verified object mask, we prompt the model to generate a list of its basic perceptual attributes, including its primary color, shape, material, and any discernible texture or pattern.

Quality Control and Formatting. The raw, annotated data then underwent a meticulous, multi-stage quality control process. First, human experts review all machine-generated attributes from the previous step to verify their factual correctness and filter out any ambiguous or inaccurate labels. Following this verification, the experts transform the raw annotations into the final benchmark formats.



Figure 6: **Statistics of our GAR-Bench.** We (a) slightly prioritize reasoning over perception, and build challenging questions through (b) multiple visual prompts (even have 2 questions with 7 prompts and 9 prompts) and (c) small areas of each prompt with an average of 4.4%.

For all VQA tasks, they rewrite the question-answer pairs into a standardized multiple-choice format, ensuring consistent and objective evaluation. For the captioning task, the ground-truth data was structured for compatibility with LLM-as-a-Judge evaluation protocols similar to [Lian et al. \(2025\)](#).

Difficulty Filtering. As a final quality assurance measure, we implement a difficulty filtering process to ensure the benchmark remains challenging for even the most advanced models. Specifically, any question answered correctly by *all* four state-of-the-art non-thinking MLLMs, *i.e.*, Qwen2.5-VL-72B ([Bai et al., 2025](#)), InternVL3-78B ([Zhu et al., 2025](#)), GPT-4o ([OpenAI, 2024a](#)), and Gemini-2.5-Flash ([DeepMind, 2025a](#)), was excluded from the final benchmark.

B.2 STATISTICS

Distribution of Each Discipline. As demonstrated in Figure 6a, **GAR-Bench** slightly prioritizes advanced reasoning (53%) over basic perception (47%) with a relatively balanced distribution. In addition, it prioritizes complex relational reasoning with *multiple prompts* in the “*relation*” protocol.

Distribution of Number of Prompts. As illustrated in Figure 6b, our **GAR-Bench** even contains 2 questions with 7 prompts and 9 prompts, respectively, leading to an advanced requirement of modeling complex relationships between multiple visual prompts.

Distribution of Areas of Prompts. We compute the *relative* area of each visual prompt in Figure 6c, where the majority of prompts in **GAR-Bench** are extremely small, with a sharp peak near 0.0. The mean area across all questions is 4.4%. This distribution highlights the importance of addressing small-scale and fine-grained understanding.

C MORE EXPERIMENTS

Implementation Details. We adopt PerceptionLM series ([Cho et al., 2025](#)) as our base model, as it demonstrates strong perception capabilities among several open-source MLLMs. We perform supervised fine-tuning of the model on our GAR-2.5M using Xtuner ([Contributors, 2023](#)) with the AdamW optimizer ([Loshchilov & Hutter, 2017](#)) with a global batch size of 64 and a learning rate of 1e-5 with a cosine decay ([Loshchilov & Hutter, 2016](#)).

Comparison Baselines. We mainly compare our **GAR** with both general MLLMs, including state-of-the-art private models ([OpenAI, 2024a; 2025; DeepMind, 2025b](#)), and representative public models ([Bai et al., 2025; Zhu et al., 2025; Liu et al., 2023](#)), and region-level MLLMs, including GLaMM ([Rasheed et al., 2024](#)), GPT4RoI ([Zhang et al., 2024a](#)), Osprey ([Yuan et al., 2024](#)), Shikra ([Chen et al., 2023](#)), Ferret ([You et al., 2023](#)), RegionGPT ([Guo et al., 2024](#)), OMG-LLaVA ([Zhang et al., 2024b](#)), VP-SPHINX ([Lin et al., 2025a](#)), Sa2VA ([Yuan et al., 2025a](#)), DAM ([Lian et al., 2025](#)), and PAM ([Lin et al., 2025b](#)). We transform masks to boxes for box-level MLLMs, *e.g.*, ([Zhang et al., 2024a; Chen et al., 2023; You et al., 2023; Lin et al., 2025b](#)), as our **GAR-Bench** provides segmentation masks by default. On video benchmarks, we further compare with LLaVA-OneVision ([Li et al., 2024](#)), Qwen2-VL ([Wang et al., 2024b](#)), InternVL2 ([Chen et al., 2024c](#)), Elysium ([Wang et al., 2024a](#)), Artemis ([Qiu et al., 2024](#)), and VideoRefer ([Yuan et al., 2025b](#)).

864
865 Table 8: **Ablations across different model architectures** with PerceptionLM-1B. \dagger indicates using
866 GPT-4o (OpenAI, 2024a) with extra cropped images as the judge, instead of text-only judging. Our
867 proposed RoI-aligned feature replay strategy effectively preserves necessary global contexts. We
868 also report the average latency (ms) to generate the first token and the maximum number of tokens
869 for ViT (Dosovitskiy et al., 2021). By default, we set `max_num_tiles=16` for AnyRes (Liu et al.,
870 2024), resulting in a maximum of 17 crops in total for one global image.

871	Global	Local	GAR-Bench		DLC-Bench \dagger		Inference Speed		
			872 Caption	873 VQA	874 Avg.	875 Pos.	876 Neg.	877 Latency	878 # ViT Tokens
879	① –	image + mask	20.1	37.8	69.3	60.2	78.4	36.1	256
880	② –	image + mask + cross-attention	19.1	40.0	68.8	57.3	80.3	57.1	4,608
881	③ image + mask	image + mask	28.4	36.6	77.4	70.1	84.8	93.1	4,608
882	④ image + mask	RoI-aligned feature replay	57.5	50.6	77.1	66.2	88.0	87.7	4,352
883	⑤ image	RoI-pooled feature	39.3	39.1	50.0	37.3	62.7	78.2	4,352
884	⑥ image	RoI-aligned feature replay	42.1	40.1	67.1	55.8	78.4	90.8	4,608
885	⑦ –	image	17.8	35.4	65.0	59.3	70.7	30.4	256
886	⑧ image + mask	–	32.7	40.4	51.7	40.4	63.0	75.0	4,352

887 Table 9: **Ablations across different model architectures** with different base models. \dagger indicates
888 using GPT-4o (OpenAI, 2024a) with extra cropped images as the judge, instead of text-only judging.
889 Our proposed RoI-aligned feature replay strategy effectively preserves necessary global contexts.

890	Global	Local	GAR-Bench		DLC-Bench \dagger		
			891 Caption	892 VQA	893 Avg.	894 Pos.	895 Neg.
<i>Base Model: Qwen2.5-VL-3B</i>							
896	⑤ –	image + mask	24.5	30.7	52.2	38.0	66.4
897	⑥ –	image + mask + cross-attention	27.9	30.0	55.7	46.8	64.6
898	⑦ image + mask	image + mask	34.3	32.1	62.1	50.7	73.5
899	⑧ image + mask	RoI-aligned feature replay	41.2	40.8	69.2	58.1	80.3
<i>Base Model: InternVL3-2B</i>							
900	⑨ –	image + mask	24.6	33.0	65.6	48.5	82.6
901	⑩ –	image + mask + cross-attention	29.4	31.8	68.8	56.7	80.9
902	⑪ image + mask	image + mask	32.8	36.1	70.3	61.6	79.0
903	⑫ image + mask	RoI-aligned feature replay	43.1	44.6	73.0	63.8	82.2

896
897 **Ablations on Architecture Designs.** We first elaborate on our key architecture design, *i.e.*, RoI-
898 aligned feature replay in Table 8. Other baselines include: ① only local images, ② DAM-like
899 architectures (Lian et al., 2025) which preserves context via zero-initialized gated cross-attention,
900 ③ simply cropping local images as a supplement of global images, and ④ our RoI-aligned feature
901 replay design. As demonstrated in Table 8, both ①, ②, and ③ struggle at modeling multi-prompt
902 relations, leading to poor results on GAR-Bench, although ③ is superior at precise description on
903 DLC-Bench (Lian et al., 2025). However, our proposed RoI-aligned feature replay strategy effectively
904 preserves necessary global contexts while achieving competitive performances on DLC-Bench.

905 In Table 9, we further extend our ablations on model architectures to more base models, including
906 Qwen2.5-VL-3B (Bai et al., 2025) and InternVL3-2B (Zhu et al., 2025). As demonstrated in the
907 table, our proposed RoI-aligned feature replay *consistently* brings significant improvements over
908 different base models.

909 **Ablations on Data Pipeline.** We study the effectiveness of our data in Table 10. Starting from
910 the seed dataset, *i.e.*, Describe-Anything-1.5M (Lian et al., 2025), we first add our Fine-Grained
911 Dataset-456K, and then add our Relation Dataset-414K. By introducing our Fine-Grained Dataset-
912 456K, our model is able to produce more accurate recognition, leading to an improvement of +3.1
913 on DLC-Bench (Lian et al., 2025). By further combining our proposed Relation Dataset-414K, the
914 model is finally equipped with compositional reasoning capabilities with multiple prompts at this
915 time, resulting in significant improvements on our GAR-Bench.

916 **Performances on General Multimodal Benchmarks.** We compare our **GAR-8B** with other
917 region-level models, *i.e.*, DAM-3B (Lian et al., 2025) and PAM-3B (Lin et al., 2025b), on general
918 vision-centric multimodal benchmarks, including V* (Wu & Xie, 2024), MMVP (Tong et al., 2024b),

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
999

Table 10: **Ablations on each component of our data** with 1B model size. \dagger indicates using GPT-4o (OpenAI, 2024a) with extra cropped images as the judge, instead of text-only judging. Each component of our data plays a significant role.

Data	GAR-Bench		DLC-Bench \dagger		
	Caption	VQA	Avg.	Pos.	Neg.
① Seed Dataset-1.5M	13.8	41.5	74.4	63.0	85.8
② ① + Fine-Grained Dataset-456K	14.2	44.1	77.5	67.6	87.4
③ ② + Relation Dataset-414K	57.5	50.6	77.1	66.2	88.0

Table 11: Performance on general multimodal benchmarks (Wu & Xie, 2024; Tong et al., 2024b; xAI, 2024; Chen et al., 2024a), where we set mask = 1 for evaluation. Our **GAR** maintains the most general performance. Combining general VQA datasets would be effective.

Method	V*	MMVP	RealWorldQA	MMStar
DAM-3B (Lian et al., 2025)	45.0	60.7	54.3	39.7
PAM-3B (Lin et al., 2025b)	1.4	4.3	1.7	2.7
<i>Base Model: PerceptionLM-8B</i>				
PerceptionLM-8B (Cho et al., 2025)	69.1	76.0	75.0	57.1
GAR-8B	59.2	78.0	58.7	43.9
GAR-8B (w/ 600K General Data (Li et al., 2024))	62.3	79.7	61.8	51.6

Table 12: **Robustness analysis of GAR-Bench-VQA**, where we randomly sample a subset of each subtask. The relative ordering is stable.

Model	Full (424)		1/2 (212)		1/4 (106)	
	Overall Rank					
PAM-3B	2.4	9	4.3	9	0.9	9
VP-SPHINX-13B	37.5	8	40.0	8	33.3	8
DAM-3B	38.2	7	48.6	7	41.9	7
GAR-1B	50.6	6	51.4	6	49.5	5
Qwen2.5-VL-32B	50.9	5	52.4	5	48.6	6
GPT-4o	53.5	4	56.7	4	57.1	4
GAR-8B	59.9	3	60.0	3	63.8	1
o3	61.3	2	63.3	1	58.1	3
Gemini-2.5-Pro	64.2	1	61.0	2	60.0	2

Table 13: **Robustness analysis of GAR-Bench-Cap**, where we randomly sample a subset of each subtask. The relative ordering remains stable.

Model	Full (214)		1/2 (107)		1/4 (53)	
	Overall Rank					
DAM-3B	13.1	9	13.8	9	14.0	9
PAM-3B	21.1	8	18.8	8	20.1	8
VP-SPHINX-13B	32.3	7	29.7	7	20.0	7
Qwen2.5-VL-32B	36.8	6	32.7	6	26.1	6
GPT-4o	51.5	5	45.5	5	52.1	4
o3	56.9	4	50.6	4	50.3	5
GAR-1B	57.5	3	51.5	3	53.9	3
Gemini-2.5-Pro	59.3	2	54.4	2	58.1	2
GAR-8B	62.2	1	57.4	1	61.8	1

RealWorldQA (xAI, 2024), and MMStar (Chen et al., 2024a). As illustrated in Table 11, our GAR-8B outperforms them by a large margin.

Robust Analysis of GAR-Bench. We conducted a subsampling stability analysis. We randomly subsampled GAR-Bench-VQA and GAR-Bench-Cap to 50% and 25% of their original sizes (for each subtask) and re-evaluated the full suite of models in Table 12 and Table 13, respectively. Our goal was to test whether the relative performance rankings remained consistent even with significantly fewer samples. The results, presented in the tables, demonstrate a high degree of ranking stability. As the results show, the relative ordering of models is remarkably stable. For example, in GAR-Bench-Cap, the top 3 models (GAR-8B, Gemini-2.5-Pro (DeepMind, 2025b), GAR-1B) and bottom 3 models (VP-SPHINX (Lin et al., 2025a), PAM (Lin et al., 2025b), DAM (Lian et al., 2025)) maintain their general ranking group even at a 1/4 sample size. While minor fluctuations exist among the top-tier models in the VQA 1/4 split (e.g., GAR-8B jumping from 3rd to 1st), the overall performance tiers are preserved.

Robust Analysis of LLM-Judges. To directly investigate the consistency and potential bias of the LLM judge, we conducted a new cross-judge validation experiment. We re-evaluated all models on GAR-Bench-Cap using four different powerful LLMs as judges: GPT-4o (OpenAI, 2024a) (our original judge), o3 (OpenAI, 2025), Gemini-2.5-Flash (DeepMind, 2025a), and Gemini-2.5-Pro (DeepMind, 2025b). The results, presented in Table 14, demonstrate a high degree of consistency in model rankings. While the absolute scores fluctuate across different judges, which reflects their inherent stylistic preferences or scoring strictness, the relative ranking of models is remarkably stable. Most importantly, our **GAR-8B** consistently ranks 1st across all four distinct judges, and our other

Table 14: **Robustness analysis of the LLM-judges** utilized by GAR-Bench-Cap. *The relative ordering remains stable across different judges.*

Model	GPT-4o		o3		Gemini-2.5-Flash		Gemini-2.5-Pro	
	Score	Rank	Score	Rank	Score	Rank	Score	Rank
DAM-3B	13.1	10	9.3	10	9.4	10	0.3	10
PAM-3B	21.1	9	21.5	9	25.3	9	31.3	9
VP-SPHINX-13B	32.3	8	27.5	8	30.4	8	32.7	8
Qwen2.5-VL-32B	36.8	7	28.1	7	37.4	7	41.8	7
InternVL3-38B	45.1	6	30.8	6	41.9	6	47.4	6
GPT-4o	51.5	5	31.8	5	46.3	5	50.6	5
o3	56.9	4	37.8	3	52.8	4	60.7	3
GAR-1B	57.5	3	37.4	4	55.1	3	59.8	4
Gemini-2.5-Pro	59.3	2	44.5	2	57.4	2	61.3	2
GAR-8B	62.2	1	46.7	1	60.3	1	62.6	1

Table 15: Analysis for general models using four different region-specification formats. “VQA” and “Cap” represent “GAR-Bench-VQA” and “GAR-Bench-Cap”, respectively. Powerful, general-purpose VLMs consistently struggle across *all* four settings.

Input Type	GPT-4o			o3			Gemini-2.5-Pro		
	VQA	Cap	DLC-Bench	VQA	Cap	DLC-Bench	VQA	Cap	DLC-Bench
Type 1	53.5	51.5	41.0	61.3	56.9	48.0	64.2	59.3	48.4
Type 2	56.4	52.0	38.4	63.4	54.9	47.8	61.9	58.1	52.9
Type 3	51.2	31.9	25.4	57.8	40.7	34.9	61.9	61.3	54.6
Type 4	48.3	38.2	28.5	59.0	47.1	41.3	66.0	44.1	47.8

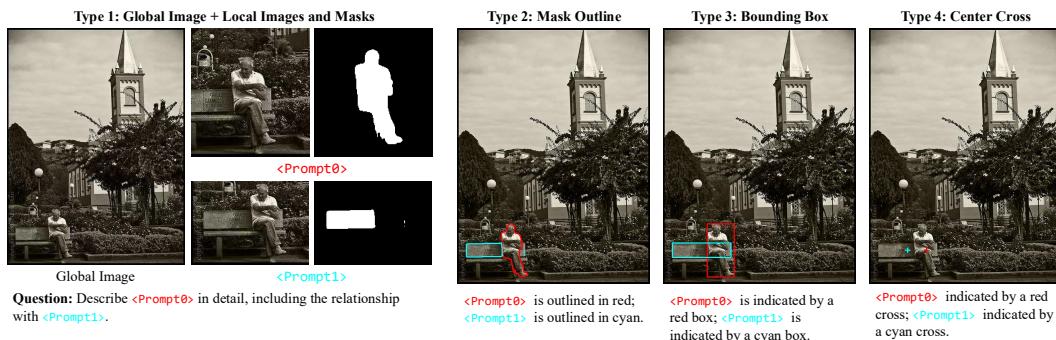


Figure 7: **Illustration of different input types.**

GAR models also consistently place in the top tier. This experiment suggests that our primary claims about GAR's superior performance are robust and not an artifact of a single judge's bias.

Input Type Analysis for General Models. To investigate whether general models lack the ability to interpret masks or are genuinely deficient in understanding local details and relationships, we conduct an analysis using four different input types illustrated in Figure 7: (1) Type 1: Separated global image and local masks (our original setting). (2) Type 2: Drawing mask outlines directly onto the image. (3) Type 3: Using bounding boxes derived from masks. (4) Type 4: Using center-point crosses derived from masks. Empirical results are presented in Table 15, where powerful models consistently struggle across all four settings. This crucial finding reveals a fundamental deficiency in fine-grained perception and relational reasoning, regardless of how the regions of interest are indicated.

D QUALITATIVE RESULTS

D.1 QUALITATIVE RESULTS ON GAR-BENCH

“Relation” of GAR-Bench-VQA. In Figure 8, we provide qualitative comparisons on the “relation” protocol of our GAR-Bench-VQA, including two failure cases (the last row). As demonstrated in the figure, GAR-8B manages to not only effectively model relationships but also leverage crucial local

1026 details for choosing the best answer. For instance, in the right example of the middle row, the person
 1027 (`<Prompt0>`) is actually *not* reading the book (`<Prompt1>`), since she is looking at the camera. Our
 1028 GAR-8B manages to recognize such details and thus select “`<Prompt0>` is *holding* `<Prompt1>`”
 1029 instead of “*reading*”, while both Gemini-2.5-Pro (DeepMind, 2025b) and o3 (OpenAI, 2025) fail.

1030 However, as illustrated in the last two examples in Figure 8, current models still sometimes struggle
 1031 to understand complex relationships with *more than two objects*. Constructing such complicated
 1032 training data and keeping the correctness of relation annotations could be a potential solution.

1033 **“Non-Entity Recognition” of GAR-Bench-VQA.** In Figure 9, we provide qualitative comparisons
 1034 on the “non-entity recognition” protocol of our GAR-Bench-VQA, including two failure cases (the
 1035 last row). As demonstrated in the figure, GAR-8B is able to correctly recognize objects in the mirror
 1036 *without* any depth prior, thanks to its encoded global contexts.

1037 However, as demonstrated in the right case in the last row, current models still struggle to distinguish
 1038 whether the reflection actually comes from the mirror (`<Prompt2>`) or other reflective surfaces
 1039 (`<Prompt0>` and `<Prompt1>`).

1041 D.2 QUALITATIVE RESULTS ON VIDEOREFER-BENCH

1042 **Detailed Localized Video Captioning.** In Figure 10, we provide qualitative results of extending
 1043 GAR-8B to generate detailed *video* descriptions on VideoRefer-Bench^D (Yuan et al., 2025b). In
 1044 most cases, where videos usually remain *static*, GAR-8B manages to generate detailed, specific,
 1045 and precise descriptions. However, as demonstrated in the last example, GAR-8B fails to capture
 1046 detailed temporal differences among frames, leading to a low score on “temporal description”. This
 1047 is because our GAR models are actually trained with only images and lack *fine-grained* temporal
 1048 comprehension capabilities.

1049 **Detailed Video Understanding.** In Figure 11, we provide qualitative results of extending GAR-
 1050 8B to detailed *video* understanding on VideoRefer-Bench^Q. GAR-8B is capable of understanding
 1051 basic motions under a *zero-shot* setting, *e.g.*, the sequential question, the relation question, and the
 1052 reasoning question. However, on the “future prediction” protocol, GAR-8B sometimes fails to choose
 1053 the best choice with *significant* motion changes.

1056 E LIMITATION AND FAILURE CASES

1057 One potential limitation is that our **GAR** is limited to static images. Although it can be successfully
 1058 extended to video and even achieves competitive results compared with video models (please refer to
 1059 Tables 6 and 7 for detailed experimental results), it sometimes fails when input videos contain signifi-
 1060 cant motion changes. Specifically, as demonstrated in the failure cases in Figures 10 and 11, GAR-8B
 1061 is superior at comprehending and describing *static* videos, and is also capable of understanding *basic*
 1062 *motions*. However, with significant motion changes, GAR-8B sometimes fails. Carefully collecting
 1063 video training data could be a potential solution.

1066 F DISCUSSION ON DLC-BENCH

1067 Our analysis in Figure 12 reveals a significant weakness in the original judge of DLC-Bench (Lian
 1068 et al., 2025), which relies on a *text-only* LLM, *i.e.*, LLaMA3.1-8B (Grattafiori et al., 2024), for
 1069 automated scoring. Specifically, a fundamental flaw in the original DLC-Bench (Lian et al., 2025)
 1070 evaluation lies in its assumption that *semantic categories can be accurately adjudicated within the*
 1071 *abstract confines of language space alone*. However, Figure 12 demonstrates that this *text-only*
 1072 approach is inherently *unreliable* due to the ambiguity of linguistic labels *without* visual contexts.
 1073 We argue that the image is the only ground truth capable of resolving this ambiguity. Therefore, we
 1074 provide the image for valid evaluation. To truly assess a model’s descriptive power, the judge *must* be
 1075 multimodal, capable of grounding the generated caption in the visual reality it purports to describe.

1077 G PROMPT TEMPLATES

1078 We provide all of our prompts utilized in building our data in Figures 13, 14, 15, and 16.

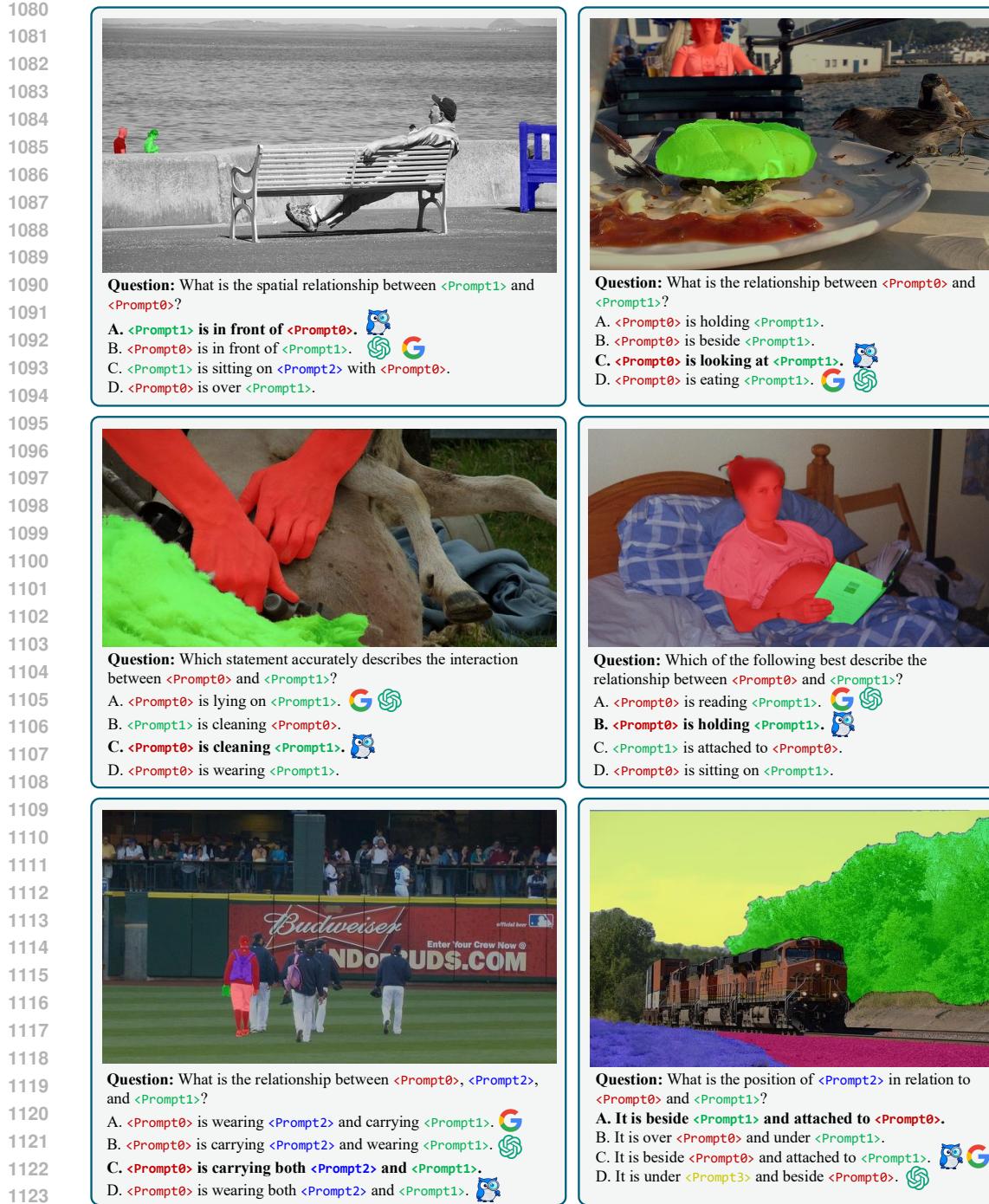


Figure 8: **Qualitative comparisons** on the “relation” protocol of our **GAR-Bench-VQA**, including two failure cases (bottom). Notably, in the right case of the middle row, the person (`<Prompt0>`) is actually *not* reading the book (`<Prompt1>`), since she is looking at the camera. Our **GAR-8B** manages to recognize such details while both Gemini-2.5-Pro (DeepMind, 2025b) and OpenAI-o3 (OpenAI, 2025) fail. From the last two cases, we can tell that models are still struggling with understanding complex relationships with *more than two objects*. Image source: Shao et al. (2019).

H USE OF LLMs

In preparing this paper, LLMs are utilized as a general-purpose assistive tool. Specifically, the use of LLMs is strictly limited to proofreading the author-written text for grammatical errors, spelling

1134 corrections, and improvements to language clarity. This application is consistent with the use of
1135 conventional grammar-checking software and did *not* extend to research ideation, data analysis, or
1136 the generation of any substantive content.
1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

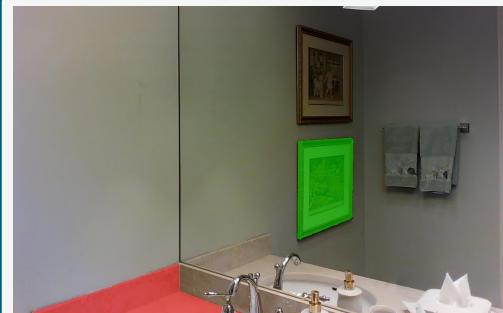
1237

1238

1239

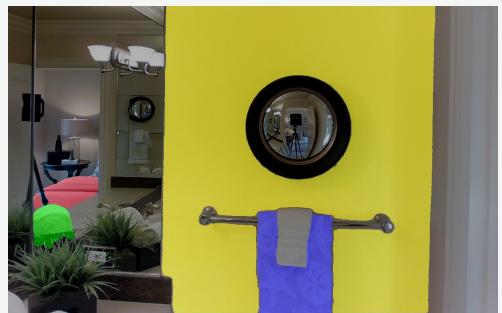
1240

1241



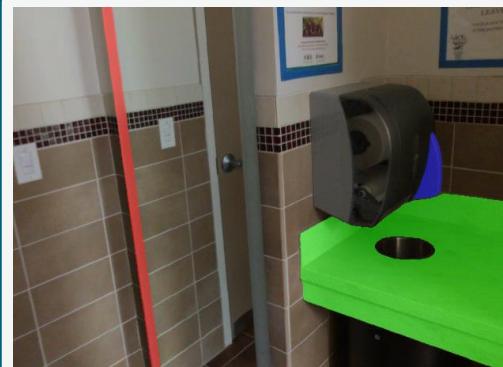
Question: Can you tell me if `<Prompt1>` and `<Prompt0>` are inside the mirror?

- A. `<Prompt1>` and `<Prompt0>` are both in the mirror.
- B. Only `<Prompt0>` is in the mirror.
- C. Only `<Prompt1>` is in the mirror.
- D. Neither `<Prompt0>` and `<Prompt1>` is in the mirror.



Question: Which one among `<Prompt0>`, `<Prompt1>`, `<Prompt2>` or `<Prompt3>` is in the mirror?

- A. `<Prompt0>`.
- B. `<Prompt1>`.
- C. `<Prompt2>`.
- D. `<Prompt3>`.



Question: Among `<Prompt0>`, `<Prompt1>`, and `<Prompt2>`, which one is in the mirror?

- A. `<Prompt0>`.
- B. `<Prompt1>`.
- C. `<Prompt2>`.
- D. None of the above are in the mirror.

Question: Are `<Prompt0>` and `<Prompt1>` located within the mirror?

- A. Both `<Prompt0>` and `<Prompt1>` are in the mirror.
- B. Only `<Prompt0>` is in the mirror.
- C. Only `<Prompt1>` is in the mirror.
- D. None of the above are in the mirror.

Question: Are `<Prompt0>` and `<Prompt1>` located within the mirror?

- A. Both `<Prompt0>` and `<Prompt1>` are in the mirror.
- B. Only `<Prompt0>` is in the mirror.
- C. Only `<Prompt1>` is in the mirror.
- D. None of the above are in the mirror.

Question: Among `<Prompt0>`, `<Prompt1>`, and `<Prompt2>`, which one is in the mirror?

- A. `<Prompt0>`.
- B. `<Prompt1>`.
- C. `<Prompt2>`.
- D. None of the above are in the mirror.

Figure 9: Qualitative comparisons on the “non-entity recognition” protocol of our **GAR-Bench-VQA**, including two failure cases (bottom). From the last two cases, we can tell that models are sometimes still struggling with recognizing non-entities, especially distinguishing reflection from the mirror (`<Prompt2>`) and other surfaces (`<Prompt0>` and `<Prompt1>`).

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

Question: Describe the masked region in detail.

GAR-8B: The dress is black with white polka dots. It is sleeveless and has a black belt around the waist and is worn on a woman's body.

GPT-4o Judgement:

- Subject Correspondence 5
- Appearance Description 5
- Temporal Description 5
- Hallucination Detection 5

Question: Describe the masked region in detail.

GAR-8B: A man wearing a checkered shirt holds a red cup, as if singing with the people around him. He keeps smiling and looks very happy.

GPT-4o Judgement:

- Subject Correspondence 5
- Appearance Description 5
- Temporal Description 4
- Hallucination Detection 5

Question: Describe the masked region in detail.

GAR-8B: The sports car in the video is a blue Porsche. It is parked under a covered area, with its driver's side door open. The car has a sleek design with a glossy finish, black rims, and a visible Porsche emblem on the hood. The car is stationary and not in motion.

GPT-4o Judgement:

- Subject Correspondence 5
- Appearance Description 5
- Temporal Description 5
- Hallucination Detection 4

Question: Describe the masked region in detail.

GAR-8B: A blue bus with a cartoonish design featuring a large front windshield and side windows, through which various colorful characters are visible. The bus has a rounded front with two circular headlights and a small, rectangular grille below the windshield. The side of the bus displays a row of windows with a visible door towards the front. The bus's body is adorned with a pattern of small, colorful shapes and designs.

GPT-4o Judgement:

- Subject Correspondence 5
- Appearance Description 5
- Temporal Description 0
- Hallucination Detection 4

Figure 10: Qualitative results of **detailed video captioning** on VideoRefer-Bench^D (Yuan et al., 2025b), including one failure case with a low “temporal description” score. Video source: (Chen et al., 2024b).

1290

1291

1292

1293

1294

1295

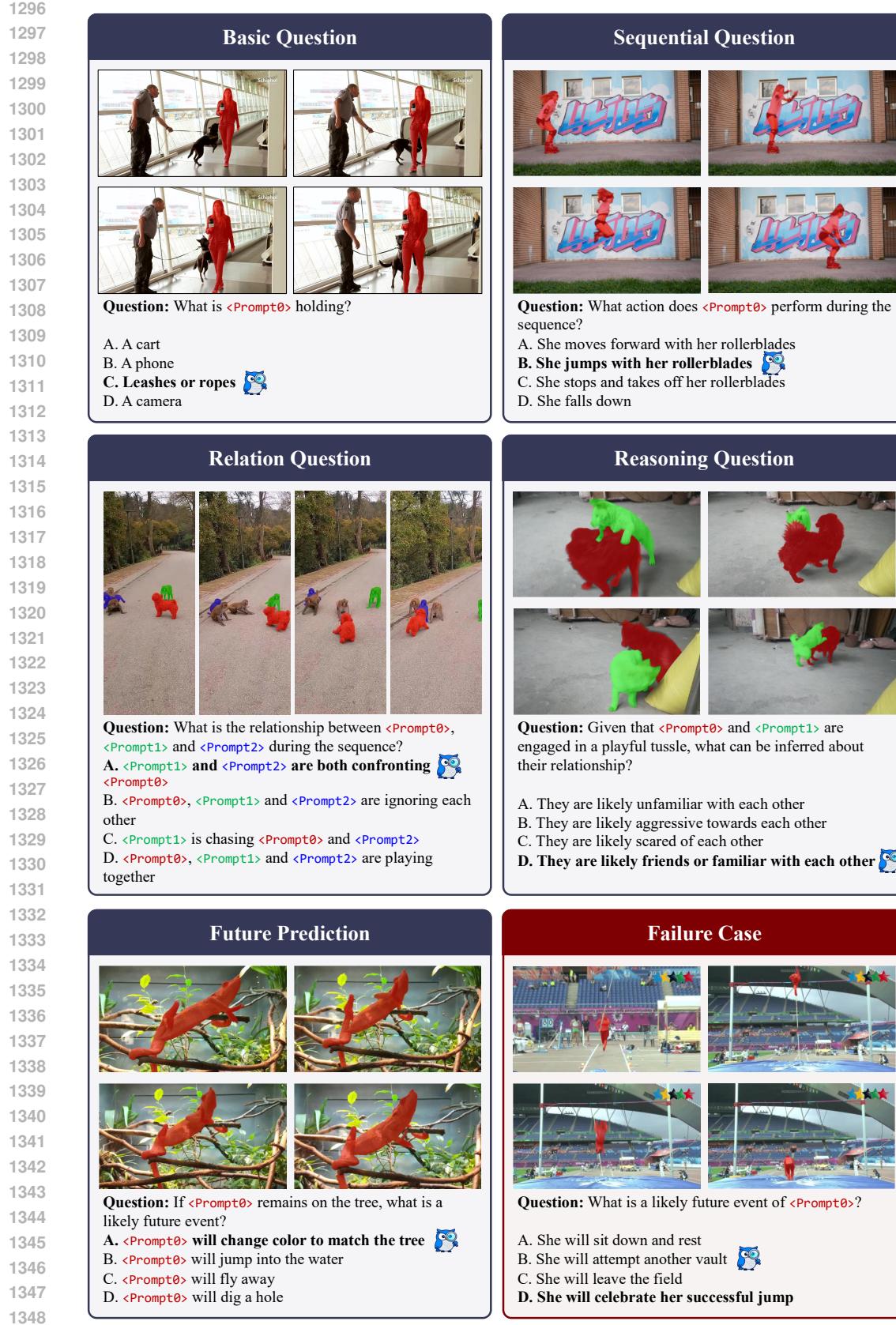


Figure 11: Qualitative results of **detailed video understanding** on VideoRefer-Bench^Q (Yuan et al., 2025b), including one failure case in the “future prediction” protocol.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Judge Prompt

Answer the multiple-choice question based on the text description of an object in an image. You need to follow these rules:

1. Do not output any reasoning. Do not perform correction. Please output exactly one answer from the choices for each question. Do not repeat the question.
2. There is no need for exact matching. Please choose the closest option based on the description.

The description is: `{pred_caption}`

From the description above, please answer the following question with one of the choices:

Is it likely that the objects in the description are `{class_name}` or objects of a similar type? Again, it does not have to be an exact match.

False Negative

Category: Van

Description: A black taxi with the word TAXI in yellow on the rear window, featuring a yellow license plate and red tail lights.

GPT-4o: Yes

LLaMA3.1-8B: No

Category: Sign / Banner

Description: A white price tag with handwritten text in blue ink. The text reads L64 at the top, followed by 100g and 100g again below it. At the bottom, there is a large €390

GPT-4o: Yes

LLaMA3.1-8B: No

False Positive

Category: Microwave

Description: A wooden cabinet with a vertical grain pattern, featuring a single visible door handle on the right side, which is curved and metallic. The cabinet has a flat top and appears to be part of a larger piece of furniture.

GPT-4o: No

LLaMA3.1-8B: Yes

Category: Truck

Description: The bus is predominantly blue with a sleek, modern design. It features a black and white logo on the side, and the word **AMBULANCE** is visible in white letters on a black background. The bus has a large, curved windshield and a side mirror extending from the front.

GPT-4o: No

LLaMA3.1-8B: Yes

Figure 12: **Incorrect text-only judging results** using LLaMA3.1-8B (Grattafiori et al., 2024) on DLC-Bench (Lian et al., 2025). The model is required to judge whether the **description** is consistent with the ground-truth **category name**. We illustrate both **correct** and **wrong** results. Providing extra cropped images and masks to GPT-4o (OpenAI, 2024a) effectively eliminates this issue.

1404
1405
1406
1407
1408
1409
1410
1411

1412 **Prompt for Judging Descriptions and Ground-Truth Categories**

1413 Answer the multiple-choice question based on the text description of an object in an image. You need to follow
1414 these rules:
1415 1. Do not output any reasoning. Do not perform correction. Please output exactly one answer from the choices for
1416 each question. Do not repeat the question.
1417 2. There is no need for exact matching. Please choose the closest option based on the description.
1418
1419 The description is: {pred_caption}
1420 From the description above, please answer the following question with one of the choices:
1421 Is it likely that the objects in the description are {class_name_list} or objects of a similar type? Again, it
1422 does not have to be an exact match.

1423 Figure 13: Prompt for judging the description and the ground-truth category.
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437

1438 **Prompt for Generating Relation-Aware Captions**

1439 You are given the following information:
1440 - Subject name: {subject_name}
1441 - Object name: {object_name}
1442 - Predicate (relation): {predicate_name}
1443 - Subject description: {sub_caption}
- Object description: {obj_caption}

1444 **Instructions:**
1445 1. First Judge if the objects in the 'Subject description' are {subject_name} or objects of a similar type.
It does not have to be an exact match. If it does not, output only: False.
1446 2. The 'Object description' does not need to match the 'Object name'.
- If the 'Object description' matches the 'Object name', you may use it.
- If it does not match, ignore it and only use the 'Object name'.
1447 3. Generate a fluent caption focusing mainly on the Subject.
- Preserve as much detail from the subject description as possible.
- Also include the relation ({predicate_name}) with the object (using either the 'Object description' if
1448 valid, or the 'Object name').
1449 4. Output only the final caption, without any explanations or reasoning.

1450
1451 Figure 14: Prompt for generating relation-aware caption.
1452
1453
1454
1455
1456
1457

1458
 1459
 1460
 1461
 1462 **Prompt for Generating Question-Answering Pairs**
 1463 You are a professional Visual Question Answering (VQA) expert. Your task is to create high-quality, direct
 1464 question-answer pairs about a virtual scene, based on provided ground truth data.
 1465 **Input Format:**
 1466 I will provide you with the ground truth for a scene in two JSON formats:
 1467 - captions: A dictionary containing reference tags for objects (e.g., <Prompt0>), their corresponding category
 (category_name), and a detailed text description (caption).
 1468 - relations: A dictionary that describes the relationships between objects using the format <subject>, <object>,
 <predicate>.
 1469 **Task & Output Format:**
 1470 Your task is to use this ground truth data to generate a JSON array containing 1-3 question-answer pairs.
 1471 Your output must be a single, valid JSON array and nothing else. Do not include any explanations, comments, or
 text outside of the JSON structure. The format should be as follows:
 1472 ````json
 1473 [
 1474 {
 1475 "question": "The text of the question...",
 1476 "answer": "A direct, factual answer in a short sentence or phrase."
 1477 }
 1478]
 1479 `````
 1480 **Core Generation Rules:**
 1481 1. Core Focus on Relationships:
 1482 All questions must primarily test the spatial, action-based, or state-based relationships defined in the
 relations data.
 1483 2. Formulate Concise and Factual Answers:
 1484 The answer_text must directly and accurately respond to the question.
 1485 The answer must be a short, complete sentence or a descriptive phrase based only on the provided relations and
 captions.
 1486 **Example:**
 1487 Q: "What is the relationship between <Prompt0> and <Prompt1>?"
 1488 A: "<Prompt0> is on top of <Prompt1>."
 1489 3. Diverse Questioning Styles (Crucial):
 1490 Your questions must be varied. Emulate the following styles:
 1491 - Relationship/Arrangement: "What is the spatial relationship between <Prompt0> and <Prompt1>?" or "Describe the
 arrangement involving <Prompt1>, <Prompt2>, and <Prompt3>." or "Which statement accurately describes the
 positions of <Prompt0>, <Prompt2>, and <Prompt1>?"
 1492 - Comprehensive Statements: "Can you describe the arrangement involving <Prompt1>, <Prompt2>, and <Prompt3>?"
 1493 - Location: "Where is <Prompt2> located relative to <Prompt3>?" or "How are <Prompt2> and <Prompt1> positioned
 relative to <Prompt0>?"
 1494 - Action & State: "What is the primary activity of <Prompt0>?" or "What are <Prompt0> doing on <Prompt4>?" or
 "Which statement best synthesizes the relationships involving <Prompt0> and <Prompt1>?"
 1495 - Attribute-based (using caption details): "What is on the back of the giraffe <Prompt2>?"
 1496 - Direct Relationship: "What is the spatial relationship between <Prompt0> and <Prompt1>?" or "How is <Prompt0>
 interacting with <Prompt1> and <Prompt2>?"
 1497 - Ask for prompt: "Which are/is described as driving on <Prompt1>?" or "which object is located between
 <Prompt3> and <Prompt1>?" (the answer should be like "<PromptX>" or "<Prompt0> and <Prompt2>")
 1498 - You can vary your question from these styles or use styles not appear in here.
 1499 4. Synthesize Information for Reasoning:
 1500 Whenever possible, design questions that require synthesizing multiple relationships to arrive at the correct
 answer. The answer should reflect this synthesis.
 1501 5. Intelligent Use of captions:
 1502 Utilize the category_name and caption details to formulate more specific, context-aware questions and answers.
 1503 6. Strict Formatting and Wording (Crucial):
 1504 Immersive Phrasing: Frame questions as if asking about a real visual scene. Crucially, you must not use phrases
 like "Based on the provided relationships," or "According to the information."
 Tag-Only References: You must use the <PromptX> tags to refer to objects. Do not add descriptions to the tags
 themselves (e.g., use <Prompt0>, not the car <Prompt0>).
 1505 **Input:**
 1506 captions: {captions}
 1507 relations: {relations}

Figure 15: Prompt for generating question-answering pairs.

1512
 1513
 1514
 1515
 1516 **Prompt for Generating Multiple Choices Questions**
 1517
 1518 You are a professional Visual Question Answering (VQA) expert. Your task is to create high-quality, diverse,
 1519 multiple-choice questions about a virtual scene based on provided ground truth data.
 1520 **Input Format:**
 1521 I will provide you with the ground truth for a scene in two JSON formats and some images:
 1522 captions: A dictionary containing reference tags for objects (e.g., <Prompt0>), their corresponding category
 (category_name), and a detailed text description (caption).
 1523 relations: A dictionary that describes the relationships between objects using the format
 <subject>,<object>,<prediccate>.
 1524 images: The Full image and mask crop images which stand for specific <PromptX>
 1525 **Task & Output Format:**
 1526 Your task is to use this ground truth data to generate a JSON array containing 1-3 multiple-choice questions.
 Your output must be a single, valid JSON array and nothing else. Do not include any explanations, comments, or
 text outside of the JSON structure. The format should be as follows:
 1527

```
```json
 1528 [
 1529 {
 1530 "question": "The text of the question...",
 1531 "options": ["A. ...", "B. ...", "C. ...", "D. ..."],
 1532 "answer": "A"
 1533 }
 1534]...
```

  
 1535 **Core Generation Rules:**  
 1536 1. Core Focus on Relationships:  
 All questions must primarily test the spatial, action-based, or state-based relationships defined in the  
 relations data.  
 The correct answer must be directly verifiable from the provided ground truth.  
 1537 2. Diverse Questioning Styles (Crucial):  
 Do not overuse a single question format. Your questions must be varied. Emulate the following styles based on the  
 examples provided in the user's file:  
 Comprehensive Statements: "Which of the following statements accurately describes the arrangement involving  
 <Prompt1>, <Prompt2>, and <Prompt3>?"  
 Location & Belonging: "Which of the following objects are all located on(beside, on, parked on...) <Prompt4>?"  
 Action & State: "What is the primary activity of <Prompt0>?" or "What are <Prompt0> and <Prompt1> doing on  
 <Prompt3>?"  
 Attribute-based (using caption details): "Which object, described as having an illustration of a cat, is located  
 on <Prompt2>?" or "Which surface is the giraffe <Prompt2> lying on?"  
 Direct Relationship(mainly): "What is the spatial relationship between <Prompt0> and <Prompt1>?" or "How is  
 <Prompt0> interacting with <Prompt1> and <Prompt2>?" or "Which objects are located beside <Prompt1>?",  
 1538 3. Synthesize Information for Reasoning:  
 Whenever possible, design questions that require synthesizing multiple relationships to arrive at the correct  
 answer. For example, a question might test <PromptA>'s relationship to both <PromptB> and <PromptC>.  
 1539 4. Intelligent Use of captions:  
 Utilize the category\_name and caption details not just for creating distractors, but to formulate more specific,  
 nuanced, and context-aware questions and answers.  
 1540 5. Plausible Distractors:  
 Each question must have one correct answer and 2-3 plausible but incorrect distractors.  
 Create these by altering the subject, object, or predicate from a correct relationship, or by using other objects  
 from the scene to create a false but believable statement.  
 Use summary options like "Both <Prompt0> and <Prompt1>" or "None of the above" where appropriate.  
 1541 6. Strict Formatting and Wording (Crucial):  
 Immersive Phrasing: Frame questions as if asking about a real visual scene. Crucially, you must not use phrases  
 like "Based on the provided relationships," "According to the information," or reference the data sources in any  
 way.  
 Tag-Only References: You must use the <PromptX> tags to refer to objects in both questions and options. Do not  
 add descriptions to the tags themselves (e.g., use <Prompt0>, not the car <Prompt0>).  
 Category-Agnostic Questions: When asking "Which...", you must use general phrasing. For example, always use  
 "Which of the following is..." instead of "Which person is..." to ensure the question remains valid for all  
 possible answer types.  
 1542 **Input:**  
 1543 captions:{captions}  
 1544 relations:{relations}

Figure 16: Prompt for generating multiple-choice questions.