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ABSTRACT

While Multimodal Large Language Models (MLLMs) excel at holistic understand-
ing, they struggle in capturing the dense world with complex scenes, requiring
fine-grained analysis of intricate details and object inter-relationships. Region-level
MLLMs have been a promising step. However, previous attempts are generally
optimized to understand given regions in isolation, neglecting crucial global con-
texts. To address this, we introduce Grasp Any Region (GAR) for comprehensive
region-level visual understanding. Empowered by an effective RoI-aligned feature
replay technique, GAR supports (1) precise perception by leveraging necessary
global contexts, and (2) modeling interactions between multiple prompts. Together,
it then naturally achieves (3) advanced compositional reasoning to answer spe-
cific free-form questions about any region, shifting the paradigm from passive
description to active dialogue. Moreover, we construct GAR-Bench, which not
only provides a more accurate evaluation of single-region comprehension, but also,
more importantly, measures interactions and complex reasoning across multiple re-
gions. Extensive experiments have demonstrated that GAR-1B not only maintains
the state-of-the-art captioning capabilities, e.g., outperforming DAM-3B +4.5 on
DLC-Bench, but also excels at modeling relationships between multiple prompts
with advanced comprehension capabilities, even surpassing InternVL3-78B on
GAR-Bench-VQA. More importantly, our zero-shot GAR-8B even outperforms
in-domain VideoRefer-7B on VideoRefer-BenchQ, indicating its strong capabilities
can be easily transferred to videos. Code and data will be released.

1 INTRODUCTION

The ambition of Multimodal Large Language Models (MLLMs) is to endow machines with human-
like abilities to perceive, interpret, and reason about the dense visual world (Yuan et al., 2024;
Lian et al., 2025; Li et al., 2025). To date, renowned state-of-the-art models (Bai et al., 2025; Wu
et al., 2024; Wang et al., 2025e; DeepMind, 2025b; OpenAI, 2024a;b; 2025) have made remarkable
strides, excel in generating holistic descriptions and answering general questions about an entire
image. However, this global-level perception struggles with the dense understanding of cluttered
environments, intricate object details, and the complex interplay between multiple entities.

To address the limitation of global perception, several previous works (Chen et al., 2023; Yuan
et al., 2024; Zhang et al., 2024a; Lian et al., 2025; Lin et al., 2025b) argue for a paradigm shift to
region-level MLLMs. Specifically, they equip MLLMs with promptable and fine-grained interactions
to achieve targeted region-level understanding, using boxes (Zhang et al., 2024a; Chen et al., 2023)
or masks (Yuan et al., 2024; Lian et al., 2025). This mechanism transforms the model from a passive
observer of the entire scene into an active participant capable of deep, localized analysis. However,
effectively balancing global scene context with fine-grained local details remains challenging, which
serves as a fundamental trade-off in region-level MLLMs. Conventional methods (Yuan et al., 2024;
You et al., 2023) that employ pooled local features suffer from insufficient details, while recent
models (Lian et al., 2025; Lin et al., 2025b) mainly focus on the ability to generate a descriptive
caption for a single region, and thus model architectures are generally optimized to understand a
given region in isolation. This design often neglects crucial global context, e.g., misidentifying a
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GAR-1B: A bright green, frog-shaped slipper with a smooth, 

rounded body and a wide, open mouth. The slipper has a 

small, raised bump on the top of its head, resembling an eye.

DAM-3B: A vibrant green frog with a smooth, glossy texture. 

The frog has a rounded head with a prominent, slightly raised 

ridge running from the top of its head down to its back. Its eyes 

are closed, and its mouth is slightly open, revealing a hint of 

its tongue. The frog's body is plump and streamlined, with a 

subtle curve along its back.

(a) Precise and Detailed Captioning

A. <Prompt0> is using <Prompt2> to point at <Prompt1>

B. <Prompt0> has already hit <Prompt1> with <Prompt2>

C. <Prompt0> is swinging <Prompt2> and is about to hit 
<Prompt1>

D. <Prompt0> is holding <Prompt2> while looking away from 
<Prompt1>

(b) Multiple Prompts Interaction

A. <Prompt0> and <Prompt1> are both in the mirror

B. Only <Prompt0> is in the mirror

C. Only <Prompt1> is in the mirror

D. Neither <Prompt0> nor <Prompt1> is in the mirror

(c) Compositional Reasoning

Question: Describe the masked region in detail. Question: What is the relationship between <Prompt0>, <Prompt1>, 

and <Prompt2>?

Question: Are <Prompt0> and <Prompt1> located within the mirror?

Figure 1: Illustration of our GAR, which is superior at leveraging necessary global context to
(a) generate precise captions, where green is correct and red means wrong, (b) model complex
interactions among multiple prompts, and perform reasoning such as (c) recognizing non-entities.
Colors of <Prompt0>, <Prompt1>, and <Prompt2> correspond to masks with respective colors.
Image source: (a) Shao et al. (2019), (b) Lin et al. (2014), and (c) Mei et al. (2021).

frog-shaped slipper as a real frog in Figure 1a. To this end, we propose Grasp Any Region (GAR)
for comprehensive and detailed region understanding. As shown in Figure 1, key features include:

(1) Precise Perception. Thanks to the leverage of necessary global contexts, GAR achieves a more
precise perception of given regions, which is the fundamental capability for region MLLMs. As
shown in Figure 1a by aggregating information from the broader, unmasked scene, our GAR manages
to generate much more accurate descriptions than previous crop-based approaches (Lian et al., 2025).

(2) Interactions between Multiple Prompts. GAR moves beyond the prevailing single-prompt
paradigm (Lian et al., 2025), which treats every region of interest as an isolated entity. As illustrated
in Figures 1b and 1c, GAR manages to model relationships between an arbitrary number of prompts.

(3) Advanced Compositional Reasoning Capabilities. Empowered with the aforementioned
features, GAR is naturally equipped with advanced compositional reasoning capabilities, allowing it
to answer any specific free-form questions.

GARBench-VQA

GARBench-Cap

DLC-Bench
Ferret-Bench

MDVP-Bench

LVIS

PACO

V*

MMVP RealWorldQA

MMStar

DAM PAM GAR (Ours)

Figure 2: Performance compari-
son. GAR achieves strong perfor-
mances not only on region-level un-
derstanding, but also excels in gen-
eral multimodal benchmarks.

To achieve these capabilities, effectively encoding global con-
texts becomes equally crucial as local detailed features. To
this end, we propose an RoI-aligned feature replay technique.
Specifically, GAR first encodes the full, uncropped image (to-
gether with the mask prompt) with AnyRes (Liu et al., 2024).
Subsequently, RoI-Align (He et al., 2017) is employed to gather
relevant features directly from the global feature map. Those
gathered features are inherently context-aware, providing suffi-
cient local details while maintaining global information simul-
taneously. Please refer to Figure 3 for the detailed pipeline.

Furthermore, we introduce GAR-Bench, which not only pro-
vides a more accurate evaluation of single-region compre-
hension by constructing multiple-choice questions, but also,
more importantly, measures interaction and complex reasoning
across multiple regions. It includes test cases that require a
model to aggregate information from multiple visual regions to arrive at a correct conclusion, thereby
quantifying the ability to interpret the whole scene rather than independent parts.

Empirically, shown in Figure 2, our GAR-1B not only outperforms DAM-3B (Lian et al., 2025) and
PAM-3B (Lin et al., 2025b) on detailed captioning benchmarks (Lian et al., 2025; You et al., 2023; Lin
et al., 2025a), but also excels in general multimodal benchmarks (Wu & Xie, 2024; Tong et al., 2024b;
xAI, 2024; Chen et al., 2024a). Interestingly, it even outperforms large-scale models like InternVL3-
78B (Zhu et al., 2025) on GAR-Bench, demonstrating its advanced comprehension capability in
modeling interactions between multiple prompts. More importantly, our zero-shot GAR-8B even
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outperforms in-domain VideoRefer-7B on VideoRefer-BenchQ, indicating its strong comprehension
capabilities can be easily transferred to videos. We hope our work inspires the community to develop
MLLMs that can perceive and understand the dense visual world more effectively.

2 RELATED WORKS

Multimodal Large Language Models (MLLMs). Typical MLLMs (Liu et al., 2023; Li et al., 2024;
Liu et al., 2024; Bai et al., 2025; Zhu et al., 2025; Wu et al., 2024; Lei et al., 2025; Wang et al.,
2025b;c; Tong et al., 2024a; Yang et al., 2024a;b) project visual features extracted from pre-trained
visual encoders (Radford et al., 2021; Zhai et al., 2023) to LLM for understanding multimodal
contents. However, these models usually lack precise localization capabilities (Lian et al., 2025; Lin
et al., 2025b) and struggle to understand specific regions. One potential solution is to “think with
images” (OpenAI, 2025; Wang et al., 2025d;a). But these agentic models require complex multi-turn
conversations, while we mainly focus on precise perception within a single-turn dialogue.

Region-Level MLLMs. Different from conventional image-level comprehension, localized un-
derstanding requires MLLMs to capture regional attributes. Previous methods either utilize visual
markers (Yang et al., 2023), bounding boxes (Zhang et al., 2024a; Chen et al., 2023; You et al., 2023;
Rasheed et al., 2024; Lee et al., 2024; Ma et al., 2024), or segmentation masks (Yuan et al., 2024;
Lian et al., 2025), to represent regions-of-interests within an image. We simply regard masks as visual
prompts, since masks have less ambiguity than other representations. Beyond prompt representations,
effectively balancing global scene context with local details remains an open problem. Existing
methods struggle to master both. Methods like DAM (Lian et al., 2025) excel at local perception
but lack a holistic view of the global context. Conversely, earlier works like GPT4RoI (Zhang et al.,
2024a) and GLaMM (Rasheed et al., 2024), while incorporating the global image, tend to lose crucial
local details by pooling region features into single vectors. GAR is designed specifically to solve this
dilemma. Based on this, GAR excels in modeling the relationship between an arbitrary number of
visual prompts while effectively maintaining crucial global context and sufficient local details.

Benchmarks for Region-Level Understanding. Typical region-level benchmarks only evaluate the
caption quality for single prompt using conventional language-based captioning metrics (You et al.,
2023; Yuan et al., 2024; Zhang et al., 2024b; Guo et al., 2024; Rasheed et al., 2024), model-based
similarities (Chen et al., 2025; Yuan et al., 2024), and LLM-Judged accuracies without the need for
reference captions (Lian et al., 2025). GAR-Bench is to systematically evaluate the comprehension
capabilities with multiple visual prompts. It contains a caption protocol to measure the correctness
of descriptions for the relation between visual prompts, and a VQA protocol to evaluate both the
basic understanding capability for specific regions, e.g., color and shape, and advanced compositional
reasoning abilities for multiple regions.

3 GRASP ANY REGION

We start from the task formulation in Section 3.1. Subsequently, we introduce our model architecture
and training data pipeline in Section 3.2 and Section 3.3, respectively. Finally, we introduce our
benchmark designs in Section 3.4 to systematically evaluate region-level comprehension capabilities.

3.1 TASK FORMULATION

The task of grasping any region is a hierarchical challenge from basic perception to complex,
compositional reasoning about specific visual regions. Specifically, given an image I ∈ RH×W×3,
where H ×W indicates the resolution, and a set of N binary visual prompts, e.g., masks {Mi}Ni=1,
where Mi ∈ {0, 1}H×W , the objective is to generate a precise text response R that demonstrates a
multi-layered comprehension of the scene, e.g., detailed attributes description and relational caption,
based on the given text instruction T :

R = RegionModel
(
I, {Mi}Ni=1, T

)
. (1)

Specifically, this task is structured in three ascending levels of capability: (1) Generating detailed
descriptions for a single region is the foundation, e.g., “describe <Prompt1> in detail”, where
<Prompt1> actually denotes a binary mask and is specified by the user. It requires the model to
accurately perceive and articulate the fine-grained attributes contained strictly within the boundaries

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

<Prompt0> is swinging 

<Prompt2> and is 

about to hit <Prompt1>

Question: What is the relationship between 

<Prompt0>, <Prompt1>, and <Prompt2>?

Visual Encoder + Projector

Large Language Model

Patch Embedding Mask Embedding

⊕

RoI-Aligned Feature Replay

<Box0>, <Box1>, and <Box2>.

Preservation of Global Context: The entire image that captures the entire scene.

High-Fidelity Local Details: RoI-Aligned Feature Replay emphasizes specific regions of interest.

  Efficient and Powerful Understanding

RoI-Align

Figure 3: Illustration of our GAR. It leverages a single-pass visual encoder to create a holistic
feature map of the entire scene, thus preserving global context. Simultaneously, an “RoI-Aligned
Feature Replay” mechanism extracts high-fidelity features for specific objects of interest. Both the
global context features and the detailed local features are then fed into an LLM to accurately infer
complex relationships and interactions between multiple objects within the image.

of a given prompt. (2) The next stage requires understanding the given region with the necessary
global contexts. This moves beyond isolated analysis, requesting to aggregate information from the
broader, unmasked scene. This capability is critical for advanced reasoning tasks such as position
identification (i.e., locating an object as “the second from the left in the third row”) and non-entity
recognition (e.g., correctly identifying a reflection in a mirror versus a physical object), where the
prompt itself is insufficient for a correct interpretation. (3) Finally, the task culminates in the ability
to perceive, understand, and describe the relationship between multiple regions. This assesses the
capacity for true compositional reasoning by requiring it to articulate the spatial, functional, or
interactive connections between different prompts.

3.2 MODEL ARCHITECTURE

The task definition above requires overcoming the contextual blindness inherent in models that
analyze prompted regions in isolation. As established, this myopic focus can lead to fundamental
reasoning errors, such as misidentifying a frog-shaped slipper as a real frog because the surrounding
bedroom context is ignored. Therefore, our architectural design of Grasp Any Region (GAR) is
guided by a central principle: to achieve a fine-grained understanding of the prompted region while
simultaneously preserving and leveraging the global context of the entire scene. Illustrated in Figure 3,
we introduce two new components into the architecture: (1) a simple yet effective prompt encoding
scheme, and (2) a novel RoI-aligned feature replay technique.

Prompt Encoding and Integration. To integrate spatial guidance into the vision backbone, we
introduce a lightweight prompt encoding mechanism similar to Lian et al. (2025) and Sun et al.
(2024). The input binary mask, which specifies the region(s) of interest, is first processed by a simple
convolutional block (LeCun et al., 1989) to produce a mask embedding. This zero-initialized (Zhang
et al., 2023) mask embedding is then added to ViT’s (Dosovitskiy et al., 2021) patch embeddings.

RoI-aligned Feature Replay. To simultaneously provide sufficient local details and maintain
necessary global context, we introduce the RoI-aligned feature replay technique. Specifically, our
model processes the full, uncropped image (with the encoded mask prompt) with AnyRes (Liu et al.,
2024), producing a global feature map that is rich in contextual information. Based on the input mask,
we then derive a corresponding bounding box for the region of interest and employ RoI-Align (He
et al., 2017) to gather the relevant feature vectors directly from the global feature map. Because the
features are extracted from a feature map that was computed over the entire image, they are inherently
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Fine-Grained

Dataset

Seed

Captioner

Fine-Grained

Captioner

Final Dataset
Grasp Any Region-2.5M

GAR-1B / 8B

LLM-Merger
Qwen2.5-72B

Detailed Description

Compositional Interaction

LLM-Merger

<Prompt1>:The strong athletic 

with dark, braided hair...

Seed Dataset
Describe Anything-1.5M

Fine-Grained Captioner

<Prompt0>:The modern tennis 

racket with an oval-shaped head ...

<Prompt2>:The tennis ball has 

fuzzy, opic-yellow felt ...

Category Annotation
<Prompt0>: tenis racket

<Prompt1>: athletic

<Prompt2>: tennis ball

RelationAnnotation
<Prompt1> swing  <Prompt0>

<Prompt1> hitting <Prompt2> 

Relation-Aware Question-Answering

What is the relation between <Prompt1>, <Prompt2>, and <Prompt0>?

<Prompt1> is swinging <Prompt0> and is about to hit <Prompt2>.

Relation-Aware Caption

The athletic ...  is swing a modern tennis racket to hit the tennis ball ...

Figure 4: Illustration of our training data pipeline, which mainly includes two rounds of captioning
and judging. Specifically, (1) starting from using the seed dataset to train a seed captioner, we first
construct 456K fine-grained descriptions. Subsequently, (2) we utilize both datasets to obtain a
fine-grained captioner, and leverage the annotations of the Panoptic Scene Graph (PSG) dataset (Yang
et al., 2022) to provide sufficient relation-aware captions and question-answering pairs. Finally, our
GAR models are trained with all three parts.

context-aware, which elegantly avoids the pitfalls of local-only processing in Lian et al. (2025). At
the same time, it provides the subsequent language model with a sufficiently detailed, high-resolution
representation of the prompted region, enabling it to perform fine-grained understanding. This replay
of context-rich features allows GAR to simultaneously “zoom in” on detail without “losing sight” of
the bigger picture. Ablations of this design can be found in Table 8, where we demonstrate that this
design is capable of both (1) providing sufficient local details and (2) preserving global contexts.

3.3 TRAINING DATA PIPELINE

To enhance model capabilities from basic object recognition with single region to complex relational
reasoning with multiple regions, we design a multi-stage process to generate a large-scale, high-
quality dataset, as illustrated in Figure 4. Ablations of each round can be found in Table 10. Prompts
for each stage can be found in Appendix G.

Round 1: Enhance Recognition Capability. Initially, we start from the Describe Anything-1.5M
dataset (Lian et al., 2025). However, we observe deficiencies in its fine-grained recognition capability,
limiting the quality of generated captions for more complex scenarios. To address this, we integrated
images and masks provided by Sun et al. (2024), which is a subset of ImageNet-21K (Deng et al.,
2009), an extremely fine-grained classification dataset and renowned for its detailed and extensive
category labels. We employ the seed captioner to generate descriptions and then utilize an LLM to
validate these generated captions against the ground-truth categories, resulting in a refined fine-grained
dataset of 456K samples. We utilize both datasets to train a fine-grained captioner.

Round 2: Supporting Multiple Prompts. To further enable understanding multiple prompts, we
incorporated the Panoptic Scene Graph (PSG) dataset (Yang et al., 2022), which is rich in relational
information. We first query the fine-grained captioner to generate a detailed description for each
region. Subsequently, we regard Qwen2.5-72B (Team, 2024) as the LLM-Merger, together with the
original annotations provided by the PSG dataset (Yang et al., 2022), to generate: (1) 144K rich object
descriptions that explicitly integrate relational context, (2) 144K question-answering pairs designed
to probe the understanding of complex relationships, and (3) 126K multiple-choice questions. We
construct a relation dataset with 414K samples in total during this stage.

3.4 GAR-BENCH

Finally, we introduce GAR-Bench, a comprehensive benchmark suite designed to systematically
evaluate the region-level comprehension capabilities of MLLMs beyond simply describing a single
region. Specifically, it is structured into two primary components: a multi-prompt captioning task
(GAR-Bench-Cap) and a multifaceted visual question answering task (GAR-Bench-VQA). The
captioning component is designed to assess a model’s ability to describe the complex relationships
and interactions between multiple visual prompts in a cohesive narrative. The VQA component
further dissects a model’s understanding into two key areas: (1) its ability to perceive basic attributes
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for a given prompt, and (2) its capacity for advanced, region-centric compositional reasoning that
requires synthesizing information from the prompt and its surrounding context.

GAR-Bench-Cap goes beyond isolated object descriptions and measures the ability to perform
compositional scene understanding. In this task, a model is provided with an image and two or
more distinct visual prompts. It contains two sub-tasks: (1) simply describe the relationship, and
(2) generate detailed captions including necessary relationships. For the “simple” protocol, models
are directly asked with “what is the relationship between <Prompt1> and <Prompt2>” and are
required to answer the question simply. For the “detailed” protocol, for instance, <Prompt1>
highlights a person and <Prompt2> is a bike, the model is not evaluated on its ability to describe
each independently, but rather on its capacity to generate an accurate description of their relation
like, “<Prompt1> is riding <Prompt2>”. The models need to perform spatial reasoning, action
recognition, and semantic integration across disparate image regions, thereby quantifying its ability
to interpret a scene as a cohesive whole rather than a collection of independent parts.

GAR-Bench-VQA is designed to shift the evaluation from static description to dynamic, interactive
dialogue. This task assesses the ability to answer specific questions about one or more prompted
regions, directly measuring its comprehension rather than its descriptive fluency. To provide a
comprehensive and multi-faceted evaluation of the reasoning abilities, we divide it into two distinct
but complementary sub-tasks: “perception” and “reasoning”.

Perception evaluates the model’s foundational ability to recognize basic visual attributes of a single
object, serving as a litmus test for its core visual acuity. This task quantifies the ability to perceive the
foundational details. Specifically, for a given visual prompt, the model is asked targeted questions
about its intrinsic visual properties, specifically focusing on color, shape, material, and texture/pattern.

Reasoning is designed to probe higher-order cognitive abilities. This component challenges the
model to synthesize information from local prompts, global context, and the relationships between
multiple prompts to arrive at logical conclusions. It is composed of several sub-tasks, each targeting
a unique and challenging aspect of visual reasoning:

• Position evaluates the model’s grasp of spatial arrangement and ordinal logic within a global
context. A model is presented with a mask on a single object within a larger group and asked to
identify its precise position in a complex, grid-like structure. Answering correctly requires the
model to not only recognize the masked object but also to process the entire scene structure.

• Non-Entity Recognition is designed to test this specific capability by requiring the model to
leverage sufficient global context. For instance, the given prompt might highlight a reflection in a
mirror, the shadow of a person, a face depicted on a television screen, and so on. The model is
then queried to determine if the prompted region corresponds to a physical entity. Success in this
task demonstrates that the model is performing sophisticated context-aware reasoning rather than
simple pattern matching on the masked pixels alone.

• Relation measures the capacity for complex compositional reasoning across multiple prompts. In
this challenging setup, the model is presented with several visual prompts and must deduce the
intricate spatial or logical relationship between them. A key challenge is the inclusion of redundant
prompts. To arrive at the correct answer, the model must ignore the potentially distracting informa-
tion. It requires the model to build a mental “scene graph”, which is essential for comprehending
complex object assemblies and interactions in cluttered, real-world environments.

For more benchmark details, including the annotation pipeline and statistics, please refer to Ap-
pendix B.1 and Appendix B.2, respectively.

4 EXPERIMENTS

Owing to page limitations, we only present the key properties in this section. For implementation
details, comparative baselines, and ablation studies, please refer to Appendix C.

Advanced comprehension requires precisely modeling complex relationships between multiple
prompts. To evaluate this capability, we conducted a comprehensive comparison on our GAR-
Bench-VQA. As demonstrated in Table 1, GAR-8B achieves an impressive overall score of 54.5,
surpassing even the powerful, private, state-of-the-art non-thinking model, GPT-4o (OpenAI, 2024a).
Furthermore, the efficiency and effectiveness of our approach are highlighted by GAR-1B. Despite

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison on GAR-Bench-VQA. ∗ indicates this subtask evaluates the interaction between
multiple visual prompts. † means evaluated with the thinking mode. Our GAR-1B even outperforms
InternVL3-78B. Moreover, GAR-8B surpasses private state-of-the-art non-thinking model GPT-4o.

Method Overall Perception (198) Reasoning (226)

Color
(69)

Shape
(64)

Texture
(29)

Material
(36)

Position
(64)

Non-Entity∗

(61)
Relation∗

(101)

Private General MLLMs

GPT-4o 53.5 34.8 65.3 48.3 52.8 57.8 60.2 61.4
o3† 61.3 58.0 70.3 55.2 63.9 54.7 49.2 71.3
Gemini-2.5-Pro† 64.2 62.3 68.8 58.6 66.7 64.1 64.9 70.3

Public General MLLMs

Qwen2.5-VL-3B 34.4 29.0 25.0 34.5 30.6 43.8 26.2 44.6
Qwen2.5-VL-7B 41.7 39.1 40.6 44.8 27.8 59.4 36.1 40.6
Qwen2.5-VL-32B 50.9 46.4 53.1 41.4 30.6 71.9 36.1 58.4
Qwen2.5-VL-72B 52.8 46.4 50.0 65.5 33.3 68.8 44.3 57.4
InternVL3-2B 35.1 30.4 21.9 48.3 38.9 48.4 26.2 38.6
InternVL3-8B 38.9 36.2 37.5 58.6 41.7 51.6 27.9 33.6
InternVL3-38B 46.5 39.1 40.6 51.7 55.6 60.9 36.1 47.5
InternVL3-78B 50.5 44.9 54.7 58.6 61.1 53.1 47.5 45.5

Region MLLMs

Sa2VA-8B 34.3 39.1 45.3 29.6 30.6 54.7 21.3 21.8
VP-SPHINX-13B 37.5 33.3 25.0 44.8 38.9 60.9 34.3 32.7
DAM-3B 38.2 55.1 39.1 41.4 36.1 31.3 36.1 31.7
PAM-3B‡ 2.4 2.9 3.1 6.9 5.6 1.6 1.6 0.0
GAR-1B 50.6 55.1 46.9 69.0 47.2 21.9 62.3 56.4
GAR-8B 59.9 59.4 54.7 75.9 52.8 48.4 60.7 68.3

Table 2: Comparison of localized relational cap-
tioning on our GAR-Bench-Cap. We utilize
GPT-4o (OpenAI, 2024a) with cropped images
and masks to judge the correctness of the answer.

Method Overall
(204)

Simple
(97)

Detailed
(107)

Private General MLLMs
GPT-4o 51.5 39.2 62.6
o3 56.9 37.1 74.8
Gemini-2.5-Pro 59.3 51.6 66.4

Public General MLLMs
Qwen2.5-VL-3B 22.5 9.3 34.6
Qwen2.5-VL-7B 32.4 12.4 50.5
Qwen2.5-VL-32B 36.8 17.5 54.3
InternVL3-2B 29.4 14.4 43.0
InternVL3-8B 33.8 11.3 54.2
InternVL3-38B 45.1 29.9 58.9

Region MLLMs
DAM-3B 13.1 17.5 10.3
PAM-3B 21.1 3.1 39.3
VP-SPHINX-13B 32.3 27.8 39.3
Sa2VA-8B 45.6 46.4 44.9
GAR-1B 57.5 56.7 63.6
GAR-8B 62.2 66.0 64.5

Table 3: Comparison on detailed localized cap-
tioning on DLC-Bench (Lian et al., 2025). †
indicates using GPT-4o (OpenAI, 2024a) with
extra cropped images as judge, otherwise per-
forming text-only judging, where discussions can
be found in Appendix F. ‡ means our evaluation
with the official checkpoint.

Method Avg. Pos. Neg.

Private General MLLMs
Gemini-2.5-Pro 55.8 36.5 75.2
GPT-4o 61.5 43.4 79.6
o1 62.5 46.3 78.8

Region MLLMs
Shikra-7B 22.2 2.7 41.8
Ferret-7B 22.4 6.4 38.4
RegionGPT-7B 27.2 13.0 41.4
VP-SPHINX-13B 22.5 11.7 33.2
DAM-3B 64.5‡ 47.2‡ 81.8‡

GAR-1B 67.9 48.9 87.0
GAR-8B 67.4 50.2 84.6

DAM-3B† 72.6‡ 61.8‡ 83.4‡

GAR-1B† 77.1 66.2 88.0
GAR-8B† 77.0 68.0 86.0

its significantly smaller size, it scores 50.6 overall, outperforming large-scale public models like
InternVL3-78B (Zhu et al., 2025). This advantage is particularly evident in fine-grained perception
tasks, where GAR-1B and GAR-8B achieve “Texture” scores of 69.0 and 75.9, respectively.
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Table 4: Zero-shot results on region-level detailed image cap-
tioning on Ferret-Bench (You et al., 2023) and and MDVP-
Bench (Lin et al., 2025a). We adopt SAM (Kirillov et al., 2023)
to produce masks conditioned on bounding boxes for MDVP-
Bench (Lin et al., 2025a). All results are our reproduction
using the official checkpoint, as the original judger GPT-4V is
no longer available, and we take GPT-4o as the judge.

Method Ferret-Bench MDVP-Bench (Box Caption)

Refer. Desc. Natural OCR Multi-Panel Sceenshot

Osprey-7B – 107.7 99.4 70.0 81.3
PAM-3B 52.2 71.4 94.3 86.8 84.5
DAM-3B 55.0 87.0 127.7 79.4 76.4
GAR-1B 56.0 152.6 149.6 103.7 115.3
GAR-8B 64.8 178.6 149.1 117.2 123.0

Table 5: Results of category-level
image recognition on LVIS (Gupta
et al., 2019) and PACO (Ra-
manathan et al., 2023).

Method LVIS PACO

Sim. IoU Sim. IoU

Shikra-7B 49.7 19.8 43.6 11.4
GPT4RoI-7B 51.3 12.0 48.0 12.1
Ferret-7B 63.8 36.6 58.7 26.0
Osprey-7B 65.2 38.2 73.1 52.7
DAM-8B 89.0 77.7 84.2 73.2
PAM-3B 88.6 78.3 87.4 74.9
GAR-1B 91.0 68.2 93.2 72.4
GAR-8B 93.6 88.7 95.5 91.8

Table 6: Zero-shot comparison of detailed localized video captioning on VideoRefer-BenchD (Yuan
et al., 2025b). For “single-frame”, we select the target frame and apply AnyRes with
max_num_tiles=16. For “multi-frame”, we uniformly sample 16 frames and turn off AnyRes.

Method Single-Frame Multi-Frame

Avg. SC AD TD HD Avg. SC AD TD HD

General MLLMs
LLaVA-OneVison-7B 2.12 2.62 1.58 2.19 2.07 2.48 3.09 1.94 2.50 2.41
Qwen2-VL-7B 2.39 2.97 2.24 2.03 2.31 2.55 3.30 2.54 2.22 2.12
InternVL2-26B 2.84 3.55 2.99 2.57 2.25 3.20 4.08 3.35 3.08 2.28
GPT-4o 2.95 3.34 2.96 3.01 2.50 3.25 4.15 3.31 3.11 2.43

Region MLLMs
Elysium-7B 1.57 2.35 0.30 0.02 3.59 – – – – –
Ferret-7B 2.18 3.08 2.01 1.54 2.14 2.23 3.20 2.38 1.97 1.38
Osprey-7B 2.34 3.19 2.16 1.54 2.45 2.41 3.30 2.66 2.10 1.58
Artemis-7B – – – – – 2.26 3.42 1.34 1.39 2.90
DAM-8B – – – – – 3.34 4.45 3.30 3.03 2.58
GAR-1B 2.72 4.41 2.98 1.09 2.40 2.83 4.38 3.01 1.61 2.30
GAR-8B 2.75 4.41 2.96 1.58 2.45 3.44 4.53 3.25 2.57 3.42

Detailed localized captioning requires generating detailed descriptions for given regions with
multiple sentences. We benchmark our GAR models on a series of challenging datasets, and the
results consistently demonstrate their state-of-the-art capabilities. As shown in Table 2, on our GAR-
Bench-Cap, GAR-1B and GAR-8B achieve the highest overall scores of 57.5 and 62.2, respectively,
even exceeding that of powerful private models like Gemini-2.5-Pro (DeepMind, 2025b). This
superiority is further confirmed on the DLC-Bench (Lian et al., 2025) in Table 3, where GAR-1B
and GAR-8B again outperform top models like DAM-3B using either LLaMA3.1 (Grattafiori et al.,
2024) or GPT-4o (OpenAI, 2024a) as the judge. The zero-shot performance of our models on Ferret-
Bench (You et al., 2023) and MDVP-Bench (Lin et al., 2025a), detailed in Table 4, is particularly
noteworthy. On both benchmarks, our GAR emerges as the top-performing model across every
single category. Specifically on MDVP-Bench, our models show a commanding lead, with GAR-8B
achieving a score of 178.6 on natural images, a result that is substantially higher than any competitor.
Collectively, these comprehensive evaluations across multiple benchmarks unequivocally establish
GAR as the new state-of-the-art for producing rich, accurate, and detailed localized captions.

Open-class category-level image recognition requires the model to recognize the category of
the object and part entities. We evaluate this capability in Table 5. Our GAR-8B demonstrates
a significant leap in performance, establishing a new state-of-the-art. It consistently outperforms
all prior methods across every metric, achieving top scores of 93.6 semantic similarity and 88.7
semantic IoU on LVIS (Gupta et al., 2019), and 95.5 semantic similarity and 91.8 semantic IoU on
PACO (Ramanathan et al., 2023). This indicates its superior ability in both semantic understanding
and precise localization. These results demonstrate the effectiveness of GAR for complex recognition
tasks, showcasing its robust performance in identifying a diverse range of object categories.
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Table 7: Zero-shot comparison of detailed video understanding on VideoRefer-BenchQ (Yuan
et al., 2025b). † indicates trained on in-domain VideoRefer-700k with regard to VideoRefer-Bench.
Notably, our zero-shot GAR-8B even outperforms in-domain VideoRefer-7B.

Method Overall
(1000)

Basic
Questions

(235)

Sequential
Questions

(256)

Relationship
Questions

(252)

Reasoning
Questions

(143)

Future
Predictions

(114)

General MLLMs
InternVL2-26B 65.0 58.5 63.5 53.4 88.0 78.9
Qwen2-VL-7B 66.0 62.0 69.6 54.9 87.3 74.6
LLaVA-OneVision-7B 67.4 58.7 62.9 64.7 87.4 76.3
GPT-4o 71.3 62.3 74.5 66.0 88.0 73.7

Region MLLMs
Osprey-7B 39.9 45.9 47.1 30.0 48.6 23.7
Ferret-7B 48.8 35.2 44.7 41.9 70.4 74.6
VideoRefer-7B† 71.9 75.4 68.6 59.3 89.4 78.1
GAR-1B 69.9 75.0 69.9 59.7 83.2 63.7
GAR-8B 72.0 77.2 71.0 61.7 86.6 68.1

GAR-8B: A black leather handbag with a smooth, slightly

glossy finish. The visible part shows a rectangular shape with

a subtle seam along the bottom edge.

DAM-3B: A black leather jacket with a smooth texture and a 

slightly glossy finish. The jacket features a classic collar design 

and a visible seam running horizontally across the upper arm 

area.

Question: Describe the masked region in detail.

GAR-8B: The microwave oven has a white exterior with a rectangular

shape. It features a prominent, curved handle on the front door, which is also

white. The control panel is located on the right side of the door, with a series

of buttons and a small display screen. The top of the microwave has a 

vented section for ventilation.

DAM-3B: A wooden cabinet with a vertical grain pattern, featuring a 

single visible door handle on the right side, which is curved and metallic. The 

cabinet has a flat top and appears to be part of a larger piece of furniture.

Question: Describe the masked region in detail.

Figure 5: Qualitative comparisons on DLC-Bench (Lian et al., 2025), where green indicates correct
descriptions and red means errors.

Extension to videos is straightforward. Similar to Lian et al. (2025), we simply extend our GAR
models to videos and evaluate them on VideoRefer-BenchD (Yuan et al., 2025b) and VideoRefer-
BenchQ (Yuan et al., 2025b) in Table 6 and Table 7, respectively. We uniformly sample 16 frames to
represent a video. Our GAR-8B surpasses DAM-8B (Lian et al., 2025) under the zero-shot setting.
More importantly, as demonstrated in Table 7, our our zero-shot GAR-8B even outperforms in-domain
VideoRefer-7B, demonstrating its strong comprehension capabilities can be easily transferred to
videos. However, as our models are actually trained with images, they get reasonably low scores on
temporally related tasks, e.g., temporal description (TD) in Table 6 and future predictions in Table 7.

Qualitative Results. We provide qualitative comparisons between our GAR-8B with DAM-3B (Lian
et al., 2025) on detailed localized captioning on DLC-Bench (Lian et al., 2025) in Figure 5. As
demonstrated in the figure, our GAR-8B is more capable of generating precise descriptions, especially
when the category of the given prompt can be determined only when understanding sufficient global
contexts. More comparisons can be found in Appendix D.
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5 CONCLUSION

This paper introduces Grasp Any Region (GAR), a family of MLLMs for region understanding, and
GAR-Bench, a systematic evaluation framework that not only provides a more accurate evaluation
of single-region comprehension, but also for multi-prompt interaction and advanced compositional
reasoning. On detailed captioning benchmarks (Lian et al., 2025; You et al., 2023; Lin et al., 2025a),
GAR demonstrates superior performance over DAM (Lian et al., 2025). More importantly, our GAR
achieves advanced comprehension capability in modeling interactions between multiple prompts.
Specifically, on GAR-Bench-VQA, GAR-1B even surpasses InternVL3-78B (Zhu et al., 2025).
On VideoRefer-BenchQ (Yuan et al., 2025b), our zero-shot GAR-8B even outperforms in-domain
VideoRefer-7B (Yuan et al., 2025b). We hope our work inspires the community to develop MLLMs
that can perceive, interrogate, and understand the dense visual world more effectively.
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APPENDIX

A OVERVIEW

Here is the table of contents of this appendix:

• In Appendix B, we introduce details of our GAR-Bench, including the annotation pipeline
and statistics.

• In Appendix C, we provide more implementation details as well as experimental results.
Detailed ablations of each component can be found in this section.

• In Appendix D, we provide qualitative results on both detailed image captioning and
understanding, and localized video captioning and understanding.

• In Appendix E, we discuss potential limitations and analyze failure cases.
• In Appendix F, we discuss some underlying issues towards the evaluation protocols of

DLC-Bench (Lian et al., 2025).
• In Appendix G, we provide all prompts we utilized to construct our dataset.
• Finally in Appendix H, we discuss the use of LLMs in preparing this paper.

B DETAILS OF GAR-BENCH

B.1 ANNOTATION PIPELINE

The construction of GAR-Bench follows a rigorous, semi-automated pipeline designed to generate
high-quality, diverse, and challenging data. This process combines the strengths of advanced
foundation models for initial data generation with the nuanced judgment of a team of 8 MLLM
experts for curation, annotation, and quality control.

Image Selection. To ensure the relevance and challenge of our sub-tasks, we begin by carefully
curating source images from existing datasets known to contain specific visual patterns. For the
“relation” tasks, we source images from the Panoptic Scene Graph (PSG) dataset (Yang et al., 2022),
which is rich in complex scene graphs and explicit object relationships, providing a natural foundation
for multi-prompt interaction queries. For the “non-entity recognition” task, we utilize the RGBD-
Mirror dataset (Mei et al., 2021), as it specifically contains scenes with mirrors and reflections,
allowing us to create unambiguous test cases for distinguishing real objects from illusory ones. For
the “position” task, we select images from the FSC-147 dataset (Ranjan et al., 2021), which features
images with numerous countable objects often arranged in grid-like patterns, making it ideal for
evaluating spatial and ordinal reasoning. Other images are from SA-1B (Kirillov et al., 2023).

Mask Labeling. Following image selection, we generate high-quality segmentation masks for all
potential objects of interest. This stage is similar to Li et al. (2025), which decomposes complex
scenes into different objects, while not containing numerous meaningless, trivial objects like those in
the SA-1B (Kirillov et al., 2023) dataset.

Object Selection and Annotation. With a high-quality pool of object masks generated, the annotation
team performs the critical tasks of selection and annotation. The experts first reviewed the masks,
selecting only those with high segmentation quality that are also qualified for the target sub-task.
Concurrently, they are responsible for annotating the ground-truth information required for the
benchmark. Specifically, for the “reasoning” protocol of GAR-Bench-VQA, they meticulously
annotate the correct answers for relation, ordering, and entity status. For GAR-Bench-Cap, they
annotate the ground-truth captions describing the interactions between the selected masked objects.

Automated Attribute Generation. For the “perception” protocol of GAR-Bench-VQA, we leverage
the advanced capabilities of Gemini-2.5-Pro (DeepMind, 2025b). For each selected and verified
object mask, we prompt the model to generate a list of its basic perceptual attributes, including its
primary color, shape, material, and any discernible texture or pattern.

Quality Control and Formatting. The raw, annotated data then underwent a meticulous, multi-
stage quality control process. First, human experts review all machine-generated attributes from the
previous step to verify their factual correctness and filter out any ambiguous or inaccurate labels.
Following this verification, the experts transform the raw annotations into the final benchmark formats.
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Perception
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Color
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Shape
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Texture
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Material
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Relation
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Non-Entity
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1
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2
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4
(33)
7.8%

3
(54)

12.7%

(a) Distribution of each discipline. (b) Distribution of number of prompts. (c) Distribution of areas of prompts.

Figure 6: Statistics of our GAR-Bench. We (a) slightly prioritize reasoning over perception, and
build challenging questions through (b) multiple visual prompts (even have 2 questions with 7 prompts
and 9 prompts) and (c) small areas of each prompt with an average of 4.4%.

For all VQA tasks, they rewrite the question-answer pairs into a standardized multiple-choice format,
ensuring consistent and objective evaluation. For the captioning task, the ground-truth data was
structured for compatibility with LLM-as-a-Judge evaluation protocols similar to Lian et al. (2025).

Difficulty Filtering. As a final quality assurance measure, we implement a difficulty filtering process
to ensure the benchmark remains challenging for even the most advanced models. Specifically, any
question answered correctly by all four state-of-the-art non-thinking MLLMs, i.e., Qwen2.5-VL-
72B (Bai et al., 2025), InternVL3-78B (Zhu et al., 2025), GPT-4o (OpenAI, 2024a), and Gemini-2.5-
Flash (DeepMind, 2025a), was excluded from the final benchmark.

B.2 STATISTICS

Distribution of Each Discipline. As demonstrated in Figure 6a, GAR-Bench slightly prioritizes
advanced reasoning (53%) over basic perception (47%) with a relatively balanced distribution. In
addition, it prioritizes complex relational reasoning with multiple prompts in the “relation” protocol.

Distribution of Number of Prompts. As illustrated in Figure 6b, our GAR-Bench even contains
2 questions with 7 prompts and 9 prompts, respectively, leading to an advanced requirement of
modeling complex relationships between multiple visual prompts.

Distribution of Areas of Prompts. We compute the relative area of each visual prompt in Figure 6c,
where the majority of prompts in GAR-Bench are extremely small, with a sharp peak near 0.0. The
mean area across all questions is 4.4%. This distribution highlights the importance of addressing
small-scale and fine-grained understanding.

C MORE EXPERIMENTS

Implementation Details. We adopt PerceptionLM series (Cho et al., 2025) as our base model, as
it demonstrates strong perception capabilities among several open-source MLLMs. We perform
supervised fine-tuning of the model on our GAR-2.5M using Xtuner (Contributors, 2023) with the
AdamW optimizer (Loshchilov & Hutter, 2017) with a global batch size of 64 and a learning rate of
1e-5 with a cosine decay (Loshchilov & Hutter, 2016).

Comparison Baselines. We mainly compare our GAR with both general MLLMs, including
state-of-the-art private models (OpenAI, 2024a; 2025; DeepMind, 2025b), and representative pub-
lic models (Bai et al., 2025; Zhu et al., 2025; Liu et al., 2023), and region-level MLLMs, in-
cluding GLaMM (Rasheed et al., 2024), GPT4RoI (Zhang et al., 2024a), Osprey (Yuan et al.,
2024), Shikra (Chen et al., 2023), Ferret (You et al., 2023), RegionGPT (Guo et al., 2024), OMG-
LLaVA (Zhang et al., 2024b), VP-SPHINX (Lin et al., 2025a), Sa2VA (Yuan et al., 2025a),
DAM (Lian et al., 2025), and PAM (Lin et al., 2025b). We transform masks to boxes for box-
level MLLMs, e.g., (Zhang et al., 2024a; Chen et al., 2023; You et al., 2023; Lin et al., 2025b), as our
GAR-Bench provides segmentation masks by default. On video benchmarks, we further compare
with LLaVA-OneVision (Li et al., 2024), Qwen2-VL (Wang et al., 2024b), InternVL2 (Chen et al.,
2024c), Elysium (Wang et al., 2024a), Artemis (Qiu et al., 2024), and VideoRefer (Yuan et al., 2025b).
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Table 8: Ablations across different model architectures with PerceptionLM-1B. † indicates using
GPT-4o (OpenAI, 2024a) with extra cropped images as the judge, instead of text-only judging. Our
proposed RoI-aligned feature replay strategy effectively preserves necessary global contexts. We
also report the average latency (ms) to generate the first token and the maximum number of tokens
for ViT (Dosovitskiy et al., 2021). By default, we set max_num_tiles=16 for AnyRes (Liu et al.,
2024), resulting in a maximum of 17 crops in total for one global image.

Global Local GAR-Bench DLC-Bench† Inference Speed

Caption VQA Avg. Pos. Neg. Latency # ViT Tokens

1⃝ – image + mask 20.1 37.8 69.3 60.2 78.4 36.1 256
2⃝ – image + mask + cross-attention 19.1 40.0 68.8 57.3 80.3 57.1 4,608
3⃝ image + mask image + mask 28.4 36.6 77.4 70.1 84.8 93.1 4,608
4⃝ image + mask RoI-aligned feature replay 57.5 50.6 77.1 66.2 88.0 87.7 4,352
5⃝ image RoI-pooled feature 39.3 39.1 50.0 37.3 62.7 78.2 4,352
6⃝ image RoI-aligned feature replay 42.1 40.1 67.1 55.8 78.4 90.8 4,608
7⃝ – image 17.8 35.4 65.0 59.3 70.7 30.4 256
8⃝ image + mask – 32.7 40.4 51.7 40.4 63.0 75.0 4,352

Table 9: Ablations across different model architectures with different base models. † indicates
using GPT-4o (OpenAI, 2024a) with extra cropped images as the judge, instead of text-only judging.
Our proposed RoI-aligned feature replay strategy effectively preserves necessary global contexts.

Global Local GAR-Bench DLC-Bench†

Caption VQA Avg. Pos. Neg.

Base Model: Qwen2.5-VL-3B
5⃝ – image + mask 24.5 30.7 52.2 38.0 66.4
6⃝ – image + mask + cross-attention 27.9 30.0 55.7 46.8 64.6
7⃝ image + mask image + mask 34.3 32.1 62.1 50.7 73.5
8⃝ image + mask RoI-aligned feature replay 41.2 40.8 69.2 58.1 80.3

Base Model: InternVL3-2B
9⃝ – image + mask 24.6 33.0 65.6 48.5 82.6
10⃝ – image + mask + cross-attention 29.4 31.8 68.8 56.7 80.9
11⃝ image + mask image + mask 32.8 36.1 70.3 61.6 79.0
12⃝ image + mask RoI-aligned feature replay 43.1 44.6 73.0 63.8 82.2

Ablations on Architecture Designs. We first elaborate on our key architecture design, i.e., RoI-
aligned feature replay in Table 8. Other baselines include: 1⃝ only local images, 2⃝ DAM-like
architectures (Lian et al., 2025) which preserves context via zero-initialized gated cross-attention,
3⃝ simply cropping local images as a supplement of global images, and 4⃝ our RoI-aligned feature

replay design. As demonstrated in Table 8, both 1⃝, 2⃝, and 3⃝ struggle at modeling multi-prompt
relations, leading to poor results on GAR-Bench, although 3⃝ is superior at precise description on
DLC-Bench (Lian et al., 2025). However, our proposed RoI-aligned feature replay strategy effectively
preserves necessary global contexts while achieving competitive performances on DLC-Bench.

In Table 9, we further extend our ablations on model architectures to more base models, including
Qwen2.5-VL-3B (Bai et al., 2025) and InternVL3-2B (Zhu et al., 2025). As demonstrated in the
table, our proposed RoI-aligned feature replay consistently brings significant improvements over
different base models.

Ablations on Data Pipeline. We study the effectiveness of our data in Table 10. Starting from
the seed dataset, i.e., Describe-Anything-1.5M (Lian et al., 2025), we first add our Fine-Grained
Dataset-456K, and then add our Relation Dataset-414K. By introducing our Fine-Grained Dataset-
456K, our model is able to produce more accurate recognition, leading to an improvement of +3.1
on DLC-Bench (Lian et al., 2025). By further combining our proposed Relation Dataset-414K, the
model is finally equipped with compositional reasoning capabilities with multiple prompts at this
time, resulting in significant improvements on our GAR-Bench.

Performances on General Multimodal Benchmarks. We compare our GAR-8B with other
region-level models, i.e., DAM-3B (Lian et al., 2025) and PAM-3B (Lin et al., 2025b), on general
vision-centric multimodal benchmarks, including V* (Wu & Xie, 2024), MMVP (Tong et al., 2024b),
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Table 10: Ablations on each component of our data with 1B model size. † indicates using GPT-
4o (OpenAI, 2024a) with extra cropped images as the judge, instead of text-only judging. Each
component of our data plays a significant role.

Data GAR-Bench DLC-Bench†

Caption VQA Avg. Pos. Neg.

1⃝ Seed Dataset-1.5M 13.8 41.5 74.4 63.0 85.8
2⃝ 1⃝ + Fine-Grained Dataset-456K 14.2 44.1 77.5 67.6 87.4
3⃝ 2⃝ + Relation Dataset-414K 57.5 50.6 77.1 66.2 88.0

Table 11: Performance on general multimodal benchmarks (Wu & Xie, 2024; Tong et al., 2024b;
xAI, 2024; Chen et al., 2024a), where we set mask = 1 for evaluation. Our GAR maintains the most
general performance. Combining general VQA datasets would be effective.

Method V* MMVP RealWorldQA MMStar

DAM-3B (Lian et al., 2025) 45.0 60.7 54.3 39.7
PAM-3B (Lin et al., 2025b) 1.4 4.3 1.7 2.7

Base Model: PerceptionLM-8B
PercetionLM-8B (Cho et al., 2025) 69.1 76.0 75.0 57.1
GAR-8B 59.2 78.0 58.7 43.9
GAR-8B (w/ 600K General Data (Li et al., 2024)) 62.3 79.7 61.8 51.6

Table 12: Robustness analysis of GAR-Bench-
VQA, where we randomly sample a subset of
each subtask. The relative ordering is stable.

Model Full (424) 1/2 (212) 1/4 (106)

Overall Rank Overall Rank Overall Rank

PAM-3B 2.4 9 4.3 9 0.9 9
VP-SPHINX-13B 37.5 8 40.0 8 33.3 8
DAM-3B 38.2 7 48.6 7 41.9 7
GAR-1B 50.6 6 51.4 6 49.5 5
Qwen2.5-VL-32B 50.9 5 52.4 5 48.6 6
GPT-4o 53.5 4 56.7 4 57.1 4
GAR-8B 59.9 3 60.0 3 63.8 1
o3 61.3 2 63.3 1 58.1 3
Gemini-2.5-Pro 64.2 1 61.0 2 60.0 2

Table 13: Robustness analysis of GAR-Bench-
Cap, where we randomly sample a subset of each
subtask. The relative ordering remains stable.

Model Full (214) 1/2 (107) 1/4 (53)

Overall Rank Overall Rank Overall Rank

DAM-3B 13.1 9 13.8 9 14.0 9
PAM-3B 21.1 8 18.8 8 20.1 8
VP-SPHINX-13B 32.3 7 29.7 7 20.0 7
Qwen2.5-VL-32B 36.8 6 32.7 6 26.1 6
GPT-4o 51.5 5 45.5 5 52.1 4
o3 56.9 4 50.6 4 50.3 5
GAR-1B 57.5 3 51.5 3 53.9 3
Gemini-2.5-Pro 59.3 2 54.4 2 58.1 2
GAR-8B 62.2 1 57.4 1 61.8 1

RealWorldQA (xAI, 2024), and MMStar (Chen et al., 2024a). As illustrated in Table 11, our GAR-8B
outperforms them by a large margin.

Robust Analysis of GAR-Bench. We conducted a subsampling stability analysis. We randomly
subsampled GAR-Bench-VQA and GAR-Bench-Cap to 50% and 25% of their original sizes (for each
subtask) and re-evaluated the full suite of models in Table 12 and Table 13, respectively. Our goal was
to test whether the relative performance rankings remained consistent even with significantly fewer
samples. The results, presented in the tables, demonstrate a high degree of ranking stability. As the
results show, the relative ordering of models is remarkably stable. For example, in GAR-Bench-Cap,
the top 3 models (GAR-8B, Gemini-2.5-Pro (DeepMind, 2025b), GAR-1B) and bottom 3 models
(VP-SPHINX (Lin et al., 2025a), PAM (Lin et al., 2025b), DAM (Lian et al., 2025)) maintain their
general ranking group even at a 1/4 sample size. While minor fluctuations exist among the top-tier
models in the VQA 1/4 split (e.g., GAR-8B jumping from 3rd to 1st), the overall performance tiers
are preserved.

Robust Analysis of LLM-Judges. To directly investigate the consistency and potential bias of the
LLM judge, we conducted a new cross-judge validation experiment. We re-evaluated all models
on GAR-Bench-Cap using four different powerful LLMs as judges: GPT-4o (OpenAI, 2024a)
(our original judge), o3 (OpenAI, 2025), Gemini-2.5-Flash (DeepMind, 2025a), and Gemini-2.5-
Pro (DeepMind, 2025b). The results, presented in Table 14, demonstrate a high degree of consistency
in model rankings. While the absolute scores fluctuate across different judges, which reflects their
inherent stylistic preferences or scoring strictness, the relative ranking of models is remarkably stable.
Most importantly, our GAR-8B consistently ranks 1st across all four distinct judges, and our other
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Table 14: Robustness analysis of the LLM-judges utlized by GAR-Bench-Cap. The relative
ordering remains stable across different judges.

Model GPT-4o o3 Gemini-2.5-Flash Gemini-2.5-Pro

Score Rank Score Rank Score Rank Score Rank

DAM-3B 13.1 10 9.3 10 9.4 10 0.3 10
PAM-3B 21.1 9 21.5 9 25.3 9 31.3 9
VP-SPHINX-13B 32.3 8 27.5 8 30.4 8 32.7 8
Qwen2.5-VL-32B 36.8 7 28.1 7 37.4 7 41.8 7
InternVL3-38B 45.1 6 30.8 6 41.9 6 47.4 6
GPT-4o 51.5 5 31.8 5 46.3 5 50.6 5
o3 56.9 4 37.8 3 52.8 4 60.7 3
GAR-1B 57.5 3 37.4 4 55.1 3 59.8 4
Gemini-2.5-Pro 59.3 2 44.5 2 57.4 2 61.3 2
GAR-8B 62.2 1 46.7 1 60.3 1 62.6 1

Table 15: Analysis for general models using four different region-specification formats. “VQA”
and “Cap” represent “GAR-Bench-VQA” and “GAR-Bench-Cap”, respectively. Powerful, general-
purpose VLMs consistently struggle across all four settings.

Input Type GPT-4o o3 Gemini-2.5-Pro

VQA Cap DLC-Bench VQA Cap DLC-Bench VQA Cap DLC-Bench

Type 1 53.5 51.5 41.0 61.3 56.9 48.0 64.2 59.3 48.4
Type 2 56.4 52.0 38.4 63.4 54.9 47.8 61.9 58.1 52.9
Type 3 51.2 31.9 25.4 57.8 40.7 34.9 61.9 61.3 54.6
Type 4 48.3 38.2 28.5 59.0 47.1 41.3 66.0 44.1 47.8

<Prompt0> is outlined in red; 

<Prompt1> is outlined in cyan.

<Prompt0> is indicated by a

red box; <Prompt1> is 

indicated by a cyan box.

<Prompt0> indicated by a red 

cross; <Prompt1> indicated by 

a cyan cross.

Type 2: Mask Outline Type 3: Bounding Box Type 4: Center Cross

<Prompt1> 

Type 1: Global Image + Local Images and Masks

<Prompt0> 

Global Image

Question: Describe <Prompt0> in detail, including the relationship 

with <Prompt1>.

Figure 7: Illustration of different input types.

GAR models also consistently place in the top tier. This experiment suggests that our primary claims
about GAR’s superior performance are robust and not an artifact of a single judge’s bias.

Input Type Analysis for General Models. To investigate whether general models lack the ability to
interpret masks or are genuinely deficient in understanding local details and relationships, we conduct
an analysis using four different input types illustrated in Figure 7: (1) Type 1: Separated global
image and local masks (our original setting). (2) Type 2: Drawing mask outlines directly onto the
image. (3) Type 3: Using bounding boxes derived from masks. (4) Type 4: Using center-point crosses
derived from masks. Empirical results are presented in Table 15, where powerful models consistently
struggle across all four settings. This crucial finding reveals a fundamental deficiency in fine-grained
perception and relational reasoning, regardless of how the regions of interest are indicated.

D QUALITATIVE RESULTS

D.1 QUALITATIVE RESULTS ON GAR-BENCH

“Relation” of GAR-Bench-VQA. In Figure 8, we provide qualitative comparisons on the “relation”
protocol of our GAR-Bench-VQA, including two failure cases (the last row). As demonstrated in the
figure, GAR-8B manages to not only effectively model relationships but also leverage crucial local

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

details for choosing the best answer. For instance, in the right example of the middle row, the person
(<Prompt0>) is actually not reading the book (<Prompt1>), since she is looking at the camera. Our
GAR-8B manages to recognize such details and thus select “<Prompt0> is holding <Prompt1>”
instead of “reading”, while both Gemini-2.5-Pro (DeepMind, 2025b) and o3 (OpenAI, 2025) fail.

However, as illustrated in the last two examples in Figure 8, current models still sometimes struggle
to understand complex relationships with more than two objects. Constructing such complicated
training data and keeping the correctness of relation annotations could be a potential solution.

“Non-Entity Recognition” of GAR-Bench-VQA. In Figure 9, we provide qualitative comparisons
on the “non-entity recognition” protocol of our GAR-Bench-VQA, including two failure cases (the
last row). As demonstrated in the figure, GAR-8B is able to correctly recognize objects in the mirror
without any depth prior, thanks to its encoded global contexts.

However, as demonstrated in the right case in the last row, current models still struggle to distinguish
whether the reflection actually comes from the mirror (<Prompt2>) or other reflective surfaces
(<Prompt0> and <Prompt1>).

D.2 QUALITATIVE RESULTS ON VIDEOREFER-BENCH

Detailed Localized Video Captioning. In Figure 10, we provide qualitative results of extending
GAR-8B to generate detailed video descriptions on VideoRefer-BenchD (Yuan et al., 2025b). In
most cases, where videos usually remain static, GAR-8B manages to generate detailed, specific,
and precise descriptions. However, as demonstrated in the last example, GAR-8B fails to capture
detailed temporal differences among frames, leading to a low score on “temporal description”. This
is because our GAR models are actually trained with only images and lack fine-grained temporal
comprehension capabilities.

Detailed Video Understanding. In Figure 11, we provide qualitative results of extending GAR-
8B to detailed video understanding on VideoRefer-BenchQ. GAR-8B is capable of understanding
basic motions under a zero-shot setting, e.g., the sequential question, the relation question, and the
reasoning question. However, on the “future prediction” protocol, GAR-8B sometimes fails to choose
the best choice with significant motion changes.

E LIMITATION AND FAILURE CASES

One potential limitation is that our GAR is limited to static images. Although it can be successfully
extended to video and even achieves competitive results compared with video models (please refer to
Tables 6 and 7 for detailed experimental results), it sometimes fails when input videos contain signifi-
cant motion changes. Specifically, as demonstrated in the failure cases in Figures 10 and 11, GAR-8B
is superior at comprehending and describing static videos, and is also capable of understanding basic
motions. However, with significant motion changes, GAR-8B sometimes fails. Carefully collecting
video training data could be a potential solution.

F DISCUSSION ON DLC-BENCH

Our analysis in Figure 12 reveals a significant weakness in the original judger of DLC-Bench (Lian
et al., 2025), which relies on a text-only LLM, i.e., LLaMA3.1-8B (Grattafiori et al., 2024), for
automated scoring. Specifically, a fundamental flaw in the original DLC-Bench (Lian et al., 2025)
evaluation lies in its assumption that semantic categories can be accurately adjudicated within the
abstract confines of language space alone. However, Figure 12 demonstrates that this text-only
approach is inherently unreliable due to the ambiguity of linguistic labels without visual contexts.
We argue that the image is the only ground truth capable of resolving this ambiguity. Therefore, we
provide the image for valid evaluation. To truly assess a model’s descriptive power, the judge must be
multimodal, capable of grounding the generated caption in the visual reality it purports to describe.

G PROMPT TEMPLATES

We provide all of our prompts utilized in building our data in Figures 13, 14, 15, and 16.
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A. <Prompt1> is in front of <Prompt0>.

B. <Prompt0> is in front of <Prompt1>.

C. <Prompt1> is sitting on <Prompt2> with <Prompt0>.

D. <Prompt0> is over <Prompt1>.

Question: What is the spatial relationship between <Prompt1> and 

<Prompt0>?

Question: What is the relationship between <Prompt0>, <Prompt2>, 

and <Prompt1>?

A. <Prompt0> is wearing <Prompt2> and carrying <Prompt1>.

B. <Prompt0> is carrying <Prompt2> and wearing <Prompt1>.

C. <Prompt0> is carrying both <Prompt2> and <Prompt1>.

D. <Prompt0> is wearing both <Prompt2> and <Prompt1>.

Question: What is the relationship between <Prompt0> and

<Prompt1>?

A. <Prompt0> is holding <Prompt1>.

B. <Prompt0> is beside <Prompt1>.

C. <Prompt0> is looking at <Prompt1>.

D. <Prompt0> is eating <Prompt1>.

Question: What is the position of <Prompt2> in relation to 

<Prompt0> and <Prompt1>?

A. It is beside <Prompt1> and attached to <Prompt0>.

B. It is over <Prompt0> and under <Prompt1>.

C. It is beside <Prompt0> and attached to <Prompt1>.

D. It is under <Prompt3> and beside <Prompt0>.

Question: Which statement accurately describes the interaction 

between <Prompt0> and <Prompt1>?

A. <Prompt0> is lying on <Prompt1>.

B. <Prompt1> is cleaning <Prompt0>.

C. <Prompt0> is cleaning <Prompt1>.

D. <Prompt0> is wearing <Prompt1>.

Question: Which of the following best describe the 

relationship between <Prompt0> and <Prompt1>?

A. <Prompt0> is reading <Prompt1>.

B. <Prompt0> is holding <Prompt1>.

C. <Prompt1> is attached to <Prompt0>.

D. <Prompt0> is sitting on <Prompt1>.

Figure 8: Qualitative comparisons on the “relation” protocol of our GAR-Bench-VQA, including
two failure cases (bottom). Notably, in the right case of the middle row, the person (<Prompt0>)
is actually not reading the book (<Prompt1>), since she is looking at the camera. Our GAR-8B
manages to recognize such details while both Gemini-2.5-Pro (DeepMind, 2025b) and OpenAI-
o3 (OpenAI, 2025) fail. From the last two cases, we can tell that models are still struggling with
understanding complex relationships with more than two objects. Image source: Shao et al. (2019).

H USE OF LLMS

In preparing this paper, LLMs are utilized as a general-purpose assistive tool. Specifically, the use
of LLMs is strictly limited to proofreading the author-written text for grammatical errors, spelling
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corrections, and improvements to language clarity. This application is consistent with the use of
conventional grammar-checking software and did not extend to research ideation, data analysis, or
the generation of any substantive content.
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A. <Prompt1> and <Prompt0> are both in the mirror.

B. Only <Prompt0> is in the mirror.

C. Only <Prompt1> is in the mirror.

D. Neither <Prompt0> and <Prompt1> is in the mirror.

Question: Can you tell me if <Prompt1> and <Prompt0>

are inside the mirror?

Question: Which one among <Prompt0>, <Prompt1>,  

<Prompt2> or <Prompt3> is in the mirror?

A. <Prompt0>.

B. <Prompt1>.

C. <Prompt2>.

D. <Prompt3>.

Question: Among <Prompt0>, <Prompt1>,  and <Prompt2>,

which one is in the mirror?

A. <Prompt0>.

B. <Prompt1>.

C. <Prompt2>.

D. None of the above are in the mirror.

Question: Are <Prompt0> and <Prompt1> located within the

mirror?

A. Both <Prompt0> and <Prompt1> are in the mirror.

B. Only <Prompt0> is in the mirror.

B. Only <Prompt1> is in the mirror.

D. None of the above are in the mirror.

Question: Are <Prompt0> and <Prompt1> located within the

mirror?

A. Both <Prompt0> and <Prompt1> are in the mirror.

B. Only <Prompt0> is in the mirror.

B. Only <Prompt1> is in the mirror.

D. None of the above are in the mirror.

Question: Among <Prompt0>, <Prompt1>,  and <Prompt2>,

which one is in the mirror?

A. <Prompt0>.

B. <Prompt1>.

C. <Prompt2>.

D. None of the above are in the mirror.

Figure 9: Qualitative comparisons on the “non-entity recognition” protocol of our GAR-Bench-
VQA, including two failure cases (bottom). From the last two cases, we can tell that models are
sometimes still struggling with recognizing non-entities, especially distinguishing reflection from the
mirror (<Prompt2>) and other surfaces (<Prompt0> and <Prompt1>).
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Question: Describe the masked region in detail.

GAR-8B: A blue bus with a cartoonish design featuring a large 

front windshield and side windows, through which various

colorful characters are visible. The bus has a rounded front with

two circular headlights and a small, rectangular grille below the 

windshield. The side of the bus displays a row of windows with a 

visible door towards the front. The bus’s body is adorned with a 

pattern of small, colorful shapes and designs.

GPT-4o Judgement:

• Subject Correspondence 5

• Appearance Description 5

• Temporal Description 0

• Hallucination Detection 4

Question: Describe the masked region in detail.

GAR-8B: The sports car in the video is a blue Porsche. It is

parked under a covered area, with its driver’s side door open. The 

car has a sleek design with a glossy finish, black rims, and a 

visible Porsche emblem on the hood. The car is stationary and not 

in motion.

GPT-4o Judgement:

• Subject Correspondence 5

• Appearance Description 5

• Temporal Description 5

• Hallucination Detection 4

Question: Describe the masked region in detail.

GAR-8B: The dress is black with white polka dots. It is sleeveless

and has a black belt around the waist and is worn on a woman's

body.

GPT-4o Judgement:

• Subject Correspondence 5

• Appearance Description 5

• Temporal Description 5

• Hallucination Detection 5

Question: Describe the masked region in detail.

GAR-8B: A man wearing a checkered shirt holds a red cup, as if 

singing with the people around him. He keeps smiling and looks 

very happy.

GPT-4o Judgement:

• Subject Correspondence 5

• Appearance Description 5

• Temporal Description 4

• Hallucination Detection 5

Figure 10: Qualitative results of detailed video captioning on VideoRefer-BenchD (Yuan et al.,
2025b), including one failure case with a low “temporal description” score. Video source: (Chen
et al., 2024b).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Basic Question

Question: What is <Prompt0> holding?

A. A cart

B. A phone

C. Leashes or ropes

D. A camera

Sequential Question

Question: What action does <Prompt0> perform during the 

sequence?

A. She moves forward with her rollerblades

B. She jumps with her rollerblades

C. She stops and takes off her rollerblades

D. She falls down

Reasoning Question

Question: Given that <Prompt0> and <Prompt1> are 

engaged in a playful tussle, what can be inferred about 

their relationship?

A. They are likely unfamiliar with each other

B. They are likely aggressive towards each other

C. They are likely scared of each other

D. They are likely friends or familiar with each other

Future Prediction

Question: If <Prompt0> remains on the tree, what is a 

likely future event?

A. <Prompt0> will change color to match the tree

B. <Prompt0> will jump into the water

C. <Prompt0> will fly away

D. <Prompt0> will dig a hole

Failure Case

Question: What is a likely future event of <Prompt0>?

A. She will sit down and rest

B. She will attempt another vault

C. She will leave the field

D. She will celebrate her successful jump

Relation Question

Question: What is the relationship between <Prompt0>, 

<Prompt1> and <Prompt2> during the sequence?

A. <Prompt1> and <Prompt2> are both confronting
<Prompt0>

B. <Prompt0>, <Prompt1> and <Prompt2> are ignoring each

other

C. <Prompt1> is chasing <Prompt0> and <Prompt2>

D. <Prompt0>, <Prompt1> and <Prompt2> are playing

together

Figure 11: Qualitative results of detailed video understanding on VideoRefer-BenchQ (Yuan et al.,
2025b), including one failure case in the “future prediction” protocol.
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Answer the multiple-choice question based on the text description of an object in an image. You need to follow 
these rules: 
1. Do not output any reasoning. Do not perform correction. Please output exactly one answer from the choices for 
each question. Do not repeat the question. 
2. There is no need for exact matching. Please choose the closest option based on the description. 

The description is: {pred_caption} 

From the description above, please answer the following question with one of the choices: 

Is it likely that the objects in the description are {class_name} or objects of a similar type? Again, it does
not have to be an exact match.

Judge Prompt

GPT-4o: Yes

LLaMA3.1-8B: No

Category: Van

Description: A black taxi with the word TAXI in 

yellow on the rear window, featuring a yellow license

plate and red tail lights. 

GPT-4o: Yes

LLaMA3.1-8B: No

Category: Sign / Banner

Description: A white price tag with handwritten text in blue

ink. The text reads L64 at the top, followed by 100g and 100g 

again below it. At the bottom, there is a large €390

GPT-4o: No

LLaMA3.1-8B: Yes

Category: Microwave

Description: A wooden cabinet with a vertical grain 

pattern, featuring a single visible door handle on the 

right side, which is curved and metallic. The cabinet has 

a flat top and appears to be part of a larger piece of 

furniture.

GPT-4o: No

LLaMA3.1-8B: Yes

Category: Truck

Description: The bus is predominantly blue with a sleek, 

modern design. It features a black and white logo on the 

side, and the word AMBULANCE is visible in white 

letters on a black background. The bus has a large, curved

windshield and a side mirror extending from the front. 

False Negative

False Positive

Figure 12: Incorrect text-only judging results using LLaMA3.1-8B (Grattafiori et al., 2024) on
DLC-Bench (Lian et al., 2025). The model is required to judge whether the description is consistent
with the ground-truth category name. We illustrate both correct and wrong results. Providing extra
cropped images and masks to GPT-4o (OpenAI, 2024a) effectively eliminates this issue.
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Answer the multiple-choice question based on the text description of an object in an image. You need to follow 
these rules: 
1. Do not output any reasoning. Do not perform correction. Please output exactly one answer from the choices for 
each question. Do not repeat the question. 
2. There is no need for exact matching. Please choose the closest option based on the description. 

The description is: {pred_caption} 

From the description above, please answer the following question with one of the choices: 

Is it likely that the objects in the description are {class_name_list} or objects of a similar type? Again, it
does not have to be an exact match.

Prompt for Judging Descriptions and Ground-Truth Categories

Figure 13: Prompt for judging the description and the ground-truth category.

You are given the following information:  
    - Subject name: {subject_name}  
    - Object name: {object_name}  
    - Predicate (relation): {predicate_name}  
    - Subject description: {sub_caption} 
    - Object description: {obj_caption}  
 
Instructions:  
    1. First Judge if the objects in the 'Subject description' are {subject_name} or objects of a similar type. 
It does not have to be an exact match. If it does not, output only: False. 
    2. The 'Object description' does not need to match the 'Object name'.  
        - If the 'Object description' matches the 'Object name', you may use it.  
        - If it does not match, ignore it and only use the 'Object name'.  
    3. Generate a fluent caption focusing mainly on the Subject.  
    - Preserve as much detail from the subject description as possible.  
    - Also include the relation ({predicate_name}) with the object (using either the 'Object description' if 
valid, or the 'Object name').  
    4. Output only the final caption, without any explanations or reasoning. 

Prompt for Generating Relation-Aware Captions

Figure 14: Prompt for generating relation-aware caption.
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You are a professional Visual Question Answering (VQA) expert. Your task is to create high-quality, direct 
question-answer pairs about a virtual scene, based on provided ground truth data.

Input Format:
I will provide you with the ground truth for a scene in two JSON formats:
- captions: A dictionary containing reference tags for objects (e.g., <Prompt0>), their corresponding category 
(category_name), and a detailed text description (caption).
- relations: A dictionary that describes the relationships between objects using the format <subject>, <object>,
<predicate>.

Task & Output Format:
Your task is to use this ground truth data to generate a JSON array containing 1-3 question-answer pairs.
Your output must be a single, valid JSON array and nothing else. Do not include any explanations, comments, or 
text outside of the JSON structure. The format should be as follows:

```json
[
  {
    "question": "The text of the question...",
    "answer": "A direct, factual answer in a short sentence or phrase."
  }
]
```

Core Generation Rules:
1. Core Focus on Relationships:
All questions must primarily test the spatial, action-based, or state-based relationships defined in the 
relations data.

2. Formulate Concise and Factual Answers:
The answer_text must directly and accurately respond to the question.
The answer must be a short, complete sentence or a descriptive phrase based only on the provided relations and 
captions.

Example:

Q: "What is the relationship between <Prompt0> and <Prompt1>?"
A: "<Prompt0> is on top of <Prompt1>."

3. Diverse Questioning Styles (Crucial):

Your questions must be varied. Emulate the following styles:
- Relationship/Arrangement: "What is the spatial relationship between <Prompt0> and <Prompt1>?" or "Describe the 
arrangement involving <Prompt1>, <Prompt2>, and <Prompt3>." or "Which statement accurately describes the 
positions of <Prompt0>, <Prompt2>, and <Prompt1>?"
- Comprehensive Statements: "Can you describe the arrangement involving <Prompt1>, <Prompt2> ,and <Prompt3>?"
- Location: "Where is <Prompt2> located relative to <Prompt3>?" or "How are <Prompt2> and <Prompt1> positioned 
relative to <Prompt0>?"
- Action & State: "What is the primary activity of <Prompt0>?" or "What are <Prompt0> doing on <Prompt4>?" or 
"Which statement best synthesizes the relationships involving <Prompt0> and <Prompt1>?"
- Attribute-based (using caption details): "What is on the back of the giraffe <Prompt2>?"
- Direct Relationship: "What is the spatial relationship between <Prompt0> and <Prompt1>?" or "How is <Prompt0> 
interacting with <Prompt1> and <Prompt2>?"
- Ask for prompt: "Which are/is described as driving on <Prompt1>?"  or "which object is located between 
<Prompt3> and <Prompt1>?" (the answer should be like "<PromptX>" or "<Prompt0> and <Prompt2>")
- You can vary your question from these styles or use styles not appear in here.

4. Synthesize Information for Reasoning:
Whenever possible, design questions that require synthesizing multiple relationships to arrive at the correct 
answer. The answer should reflect this synthesis.

5. Intelligent Use of captions:
Utilize the category_name and caption details to formulate more specific, context-aware questions and answers.

6. Strict Formatting and Wording (Crucial):
Immersive Phrasing: Frame questions as if asking about a real visual scene. Crucially, you must not use phrases 
like "Based on the provided relationships," or "According to the information."
Tag-Only References: You must use the <PromptX> tags to refer to objects. Do not add descriptions to the tags 
themselves (e.g., use <Prompt0>, not the car <Prompt0>).

Input:
captions: {captions}
relations: {relations}

Prompt for Generating Question-Answering Pairs

Figure 15: Prompt for generating question-answering pairs.
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You are a professional Visual Question Answering (VQA) expert. Your task is to create high-quality, diverse, 
multiple-choice questions about a virtual scene based on provided ground truth data.

Input Format:
I will provide you with the ground truth for a scene in two JSON formats and some images:
captions: A dictionary containing reference tags for objects (e.g., <Prompt0>), their corresponding category 
(category_name), and a detailed text description (caption).
relations: A dictionary that describes the relationships between objects using the format 
<subject>,<object>,<predicate>.
images: The Full image and mask crop images which stand for specific <PromptX>

Task & Output Format:
Your task is to use this ground truth data to generate a JSON array containing 1-3 multiple-choice questions.
Your output must be a single, valid JSON array and nothing else. Do not include any explanations, comments, or 
text outside of the JSON structure. The format should be as follows:

```json
[
  {
    "question": "The text of the question...",
    "options": ["A. ...", "B. ...", "C. ...", "D. ..."],
    "answer": "A"
  }
]
```

Core Generation Rules:
1. Core Focus on Relationships:
All questions must primarily test the spatial, action-based, or state-based relationships defined in the 
relations data.
The correct answer must be directly verifiable from the provided ground truth.

2. Diverse Questioning Styles (Crucial):
Do not overuse a single question format. Your questions must be varied. Emulate the following styles based on the 
examples provided in the user's file:
Comprehensive Statements: "Which of the following statements accurately describes the arrangement involving 
<Prompt1>, <Prompt2>, and <Prompt3>?"
Location & Belonging: "Which of the following objects are all located on(beside,on,parked on...) <Prompt4>?" 
Action & State: "What is the primary activity of <Prompt0>?" or "What are <Prompt0> and <Prompt1> doing on 
<Prompt3>?"
Attribute-based (using caption details): "Which object, described as having an illustration of a cat, is located 
on <Prompt2>?" or "Which surface is the giraffe <Prompt2> lying on?"
Direct Relationship(mainly): "What is the spatial relationship between <Prompt0> and <Prompt1>?" or "How is 
<Prompt0> interacting with <Prompt1> and <Prompt2>?" or  "Which objects are located beside <Prompt1>?",

3. Synthesize Information for Reasoning:
Whenever possible, design questions that require synthesizing multiple relationships to arrive at the correct 
answer. For example, a question might test <PromptA>'s relationship to both <PromptB> and <PromptC>.

4. Intelligent Use of captions:
Utilize the category_name and caption details not just for creating distractors, but to formulate more specific, 
nuanced, and context-aware questions and answers.

5. Plausible Distractors:
Each question must have one correct answer and 2-3 plausible but incorrect distractors.
Create these by altering the subject, object, or predicate from a correct relationship, or by using other objects 
from the scene to create a false but believable statement.
Use summary options like "Both <Prompt0> and <Prompt1>" or "None of the above" where appropriate.

6. Strict Formatting and Wording (Crucial):

Immersive Phrasing: Frame questions as if asking about a real visual scene. Crucially, you must not use phrases 
like "Based on the provided relationships," "According to the information," or reference the data sources in any 
way.
Tag-Only References: You must use the <PromptX> tags to refer to objects in both questions and options. Do not 
add descriptions to the tags themselves (e.g., use <Prompt0>, not the car <Prompt0>).
Category-Agnostic Questions: When asking "Which...", you must use general phrasing. For example, always use 
"Which of the following is..." instead of "Which person is..." to ensure the question remains valid for all 
possible answer types.

Input:
captions:{captions}
relations:{relations}

Prompt for Generating Multiple Choices Questions

Figure 16: Prompt for generating multiple-choice questions.
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