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Abstract

Identifying the role of network units in deep neural networks (DNNs) is critical in
many aspects including giving understandings on the mechanisms of DNNs and
building basic connections between deep learning and neuroscience. However,
there remains unclear on which roles the units in DNNs with different generalization
ability could present. To this end, we give role taxonomy of units in DNNs via
introducing the retrieval-of-function test, where units are categorized into four
types in terms of their functional preference on separately the training set and
testing set. We show that ratios of the four categories are highly associated with
the generalization ability of DNNs from two distinct perspectives, based on which
we give signs of DNNs with well generalization.

1 Introduction

Deep neural networks (DNNs) are computing system modeled in an artificial way mimicking the
biological neural networks, which have shown extraordinary ability in tackling real-world problems
such as vision tasks [7, 16], natural language processing [5, 18] and so on. Being the primary element
in both the biological and artificial neural networks, units are activated to perceive the underlying
features for a given task. Similar to the biological neural networks, units in DNNs could learn to
present strong specialization and high function preference to specific subtasks in the task.

However, for each basic unit, its content is quite simple and abstract. It seems impossible to decode
the meaning of units from a theoretical view. So research is mostly carried out from discussing what
the functionality may present by each unit [20, 6, 2, 3]. Generally, the functionality of a unit describes
its role in the neural network at task level, and is formed by the natural selection of neural unit groups
during task learning. At the same time, each unit has different functional characteristics. When faced
with different tasks, due to the distributed working mode in the connectionist neural network models,
units will respond to the task according to their own functional characteristics, and thus play distinct
roles [9, 4].

In this paper, we are going to give a kind of role taxonomy of network units in DNNs. Before the
taxonomy, we introduce a useful tool, called retrieval-of-function test, for identifying the group of
units that could present the highest contribution on the given subtask when being activated jointly.
In general, this group of active units may perform differently on the training set and the testing set.
Based on this fact, we find that the units at a layer could be divided into four categories in terms of
their function on the two sets: core units, overfitted units, generalizing units and confusing units. By
illustrating with network models with different generalization ability, we show that the ratios of the
four types of units could be closely associated with the model generalization. Finally, we give further
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discussions from the perspective of role shares of individual units to show the different behaviors
they may present in different network models.

2 Related works

Focusing on the investigation of network units, one line of research is to indicate the working status
of units to the given task with certain attribute. Typical attributes include L1-norm of units [11] and
the Average Percentage of Zeros (APoZ) of units when using Relu activation function [8]. In addition,
[13] introduce the class selectivity from neuroscience to investigate the selectivity over classes for a
specific unit, on the basis of calculating the mean feature maps. [21] propose a kind of topological
entropy for indicating the chaotic degree of feature pattern for individual units. Studying on the
indication of the unit working status could tell quantitative understanding of the contribution of a unit
to a given task. But, it is still unclear what role the units could play in this task.

Another related research trace is to find and visualize the elements in the input that are important
to the units. In this way, the critical element found in the input could be considered as the features
that the unit could perceive, which somehow unveils the functionality of a unit. Typical works
[20, 23, 12, 17] search for the image patches that maximize the score of a given unit. Alternatively,
instead of searching, [15, 6] generate related images considered the most important for a unit. Bau et
al. measure the degree of conceptual alignment between units and human-visual concepts (Mountain,
River, etc.) predicted by another vision segmentation model in their works [2, 22, 3]. However, [19]
argue that functionalities of units in CNNs may be beyond the recognition to human vision.

3 Identifying active network units via retrieval-of-function test

In neuroscience, to identify the function of units, it is critical to locate the collaborative unit group
that are highly active for given a specific task, which could be detected via the functional magnetic
resonance imaging. Correspondingly, consider tackling a typical classification task with DNNs, and
our investigation begins with identifying this group of units in DNNs that are highly active to a
specific class in this task.
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Figure 1: Illustration of retrieval-of-function test (A) and its ROF curve in regards to the cross-entropy
loss (B).

Retrieval-of-function Test To identify these highly active units, we will employ the retrieval-of-
function (ROF) test, as illustrated in Fig.1A. The core idea of ROF test is to identify the group of
units that could recover the full perception of tasks when the networks stay in the "dead" state.

Basically, the ROF test could be summarized into two steps:

• Firstly, deactivate all the units within the layer to force the DNN to stay at the "dead" state,
where the network gives no response on any input.

• Secondly, iteratively activate the units according to an ordered list Ul = {Ui}Ni=0 individ-
ually. Typically, the ordered list could be ranked by quantities indicating the activation
strength. Here, L1-norm will be used as the target quantity to give a descending rank of
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units in the ROF test. In this way, units are activated sequentially from U0 to UN in the
initial dead network.

During the process of activation, the evolution of performance with respect to the number of units
activated (notated as n) could be recorded as the characterization to indicate the growing effect on
network performance when activating the unit. We would call this recorded curve the ROF curve and
notate it as E(n). Fig.1B shows a typical evolution of E(n), where the cross-entropy loss is applied
for recoding the performance of the DNN.

Turning point Before performing unit activation, as deactivating all the units in the layer, the DNN
is unable to perceive any valid feature. With the ordered list in a descending rank, units with strong
activation would be activated at the beginning of the evolution process. The performance would
experience a continuously rapid increase since the neural network gradually recover its function on
perceiving the feature in this class. Notably, the cross-entropy loss would reach at the minimum after
activating only a small part of units, after which it would begin dropping steadily until all the units
have been activated. We mark the minimum point as the turning point of E(n),

n0 = argmin
n

E(n) (1)

And correspondingly, the group of units that have been activated could be identified as follows,

U0 = {Ui}n0
i=0 (2)

It should be pointed out that without loss of generality, {Ui}Ni=0 denotes the ordered list ranked by
the descending order of the activation strength. U0 represents the minimum group of units being
activated jointly that could stimulate the most performance on the given class. We call U0 the active
unit set, and call its unit the highly active unit.

4 Role taxonomy of units in DNNs

In practice, to check the generalization ability, units would be trained on the training set D(train)

and tested for generalization on a held-out testing set D(test). Notably, all the samples in this class
should be drawn from the same distribution, sharing the same common features. For ideal networks,
units should be able to perceive the common intrinsic features in the class. In this way, units could
form substantial representations for unseen samples. This implies that units that are highly active on
D(train) are expected to perform in the same way on D(test).
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Figure 2: Illustration of role taxonomy of units in networks with different generalization abilities.

However, due to the excessive capability of the DNNs, networks may be over-fitted, presenting perfect
performance on D(train) while poor performance on D(test). These poorly-generalized networks
seem to simply memorize each labels of the training samples, and their units are not able to perceive
any valid feature shared in the class. In addition, [10] finds that only some of the features could
be reliably learned in networks with different initialization. So, highly active units could behave
quite differently between the D(train) and the D(test). In this case, the units that are highly active on
D(train) may be able to perceive some common features to some extent. But meanwhile, they may
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also be trained to perceive the features that only belong to D(train) not D(test). Since these features
are not the intrinsic features in the class, the corresponding units could cause severe interference to
the perception of D(test).

Apparently, different units can present different roles onD(train) andD(test). Based on the functional
discrepancy between D(train) and D(test), units can be categorized into 4 roles: core units, overfitted
units, generalizing units and confusing units, as illustrated in Fig.2.

Core units Core units are the units that perform well on both D(train) and D(test),

Uc = U
(train)
0 ∩U

(test)
0 (3)

Typically, core units are the cornerstone units in the layer, which is colored light red in Fig. 2. They
are usually sparse and could perceive the common features in this class for both the trained data and
unseen data, so deactivating core units would cause the performance deteriorates seriously on both
the two dataset. For well-generalized networks, activating only a small amount of most active units
could be suffice to promote the network performance to the peak, which can be even higher than
the original model. Then, the performance declines gradually along with the addition of other units,
which clearly shows the difference on functionality between core units and others. For over-fitted
networks, although activating the units other than core units could improve the performance on the
training set, yet it could be found that these units could decrease the testing performance rapidly.

Overfitted units Overfitted units are the units being good at D(train) but bad at D(test),

Uo = U
(train)
0 ∩ (Ul \U (test)

0 ) (4)

Overfitted units come after core units in the ordered list, colored orange in Fig. 2. The performance
on training set keeps being improved, but its turning point appears on the test set obviously when
overfitted units enter the network. This indicates that the functional status of these units has changed,
from the previous positive effect on the network to a "false" positive effect. These units can only
perceive features in the training samples. However, these features are not common features and do
not exist in the test samples. Thus, overfitted units are harmful to the network because they offset the
effect of core units. The existence of overfitted units implies the continuous rising of the training
performance. It is a significant sign of overfitting. Remarkably, this provides a criterion to detect
overfitting using only training sets.

Generalizing units Generalizing units are the units that play well on D(test) but not on D(train),

Ug = U
(test)
0 ∩ (Ul \U (train)

0 ) (5)

Just like overfitted units, they come after core units in the important rank, colored light yellow in Fig.
2. Generalizing units are the separatrix of core units and confusing units. Normally, they are rare in
the network because test sets are not involved in training. Emergence of generalizing units generally
implies the model is well trained.

Confusing units Confusing units are the units important on neither D(test) nor D(train), but may
be core units to other classes,

Uf = (Ul \U (train)
0 ) ∩ (Ul \U (test)

0 ) (6)

They normally lie on the end part of the importance rank, colored light blue in Fig. 2. Confusing
units are the products of performance balancing on diverse classes. Opposite to the overfitted units, if
we observe the continuous slight decline in the training performance along with the addition of units,
the model probably might not suffers from seriously overfitting.

Additionally, it is apparent that

Uc ∩Uo ∩Ug ∩Uf = ∅
Uc ∪Uo ∪Ug ∪Uf = Ul

(7)

which means that all units have one and only one role in the networks.
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Model A Model B Model C

Model D Model E

Figure 3: ROF curves and unit role taxonomy of 5 VGG16 network models on the same class

5 Experimental Analysis of Different Unit Roles

In our experiment, we train 5 VGG16 models on ImageNet dataset, each of which applies a separate
hyper-parameters to reach at different generalization ability. Table 1 shows the performance of models
ranking in the descending order of the generalization gap. In general, generalization gap denotes the
difference between the training accuracy and the testing accuracy. It is usually used as the indicator
of the generalization ability of a DNN.

Table 1: Classification accuracies for five different models.

MODELS TRAINING ACC TESTING ACC GENERALIZATION GAP

MODEL A 0.732 0.657 0.075
MODEL B 0.730 0.600 0.130
MODEL C 0.818 0.543 0.275
MODEL D 0.828 0.444 0.384
MODEL E 0.978 0.374 0.604

We would first study the unit roles in the 5 different networks. Fig.3 shows the results of the same
class for units at the last convolutional layer in the 5 VGG16 models. From the figure, we could
found that for these well-generalized models, there are similar ROF curves on the training set and
the test set. But for these poorly-generalized models, there are large differences in the ROF curves
of the two data sets.At the same time, it can be seen that there are less than 30 core units in Model
A, but it can give the best network model performance, indicating that these units in Model A have
presented highly functional specialization which could perceive the intrinsic features in the class. As
the performance of the network model continues to deteriorate, the number of overfitting units in
the model will gradually increase, and the number of confusing units will continue to decrease. In
addition, it can also be seen that the number of core units could keep within a certain range and will
not increase as the model performance deteriorates. But generally, when there are few overfitting
units, fewer core units mean that the units present better functional specialization.

Apparently, units with different roles in network models with different performances will show
different proportions. Next, the research will be extended from a single class to all classes, and the
proportion of role classification of units in different classes by these models will be summarized. In
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Figure 4: View of the proportion of units with different roles for all classes in ImageNet
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Table 2: The mean and standard deviation of the unit role categorization proportions of all classes in
the 5 VGG16 models.

Model Core Units Overfitted Units Generalizing Units Confusing Units

Model A 16.1%± 9% 3.1%± 1% 1.7%± 1% 79.1%± 10%
Model B 25.9%± 16% 3.4%± 1% 1.8%± 1% 68.9%± 17%
Model C 28.6%± 20% 11.5%± 4% 0.5%± 0% 59.4%± 22%
Model D 25.4%± 17% 33.9%± 11% 0.2%± 0% 40.5%± 24%
Model E 17.7%± 14% 61.4%± 18% 0%± 0% 20.9%± 20%

order to give a clear and intuitive comparison, the proportion of unit roles corresponding to each class
can be expressed as a three-dimensional vector and drawn in a three-dimensional coordinate system,
as shown in Figure 4. In the figure, the x axis, y axis and z axis represent the proportion of core
units, overfitted units and confusing respectively. Due to the small proportion of generalizing units,
generalizing units will be ignored in the plot. Moreover, each scatter point in the figure represents the
proportion of 4 different role units in a class.

It could be clearly seen from the three-dimensional comparison chart that models with different
performance show well separability under the same three-dimensional coordinate system. Comparing
the individual model scatter points, we can see that the role proportions between Model A and Model
B are quite similar. Both models show the typical nature of well-generalized models, i.e., they have
fewer core units and overfitted units, and more confusing units. In the meanwhile, it can also be
seen that although Model B has the same proportion of overfitted units as Model A, Model B has
more core units than Model A, and the overall variance is larger. From the previous demonstration,
when the model has only a small number of overfitted units, too many core units also mean poor
specialization, which will damage the performance of the network model to a certain extent. For
the latter three models (C, D and E), the corresponding proportion of core units remains relatively
unchanged, but as the network performance worsens, the proportion of confusing units will become
smaller and the proportion of overfitted units will gradually increase. Compared with models A and B,
the latter three models show completely different proportions of unit role categorization. Obviously,
the role categorization ratio of units is closely related to the performance of the network.

Further, the mean and standard deviation of the unit role categorization proportions of all classes
for each model will be calculated. The results are shown in table2. As can be seen from the table,
the pattern of role proportions presented is similar to Figure 4. Among them, the proportion of core
units fluctuates within a range. For a well-generalized model, it should have a smaller proportion
of core units and a lower standard deviation. However, the opposite is not necessarily true, such
as model E. At the same time, for poorly-generalized models, they have more overfitting units.
Similarly, if a network model has fewer overfitting units, it does not necessarily mean that it has a
very good degree of functional specialization, such as model B. Finally, the proportion of confusing
units in the model showed a strong correlation with network performance. It is worth noting that
for a well-generalized model, it has a large number of units that have a negative effect on it. On the
contrary, for a poorly-generalized model, there are only a small number of confusing units.

6 Role Share of Individual Units

6.1 Role Share of Individual Units

In this section, we would provide discussions of unit roles from another perspective. For each unit, it
will play different roles when facing different classes. For example, a given unit will exist as a core
unit when faced with some classes, but as a confusing unit when faced with other classes. Here, we
call the proportion of roles played by neural units Un in all classes the Role Share,

RSn =
(
RS(c)

n , RS(o)
n , RS(g)

n , RS(f)
n

)
(8)

where,

RS(R)
n =

1

N

N∑
k=1

IUn∈UR(k)
, R = o, c, g, f (9)
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Table 3: The mean and standard deviation of the unit role categorization proportions of all classes in
the 5 VGG16 models.

Model Core Share Overfitted Share Generalizing Share Confusing Share

Model A 16.1%± 10% 3.1%± 1% 1.7%± 1% 79.1%± 12%
Model B 25.9%± 15% 3.4%± 2% 1.8%± 1% 68.9%± 16%
Model C 28.6%± 18% 11.5%± 4% 0.5%± 0% 59.4%± 20%
Model D 25.4%± 17% 33.9%± 10% 0.2%± 0% 40.5%± 22%
Model E 17.7%± 15% 61.4%± 16% 0%± 0% 20.9%± 22%

Here, I(·) denotes the indicator function.

Just as market share, role share of unit Uk indicates the relative ratios of its roles (Core, Overfitted,
Generalizing, Confusing) over all the data classes. The elements of RSn is not independent because

RS(c)
n +RS(o)

n +RS(f)
n +RS(g)

n = 1 (10)

The role share offers another dimension to delineate the specialization of network units. Cooperation
and competition among units during training processes inevitably lead to the function preference of
network units, which is the basis of network efficiency and generalization. The role of a unit and its
share is closely associated. Table 3 presents the average role shares across all the neural units. It can
be observed that for networks with different performance, each role share shows the same pattern as
its role proportion in Table 2. Furthermore, the average value of each role’s share is highly consistent
with its corresponding role proportion, implying that the neural units maintains a balanced state
during training. We would give discussions from the perspective of the role share in the following.

6.2 Discussion on Role Share

With different generalization, trained models always present diverse distributions of units’ role shares.
It is interesting how should the role share be specified for a DNN with good generalization?

For core unit share set {RS
(c)
n }Nn=1, its element C(c)

n is the share of classes that the unit Un really
plays a decisive part. The determination of ideal distribution for {RS

(c)
n }Nn=1 is essentially a problem

of multi-agent system design [1]. In particular, one of the design objective for multi-agent system
is allocating multiple tasks to multiple agents. Analogously, the unit here corresponds to the agent
and the classification of images in multiple classes corresponds to the tasks. How to coordinate
individual agents (units) to efficiently finish complex tasks (classification)? Typically, the agents are
initialized randomly with no functionality preference. By gradually training, they automatically learn
to become specialized to only a small subset of tasks [14]. Broad research show that specialization
could reduce both the physical and virtual interference that occurs in agents and lead to overall
increase in productivity of whole system [1]. So, RS

(c)
n should not be too large in the scenario of

multiple classes for each unit ought to be in charge of only a small portion of classes. Meanwhile,
when tackling the same task, several agents (units) cooperate simultaneously could improve system
efficiency. Therefore, too small RS

(c)
n should also be avoided. Hence most elements of {RS

(c)
n }Nn=1

should be limited in a small neighborhood of zero, the same as that of core units (Fig4). The model
having too many units with overly large RS

(c)
n probably could be detriment to generalization due to

the bad specialization.

Since overfitted units are only effective on the training set, RS
(o)
n should be as few as possible for

each unit Un. When a DNN is poorly generalized, large number of units will present high RS
(o)
n ,

meaning that for many classes, these units are overfitted, that is to say, being only effective on the
training set, not on the testing set. As ablation operation being performed, removing these units will
impact the training accuracy on the classes regarding these units as either core units or overfitted units.
In a word, the more units with high RS

(o)
n , the more severe decline on the training accuracy in a

ROF test. This results in a more dramatically drop of the overall training accuracy. This is consistent
with the observations in [13]: "training accuracy drops more rapidly for less generalized CNNs when
performing cumulative ablation operation".
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However, the statement in [13], "a more generalized CNN relies less on single units", deserves further
query. In a sense, it implies that removing a single unit will be less impact for a more generalized
CNN. It seems that the difference between core and confusing units is somewhat improperly ignored.
For a well generalized CNN, removing a unit will surely heavily decrease the training accuracy on
the classes for which the unit is a core unit. But for many other classes where this unit exists as a
confusing unit simultaneously, it will slightly increase the training performance. The total effect
of removing this unit on the overall training accuracy would present less drop. That is the more
comprehensive explanation for that the more generalized model seems less reliance on single units.

For confusing unit share set {RS
(f)
n }Nn=1, it should distribute around some large value close to 1,

being contrary to that of core unit share set. In fact, individual confusing units in a well generalized
network actually present little key contribution on the majority of classes. Our observation here
somehow coincides with the actual state of famous pre-trained model BERT [5]. Being heavily
trained, BERT finally presents no task preference, providing an excellent base for solving further
specific tasks with only small effort of fine-tuning. Seemingly, most units in BERT exhibit confusing
functionality. Fine-tuning seeks a few units suitable for the certain task and features them to be more
task-specified. That is, transforming these units from confusing units to core units. As for most
unsuitable units, they keep as confusing units. It is the remarkable characteristic of well generalized
models.

7 Conclusion

In this paper, we have provided a kind of role taxonomy for units in DNNs with different generalization
ability. Given a task, units that are highly active at a layer are firstly identified by performing the
introduced retrieval-of-function test. We found that they could be categorized into four types in terms
of their function on separately the training set and the testing set, which are core units, overfitted
units, generalizing units and confusing units. We show that the DNNs with different generalization
ability would have distinct ratios of the four types of units, from both the perspective of unit role and
role share. We hope our work could be helpful for further how to train a good DNN, and also expect
to give connections between biological neural networks and the artificial neural networks.
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