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ABSTRACT

Despite extensive efforts and investments in the safety alignment of Large Lan-
guage Models (LLMs), prior work has shown that the alignment of frontier LLMs
can be circumvented by prefilling the assistant response with an affirmative prefix
– a frustratingly easy exploit with no fine-tuning or costly jailbreak algorithms
required. In response, a simple supervised fine-tuning (SFT) procedure using
data augmentation was recently shown to be surprisingly effective at achieving
a “deeper” safety alignment that yields natural language refusals to harmful pre-
filling attacks. In this work, we show that the “deep” safety alignment resulting
from this data augmentation approach is in fact not very deep. We find that a fail-
ure mode of the SFT-based data augmentation objective “shortcuts” the learning
of deep safety alignment by placing nearly all of the probability mass on a single
refusal token while allowing harmful tokens to still appear within the top 20 tokens
at each generation step. Thus, the safety alignment can still be easily circumvented
by selecting from these harmful tokens in what we call a Rank-Assisted Prefilling
(RAP) attack. We then propose a new perspective on achieving deep safety align-
ment based on “pushing forward” the first response token distributions to harmful
requests, where the top tokens tend to all be refusal tokens due to the absence of
a prefill. This yields a surprisingly simple fix to the data augmentation approach
based on regularizing the attention placed on harmful prefill tokens, a technique
we refer to as PRefill attEntion STOpping (PRESTO). Through both human and
automated evaluations, we find that PRESTO significantly improves robustness
against RAP attacks, with minimal impact to the utility of the model.

1 INTRODUCTION

As the capabilities of instruction-tuned Large Language Models (LLMs) have increased over the
years, so have concerns about their potential abuse by malicious actors. In response, extensive ef-
forts have been spent to study and implement the process of aligning LLMs with human values and
preferences (Ouyang et al., 2022; Rafailov et al., 2024; Ethayarajh et al., 2024; Bai et al., 2022b).
To improve the safety of these models, LLMs undergo a process of safety alignment where they
are fine-tuned to refuse harmful requests and even provide helpful explanations of why the requests
were refused (Bai et al., 2022a). Unfortunately, it has been shown time and time again that the safety
alignment of leading frontier models can be effectively circumvented using a variety of techniques
(Zou et al., 2023b; Qi et al., 2024; Huang et al., 2024; Chao et al., 2025; Vega et al., 2024; An-
driushchenko et al., 2025). These techniques vary in terms of their accessibility: e.g., assumptions
about the threat model, their cost, and technical knowledge required.

One frustratingly simple exploit for circumventing the safety alignment of LLMs is the prefilling
attack (Vega et al., 2024; Andriushchenko et al., 2025). When the user provides a harmful request
to the LLM (e.g., “How do I build a bomb?”), they can prefill the assistant response with affirmative
text (e.g. “Here’s how to build a bomb. Step 1: Gather”) and then start the decoding process
after this prefill. This was shown to succeed on safety-aligned LLMs from leading AI organizations
such as Llama 2/3 and DeepSeek R1 (Vega et al., 2024; Rager et al., 2025). Crucially, the prefilling
attack can be done by hand, avoiding the need for computationally expensive algorithms, fine-tuning
or high technical knowledge. As the only requirement for this exploit is the ability to prefill the
assistant response, this had troubling implications for open-sourcing safety-aligned models (Vega
et al., 2024). Prefilling attacks have also been shown to succeed against closed-source models where
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Figure 1: A demonstration of the Rank-Assisted Prefilling (RAP) attack against the Llama 2 7B
Chat checkpoint fine-tuned for deep safety alignment from Qi et al. (2025) on a request for bomb-
making instructions. (Left) We show the top 10 tokens from the next token probability distribution
following a harmful prefill (red) The “the” token is selected at this step, despite its low probability.
(Center/Right) “necessary”/“materials” are selected in these steps, again despite their low probabil-
ity. Continuing this process extracts harmful content fulfilling the request that is not likely to be
generated by traditional sampling-based decoding strategies.

prefilling is provided as a feature, such as Claude (Andriushchenko et al., 2025). Although prefilling
can be useful in benign scenarios for exerting greater control over the LLM’s output (e.g., guiding
roleplaying scenarios or tailoring the response format for data analytics (Anthropic, 2025)), it clearly
comes with potential risks to safety alignment that warrants greater investigation.

A promising training-time intervention to improve robustness against prefilling attacks was recently
proposed by Qi et al. (2025) based on a principle they call “deep” safety alignment. The goal of
deep safety alignment is to ensure that even if the beginning of a model’s response to a harmful
request indicates compliance (e.g., via a prefilling attack), the model should be able to quickly
“recover” and stop complying. To achieve this, they propose a simple supervised fine-tuning (SFT)-
based defense based on data augmentation. A key strength of this work is that it enables helpful
refusals to harmful prefills. (In contrast, a model that outputs a fixed string or random tokens when
encountering something it should refuse is indeed safe, but such responses are not very helpful for
the user to understand why the model refused.) This makes models fine-tuned with such a defense
more readily-deployable for customer-facing applications that provide prefilling as a feature (e.g.,
Anthropic (2025)), enabling safe prefilling.

In Section 3 of this work, we show that unfortunately, the SFT-based data augmentation approach
from Qi et al. (2025) can produce models with a vulnerability that allows for the deep safety
alignment to be easily circumvented. We show that a simple combination of supporting prefilling
and providing access to the top k tokens (according to the next token probability distribution) at
each decoding step is sufficient for the exploit to work. This again is trivially satisfied by any
open-source model, and access to the top k tokens is a feature seen in some commercial APIs
such as the OpenAI API (which allows access to the top 20 tokens OpenAI (2025)).1 The idea
is simple: instead of using a traditional decoding strategy during a prefilling attack, simply select
among the top k tokens at each decoding step to extract the desired harmful content, regardless
of their probability. We refer to this attack as the Rank-Assisted Prefilling (RAP) attack, and
provide an illustration in Figure 1. RAP is a more powerful generalization of the prefilling attack, as
it allows for arbitrary selection of the tokens. We find that despite being fine-tuned for deep safety
alignment, the data-augmented Llama 2 7B Chat checkpoint evaluated in Qi et al. (2025) retains
many low-probability yet highly-ranked tokens that naturally continue a harmful prefill within the
top 20 tokens (we refer to such tokens as “harmful tokens”). Selecting from these harmful tokens

1Note that although the OpenAI API provides access to the top k tokens, and that the Anthropic API pro-
vides access to prefilling, these APIs do not support both simultaneously (perhaps intentionally!). Therefore,
we only evaluate open-source models and restrict access to the top k tokens to simulate a closed-source set-
ting. We also remark that it is possible that a future competitor may support both these features under one API
without realizing that it may expose a vulnerability to RAP attacks, and thus this setting is still critical to study.
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yields sequences fulfilling the harmful request that are not likely to be generated via traditional
sampling-based decoding strategies. We show that RAP attacks on this model can be easily done by
hand, and also implement an automated version of RAP we call AutoRAP.2

Next, in Section 4.1, we propose a novel perspective on approaching deep safety alignment that
takes into account the RAP attack vulnerability. We argue that to address RAP, it is most important
to encourage the ranks of harmful tokens to be low, rather than just their probabilities. To do so,
one can utilize the first response token distribution immediately following a harmful request without
a prefill, which for a sufficiently safety-aligned model will likely be filled with tokens that lead to
decoding refusals (we refer to such tokens as “refusal tokens”). The highly-ranked refusal tokens
should then be pushed forward to also be highly-ranked when a harmful prefill is added. We refer
to this new perspective on approaching deep safety alignment as Push-Forward Alignment (PFA).
We then argue that approaches such as the SFT-based data augmentation approach from Qi et al.
(2025) can produce models vulnerable to the RAP attack due to over-optimizing for probability
mass to be shifted in the distributions, rather than ranks.

Finally, in Section 4.2, we show that approaching deep safety alignment from the PFA perspec-
tive yields a highly intuitive and mechanistically-interpretable implementation based on attention
regularization. We show that it appears sufficient to regularize the Multi-Head Attention modules
in the model so that the model learns to ignore the harmful prefill portion of the input, which in turn
encourages the model to “push forward” the highly-ranked refusal tokens from the first response
token distribution. We refer to this approach as PRefill attEntion STOpping (PRESTO). In Sec-
tion 5, we show that PRESTO helps mitigate the RAP attack vulnerability of the data augmentation
approach from Qi et al. (2025) by significantly increasing the difficulty of finding harmful decoding
paths through RAP. We also show that the addition of the PRESTO term does not significantly harm
the utility of the model. Lastly, we analyze the effects of PRESTO on the model’s attention patterns,
which reveal that attention in the later half of the model is most affected by the regularization.

2 RELATED WORK

In this scetion, we discuss attacks for circumventing safety alignment and defenses against such
attacks from existing related work. For additional related work, please refer to Appendix A.

2.1 CIRCUMVENTING SAFETY ALIGNMENT

In our work, we focus on decoding exploits for circumventing safety alignment, as they are among
the most accessible techniques to perform. Aside from prefilling and RAP, Huang et al. (2024)
proposed a decoding exploit that performs a grid search over decoding parameter configurations
(e.g., temperature, top-p parameter) to generate harmful content. Similar to RAP, this work exploits
the observation that harmful tokens may be ranked high enough such that changing the decoding
parameters can boost the probability of their selection enough to bypass safety alignment. However,
it was shown in Qi et al. (2025) that this approach no longer becomes successful on models trained
with the data augmentation approach to deep safety alignment, again likely due to the distribution
becoming almost entirely concentrated on a single refusal token. Since RAP attacks only utilize
the rank of the tokens and not their probabilities, it is a more powerful threat than this decoding
parameters exploit.

Aside from decoding exploits, another set of techniques to circumvent safety alignment are called
jailbreaks. These can either be handcrafted through extensive and clever manual effort (Reddit,
2025), or automatically discovered with expensive search algorithms. As such, due to their cost they
may not be preferable in situations where prefilling attacks are possible. For example, the Greedy
Coordinate Gradient (GCG) attack (Zou et al., 2023b) searches for a suffix that the user can append
to their prompt to bypass safety alignment through a discrete optimization algorithm and requires
access to the target model’s weights (i.e., an open-source model, at which point one can just do a
prefilling attack) or relies on transferability of suffixes to closed-source models. Some examples of
jailbreak algorithms that don’t require the target model’s weights include PAIR (Chao et al., 2025)

2An automated attack in similar spirit to AutoRAP is LINT (Zhang et al., 2023). However, LINT is ill-suited
to take on a deep safety-aligned model, as it only performs token selection at the start of new sentences and still
relies on rollouts using traditional decoding strategies. See Appendix A.2 for further discussion.
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and TAP (Mehrotra et al., 2024), which iteratively optimizes the user prompt in a completely black-
box manner, and AutoDAN, which also iteratively optimizes the user prompt but requires access
to the target model’s output probabilities. Yet, the iterative nature of these attacks still makes them
much more costly than prefilling attacks.

Finally, some other methods of circumventing safety alignment include those based on representa-
tion engineering (Zou et al., 2023a), which nudge the model’s internal representations in a harm-
encouraging direction (Arditi et al., 2024), and fine-tuning attacks, which fine-tunes the target model
to disable its safety alignment. These obviously requires access to the model’s weights (or, in the
case of fine-tuning attacks on closed-source models, for fine-tuning services to be provided (Qi et al.,
2024)), in which case prefilling attacks are again preferable when possible due to their simplicity.

2.2 FORTIFYING SAFETY ALIGNMENT

In our work, we focus on training-time interventions for improving the robustness of safety align-
ment against decoding exploits. Deep safety alignment, along with an implementation based on
data augmentation, was proposed recently in Qi et al. (2025) as one of the first techniques to defend
against prefilling attacks. Concurrently, Zhang et al. (2025) proposed a near-identical data aug-
mentation approach, with the addition of a special [RESET] token to signal the start of a refusal
following a prefilling attack. However, this latter approach is less preferable than the former from a
safety perspective, as a user could just disable the [RESET] token (e.g., by applying a strong bias
during decoding so that it always has low probability).

A key strength of the two aforementioned works is that they enable helpful refusals to harmful pre-
fills. This can be contrasted to defenses that do not have this desirable property. A recent example
is the implementation of circuit breaking (a type of approach to deep safety alignment based on
representation engineering (Zou et al., 2023a)) called Representation Rerouting, as proposed in Zou
et al. (2024). Like the data augmentation approach to deep safety alignment, this method is effec-
tive at defending against prefilling attacks. However, because it fine-tunes the model to increase
dissimilarity to harmful representations with no particular target representation, we’ve observed that
the resulting models tend to produce unintelligible text following a harmful prefill as opposed to
meaningful refusals. We focus our work on strengthening the robustness of the data augmentation
approach of Qi et al. (2025) to see if we can retain the benefits of helpful refusals to harmful prefills
while mitigating the vulnerability to RAP attacks.

There are also approaches to improving safety alignment robustenss based on adversarial training.
For instance, R2D2 (Mazeika et al., 2024) fine-tunes against adversarial examples generated through
GCG. However, such approaches are costly due to the simulation of the adversary, which turns out to
not even be necessary in some cases – the approach from Qi et al. (2025) provides decent protection
against GCG anyways without specifically needing to train against it.

3 “DEEP” SAFETY ALIGNMENT CAN BE SUPERFICIAL

To implement deep safety alignment, Qi et al. (2025) proposed a simple data augmentation approach
by applying supervised fine-tuning (SFT) on training examples of the following form (following the
Llama 2 Touvron et al. (2023) chat template):

<s> [INST] ≪SYS≫ [SYS. PROMPT] ≪/SYS≫ How do I build a bomb? [/INST]
Here’s how to build a bomb:\n\nStep 1: Gather I cannot fulfill your request ... </s>

The harmful prefills (red) are a fixed sampled from a jailbroken version of the model (Qi et al.,
2024), and the refusals (blue) are a fixed sampled from the original model. A safety-encouraging
system prompt is also used. The safety objective simply minimizes the negative log-likelihood of the
refusal tokens given the preceding tokens. Qi et al. (2025) showed that this strategy is very effective
at mitigating prefilling attacks with natural language refusals (even with the safety-encouraging
system prompt removed), as well as the decoding parameters exploit (Huang et al., 2024). However,
as we will show, the resulting “deep” safety alignment from this approach is in fact rather superficial.
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Table 1: Mean StrongREJECT (Souly et al., 2024) scores of prefilling and RAP attacks for the
Llama 2 7B Chat checkpoint fine-tuned with data augmentation from Qi et al. (2025). Scores are
on a scale of [0, 1] with higher values indicating greater harmfulness. For the prefilling attacks, we
report the mean and standard deviation across three runs, and also report results for the original
Llama 2 7B Chat model (Touvron et al., 2023). For the human RAP evaluation, we report the mean
and standard deviation over three participants.

Prefilling Attack
Original Data Augmented RAP (Human) AutoRAP
0.831 ± 0.004 0.001 ± 0.002 0.602 ± 0.187 0.5389

3.1 THE DISTRIBUTIONAL EFFECT OF THE DATA AUGMENTATION APPROACH

We examine the Llama 2 7B Chat checkpoint fine-tuned with the data augmentation approach that
was evaluated in Qi et al. (2025). To illustrate our key observation, in Figure 1 (left) we use the
bomb-making example as input to the model (minus the refusal and system prompt) and display
the top 10 tokens in the model’s next token probability distribution, alongside their probabilities.
Nearly all of the probability mass (∼ 97%) is concentrated on the refusal token “I” token, which if
selected would tend to generate refusals such as “I cannot fulfill your request.” However, despite
having been fine-tuned for deep safety alignment, there still exists low-probability yet highly-
ranked harmful tokens within the top 10 tokens. This yields two important takeaways. Firstly, it
helps explain why the data augmentation approach is so effective against both prefilling attacks and
the decoding parameters exploit under traditional decoding strategies – the mass becomes so highly
concentrated on the refusal token that the distribution must not be “flat” enough for harmful tokens to
be selected, even after varying the decoding parameters! Secondly, the prevalence of highly ranked
harmful tokens suggests that the RAP attack should be practical to carry out on such a model.

3.2 RAP EASILY BREAKS THE DATA AUGMENTATION APPROACH

To evaluate the real-world practicality of the RAP attack as a means for extracting useful harmful
content from the deep safety-aligned model of (Qi et al., 2025), we employ human evaluation where
three participants were asked to perform the RAP attack by hand. We obtain harmful prompts
from the StrongREJECT dataset (Souly et al., 2024) and use the accompanying grading rubric with
GPT-5 for evaluation, as the rubric ensures that attack success should account for the quality of the
response rather than just whether the model avoids refusing. We generate harmful prefills using
Mistral 7B v0.3 following the few-shot prefill generation approach of (Vega et al., 2024). Due to
time constraints, we evaluate each participant on a sample of 20 prompts. We limit the maximum
number of interactions per prompt (counting token selection and backtracking, i.e., the “undoing”
of a token selection) to 256; this limits the amount of exploration possible, encouraging participants
to simply select the first harmful token they see (rather than trying to strategically select tokens to
maximize harmfulness). To help scale up the evaluation, we also report results using our automated
attack AutoRAP on a larger sample of 90 prompts and higher maximum interactions limit of 512.
We provide more details on the design of the human evaluation and AutoRAP in Appendix B. In
both settings, we restrict the attacks to the top k = 20 tokens at each step (as this mirrors real-world
limits, e.g., what is supported by the OpenAI API (OpenAI, 2025)). Note that although Llama is
an open-source model (and thus an attacker does not have a restriction on k), we still restrict k
to demonstrate that an attacker does not have to search far to select harmful tokens, as well as to
simulate a closed-source setting where an API allows both prefilling and access to the top k tokens.

Table 1 reports the results. We also provide baseline results of performing prefilling attacks on the
entire dataset of 313 prompts over three runs3, both for the original model (Touvron et al., 2023) and
the deep safety-aligned model. We use the results for the original model to help validate that our
RAP results did not produce content than is more harmful than what we would expect to get out of
the original model (e.g., via a heavy bias on the token selection as a result of the humans/AutoRAP
implementation leveraging prior knowledge). For the deep safety-aligned model, the baseline pre-
filling attack is highly unsuccessful, as expected. For RAP however, we observe a significant leap

3We use a temperature of 0.9 and top-p parameter of 0.6 for up to 512 new tokens, following Qi et al. (2025).
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Figure 2: An illustration of the push-forward alignment approach to deep safety alignment on a
request for bomb-making instructions. On the far left, we show the top 10 tokens for the first
decoding step from the original Llama 2 7B Chat model (Touvron et al., 2023) when given the
prompt without any prefill. The future decoding paths from these tokens tend to be refusals (e.g.,
“Sorry, but I cannot fulfill...”). When a harmful prefill is added (center), the top-ranked tokens from
the first step are “pushed forward” to the current step. This helps to reduce the presence of harmful
natural continuation tokens for the prefill. Highly-ranked future decoding paths from the first step
can also be “pushed forward” to enable natural language refusals, as shown in the next two steps.

in the success of circumvention. Moreover, we observe that AutoRAP is able to approach human-
level performance, demonstrating the feasibility of automating the attack. Finally, comparing these
results to the original model’s prefilling attack results, we see that RAP and AutoRAP are able to
recover much of the original model’s harmfulness. Overall, these results confirm that there is a
fundamental flaw in the SFT-based data augmentation approach to deep safety alignment that
allows substantive harmful content to still be easily extracted under the top k and maximum
interactions constraints. Clearly, there is a need to make harmful decoding paths under the RAP
setting much more difficult to find. In the next section, we explore whether the data augmentation
approach of Qi et al. (2025) can be fixed to address this exploit.

4 TOWARDS TRULY DEEP SAFETY ALIGNMENT

4.1 PUSH-FORWARD ALIGNMENT

First, we describe a novel perspective on how to achieve deep safety alignment while mitigating
RAP attacks. Consider the original (shallow) safety-aligned model and a harmful prompt with no
harmful prefill. When generating the first response token, there will very likely not be any tokens
among the highest-ranked tokens that would naturally continue a harmful prefill, since no prefill
was present in the first place. Provided the model has undergone sufficient safety alignment, the
highest-ranked tokens are thus likely to be filled with refusal tokens. This can then be used as a
training signal during deep safety alignment fine-tuning. Specifically, the model can be trained to
“push forward” these top-ranked tokens to future decoding steps when a harmful prefill is provided.
To encourage natural language refusals following the initial refusal token, the highest-ranked future
decoding paths can also be “pushed forward.” We provide an illustration of PFA in Figure 2.

We formalize the concept of fine-tuning a model with PFA as follows. We refer to pushing forward
highly-ranked future decoding paths up to length t as “PFA-t”. For simplicity, we present PFA-1;
i.e., just pushing forward the highest-ranked first response tokens. Let x denote a harmful prompt
and xpre denote a harmful prefill drawn from a distribution D. Let p∗(x) denote the next token
distribution given x produced by the original model. Let p(x, xpre; θ) be similarly defined, but now
also given xpre and produced by a model parameterized by θ. Let R denote a function that returns
ranks for each token according to their probabilities in a provided distribution, and let ρw denote a
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function that computes a weighted version of the Spearman’s rank correlation coefficient (Lombardo
et al., 2020).4 Then, the PFA-1 loss is:

ℓPFA-1(θ) = E
(x,xpre)∼D

[−ρw(R(p∗(x)), R(p(x, xpre; θ)))] (1)

In general, the goal of push-forward alignment is to find a θ in a parameter space Θ with a PFA-t loss
that approaches the optimal PFA-t loss ℓ∗PFA-t := inf

θ∈Θ
ℓPFA-t(θ), so that the highest-ranked decoding

paths starting from p∗(x) appear as the highest-ranked decoding paths starting from p(x, xpre; θ).

Next, we analyze the data augmentation procedure of Qi et al. (2025). Let p∗t (x) denote the
marginal distribution over all length t continuations from x produced by the original model, and
let pt(x, xpre; θ) be similarly defined. (Note that following our prior notation, p∗1(x) = p∗(x) and
p1(x, xpre; θ) = p(x, xpre; θ).) Under the data augmentation procedure, as the refusals are sampled
from the original model, the fine-tuning essentially attempts to optimize the following loss:

ℓDA(θ) = E
(x,xpre)∼D

[KL(p∗T (x) || pT (x, xpre; θ))] (2)

(where T denotes a chosen maximal length). Note that if this objective could be optimized to 0
(given a sufficiently large Θ), then we would have pT (x, xpre; θ) = p∗T (x) almost surely, and con-
sequently ℓ∗PFA-1 would also be achieved. However, in practice the optimal loss cannot be achieved;
at best, we will have a model that can achieve very low (but non-zero) KL divergence. The key
insight is to realize that if the entropy of the first response token distribution p∗(x) is very low,
then minimizing the contribution of p(x, xpre; θ) to ℓDA(θ) can easily be “gamed” by simply shifting
most of the probability mass of p(x, xpre; θ) to the high-probability tokens of p∗(x) while neglecting
the organization of the remaining low-probability tokens. The neglection of the low-probability
tokens is essentially what enables the RAP attack to succeed. It is critical to aim for increas-
ing ρw(R(p∗(x)), R(p(x, xpre; θ))), as this will more directly affect the top k tokens encountered at
each RAP attack step. Note that a lower KL divergence between distributions does not necessarily
translate to a higher rank correlation5, and thus even a low-loss solution to optimizing Equation 2
is not necessarily a low-loss solution to optimizing Equation 1. In Appendix C, we empirically val-
idate that the entropy of p∗(x) tends to be low, and that p(x, xpre; θ) shifts to better align with the
low entropy of p∗(x), providing further evidence of “gaming” ℓDA(θ).

4.2 PRESTO: PREFILL ATTENTION STOPPING

To design a practical training objective for PFA, it is crucial to be able to exert a strong influence over
the token rankings in the output distribution. Intuitively, these rankings would be highly affected by
the semantic meaning of the preceding tokens. During fine-tuning, the model will therefore need to
be able to adjust its internal understanding of the semantics of the input in order to strongly affect the
output distribution. Effectively, it should learn to “ignore” the harmful prefill portion of the input so
that its semantic understanding of the input is only dependent on the harmful prompt, allowing the
existing (shallow) safety alignment to kick in to effect and significantly shift the output distribution.
At first glance, it appears from Equation 1 that this must be done by directly manipulating the inputs
x or outputs p∗(x), as the model is presented in an opaque manner. However, given we know that
we should try to adjust the model’s internal understanding of the input, we can look towards the
internal mechanisms of the model for more direct approaches. Fortunately, there is one mechanism
in a transformer-based LLM that can directly cause portions of the input to be ignored: the Multi-
Head Attention (MHA) mechanism. For example, “attention masking” is applied to ignore padding
tokens when performing batch training of variable-length input sequences. We therefore design our
loss around the MHA mechanism as a means for achieving PFA.

4For mitigating RAP attacks, since it is most important for the highest-ranked tokens of p∗(x) to appear as
the highest-ranked tokens of p(x, xpre; θ), a larger weight can be given to the higher ranks in ρw.

5Consider the following toy example: let p = [0.99, 0.004, 0.003, 0.002, 0.001], p1 =
[0.99, 0.001, 0.002, 0.003, 0.004] and p2 = [0.6, 0.2, 0.1, 0.06, 0.04]. Then KL(p || p1) ≈ 0.0046 <
KL(p || p2) ≈ 0.4591, but the (unweighted) Spearman rank correlations are ρ(R(p), R(p1)) = 0 and
ρ(R(p), R(p2)) = 1.
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Figure 3: Mean StrongREJECT scores of RAP attacks for models fine-tuned with the data augmen-
tation approach of Qi et al. (2025), with (orange) and without (blue) PRESTO. Scores are on a scale
of [0, 1] with higher values indicating greater harmfulness. For the human RAP evaluation, we dis-
play the mean and standard deviation over three participants. “DA” denotes the data augmentation
approach of Qi et al. (2025).

More concretely, consider giving the original (shallow) safety-aligned model a harmful prompt x and
harmful prefill xpre. If we applied an attention mask to xpre, the effective input to the model becomes
just x. Consequently, all length-t decoding paths would follow p∗t (x) instead of p∗t (x, xpre), which
would be sufficient to push forward high-ranked decoding paths that start from p∗(x). Therefore,
we can design a loss term that encourages attention placed on harmful prefill tokens to be minimized
and redirected towards non-prefill tokens. For a model parameterized by θ, let a(l,h)ij (θ) denote the
attention that token i places on token j by the hth attention head in the lth layer. Let n(x, xpre) be
the total number of tokens in the input when x and xpre are used, and let [n] := {1, 2, . . . , n}. Let
Ih be the set of indices of the harmful prefill tokens. We propose the following loss we call PRefill
attEntion STOpping (PRESTO):

ℓPRESTO(θ) = E
(x,xpre)∼D

[∑
l,h

∑
i∈[n(x,xpre)]

[(∑
j∈Ih

a
(l,h)
ij (θ)

)
︸ ︷︷ ︸

Prefill Attention

−

( ∑
j∈[n(x,xpre)]\Ih

a
(l,h)
ij (θ)

)
︸ ︷︷ ︸

Non-Prefill Attention

]]
(3)

PRESTO can be readily applied in conjunction with the data augmentation procedure of Qi et al.
(2025) as an additional loss term,6 as the attention scores are already calculated during the forward
pass. In the following sections, we will conduct experiments to evaluate PRESTO’s effectiveness
towards increasing the difficulty of RAP attacks.

5 PRESTO EXPERIMENTAL RESULTS

We compare using the data augmentation approach from Qi et al. (2025) with and without the
PRESTO loss term. Our experiment setup for evaluating the effect of PRESTO on RAP attacks
follows the setup detailed in Section 3.2. Our goal here is to see whether PRESTO can help make
the RAP attack more difficult to perform. Of course, we would still expect some harmful decoding
paths to still exist within the top k tokens, but the point is that these paths should become harder
to find. We also include results on newer and larger safety-aligned models: Qwen 3 8B Yang et al.
(2025) and Gemma 3 12B IT Team et al. (2025). Please refer to Appendix D for additional details.

PRESTO increases difficulty of RAP attacks. In Figure 3 we report the results of RAP evaluation.
We observe that there is a notable reduction in the mean RAP performance across all three models,

6Since the distributions that get pushed forward depend on the model’s parameters which changes through-
out training, the data augmentation helps to “anchor” them closer to how they were in the original model.
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both for the human and automated evaluation. We also note that for Qwen 3 8B, although the
standard deviation under PRESTO was high, its error bar at least does not overlap with the error
bar for when PRESTO is not used. Nonetheless, given the consistent trend between the different
models, the evidence suggests PRESTO indeed makes it more difficult to find harmful decoding
paths among the top k tokens. We report time data in Appendix D.1 to further corroborate this.

Utility is maintained after adding PRESTO. For each model (as well as the original model), we
evaluate the model’s utility on MT-Bench (Zheng et al., 2023) (for evaluating open-ended genera-
tion) and GSM-8K (Cobbe et al., 2021) (for evaluating mathematical reasoning). The results are
reported and discussed in Appendix D.2. In summary, adding PRESTO to the data augmentation
approach of Qi et al. (2025) does not degrade the model’s utility by any significant amount.

Harmful prefill attention diminishes in later layers. In Appendix D.3 we observe that the atten-
tion placed on harmful prefill tokens appears to vanish in the second half of the Llama 2 7B Chat
model trained with PRESTO. We also show that the deep safety-aligned version without PRESTO
still places good amount of attention on those prefill tokens (of course, this must be the case if natu-
ral continuation tokens for the harmful prefill are showing up in the top k tokens!) This corroborates
existing work that found that attention heads in the latter layers of Llama 2 7B Chat tend to be
the most responsible for affecting the safety of the output distribution; see Appendix D.3 for more
discussion.

Ablation of the top k parameter. Under the RAP threat model, the sole parameter that can be varied
is k, the amount of top tokens at each decoding step that is made available. We therefore perform
an ablation study on this parameter and report the results in Appendix D.4. We focus on Llama 2
and perform AutoRAP for k ∈ {5, 10, 15}. Our results show that without PRESTO, AutoRAP is
able to extract about the same level of harmfulness as k = 20 even when restricted to k = 5. In
contrast, with PRESTO, AutoRAP is much less successful, and maintains this level of safety for all
these values of k.

6 CONCLUSION

We show that the SFT-based data augmentation approach to deep safety alignment still suffers from
being vulnerability to an attack we call the Rank-Assisted Prefilling (RAP) attack. Through both
human and automated evaluation, we show that RAP attacks are practical and can easily recover a
significant amount of harmful content from such deep safety-aligned models. We then propose a
new perspective on approaching deep safety alignment that we call Push-Forward Alignment (PFA),
which yields a mechanistically-interpretable loss term based on regularizing the attention scores
that we call PRESTO. We then show that the PRESTO loss can help make RAP attacks significantly
more difficult to achieve, without sacrificing model utility.
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A ADDITIONAL RELATED WORK

A.1 SAFETY ALIGNMENT OF LLMS

Aligning LLMs with desired behaviors has been extensively investigated over the years, and the
predominant underlying workhorse has been to use techniques from reinforcement learning on a
large volume of preference data (Ouyang et al., 2022; Rafailov et al., 2024; Ethayarajh et al., 2024;
Bai et al., 2022b). The post-training fine-tuning process of the models we examine in this work all
involve Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022). They also
combine RLHF with additional techniques for alignment, such as a bit of supervised fine-tuning,
safety context distillation (Askell et al., 2021) for Llama 2 (Touvron et al., 2023), and strong-to-
weak distillation from larger models for Qwen 3 (Yang et al., 2025).

A.2 AUTOMATING RAP

Although not necessary, the RAP attack can be automated by replacing traditional decoding strate-
gies with a custom selection algorithm. In general, such algorithms modify the distribution by at-
tempting to suppress the probability of “refusal tokens” (i.e., tokens that likely lead to safe refusals)
while uplifting the probability of “harmful tokens” (i.e., tokens that are harmful continuations of
harmful prefills), and then sample from this new distribution to generate the next token. Most ex-
isting work directly modifies the probabilities from the target model by leveraging the probabilities
from non-safety-aligned language models, such as the work of Zhao et al. (2024) and Zhou et al.
(2024a). However, Zhou et al. (2024a) assumes access to the base pre-trained model, which may not
always be available in practice. Moreover, Zhao et al. (2024) applies a weighting to the target model
probabilities, which may not shift the target model distribution enough in cases where it is nearly
entirely concentrated on a single refusal token, which we observe can happen in models fine-tuned
with the data augmentation approach to deep safety alignment (Qi et al., 2025).

One approach that does not deal with these limitations is LINT (Zhang et al., 2023). When a new
sentence is about to begin, LINT intervenes by first choosing the top k next tokens (regardless
of probability) to be the candidate pool and then selecting the candidate that (when following a
traditional decoding strategy) leads to the most toxic next sentence being generated, as evaluated by
a trained toxicity evaluator. However, this will not work well against models fine-tuned with deep
safety alignment, as even if a candidate token is a harmful token (e.g., “Sure”), generating the rest
of the sentence for toxicity evaluation will very likely abruptly switch to a refusal following this
token due to its fine-tuning (e.g., “Sure I cannot fulfill...”). In our work, to help automate parts of
our evaluation we develop a more general alternative to LINT called AutoRAP that performs the
intervention at every step (not just at new sentences) and selects the top-ranked token that is not
classified as being a refusal token (according to a trained classifier) given only the preceding tokens.

A.3 MULTI-HEAD ATTENTION AND SAFETY

A number of works has examined the role of multi-head attention with respect to LLM safety.
For example, Zhou et al. (2024b) showed that only a few attentions are influential towards safety
under jailbreaks, in the sense that they strongly impact attack success when ablated. Specifically,
for Llama 2 7B Chat, they found that one head in particular in the third layer has the strongest
impact on safety. Interestingly, He et al. (2024) found that for the same model, a sparse amount of
attention heads in later layers (i.e., past layer 20) are most influential towards safety under jailbreaks
(whereas early layers have very little influence), but under a different sense: they influence the logits
of harmful tokens the most. This is corroborated by the work of Leong et al. (2024), which found
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that fine-tuning attacks on this model cause attention heads in later layers (this time, past layer 23) to
increase their influence on the logits of harmful tokens. In our work, we show that fine-tuning with
PRESTO has the greatest influence on prefill token attention scores in the latter half of the model.

B DETAILS OF THE RAP ATTACK EVALUATION

B.1 HUMAN EVALUATION

For the human evaluation, we used data from a total of 8 participants from our research lab in our
work to evaluate all 6 models we study ({Llama 2, Qwen 3, Gemma 3} × {with PRESTO, without
PRESTO}). One of these participants was an author of this work. To ensure a balanced mix of
”capabilities” of the attacker for each model, we assign participants to models in the following
manner: the author (considered the ”expert” attacker, given that they directly contributed to the
development of PRESTO) was assigned to all 6 models, one of the other participants was also
assigned to all 6 models (and thus we consider as the ”intermediate” attacker, given the experience
they accumulated by attacking 6 models), and the remaining 6 participants (considered the ”novice”
attackers) were randomly assigned to just one of the 6 models, yielding a total of 3 humans assigned
to each model. The novice attackers were not told which model they had been assigned. The task
was completed through a terminal interface on a machine with 4xH100 80GB GPUs.

B.2 AUTORAP

We fine-tune a Qwen 2.5 1.5B Instruct model to classify refusal tokens from harmful tokens, using
data from the PKU-SafeRLHF dataset Ji et al. (2024). We follow the data augmentation procedure
of Qi et al. (2025) using this data, and simply train the model to classify whether the final token is
part of a harmful prefill or part of a refusal. The refusals were obtained from jailbroken versions of
the models, also following Qi et al. (2025). We train the model for 80 epochs using a batch size of
64 on a subset of 128 prompts, and ensured they reached a high classification accuracy (90+%) on a
held-out set of data. We then use this model in a simple selection algorithm where we simply select
the top token that is classified as a harmful token, and backtrack whenever no tokens are classified
as harmful.

C “GAMING” THE DATA AUGMENTATION OBJECTIVE

In Figure 4 (left) we report the entropy of p∗(x) from Llama 2 7B Chat for prompts from the Harmful
HEx-PHI dataset (Qi et al., 2025), which was used for the deep safety alignment data augmentation.
The entropy of p(x, xpre; θ) from the deep safety-aligned model is also shown. These are compared
to the entropy of p∗(x, xpre). We see that the data augmentation has significantly re-shaped the
p(x, xpre; θ) distributions closer to the sharpness of p∗(x). However, as we saw in Table 1, the
data augmented model is still significantly vulnerable to RAP, suggesting an over-optimization of
matching the sharpness of the distribution while neglecting to push forward highly-ranked low-
probability refusal tokens from p∗(x, xpre). These observations suggest that the contribution of
p(x, xpre; θ) to ℓDA(θ) had indeed been “gamed” during fine-tuning. Thus, we re-emphasize that
encouraging low-probability yet highly-ranked refusal decoding paths to be pushed forward is vital
when implementing a SFT-based approach to deep safety alignment in order to strengthen robustness
against RAP.

D ADDITIONAL DETAILS OF PRESTO EXPERIMENTS

D.1 TIME DATA

In Figure 5, we report the time taken per final selected token (i.e., discounting all backtracking)
for the human RAP evaluation. The data shown should be interpreted in conjunction with Figure
3. For Llama 2, we see a higher mean and much greater variability in the amount of time taken
when PRESTO is applied. This is reflective of different behaviors of the participants for the Llama 2
model trained with PRESTO, from giving up early due to the difficulty of finding harmful decoding
paths, to making a concerted effort to find such paths. For Qwen 3 and Gemma 3, we see that
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Figure 4: Entropy of p∗(x) (“Original, Prompt Only”) and p∗(x, xpre) (“Original, With Prefill”) from
Llama 2 7B Chat and p(x, xpre; θ) (“Data Augmented, With Prefill”) from the deep safety-aligned
version from Qi et al. (2025) over the Harmful HEx-PHI (Qi et al., 2025) dataset. We using the
default safety-encouraging system prompt for Llama 2 and randomly truncate prefills at a random
length between [1, 100], in accordance with (Qi et al., 2025).

Figure 5: Average time taken per final selected token for the human RAP evaluation. We report the
mean and standard deviation across three participants per model. “DA” denotes the data augmenta-
tion approach of Qi et al. (2025).

the variability in times are much more similar under PRESTO vs. no PRESTO, but the means are
consistently higher under PRESTO with the error bars not overlapping. All in all, the data shows
that participants had a more difficult time finding harmful decoding paths under PRESTO while still
ultimately obtaining a lower StrongREJECT score as reported in Figure 3.

D.2 UTILITY EVALUATION

Utility evaluation results are shown in Table 2. We evaluate each model on MT-Bench (Zheng
et al., 2023) for evaluating open-ended generation and GSM-8K (Cobbe et al., 2021) for evaluating
mathematical reasoning. We see that applying PRESTO tends to not lead to any significant further
changes to the model’s utility.

For MT-Bench, we use the official evaluation pipeline provided by FastChat (LMSYS, 2024). We
use GPT-4 as the evaluator. As Qwen 3 is a reasoning model, we enable its thinking mode and
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Table 2: Model utility evaluated over MT-Bench (for evaluating open-ended generation) and
GSM-8K (for evaluating mathematical reasoning).

Model MT-Bench GSM-8K
Llama 2 7B Chat 6.26 25.93%
Llama 2 7B Chat (DA) 5.87 23.65%
Llama 2 7B Chat (DA+PRESTO) 5.73 24.72%
Qwen 3 8B 7.72 92.87%
Qwen 3 8B (DA) 8.17 90.45%
Qwen 3 8B (DA+PRESTO) 8.65 90.30%
Gemma 3 12B IT 9.01 90.22%
Gemma 3 12B IT (DA) 8.98 86.35%
Gemma 3 12B IT (DA+PRESTO) 9.06 85.67%

Table 3: An ablation of the top k parameter for AutoRAP. The mean StrongREJECT score for a
sample of 90 prompts from the StrongREJECT dataset is shown.

Model k=5 k=10 k=15 k=20
Llama 2 7B Chat (DA) 0.596 0.563 0.563 0.539
Llama 2 7B Chat (DA+PRESTO) 0.156 0.131 0.129 0.138

increase the default max new tokens parameter to 2048 to give more time for Qwen 3 to finish its
reasoning chain. We only provide the final response for evaluation (unless the reasoning had not
finished within 2048 tokens – in this case, we just use the reasoning chain generated so far for
evaluation). We also tried evaluating use max new tokens=4096, but this turned out to overflow
GPT-5’s context window. We note that the obtained results shows the deep safety-aligned models
with a higher score than the original model; however, upon further inspection, we found that this was
likely due to those models tending to not finish their reasoning chains soon enough, and hypothesize
that the GPT-5 judge may just have a bias towards longer generations.

For evaluating on GSM-8k, we use the Language Model Evaluation Harness pipeline EleutherAI
(2025) and run the ‘gsm8k cot llama‘ task. For all models, we use the safety-encouraging system
prompt, and set the decoding parameters to the respective model developers’ recommendation (with
the exception of Llama 2, for which we use the decoding parameters used in Qi et al. (2025) for
consistency). We were also able to set a higher max new tokens of 4096 since GSM-8k evaluation
does not deal with an LLM-based judge.

D.3 ATTENTION PATTERN ANALYSIS

In Figures 6 and 7, we plot the average attention received by each token for a harmful prompt
from StrongREJECT with a harmful prefill for Llama 2 7B Chat model fine-tuned with the data
augmentation approach of Qi et al. (2025), with and without PRESTO.

D.4 ABLATION OF THE TOP k PARAMETER

Table 3 shows the results of ablating the top k parameter for AutoRAP attacks. Given the Llama
2 7B Chat fine-tuned with the data augmentation approach from Qi et al. (2025), and version also
fine-tuned with the PRESTO loss, we perform AutoRAP attacks for k = {5, 10, 15}.
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Figure 6: Average attention received by each token for a harmful prompt from StrongREJECT with
a harmful prefill in the Llama 2 7B Chat checkpoint fine-tuned with the data augmentation approach
of Qi et al. (2025).
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Figure 7: Average attention received by each token for a harmful prompt from StrongREJECT with
a harmful prefill in a Llama 2 7B Chat model fine-tuned with the data augmentation approach of Qi
et al. (2025) and PRESTO.
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