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ABSTRACT

Large language models (LLMs) are transforming the ways the gen-
eral public accesses and consumes information. Their influence is
particularly pronounced in pivotal sectors like healthcare, where lay
individuals are increasingly appropriating LLMs as conversational
agents for everyday queries. While LLMs demonstrate impressive
language understanding and generation proficiencies, concerns re-
garding their safety remain paramount in these high-stake domains.
Moreover, the development of LLMs is disproportionately focused
on English. It remains unclear how these LLMs perform in the con-
text of non-English languages, a gap that is critical for ensuring
equity in the real-world use of these systems. This paper provides
a framework to investigate the effectiveness of LLMs as multi-
lingual dialogue systems for healthcare queries. Our empirically-
derived framework XlingEval focuses on three fundamental crite-
ria for evaluating LLM responses to naturalistic human-authored
health-related questions: correctness, consistency, and verifiability.
Through extensive experiments on four major global languages,
including English, Spanish, Chinese, and Hindi, spanning three
expert-annotated large health Q&A datasets, and through an amal-
gamation of algorithmic and human-evaluation strategies, we found
a pronounced disparity in LLM responses across these languages,
indicating a need for enhanced cross-lingual capabilities.We further
propose XLingHealth, a cross-lingual benchmark for examining
the multilingual capabilities of LLMs in the healthcare context. Our
findings underscore the pressing need to bolster the cross-lingual
capacities of these models, and to provide an equitable information
ecosystem accessible to all.
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How often do I need
an eyesight test?

¿Con qué frecuencia 
necesito un examen 

de la vista?

English

Spanish / Chinese / Hindi

Correctness
Quality of LLM answers 

compared with ground-truth

LLM

Consistency
Similarity among LLM answers

Verifiability
LLM's capacity to authenticate 

the validity of claims

18.12% decrease in
#comprehensive answers 

among non-English
languages

Answers in non-English 
languages are 

29.3% 
less consistent

On average 19% 
reduction in F-1 score 
among non-English 

languages

Figure 1: We present XLingEval, a comprehensive frame-

work for assessing cross-lingual behaviors of LLMs for high

risk domains such as healthcare. We present XLingHealth,

a cross-lingual benchmark for healthcare queries.

1 INTRODUCTION

Large language models (LLMs) have gained popularity due to their
ability to understand human language and deliver exceptional per-
formances in various tasks [1–3]. While LLMs have been used by
experts for downstream generative tasks [4, 5], their recent adoption
as dialogue systems has made them accessible to the general public,
especially with models like GPT-3.5 [6], GPT-4 [7], and Bard [8]
becoming widely available [9]. This expanded availability to LLMs
is expected to enhance access to education, healthcare, and digital
literacy [10, 11]. Especially in healthcare, LLMs exhibit significant
potential to simplify complex medical information into digestible
summaries, answer queries, support clinical decision-making, and
enhance health literacy among the general population [12, 13]. How-
ever, their adoption in healthcare domain brings two significant
challenges: ensuring safety and addressing language disparity.

Safety concerns associated with individuals, especially those
without specialized expertise who heavily depend on LLMs in criti-
cal domains like healthcare, require significant attention. In such
fields, where incorrect or incomplete information can have life-
threatening consequences, overreliance on or misinterpretation of
the information provided by these models represents a substantial
and pressing challenge. However, past work has predominantly
focused on evaluating the knowledge capabilities of LLMs, leaving
a gap in understanding the characteristics pertaining to the quality
of interactions between humans and LLMs. Consequently, it is vital
to assess the safety of LLM behaviors, including their ability to pro-
vide consistent, correct, and comprehensive answers to healthcare
queries and authenticate claims accurately.

Furthermore, in the domain of model training and evaluation,
there exists a notable language disparity [14], a phenomenon where
a significant emphasis is centered around the English language [7,
15]. Such an inclination can compromise the principle of equitable
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Evaluation

Performance
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Pipeline

Auto
LLM-based 
Evaluation

Auto
LLM-based 
Evaluation

Figure 2: Evaluation pipelines for correctness, consistency, and verifiability criteria in the XLingEval framework.

access, especially given that more than 82% of the global population
does not speak English as their primary or secondary language [16],
thus impacting billions of non-native English speakers worldwide.
In light of the paramount importance of ensuring equal access to
health-related information, it becomes evident that solely focus-
ing on LLMs’ safety evaluations in English is inadequate. Instead,
a comprehensive, multilingual evaluation approach is needed to
effectively address language disparity.

In response to these challenges, we propose XLingEval a com-
prehensive cross-lingual framework to assess the behavior of LLMs,
especially in high-risk domains such as healthcare. Our framework
emphasizes the importance of equity across languages and gen-

eralizability across models, guided by our proposed evaluation
metrics for LLM evaluations. We specifically propose three criteria
for conversational language models:

• Correctness: The model’s responses should exhibit factual cor-
rectness and comprehensively address the query.

• Consistency: The model should produce consistent responses
to identical queries, reflecting high similarity in lexical, semantic,
and topic aspects.

• Verifiability: The model should be capable to authenticate accu-
rate claims and clearly distinguish between correct and erroneous
responses to a query.

The cross-lingual equity dimensionwithin our framework empha-
sizes on evaluating the cross-lingual capabilities of LLMs. We pro-
pose a comparative evaluation of the aforementioned criteria across
the four most widely spoken languages in the world — English,
Hindi, Chinese, and Spanish [17]. Additionally, the generalizabil-
ity aspect of our framework centers on conducting cross-lingual
evaluations on other LLMs, such as MedAlpaca, a specialized lan-
guage model fine-tuned on medical documents) [18] and adapting
the proposed framework for other domains.

Our experiments reveal a discernible disparity across languages
in all three evaluation metrics. Regarding correctness (Section 3),
we observe an average decrease of 18.12% in the number of ‘more
comprehensive and appropriate answers’ produced by GPT-3.5
when responding to queries in Non-English languages as compared
to English across the three datasets. However, for Non-English lan-
guages, GPT-3.5 is 5.82 times more likely to produce incorrect
responses than in English. Regarding consistency (Section 4), GPT-
3.5 tends to generate more consistent responses on English com-
pared to non-English languages. We observe a maximum perfor-
mance decrease of 9.1% in Spanish, 28.3% in Chinese, and 50.5% in

Hindi when compared to English. All language pairs, except English-
Spanish, exhibit statistically significant differences in performance,
demonstrating the existence of language disparity. Regarding veri-

fiability (Section 5), English and Spanish demonstrate comparable
performances, whereas the performances for Chinese and Hindi
are notably lower. In the most extreme case, Chinese and Hindi
exhibit decreases of 14.6% and 23.4% on Macro F1, respectively.

Our research carries significant real-world implications on mul-
tiple fronts. The evaluation framework proposed in our work pos-
sesses practical utility for policymakers, practitioners, and health-
care professionals for evaluating large languagemodels and compar-
ing their relative performance. Through our examination of LLMs’
capabilities in major languages, we aspire to acquire a compre-
hensive understanding of their global effectiveness, which stands
to influence a vast and linguistically diverse global population,
impacting both linguistic accessibility and information reliability.
Furthermore, our framework exhibits versatility and adaptability
beyond healthcare, extending its applicability to other domains.

Our contributions are summarized as follows:
• Novel Framework. We propose XLingEval, a comprehensive

evaluation framework for LLMs in the healthcare domain that
focuses on three fundamental criteria: correctness, verifiability,
and consistency. Our framework features the gaps in equity in
LLM development across multiple languages, and demonstrates
generalizability in this evaluation across different LLMs.

• NovelMedical Benchmark.WeproposeXLingHealth, a Cross-
Lingual Healthcare benchmark for clinical health inquiry that
features the top four most spoken languages in the world.

• Extensive Multilingual Evaluation.We performed compre-
hensive evaluation on the four most spoken languages, and found
significant language disparity across these languages.

Our code and data are available on Anonymous GitHub1. We
will make all the code, data, and tools publicly available upon the
acceptance of this work.

2 THE XLINGHEALTH BENCHMARK

Our proposed XLingHealth is a novel cross-lingual healthcare
benchmark for clinical health inquiry. It is based on three prominent
healthcare datasets consisting of question-and-answer pairs curated
by medical expert. A brief introduction is provided below, with
additional statistical details available in the Appendix Table A1.

1https://anonymous.4open.science/r/llm
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• HealthQA [19]. This dataset is constructed using specialized
healthcare articles on the popular health service website Pa-
tient [20]. The questions are created by a diverse range of an-
notators from the health topics sections, and the answers are
excerpts from the original articles. We use the dev set comprising
of 1,134 questions for our experiments, where each question has
one correct answer and 9 incorrect ones.

• LiveQA [21]. This dataset contains 246 question-answer pairs
constructed using frequently asked questions (FAQs) from trusted
platforms associated with U.S. National Institutes of Health (NIH).

• MedicationQA [22]. This dataset contains 690 examples. The
questions, primarily address drug-related concerns, are extracted
from anonymized consumer queries submitted toMedlinePlus [23].
The answers are sourced from medical references such as Med-
linePlusand DailyMed [24].

The selection of these datasets aligns with general public health
queries. The questions closely resemble those typically asked by the
general public, ensuring their relevance to a broader audience that
may lack specialized medical knowledge. The answers are provided
by medical professionals, enhancing the credibility and reliability
of the data sources. However, it is important to note that these
datasets are originally in English. Given the scarcity of multilingual
health and medical question-answering datasets, we create a novel
multilingual benchmark by translating these datasets into Hindi,
Chinese, and Spanish. To ensure the dataset quality, we performed
a comprehensive human evaluation (further details in Appendix A).

Next, we turn our attention to our proposed XLingEval, a com-
prehensive evaluation framework for LLMs in the healthcare do-
main in the following sections.

3 CORRECTNESS

The first fundamental criterion of XLingEval is correctness, which
pertains to the accuracy, comprehensiveness, and contextual appro-
priateness of LLMs’ responses in healthcare inquiries. Ensuring cor-
rectness is essential due to the substantial implications associated
with inaccuracies or errors in responses [22, 25–27]. To evaluate the
correctness criterion in XLingEval, we conducted experiments to
compare LLMs’ responses to expert-curated ground-truth answers
across the three healthcare datasets:

For the evaluation criteria, we merged and modified the cat-
egories from the past work [27] to assess two key relationships
between the answers: 1) Contradiction and 2) Comprehensiveness
& Appropriateness. Contradiction refers to the incorrect or con-
trasting information provided in the LLM answer compared to the
Ground Truth answer. Comprehensiveness refers to the details
provided in the answer and whether it covers the points/topics
expected from the answer. Appropriateness gauges how well the
answer aligns with the context provided in the question. These
relationships are represented by four classification labels as shown
in Table 1. We present the rationale for the selection of axis labels
and elucidate how these labels effectively depict the respective axes
in Appendix B. Finally, the evaluation setup for the correctness
criterion consists of two components: 1) Automated Evaluation, for
large-scale and statistically significant comparisons between the
LLM answers and ground-truth, and 2) Human Evaluation, which
serves as validation for the automated evaluation.

3.1 Automated Evaluation

The automated evaluation for correctness encompassed two phases,
as depicted in the flowchart in Figure 2. In Phase-1, the LLM (GPT-
3.5) was prompted with questions from each dataset, yielding an
LLM answer for each question. In Phase-2, we conducted a com-
parative analysis between the LLM answer and the ground-truth
answer from the dataset. Specifically, we prompted the LLM with
the question, ground-truth answer, and the LLM answer using
Chain-of-Thought (CoT) prompting [28]. We asked the LLM to as-
sign one of the four labels in Table 1. In the Phase-2 prompt, the
initial instruction directed the LLM to assess whether the LLM an-
swer contradicted or found similar with the ground-truth. If found
similar, subsequent instructions prompted the LLM to compare
the comprehensiveness and appropriateness of the answers. The
prompts are detailed in Appendix Table A3.

Findings for comprehensiveness and appropriateness: Ta-
ble 1 presents the results for the automated comparative evaluation.
Across all datasets, we observed a drastic decrease in the num-
ber of examples where GPT-3.5 provides more comprehensive and
appropriate answers compared to the ground-truth answers. For
HealthQA, we observed a relative decrease in the number of GPT-
3.5 answers providing more comprehensive and appropriate infor-
mation by 38.62% for Hindi answers, 11.90% for Chinese answers
and 10.76% for Spanish answers as compared to that of answers in
English. We observed a similar trend for LiveQA having a relative
decrease of 34.15%, 5.69%, and 5.28% for Hindi, Chinese, and Spanish
respectively. For MedicationQA, we observed a relative decrease
of 30.58%, 15.8%, and 10.29% for answers where GPT-3.5 produced
more comprehensive and appropriate answers in Hindi, Chinese,
and Spanish respectively.

Findings for contradiction:Meanwhile, the number of GPT-3.5
answers in Hindi, Chinese, and Spanish with contradictory infor-
mation increased compared to the ground-truth answers, relative
to the answers GPT-3.5 provided in English. While GPT-3.5 pro-
duced 3 contradictory answers in English for the HealthQA dataset,
it produced 47 (15.67 times) contradictory answers for Hindi, 14
(4.67 times) for Chinese, and 5 (1.67 times) for Spanish. For Live
QA we observed GPT-3.5 producing 4.33 times more contradictory
answers in Hindi as compared to English. Finally, for Medication
QA dataset, we observed a huge increase in the number of contra-
dictory answers with GPT-3.5 producing 51 (10.2 times) in Hindi,
48 (9.6 times) in Chinese, and 23 (4.6 times) in Spanish. Finally, we
performed the same set of analyses for MedAlpaca and observed
a similar disparity between the performance for English and non-
English languages. In contrast to the GPT-3.5 results, we observed
a drastic increases in the number of answers procued by MedAl-
paca which were neither contradictory no similar to the Ground
Truth. This can be attirbuted to the incapibility of MedAlpaca to
produce multilingual texts. Detailed analysis on MedAlpaca results
in provided in Appendix D.3.

Overall, we observed language disparity across all four evalua-
tion labels from the automated evaluation, with Hindi showing the
most prominent discrepancy, followed by Chinese and Spanish.

3.2 Human Evaluation

In addition to the automated evaluation, we also conducted an
IRB-approved human evaluation as a validation measure for the
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Table 1: Automated correctness evaluation in four languages: English (en), Spanish (es), Chinese (zh), and Hindi (hi) for GPT-3.5.

Each number represents the number of answers assigned to the respective label in the dataset.

Information Comparison
(LLM Answer vs ground-truth Answer)

HealthQA LiveQA MedicationQA

en es zh hi en es zh hi en es zh hi

More comprehensive and appropriate 1013 891 878 575 226 213 212 142 618 547 509 407
Less comprehensive and appropriate 98 175 185 402 3 12 16 59 18 50 41 125
Neither contradictory nor similar 20 63 57 110 14 20 14 32 49 70 92 107
Contradictory 3 5 14 47 3 1 4 13 5 23 48 51

large-scale automated evaluation. The human evaluation involved
constructing an annotation dataset generated by randomly selecting
10% of examples from a stratified pool drawn from the three datasets.
Stratification was determined by the distribution of examples across
the four labels in Table 1 assigned by GPT-3.5. In total, we assembled
a corpus of 103 such instances for each language. Each instance
within this annotation dataset comprised a quadruple, consisting of
a question, an expert-curated answer, a response generated by the
LLM, and a reasoning generated from GPT-3.5 (during the Phase-2
prompting) that elucidated the justification behind the classification
label ascribed to the given example. The annotators were required
to answer a yes/no based question on whether they agreed with the
reasoning and classification label provided by the LLM. Additionally,
in cases where the annotator did not agree with the reasoning, we
asked them to provide the reasoning for selecting the ‘no’ option
along with reporting the correct relationship between the two
answers (more details in Appendix C). We assigned the majority
label to each instance based on the annotations.

We leveraged various channels for hiring medical experts for this
task, including crowd-sourcing platforms such as Prolific, social
media platforms like Reddit, LinkedIn, and traditional recruitment
methods such as mailing lists. To facilitate the annotation process,
we developed a novel web application as detailed in Appendix C.
We divided the examples for each language into two batches (batch-
1 and batch-2), and each subset was annotated by three annotators.
This division was necessitated by the exhaustive nature of our an-
notation task. Assessing the undivided set could have required over
6 hours, potentially leading to high dropout rates and compromised
response quality due to annotator fatigue.

In the case of the English examples, our analysis revealed a no-
table average correlation of 94.20% between the labels ascribed by
GPT-3.5 and the majority labels from human annotators. Moreover,
on average, all three human annotators unanimously agreed with
GPT-3.5’s labeling in 74.74% of the instances. For Spanish, we ob-
served the average correlation to be 95.14%. Despite employing a
thorough methodology in our search for medical experts as anno-
tators, we encountered difficulties in securing the requisite number
of three annotators for each batch, specifically in the case of the
Chinese and Hindi language, for which we could only enlist two
annotators, and one annotator respectively. Detailed results of the
human evaluation are provided in Appendix C. We observed an
average correlation of 77.61% for Chinese, and 84.47% for Hindi. The
human evaluation served as a corroborative measure to validate the
credibility and reliability of our automated evaluation approach.

4 CONSISTENCY

The second critical criterion in XLingEval is consistency. Assess-
ing the consistency of LLM’s responses has become crucial and
pertinent in areas that require precision and reliability, such as
healthcare. Inconsistent medical guidance provided by these models
can mislead patients, diminishing the credibility of LLMs, andim-
pacting the well-being of individuals. To address this challenge,
the consistency criterion protocol gauges the coherence of LLM-
generated responses. To achieve this, we varied the “temperature”
parameter 𝜏 of language models to control the randomness of the
generated text. As shown in Figure 2, for each question, we prompt
the LLM 𝐾 = 10 times using both the English version (𝑞E) and
non-English version (𝑞NE) of the same question. Then, for each
question, we measure the similarity among answers {𝑎𝑘E}

𝐾
𝑘=1 and

{𝑎𝑘NE}
𝐾
𝑘=1 respectively according to the metrics described below.

The responses are evaluated across multiple dimensions, ranging
from surface-level, semantic-level, and topic-level.

4.1 Metrics

4.1.1 Surface-level Consistency. Surface-level consistency gauges
the resemblance between two pieces of text based on their superfi-
cial attributes, such as lexical features, word choices and response
lengths, disregarding the deeper contextual or semantic meaning.

N-gram Similarity (simn-gram) [29, 30] is the Jaccard similarity
between the set of n-grams present in the two documents:

simn-gram (𝑠1, 𝑠2) =
| n-grams(𝑠1) ∩ n-grams(𝑠2) |
| n-grams(𝑠1) ∪ n-grams(𝑠2) |

, (1)

where 𝑠1, 𝑠2 are two generated answers for comparison, and n-grams(𝑠1)
indicates the set of n-grams in 𝑠1. Here, we consider unigram and
bigram similarity, i.e., 𝑛 = 1, 2.

Length of Response is defined as the number of words in the
answer, excluding punctuation marks and spaces. For cross-lingual
evaluation, we translate LLM-generated non-English answers back
to English using the procedures in Appendix A.

4.1.2 Semantic-level Consistency. Semantic-level consistency [31,
32] measures the semantic association between two answers. This
type of assessment requires a deep understanding of subject matters
described in different responses. For example, words like “obesity”
and “BMI” have different meanings but often exhibit strong seman-
tic associations due to their frequent co-occurrence in discussions
about weight control. To assess semantic similarity, we leveraged
two metrics based on contextualized word embeddings, known for
capturing distant dependencies [33–35] and their strong correlation
with human judgments [36, 37]. Specifically:
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Figure 3: Results of consistency metrics on the three datasets. Each row represents the results of a particular dataset, and each

column indicates a distinct metric.

BERTScore [38] leverages contextualized embeddings to cap-
ture a token’s specific usage in a sentence and potentially incorpo-
rates sequence information.

Sentence Embedding Similarity (simsent) [39] is the cosine
similarity between the sentence embeddings of two answers:

simsent
(
s𝑖 , s𝑗

)
=

s𝑖 · s𝑗
∥s𝑖 ∥∥s𝑗 ∥

, (2)

where s𝑖 is the embedding of the 𝑖-th response. We leveraged
Sentence-BERT [39] to encode each response into a 768-dimensional
representation with bert-base-uncased as the base model.

4.1.3 Topic Consistency. Topic similarity measures whether two
answers discuss similar topics from a macro perspective [40–43].
Quantitative assessment of topic similarity through human eval-
uation can be challenging as it is hard to assign precise scores to
generated answers that exhibit varying levels of similarity due to
different temperature settings (𝜏 ). To address this challenge, we em-
ployed two topic modeling techniques to quantify topic similarity:

Latent Dirichlet Process (LDA) [44]represents documents as
mixtures of topics and infers the underlying topic distribution of
each response. When using a topic number of 𝑛, the topic similarity
between two answers 𝑠𝑖 , 𝑠 𝑗 is defined as:

sim𝑛LDA (𝑠𝑖 , 𝑠 𝑗 ) =
t
𝑛 (𝑠𝑖 ) · t𝑛 (𝑠 𝑗 )

∥t𝑛 (𝑠𝑖 )∥∥t𝑛 (𝑠 𝑗 )∥
, (3)

where t𝑛 (𝑠𝑖 ) ∈ R𝑛 is the topic distribution of 𝑠𝑖 when the number
of topics is set to 𝑛. Note that LDA requires a predefined number of
topics and may generate closely aligned or duplicated topics when
the number is large.

HierarchicalDirichlet Process (HDP) [45] is a non-parametric
Bayesian technique which automatically infers the optimal number
of topics based on the complexity and volume of the data. Empiri-
cally, we fitted a topic model to the complete set of LLM-generated
answers on each dataset for a single language, and subsequently
derived a topic distribution for each individual answer.

4.2 Results

4.2.1 Numerical Results. Figure 3 illustrates the consistency of
GPT-3.5’s outputs based on different evaluation metrics. In terms of
sim2-gram, BERTScore, and simsent, GPT-3.5 exhibited higher con-
sistency in its answers in English compared to other languages. For
BERTScore, GPT-3.5 achieved 0.9206 / 0.6160 / 0.5299 for 𝜏 = 0.0 /
0.5 / 1.0, whereas its performances in Chinese dropped to 0.8454 /
0.5536 / 0.4860 for the same 𝜏 values. The performance disparity
between GPT-3.5’s performance in English and Spanish is relatively
narrow compared to the other languages. For BERTScore, GPT-3.5
demonstrates performances of 0.9097 / 0.5910 / 0.5092 under the
three temperatures for Spanish, which are comparable to its per-
formances in English. It is noteworthy that GPT-3.5 demonstrated
relatively high semantic-level consistency in terms of simsent. On
LiveQA (Table A9), the model yielded average scores of 0.9706,
0.9674, 0.9613 and 0.9415 across the four languages, with a modest
maximum performance decrease of 3.0% compared with English .
This high semantic consistency stood in stark contrast to its surface-
level consistency, where GPT-3.5 manifested a maximum decrease
of -50.7% onHindi compared with English sim2-gram. This suggested
that, while GPT-3.5 can maintain semantic consistency even with
escalating generative randomness, there are pronounced shifts in
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Table 2: Tukey’s HSD test results on LiveQA (𝜏 = 0.0). We report the 95% confidence interval (95% CI) and the mean difference

(MD). Asterisks (*) denotes the significance level. * / ** / *** stand for 𝑝 < 0.05 / 0.01 / 0.001, respectively. Significant disparities

were observed on all metrics across all language pairs, with the exception of English and Spanish.

𝜏 = 0.0 simBERT BERTScore sim1gram
Language 95% CI MD p-adj 95% CI MD p-adj 95% CI MD p-adj

en es (-0.0037, 0.0025) -0.0006 0.9535 (-0.0286, 0.0164) -0.0061 0.8962 (-0.0442, 0.0234) -0.0104 0.8576
en zh (-0.0106, -0.0044) -0.0075 <0.001*** (-0.0958, -0.0508) -0.0733 <0.001*** (-0.1578, -0.0903) -0.124 <0.001***
en hi (-0.0258, -0.0196) -0.0227 <0.001*** (-0.1891, -0.1441) -0.1666 <0.001*** (-0.3090, -0.2415) -0.2752 <0.001***
es zh (-0.0100, -0.0038) -0.0069 <0.001*** (-0.0897, -0.0447) -0.0672 <0.001*** (-0.1474, -0.0799) -0.1136 <0.001***
es hi (-0.0252, -0.0190) -0.0221 <0.001*** (-0.1830, -0.1380) -0.1605 <0.001*** (-0.2986, -0.2311) -0.2648 <0.001***
zh hi (-0.0183, -0.0121) -0.0152 <0.001*** (-0.1158, -0.0708) -0.0933 <0.001*** (-0.1850, -0.1174) -0.1512 <0.001***

𝜏 = 0.0 sim2grams sim20
LDA simHDP

Language 95% CI MD p-adj 95% CI MD p-adj 95% CI MD p-adj

en es (-0.0616, 0.0265) -0.0175 0.7349 (-0.0210, 0.0155) -0.0028 0.9800 (-0.0401, 0.0065) -0.0168 0.2478
en zh (-0.2153, -0.1272) -0.1712 <0.001*** (-0.0443, -0.0079) -0.0261 0.0014** (-0.0713, -0.0248) -0.0480 <0.001***
en hi (-0.4142, -0.3262) -0.3702 <0.001*** (-0.0923, -0.0559) -0.0741 <0.001*** (-0.1068, -0.0603) -0.0836 <0.001***
es zh (-0.1977, -0.1097) -0.1537 <0.001*** (-0.0416, -0.0051) -0.0234 0.0055** (-0.0545, -0.0080) -0.0312 0.0032**
es hi (-0.3967, -0.3086) -0.3527 <0.001*** (-0.0896, -0.0532) -0.0714 <0.001*** (-0.0900, -0.0435) -0.0668 <0.001
zh hi (-0.2430, -0.1549) -0.1989 <0.001*** (-0.0662, -0.0298) -0.048 <0.001*** (-0.0588, -0.0122) -0.0355 <0.001***

Table 3: Tukey’s HSD test results on LiveQA with 𝜏 = 1.0.

𝜏 = 1.0 simBERT BERTScore sim1gram
Language 95% CI MD p-adj 95% CI MD p-adj 95% CI MD p-adj

en es (-0.0104, -0.0018) -0.0061 0.0017** (-0.0317, -0.0108) -0.0212 <0.001*** (-0.0252, -0.0106) -0.0179 <0.001***
en zh (-0.0161, -0.0075) -0.0118 <0.001*** (-0.0542, -0.0332) -0.0437 <0.001*** (-0.0523, -0.0376) -0.0450 <0.001***
en hi (-0.0376, -0.0289) -0.0332 <0.001*** (-0.1259, -0.1049) -0.1154 <0.001*** (-0.0960, -0.0814) -0.0887 <0.001***
es zh (-0.0100, -0.0014) -0.0057 0.0037** (-0.0329, -0.0120) -0.0225 <0.001*** (-0.0344, -0.0198) -0.0271 <0.001***
es hi (-0.0315, -0.0229) -0.0272 <0.001*** (-0.1046, -0.0837) -0.0942 <0.001*** (-0.0782, -0.0635) -0.0708 <0.001***
zh hi (-0.0258, -0.0171) -0.0214 <0.001*** (-0.0822, -0.0612) -0.0717 <0.001*** (-0.0511, -0.0364) -0.0438 <0.001***

𝜏 = 1.0 sim2grams sim20
LDA simHDP

Language 95% CI MD p-adj 95% CI MD p-adj 95% CI MD p-adj

en es (-0.0189, -0.0088) -0.0138 <0.001*** (-0.0430, 0.0192) -0.0119 0.7579 (-0.0343, 0.0336) -0.0004 0.9909
en zh (-0.0346, -0.0244) -0.0295 <0.001*** (-0.1108, -0.0486) -0.0797 <0.001*** (-0.0865, -0.0187) -0.0526 0.0004**
en hi (-0.0643, -0.0541) -0.0592 <0.001*** (-0.2785, -0.2164) -0.2475 <0.001*** (-0.1250, -0.0571) -0.091 <0.001***
es zh (-0.0207, -0.0106) -0.0157 <0.001*** (-0.0989, -0.0367) -0.0678 <0.001*** (-0.0862, -0.0183) -0.0522 <0.001***
es hi (-0.0504, -0.0402) -0.0453 <0.001*** (-0.2666, -0.2045) -0.2356 <0.001*** (-0.1246, -0.0567) -0.0906 <0.001***
zh hi (-0.0348, -0.0246) -0.0297 <0.001*** (-0.1989, -0.1367) -0.1678 <0.001*** (-0.0724, -0.0045) -0.0384 0.0191*

its lexical selections. In general, GPT-3.5 demonstrated the highest
and lowest consistency on English and Hindi, respectively.

4.2.2 Statistical Significance. The primary objective of our analysis
is to identify statistically significant variations in the performance
of LLMs across various languages. We conducted an Analysis of
Variance (ANOVA) for each metric to determine whether the mean
performances across the languages were statistically different. As
shown in Table A13, the one-way ANOVA tests for all metrics and
all temperatures revealed statistically significant differences among
the languages. This suggested that the performance for at least
one language had statistically significant difference from the rest.
For example, at 𝜏 = 0.0, the F -statistic for simsent / BERTScore /
sim1-gram were 153.47 / 157.28 / 190.94 with 𝑝-values of 2.52e-80 /
5.93e-82 / 0.29e-96.

In cases where the ANOVA results indicated significant differ-
ences among languages, we employed a post-hoc Tukey Honestly
Significant Difference (HSD) test and an unpaired t-test to pinpoint

which particular language pairs exhibited significant disparities in
performance on a given metric. As shown in Table 2, 3, the 𝑝-values
for English-Spanish on 𝜏 = 0.0 generally exceeded the significance
level of 0.05, indicating comparable performances. In contrast, other
language pairs suggest statistically significant performance vari-
ations. The results for unpaired t-test were similar, as shown in
Table A12 in Appendix D.2. For MedAlpaca-30b (Table A10), we
observed an increase in simn-gram and decrease in topic-level consis-
tency; however, the language disparity was less significant (details
in Appendix D).

5 VERIFIABILITY

The last critical criterion in XLingEval is verifiability, which mea-
sures a model’s capacity to authenticate the validity of claims.
Within this framework, the LLM acts as a discriminator and distin-
guishes between correct and erroneous/irrelevant responses to a
given query, in contrast to previous settings where the LLMs act as
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Figure 4: Results of LiveQA on metrics of the verifiability experiment, including macro precision, macro recall, macro F1-score,

accuracy, and area under the curve (AUC). Each column represents a distinct metric. The x- and y-axis of each heatmap

represents varying languages and temperatures 𝜏 , respectively. The results for the other datasets are in the Appendix (Figure A3)

generators. For example, users may rely on LLMs to corroborate
the validity of their health-related knowledge. However, LLMs may
produce ambiguous or contradictory responses [46, 47]. Therefore,
the capability of verifiability in LLMs is crucial for streamlining
mitigation strategies like Self-Debug [48] and rectifying harmful or
misleading outputs [49].

XLingEval ’s verifiability evaluation protocol is designed as
follows. The model takes as input a set of question-answer pairs
(𝑞E, 𝑎E) for English, and (𝑞NE, 𝑎NE) for non-English languages. It
predicts a binary label 𝐿E or 𝐿NE about whether the response is a
correct answer to the question. The question-answer pairs cover
a diverse set of assertions, spanning both accurate and inaccurate
claims. We then compare the model’s answers to the ground truth
to determine its proficiency in claim verification.

We employed slightly different settings for different datasets. In
the HealthQA dataset, each question is associated with one correct
answer (termed “positive example”) and nine incorrect/irrelevant
answers (termed “negative examples”). LiveQA and MedicationQA
do not provide negative question-answer pairs. Therefore, for each
question in these datasets, we randomly sampled four responses
from the entire set of answers to serve as negative examples. Our
evaluation employed five metrics: macro-precision, macro-recall,
macro F1-score, accuracy, and Area Under the Curve (AUC). Details
of the evaluation metrics are in Appendix D.1.

5.1 Results

Figure 4 shows the verifiability results on LiveQA across 5 temper-
atures 𝜏 . GPT-3.5 achieved only 0.66/0.62/0.67 on the 3 non-English
datasets, a sharp decrease compared to its performance of 0.73
in English. The language discrepancy is even larger on HealthQA
(Figure A3), where GPT-3.5 provided comparable performances
in English and Spanish but significantly worse results on Chinese
and Hindi. At 𝜏 = 1.0, the macro F-1 for English and Spanish were
both 0.85 on HealthQA, whereas those for Chinese and Hindi were
0.73 and 0.65, respectively, reinforcing our hypothesis that LLMs’
verifiability varies across languages. The AUC showed a similar
pattern, with 0.92/0.87 for English/Spanish but only 0.68/0.62 for
Chinese/Hindi. Meanwhile, model performance remained relatively
stable across different 𝜏 , suggesting that modulating the model’s
generative randomness does not substantially influence its ability
to validate answers. As shown in Figure A11, the standard deviation
of performances are lower than 0.01. In most settings, English and
Hindi demonstrated the most and the least variations, respectively.

6 RELATEDWORKS

6.1 Large Language Models (LLMs)

The development of language models has witnessed significant
transitions from smaller-scale transformer-based models such as
BERT [50], RoBERTa [51], and XLNet [52] to recent highly parame-
terized models, including GPT-3.5/4 [7], Bard [8], ChatGLM [53, 54],
LLaMA [15], etc. These LLMs exhibit distinct capabilities in reason-
ing, understanding, and summarization [55–60], offering potentials
in healthcare for user-friendly medical summaries and query res-
olutions. By generating user-friendly summaries and addressing
medical inquiries, these models can significantly enhance accessi-
bility to health-related information.

Although existing studies have demonstrated the proficiency of
LLMs on medical benchmarks [25–27, 61], they do not necessarily
reflect real-world human-LLM interactions. In practical scenarios,
individuals often consult LLMs for symptom evaluation, health
precautions, or clarifications on medical terminology. Our research
seeks to address this disparity, providing insights into how well the
general public can engage with and utilize these LLMs.

6.2 Language Disparity

Despite the proliferation of LLMs, a notable limitation challenge
in the development of LLMs is the pronounced focus on English-
centric models and training data [14, 62–64]. For instance, LLaMA
2 sources nearly 90% of its pretraining data from English texts [15],
and a substantial portion of GPT-4’s pretraining data is similarly
English-centric [7]. This uneven data distribution casts doubts over
the genuine multilingual capabilities of these models. Recognizing
and addressing such language disparity in LLMs is paramount. En-
deavors are being made to investigate these disparities and work
towards more inclusive language models. Efforts are underway to
promote more inclusive LLMs that not only improve information
accessibility but also foster global health literacy. Ensuring diverse
language representation is crucial not just for broadening commu-
nity inclusion, but also for facilitating diversity and inclusiveness in
the development and usage of LLMs, and promote equitable access
to services powered by these technologies [65–67].

7 DISCUSSION

We presented a multi-dimensional evaluation of the cross-lingual
capabilities of LLMs in the healthcare domain. Our results indicate
that a consistent disparity exists between the capabilities of LLMs
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in answering healthcare queries in the English language and non-
English languages. We now discuss the implications of our findings.
Equity and accessibility of healthcare information. Large lan-
guage models are advocated as language technologies that provide
accessible healthcare information [27, 68, 69]. However, our study
demonstrates that key measures relating to LLM capabilities like
correctness, consistency, and verifiability are repeatedly lower for
non-English languages than for the English language. As a con-
siderable fraction of the global population is not equipped to have
healthcare conversations in the English language [70], our work
provides empirical evidence to raise questions about whether such
claims about accessibility ignore aspects related to equity in lan-
guage technologies in healthcare. Do the claims about accessibility
of healthcare information using LLMs only apply to people who
prefer to communicate in the English language?

Besides developing LLMs that provide equitable services across
languages in critical domains like healthcare, which is still an open
challenge, some immediate steps involve clearer communication
of capabilities and potential harms. For instance, the limited capa-
bilities of LLMs to answer healthcare-related queries, specifically
in non-English languages, could be made more prominent using
trustworthiness cues. Liao et al. [71] highlight that trustworthiness
cues could empower users to make well-calibrated judgments while
adopting AI technologies. Similarly, the accessibility claims relating
to large language models in healthcare should be communicated
while precisely mentioning the languages such capabilities were
evaluated on [72]. This is particularly important as LLMs are being
integrated within Web-based search frameworks (e.g., Bing Chat
and Google’s Generative AI Search) as a notable fraction of search
queries on platforms like Google and Bing are health-related [73].
Generalized framework for evaluating LLM Applications. In
this work, we presented a framework for assessing the efficacy
of LLMs in the healthcare domain. The facet of generalizability
inherent in our framework is exemplified through the evaluation
carried out on two distinct LLMs, GPT-3.5 and MedAlpaca. Addi-
tionally, the criteria introduced in this work can be modified to
adapt to other critical domains such as legal, finance, and education,
where correctness, verifiability, and consistency of information pro-
vided by LLMs are also of major importance [69, 74–77]. It is worth
emphasizing that the evaluation metrics employed in our study pos-
sess the adaptability to be directly applied to the aforementioned
domains. However, it remains imperative to exercise discretion in
tailoring these metrics to meet the specific requirements of each
domain. For instance, in legal contexts, where considerations of
legal precedence and historical case information assume paramount
importance, it is necessary to introduce modifications or novel met-
rics within the correctness criterion to accommodate these unique
domain-specific intricacies. Furthermore, as shown in our work,
we highlight the need for the adoption of cross-lingual analysis in
frameworks to assess the capabilities and potential harms.
Likely causes of language disparity. Across our evaluation met-
rics, we noted a disparity in LLM performance among languages.
This disparity is notably more pronounced in the case of Hindi and
Chinese as compared to Spanish. The underlying rationale for this
discrepancy can be attributed primarily to two key factors: the lim-
ited availability of data resources for Non-English languages and the

presence of a highly imbalanced data distribution employed in the
training of the LLMs [7, 15]. The performance disparity across lan-
guage is further heightened in instances involving domain-specific
LLMs, access to multilingual data is difficult, as exemplified in the
results pertaining to MedAlpaca in Appendix D.3. High-precision
machine translation has been employed as a possible solution in
past works [78, 79]. However, critical domains such as healthcare re-
quire extensive human evaluation of translation to prevent serious
ramifications. A potential solution for this problem requires close
collaboration with medical experts and endorsement of specific
training data resources by medical/healthcare organizations.
Future of LLMs in Healthcare. One of the implications aris-
ing from our study centers on the discourse surrounding the fu-
ture of LLMs within high-stakes domains, particularly healthcare.
While a prevailing strategy focuses on the development of general-
purpose LLMs with larger number of parameters trained on larger
datasets [80], it is essential to acknowledge the inherent limitations
of such models, including their deficiency in domain-specific knowl-
edge and vulnerability to hallucinations [7, 81]. In contrast, domain-
specific LLMs have shown promising potential and efficacy within
the healthcare domain [27, 82]. However, it is critical to underscore
that additional precautions and safeguards are required to mitigate
the risk of adverse consequences stemming from the information
generated by these models. Augmenting conversational models
with knowledge bases [83], and implementing semi-automated pro-
cedures for verifying the quality of training datasets [80], emerge
as prospective solutions to enhance the reliability and safety of the
outputs in high-stakes domains like healthcare.

8 CONCLUSION AND LIMITATIONS

We presented XLingEval, a holistic cross-lingual evaluation frame-
work focusing on three fundamental criteria for LLMs — accuracy,
consistency, and verifiability. We conducted an exhaustive series
of automated and human evaluation experiments with four of the
world’s most widely spoken languages – English, Chinese, Hindi,
and Spanish. The outcomes of these experiments revealed dispar-
ities inherent in LLM responses across these languages, under-
scoring the pressing necessity for advancements in cross-lingual
capabilities. Moreover, we introduced XLingHealth, an innovative
cross-lingual healthcare benchmark that serves as a pivotal tool for
assessing the multilingual capabilities of LLMs.

While our study represents a novel contribution to the field, it
is essential to acknowledge certain limitations. Primarily, due to
the unavailability of open access to a general-purpose multilingual
LLM of a scale comparable to GPT-3.5, we were constrained to
use a smaller healthcare-focused LLM, MedAlpaca, for compara-
tive analysis. Additionally, our analysis was constrained by the
absence of readily available multilingual datasets specific to the
healthcare domain. This constraint necessitated the creation of
multilingual versions through machine translation, introducing
potential limitations in terms of translation quality. Overall, our
research underscores the urgent imperative of enhancing the cross-
lingual capabilities of these models and promoting equitable access
to information across linguistic boundaries.
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Table A1: Statistics of the datasets. ‘#Words (Q)’ and ‘#Words

(A)’ represent the average number of words in the questions

and ground-truth answers of the datasets, respectively.

Dataset #Examples #Words (Q) #Words (A)

HealthQA 1,134 7.72 ± 2.41 242.85 ± 221.88
LiveQA 246 41.76 ± 37.38 115.25 ± 112.75

MedicationQA 690 6.86 ± 2.83 61.50 ± 69.44

Table A2: Translation quality of the three machine transla-

tion tools utilized in this paper. We evaluate 150 examples

per language. Each example is assigned 3 annotators. “C-GPT”

refers to ChatGPT and “M-MT” refers to MarianMT. “Google”

represents Google Translate. Texts in bold represent the best

performance for the given language.

Fluency Meaning
C-GPT Google M-MT C-GPT Google M-MT Cohen’s ^

es 4.38 4.25 3.89 4.40 4.12 3.98 0.86
zh 4.42 4.26 3.83 4.33 4.10 3.80 0.84
hi 4.21 4.36 3.36 4.32 4.35 2.87 0.81

A DETAILS OF DATASET CONSTRUCTION

Observing the lack of existing multilingual QA datasets in health-
care domains, we curate a novel benchmark. To ensure the quality
of the dataset, we conduct a human evaluation on the translation
quality of three popular approaches commonly adopted in translat-
ing academic documents: Google Translate [84], MarianMT [85],
and ChatGPT [6]. To comprehensively evaluate the capability of
each model in translating different datasets, we randomly selected
50 questions from each dataset, resulting in a total of 150 ques-
tions. Our evaluation of translation quality aligns with established
standards in previous works [14]. A total of 450 translation pairs
(150 questions across 3 languages) were evaluated. Each example
was reviewed by three independent annotators who scored the
translations using a five-point Likert scale (1: strongly disagree —
5: strongly agree) on two critical dimensions:

(1) Fluency. Is the [TARGET LANGUAGE] version a good
translation of the English text?

(2) Meaning. Does the [TARGET LANGUAGE] version faith-
fully convey the same meaning as the English text?

From Table A2, it can be noted that our evaluation revealed
ChatGPT to outperform other approaches in translations from Eng-
lish to both Chinese and Spanish, while Google Translate exhibits
superior performance in English-to-Hindi translation. Thus, for
optimal results in each non-English language, we harnessed the
best-performing model to achieve the highest translation quality.

B RATIONALE FOR THE CORRECTNESS

CRITERIA

We merged and modified the categories from the past work [27] to
create two consolidated axes for the comparative evaluations of the
answers produced by LLMs with the Ground Truth answer. The two

proposed axes cover three essential dimensions – contradiction,
appropriateness, and comprehensiveness. The dimension of contra-
diction addresses situations wherein LLMs’ responses exhibit incon-
sistencies compared to the answers provided by medical experts,
signifying inaccuracies in the LLM-generated responses. While the
LLM answer may not specifically contradict the Ground Truth an-
swer, it may still be irrelevant to the asked question. We check this
scenario through asking to evaluate the similarity between the LLM
and the Ground Truth answer, keeping the contextual relevance
to the original question through Phase 2 prompting. If the LLM-
generated answer is determined to be similar to the Ground Truth
answer while keeping contextual alignment with the question, it is
considered appropriate. Finally, if both answers are evaluated as
similar and appropriate, then we compare the comprehensiveness
of both answers through the last step in the Phase 2 prompt.

C HUMAN EVALUATION

C.1 Annotation Platform

Figure A1 presents the different pages from the annotation platform
designed for conducting the human evaluation for the Correctness
experiment. Each instance within the annotation dataset comprised
a quadruple, consisting of a question, an expert-curated answer, a re-
sponse generated by the GPT-3.5 model, and a reasoning generated
from Phase-2 prmopting that elucidated the justification behind the
classification label ascribed to the given example. The annotators
needed to answer a yes/no based question on whether they agreed
with the reasoning and classification label provided by GPT-3.5.
Additionally, in cases where the annotator did not agree with the
reasoning, we asked them to provide the reasoning for selecting
the ‘no’ option and along with reporting the correct relationship
between the two answers. We assigned the majority label to each
instance based on the annotations from three annotators.

C.2 Results

Table A7 presents the correlation number for each batch for English
(en), Spanish (es), Chinese (zh), and Hindi (hi). Each batch for English,
and Spanish was annotated by three medical experts. On the other
hand, each batch for Chinese was annotated by two annotators and
each batch forHindiwas annotated by 1 annotator. It is worth noting
that a comprehensive, multi-faceted approach was adopted in the
recruitment of participants for this annotation task, encompassing
a wide range of sources such as crowdsourcing platforms, social
media platforms, and offline channels. Despite these efforts, hiring
additional medical experts proficient in Chinese or Hindi proved
challenging.We observed a high correlation between the automated
and human labels in the annotation dataset in each language with
more than 90% agreement for each of English, Spanish, and Chinese.

D AUTOMATED EVALUATION

D.1 Evaluation Metrics in Verifiability

As described in Section 5, we use five metrics in the verifiability
experiments, including macro precision, macro recall, macro F1-
score, Accuracy, and the Area Under the Curve (AUC).
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Table A3: Prompts used in the experiments. Question refers to the question from the dataset, Answer 1 and Answer 2 refers to

Ground truth and LLM answer respectively.

Correctness Prompt (Phase 1)
You are an expert in medicine, health, and pharmaceutics. Please answer this health- and medical-related queries in [LANGUAGE]. Your
answers should be in one or more paragraphs without listing points/lists.
Question: [QUESTION]

Correctness Prompt (Phase 2)
Given below is the question and two answers written in [LANGUAGE] for the question.
Question: [QUESTION]
Answer 1: [ANSWER 1]
Answer 2: [ANSWER 2]

Compare Answer 2 with Answer 1 on the basis of answer similarity, comprehensiveness and appropriateness.
Answer 2 contradicts Answer 1 if Answer 2 provides any information that contradicts the information provided in Answer 1 and Answer
2 incorrectly answers the Question.
Answer 2 is neither contradictory nor similar if Answer 2 answers the Question but Answer 1 and Answer 2 are dissimilar. First, evaluate
whether Answer 2 provides similar information, contradictory information as compared to Answer 1. Support the evaluation with a
reasoning. Only if both answers are similar, evaluate the comprehensiveness and appropriateness of Answer 2 in comparison to Answer
1 and provide a reasoning for it.
Finally, based on the previous evaluation, choose one option from the following option:

1) Answer 2 provides neither contradictory nor similar information in comparison to Answer 1
2) Answer 2 provides contradictory information compared to Answer 1
3) Answer 2 provides more comprehensive and appropriate information.
4) Answer 2 provides less comprehensive and appropriate information

Your answer should first provide all reasoning followed by the chosen option string in the last line. The chosen option string should be
an exact match with one of the given options.

Consistency Prompt 1
You are an expert in medicine, health, and pharmaceutics. Please answer the following medical question or give your medical diagnosis
based on the following scenario.
Answer: [ANSWER]

Verifiability Prompt 1
You are an expert in medicine, health, and pharmaceuticals. Respond to me whether the following response is a correct answer (or
diagnosis) to the following question (or scenario).
Question: [QUESTION]
Answer: [ANSWER]

Macro precision andmacro recall are the average precision
and recall across all classes, computed as:

Pmacro =
1
𝑛

𝑛∑︁
𝑖=1

TP𝑖
TP𝑖 + FP𝑖

, (4)

Rmacro =
1
𝑛

𝑛∑︁
𝑖=1

TP𝑖
TP𝑖 + FN𝑖

, (5)

where 𝑛 is the number of classes, TP𝑖 , FP𝑖 , FN𝑖 are the number
of true positives, false positives, and false negatives for class 𝑖 ,
respectively.

Macro F1-score is the harmonic mean of macro precision and
macro recall, computed as:

F1macro = 2
Pmacro · Rmacro
Pmacro + Rmacro

. (6)

Accuracy is the percentage of correctly predicted examples
among all examples:

Acc =
TP + TN

TP + TN + FP + FN
, (7)

where TP, FP, TN, FN are the number of true positives, false posi-
tives, true positives, and false negatives, respectively.

AUC, or Area Under the ROC Curve, signifies the performance
of the classification model across all thresholds. It measures the two-
dimensional area underneath the ROC curve (receiver operating
characteristic curve). An ROC curve plots the True Positive Rate
(TPR) against the False Positive Rate (FPR):

TPR =
TP

TP + FN
, (8)

FPR =
FP

FP + TN
. (9)
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D.2 Results of Unpaired t-tests

Due to varying content filtering criteria on each language, GPT-
3.5 usually refuses to answer a different set of questions on each
language. We thus supplemented our analysis with an unpaired
t-test (Table A12). Using a significance threshold (𝛼) of 0.05, the 𝑝-
values show that for most metrics, the English-Spanish comparison
at 𝜏 = 0.0 is statistically consistent (𝑝 > 𝛼). However, significant
cross-lingual differences emerge when 𝜏 increases towards 1.0. For
all other language pairings, the 𝑝-values are consistently lower than
𝛼 , revealing statistically significant performance discrepancies and
language disparities. Analogous patterns were noted across other
datasets and temperatures. Similar results are observed on the rest
of the datasets and temperatures.

D.3 Results on MedAlpaca

When deploying LLM-based conversational agents, a primary con-
sideration arises: Is it more effective to deploy a larger, general LLM
or a smaller, specialized model to respond to user queries? This
section delves into this question by examining MedAlpaca [18], a
specialized LLM tailored for the medical domain. MedAlpaca is fine-
tuned from LLaMA [15] using theMedical Meadow dataset [18], and
has demonstrated exceptional performances on the United States
Medical Licensing Examination (USMLE). For our assessment, we
focus on its largest version: MedAlpaca-30b.

D.3.1 Consistency. From Table A10, we note a significant decline
in topical-level consistency for MedAlpaca compared with GPT-
3.5 (Table A9). Meanwhile, its lexical consistency is superior, as
demonstrated by its higher sim1-gram, sim2-gram.

Given the propensity of smaller-scale LLMs to generate responses
predominantly in English, we introduced a new metric, we intro-
duce a new metric, language consistency, to gauge the alignment
of the response language to the source sentence’s language. For an
example target language 𝑙 and a this metric determines the fraction
of sentences generated in the target languages by the LLM relative
to all sentences:

LangCons(𝑞, 𝑙) =
∑︁
𝑠𝑖 ∈𝑆𝑞

Count(𝑠𝑖 , 𝑙))∑
𝑙 ′ Count(𝑠𝑖 , 𝑙 ′)

(10)

where 𝑙, 𝑙 ′ are languages, 𝑠𝑖 is a generated answer, and 𝑆 is the set
of all generated answers to the question 𝑞 Empirically, we use the
langid2 package to determine the language of each sentence. We
calculate the aggregated language consistency by averaging over all
examples in Table A4.

We found that MedAlpaca-30b has the lowest language consis-
tency in Spanish. Also, language consistency varies across different
temperatures.

D.3.2 Verifiability. As shown in Table A14, MedAlpaca-30b does
not demonstrate good performances in authenticating claims. It
demonstrates a highly imbalanced prediction towards the negative
class, leading to low macro-precision/recall/F1 and AUC scores in
most languages.

D.3.3 Correctness. The correctness results for MedAlpaca-30b is
shown in Table A8. As observed, there is a sharp decrease in the

2https://github.com/saffsd/langid.py

number of answers where MedAlpaca produces a more compre-
hensive and appropriate answer as compared to Ground Truth. For
HealthQA, we observed a relative decrease of ∼92.23%, ∼97.93%,
and ∼93.26% for Spanish, Chinese, and Hindi respectively as com-
pared to English. parallel trend was observed for the LiveQA and
Medication QA datasets. In contrast to GPT-3.5 results, we observed
the majority proportion of answers in non-English languages being
assigned the ‘Neither contradictory nor similar’ label. This obser-
vation stems from the fact that MedAlpaca either did not produce
the answer in the respective language or produced a hallucinated
answer with repeated tokens.

D.4 Content Filtering

GPT-3.5/4 leverages an additional post-processing step of content
filtering to ensure content safety and relevance. This is important
in the medical domain as end users have varied levels of medical
knowledge and are potentially subject to misunderstandings or
misapplications. Table shows the content filtering percentage in
the verifiability experiments. The results indicate that all languages
except Spanish exhibit little variation in content filtering iwith re-
spect to temperature 𝜏 . For Spanish, GPT-3.5 filtered 0.2%/0.5% on
temperatures 0.0/1.0, respectively. It is worth noting that the model
consistently recorded a zero filtering rate for Chinese (zh), suggest-
ing possible vulnerabilities to generating inappropriate content in
Chinese contexts.
Table A4: Language consistency of themedAlpaca-30Bmodel.

The language consistency generally decreases as the temper-

ature 𝜏 increases, except for Spanish.

𝜏 en es zh hi

0.0 99.85 24.02 79.62 81.52
1.0 99.45 32.62 70.54 55.35

Table A5: Percentage of examples filtered by GPT-3.5/4. Con-

tent filtering rates remain consistent across temperatures

except for Spanish. Additionally, Chinese (zh) demonstrates

minimal content filtering.

Model 𝜏 en es zh hi

GPT-3.5 0.0 0.2% 0.2% 0.0% 0.3%
1.0 0.2% 0.5% 0.0% 0.3%

GPT-4 0.0 0.2% 0.2% 0.0% 0.3%
1.0 0.2% 0.2% 0.0% 0.3%

Table A6: Notations used in this paper.

Notation Description

𝑤𝑖 ,w𝑖 a token and its contextualized embedding
𝑞E, 𝑞NE A question in English / non-English languages
𝑎E, 𝑎NE An answer in English / non-English languages
𝑠𝑖 a response generated by LLM

𝐷 , |𝐷 | A dataset and the number of examples it contains.
|𝑠𝑖 | Number of words in the response 𝑠𝑖
𝑙 a language

revised 12 March 2009; accepted 5 June 2009
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(a) Guideline Page

(c) Case when the annotator agrees with the
reasoning 

(d) Case when the annotator disagrees with the
reasoning 

(b)  Annotation Example with Question,  LLM
Answer, Ground Truth Answer, and Reasoning

generated in Phase 2 prompting

Figure A1: Annotation Platform created for the human evaluation for Correctness experiment.
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Table A7: Human Evaluation Results for Correctness metric. *** denotes annotations performed with three annotators, **

denotes annotations denotes annotations performed with two annotators, and * denotes annotations denotes annotations

performed with one annotator.

Metric Type en
(batch-1)

en
(batch-2)

es
(batch-1)

es
(batch-2)

zh
(batch-1)

zh
(batch-2)

hi
(batch-1)

hi
(batch-2)

Correlation (Automated &
Majority Human Label) 96.08%*** 92.31%*** 94.12%*** 96.15%*** 70.59%** 84.62%** 84.31%* 84.62%*

Table A8: Automated Correctness evaluation across four languages: English (en), Spanish (es), Chinese (zh), and Hindi (hi) for

MedAlpaca-30b.

Information Comparison
(LLM Answer vs Ground Truth Answer)

HealthQA LiveQA MedicationQA

en es zh hi en es zh hi en es zh hi

More comprehensive and appropriate 193 15 4 13 58 7 5 15 131 20 15 12
Less comprehensive and appropriate 498 199 112 106 60 13 41 55 121 55 61 68
Neither contradictory nor similar 318 737 738 843 93 194 168 132 333 489 482 502
Contradictory 124 182 277 172 34 32 32 44 105 126 131 108
No Response 1 1 3 - 1 - - - - - 1 -

Table A9: Performance comparison of consistency experiments on GPT-3.5 across varying languages. We show the average

performances over different temperatures (𝜏) and their performance drop (in percentage) compared to English.

Med simsent BERTScore sim1-gram sim2-gram Length simHDP sim20
LDA sim100

LDA

en 0.9699/0.0% 0.7040/0.0% 0.5201/0.0% 0.3533/0.0% 109.0798/0.0% 0.9256/0.0% 0.9183/0.0% 0.8694/0.0%
es 0.9677/-0.2% 0.6905/-1.9% 0.5016/-3.5% 0.3328/-5.8% 100.9373/-7.5% 0.9204/-0.6% 0.9094/-1.0% 0.8562/-1.5%
zh 0.9602/-1.0% 0.6408/-9.0% 0.4315/-17.0% 0.2647/-25.1% 106.6152/-2.3% 0.8910/-3.7% 0.8747/-4.7% 0.8013/-7.8%
hi 0.9395/-3.1% 0.5797/-17.7% 0.3717/-28.5% 0.2009/-43.1% 78.3874/-28.1% 0.8589/-7.2% 0.7762/-15.5% 0.6490/-25.4%

Heal simsent BERTScore sim1-gram sim2-gram Length simHDP sim20
LDA sim100

LDA

en 0.9755/0.0% 0.7013/0.0% 0.5188/0.0% 0.3476/0.0% 131.3095/0.0% 0.9104/0.0% 0.9485/0.0% 0.9342/0.0%
es 0.9722/-0.3% 0.6858/-2.2% 0.4976/-4.1% 0.3253/-6.4% 119.3215/-9.1% 0.9089/-0.2% 0.9421/-0.7% 0.9269/-0.8%
zh 0.9671/-0.9% 0.6368/-9.2% 0.4187/-19.3% 0.2493/-28.3% 134.9392/2.8% 0.8817/-3.2% 0.9233/-2.7% 0.9032/-3.3%
hi 0.9428/-3.4% 0.5537/-21.0% 0.3412/-34.2% 0.1715/-50.7% 96.6498/-26.4% 0.8055/-11.5% 0.8378/-11.7% 0.7940/-15.0%

Live simsent BERTScore sim1-gram sim2-gram Length simHDP sim20
LDA sim100

LDA

en 0.9706/0.0% 0.6631/0.0% 0.4798/0.0% 0.3060/0.0% 146.8889/0.0% 0.8913/0.0% 0.9237/0.0% 0.8784/0.0%
es 0.9674/-0.3% 0.6461/-2.6% 0.4600/-4.1% 0.2831/-7.5% 136.8197/-6.9% 0.9111/2.2% 0.9229/-0.1% 0.8354/-4.9%
zh 0.9613/-1.0% 0.6015/-9.3% 0.3996/-16.7% 0.2229/-27.2% 144.7613/-1.4% 0.8565/-3.9% 0.8774/-5.0% 0.8000/-8.9%
hi 0.9415/-3.0% 0.5339/-19.5% 0.3329/-30.6% 0.1515/-50.5% 104.9724/-28.5% 0.8170/-8.3% 0.7672/-16.9% 0.5979/-31.9%

Table A10: Performance comparison of consistency experiments on MedAlpaca-30b across varying languages and the perfor-

mance drop compared to English.

Live simsent BERTScore sim1-gram sim2-gram Length simHDP sim20
LDA sim100

LDA

en 0.8738/0.0% 0.7649/0.0% 0.5427/0.0% 0.4967/0.0% 84.1697/0.0% 0.8210/0.0% 0.6636/0.0% 0.5521/0.0%
es 0.8517/-2.5% 0.7549/-1.3% 0.5585/2.9% 0.5136/3.4% 91.3254/8.5% 0.7659/-6.7% 0.6565/-1.1% 0.5808/5.2%
zh 0.8584/-1.8% 0.7507/-1.9% 0.5373/-1.0% 0.4955/-0.2% 94.0495/11.7% 0.8619/5.0% 0.6847/3.2% 0.5528/0.1%
hi 0.8469/-3.1% 0.7424/-2.9% 0.5368/-1.1% 0.4924/-0.9% 68.7502/-18.3% 0.7611/-7.3% 0.5989/-9.7% 0.5361/-2.9%

v
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Table A11: Average verifiability performances on GPT-3.5 across five temperatures and their standard deviation. English (en)

and Spanish (es) performances are consistently better than Chinese (zh) and Hindi (hi). The performance variations across

languages are minimal, with Hindi showing the most significant variations.

Pmacro Rmacro F1macro Accuracy AUC

en 0.9447 + 0.0012 0.8113 + 0.0039 0.8581 + 0.0033 0.9220 + 0.0015 0.8113 + 0.0039
es 0.9422 + 0.0012 0.8769 + 0.0018 0.9048 + 0.0015 0.9434 + 0.0008 0.8769 + 0.0018
zh 0.8590 + 0.0028 0.6739 + 0.0026 0.7143 + 0.0031 0.8604 + 0.0011 0.6739 + 0.0026
hi 0.8606 + 0.0079 0.6874 + 0.0039 0.7289 + 0.0049 0.8645 + 0.0023 0.6874 + 0.0039

en 0.8119 + 0.0028 0.9222 + 0.0042 0.8552 + 0.0012 0.9383 + 0.0010 0.9222 + 0.0042
es 0.8297 + 0.0040 0.8623 + 0.0067 0.8449 + 0.0052 0.9414 + 0.0017 0.8623 + 0.0067
zh 0.8396 + 0.0017 0.6802 + 0.0013 0.7289 + 0.0010 0.9246 + 0.0002 0.6802 + 0.0013
hi 0.7092 + 0.0224 0.6314 + 0.0334 0.6541 + 0.0145 0.9119 + 0.0192 0.6314 + 0.0334

en 0.9111 + 0.0020 0.6701 + 0.0072 0.7140 + 0.0087 0.8649 + 0.0028 0.6701 + 0.0072
es 0.9050 + 0.0039 0.6290 + 0.0053 0.6622 + 0.0072 0.8504 + 0.0020 0.6290 + 0.0053
zh 0.9076 + 0.0031 0.6035 + 0.0121 0.6261 + 0.0174 0.8410 + 0.0047 0.6035 + 0.0121
hi 0.8475 + 0.0076 0.6354 + 0.0065 0.6656 + 0.0092 0.8373 + 0.0061 0.6354 + 0.0065

Table A12: Unpaired t-test results on English (en), Spanish (es), Chinese (zh), and Hindi (hi) on the LiveQA dataset with 𝜏 = 0.0
and 1.0. 𝑡 and 𝑝 stands for the 𝑡-statistic and 𝑝-value, respectively. Asterisks (*) denotes the significance level. ‘*’ indicates p<0.05.

‘**’ indicates p<0.01. ‘***’ indicates p<0.001.

𝜏 = 0.0 simBERT BERTScore sim1gram sim2grams sim20
LDA simHDP

Language 𝑡 𝑝 𝑡 𝑝 𝑡 𝑝 𝑡 𝑝 𝑡 𝑝 𝑡 𝑝

en es 0.83 4.07e-01 0.79 4.30e-01 0.83 4.04e-01 1.04 2.97e-01 0.63 5.27e-01 2.66 8.13e-03**
en zh 7.62 1.47e-13*** 8.54 2.07e-16*** 9.27 7.98e-19*** 9.57 7.43e-20*** 4.47 1.00e-05*** 5.90 7.13e-09***
en hi 16.19 8.86e-47*** 18.75 2.22e-58*** 21.31 3.34e-70*** 22.37 4.67e-75*** 9.47 1.63e-19*** 9.07 3.85e-18***
es zh 7.10 4.92e-12*** 7.81 3.98e-14*** 8.53 2.24e-16*** 8.71 5.88e-17*** 3.75 1.98e-04*** 3.52 4.71e-04***
es hi 15.87 2.41e-45*** 18.03 4.33e-55*** 20.62 5.64e-67*** 21.67 7.93e-72*** 8.79 3.13e-17*** 6.77 4.13e-11***
zh hi 9.96 2.93e-21*** 9.70 2.49e-20*** 11.00 4.29e-25*** 11.42 1.03e-26*** 5.33 1.55e-07*** 3.19 1.51e-03**

𝜏 = 1.0 simBERT BERTScore sim1gram sim2grams sim20
LDA simHDP

Language 𝑡 𝑝 𝑡 𝑝 𝑡 𝑝 𝑡 𝑝 𝑡 𝑝 𝑡 𝑝

en es 4.58 6.03e-06*** 5.40 1.04e-07*** 5.86 8.86e-09*** 5.93 5.93e-09*** 1.33 1.84e-01 0.03 9.76e-01
en zh 7.37 7.40e-13*** 9.96 2.37e-21*** 14.22 1.78e-38*** 12.81 1.75e-32*** 7.21 2.28e-12*** 3.77 1.85e-04***
en hi 18.02 1.13e-55*** 28.94 8.01e-107*** 31.23 4.16e-117*** 28.71 8.70e-106*** 18.87 1.24e-59*** 6.96 1.11e-11***
es zh 3.85 1.36e-04*** 5.42 9.54e-08*** 9.53 8.49e-20*** 8.27 1.38e-15*** 6.20 1.24e-09*** 3.92 1.00e-04***
es hi 15.54 2.58e-44*** 25.30 5.03e-90*** 28.54 5.52e-105*** 28.49 8.68e-105*** 18.10 4.75e-56*** 7.33 1.03e-12***
zh hi 10.93 6.06e-25*** 17.06 3.07e-51*** 16.72 1.12e-49*** 19.27 1.58e-61*** 11.54 2.65e-27*** 2.82 4.95e-03**

Table A13: The F -statistics and the 𝑝-values of ANOVA on the LiveQA dataset. For all metrics, ANOVA shows statistically

significant differences between the mean performances on each metric.

𝜏 Metric simsent BERTScore sim1-gram sim2-gram length simLDA20 simHDP

0.0 F 153.47 157.28 190.94 201.70 35.04 47.08 33.13
𝑝 2.52e-80 5.93e-82 8.29e-96 4.85e-100 2.01e-21 2.87e-28 2.56e-20

0.25 F 166.37 160.62 199.13 195.95 26.95 82.49 15.83
𝑝 7.20e-86 1.92e-83 3.91e-99 6.99e-98 1.06e-16 3.57e-47 4.87e-10

0.5 F 169.11 199.40 252.44 253.87 66.61 109.25 72.64
𝑝 7.35e-87 4.79e-99 1.04e-118 3.27e-119 6.90e-39 2.77e-60 4.68e-42

0.75 F 36.62 41.68 64.89 76.60 12.06 31.86 7.67
𝑝 2.76e-17 5.11e-19 7.59e-26 9.26e-29 5.00e-07 1.48e-15 9.14e-05

1.0 F 149.11 304.02 368.81 329.65 20.21 178.26 22.48
𝑝 3.75e-79 3.08e-138 1.12e-158 1.44e-146 1.06e-12 1.22e-91 4.55e-14
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Table A14: Results of verifiability experiments on MedAlpaca-30b.

macro_precision macro_recall macro_f1 accuracy auc

en 0.4538 ± 0.0793 0.4998 ± 0.0097 0.4717 ± 0.0445 0.7638 ± 0.0322 0.4998 ± 0.0097
es 0.4983 ± 0.0423 0.4999 ± 0.0192 0.4844 ± 0.0293 0.7524 ± 0.0270 0.4999 ± 0.0192
zh 0.5080 ± 0.0162 0.5033 ± 0.0116 0.4677 ± 0.0535 0.5964 ± 0.2033 0.5033 ± 0.0116
hi 0.4878 ± 0.1937 0.4953 ± 0.0271 0.4429 ± 0.0550 0.7381 ± 0.0851 0.4953 ± 0.0271

en es zh hi
0.75

0.80

0.85

0.90

0.95

1.00
ø = 0.0

en es zh hi

ø = 0.25

en es zh hi

ø = 0.5

en es zh hi

ø = 0.75

en es zh hi

ø = 1.0

si
m

se
n
t

en es zh hi
0.3

0.4

0.5

0.6

0.7

0.8
ø = 0.0

en es zh hi

ø = 0.25

en es zh hi

ø = 0.5

en es zh hi

ø = 0.75

en es zh hi

ø = 1.0

si
m

H
D

P

en es zh hi
0.0

0.2

0.4

0.6

0.8

1.0
ø = 0.0

en es zh hi

ø = 0.25

en es zh hi

ø = 0.5

en es zh hi

ø = 0.75

en es zh hi

ø = 1.0

si
m

2°
gr

am

en es zh hi
0.4

0.5

0.6

0.7

0.8
ø = 0.0

en es zh hi

ø = 0.25

en es zh hi

ø = 0.5

en es zh hi

ø = 0.75

en es zh hi

ø = 1.0

B
E

R
T

S
co

re

Figure A2: Comparison of simsent, BERTScore, simHDP, and sim2-gram on the LiveQA dataset across 5 temperatures (𝜏) and 4

languages.
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Figure A3: Results of HealthQA, LiveQA, and MedicationQA on metrics of the verifiability experiment, including macro

precision, macro recall, macro F1-score, accuracy, and area under the curve (AUC). Each column represents a distinct metric.

The x- and y-axis of each heatmap represent varying languages and temperatures 𝜏 , respectively.
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