
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PILOTRAG: TEACHING LLMS MULTI-TURN HYBRID
RAG VIA REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) enhances Large Language Models
(LLMs) by incorporating external knowledge, typically from unstructured texts or
structured graphs. While recent progress has extended text-based RAG to multi-
turn reasoning through Reinforcement Learning (RL), existing graph-based and
hybrid RAG methods generally rely on fixed or handcrafted multi-turn retrieval
procedures rather than an RL-trained policy, and thus do not support adaptive,
decision-based multi-turn reasoning. This limitation restricts their ability to incre-
mentally integrate supplementary evidence as reasoning unfolds, thereby reducing
their effectiveness on complex multi-hop questions. To address this limitation,
we introduce PILOTRAG, an RL-based framework that enables LLMs to perform
multi-turn and adaptive graph-text hybrid RAG by dynamically interleaving rea-
soning, hybrid retrieval, and answer formulation. PILOTRAG jointly optimizes
the entire generation process via RL, allowing the model to learn when to rea-
son, what to retrieve from either unstructured texts or structured graphs, and when
to produce final answers, all within a unified generation policy. To guide this
learning process, we design a two-stage training framework with a reward func-
tion that accounts for both task outcome and retrieval efficiency. By rewarding
answer accuracy and efficient retrieval while penalizing redundant retrieval op-
erations, the model learns to retrieve selectively and reason effectively. Experi-
ments on both simple and multi-hop question answering benchmarks demonstrate
that PILOTRAG significantly outperforms existing RAG baselines, highlighting the
benefits of end-to-end RL for enabling adaptive and iterative retrieval in complex
reasoning scenarios.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in reasoning, decision-
making, and long-form generation (Zhao et al., 2023; Touvron et al., 2023; Team et al., 2024),
especially when further trained with Reinforcement Learning (RL) (Achiam et al., 2023; Guo et al.,
2025; Yang et al., 2025a). These abilities have enabled LLMs to follow complex instructions, emu-
late chain-of-thought reasoning, and solve complicated multi-hop questions (Zhou et al., 2023; Wei
et al., 2022). However, the knowledge of LLMs remains static, bounded by the data available at
pretraining time. As a result, LLMs often produce inaccurate or outdated outputs when faced with
knowledge-intensive queries that require access to external or up-to-date information (Augenstein
et al., 2024; Huang et al., 2025).

To overcome this limitation, Retrieval-Augmented Generation (RAG) has emerged as a core
paradigm for enhancing LLMs with access to external knowledge sources (Lewis et al., 2020; Gao
et al., 2023). Early RAG systems typically perform a single round of retrieval before generation (Guu
et al., 2020; Wang et al., 2023). Recent work has shown the benefits of multi-turn retrieval, where
the model interleaves retrieval and reasoning over multiple steps (Yao et al., 2023; Trivedi et al.,
2023; Li et al., 2025).

However, these prompt-based approaches often depend on large closed-source models with strong
intrinsic reasoning and planning skills. Smaller open-source models struggle to determine when to
retrieve, how to formulate retrieval queries, and how to analyze retrieved evidence. This gap has
motivated a new line of research (Jin et al., 2025; Song et al., 2025) that employs RL to explicitly
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train models to make retrieval and reasoning decisions. By optimizing a learned policy over inter-
leaved thinking and retrieval actions, these RL-based methods aim to equip models with adaptive,
context-sensitive retrieval strategies that surpass static instructions.

In parallel, graph-based RAG systems (Edge et al., 2024; Jimenez Gutierrez et al., 2024; Gutiérrez
et al., 2025) utilize structured knowledge graphs to integrate and reason over information scattered
across multiple passages, thereby improving coverage of factual entities and relations. While graphs
enable more accurate entity disambiguation and multi-hop path reasoning than text-only retrieval,
retrieving and processing graph evidence is often more computationally expensive, especially in
large-scale or dense graphs. Moreover, existing graph-based RAG systems typically operate in a
one-shot retrieval setting, fetching graph evidence once before generation, and lack the ability to
adaptively choose between graph and text retrieval based on the evolving information needs of the
query. Consequently, the current architecture of graph-based RAG systems presents challenges in
managing complex reasoning that necessitates multi-turn interactions, and can also lead to unneces-
sary retrieval overhead when graph access is not essential.

We address these limitations with PILOTRAG, an RL-based framework that enables LLMs to per-
form multi-turn and hybrid retrieval over both unstructured texts and structured knowledge graphs.
Instead of passively executing preset instructions, PILOTRAG takes the role of a pilot that actively
orchestrates retrieval decisions, selecting when and where to access external knowledge. To over-
come the challenges of managing complex reasoning and avoiding unnecessary retrieval overhead,
PILOTRAG learns to interleave reasoning, retrieval, and answer formulation through a unified gen-
eration policy, adapting its retrieval behavior to the evolving task context. Instead of relying on
static workflow, the model adaptively determines its retrieval behavior based on the evolving con-
text, effectively piloting its interaction with external knowledge in pursuit of accurate and efficient
reasoning.

To enable PILOTRAG to generate accurate answers while efficiently retrieving relevant knowledge,
we adopt a two-stage Group Relative Policy Optimization (GRPO) (Shao et al., 2024) training
framework. In the first stage, the model is rewarded solely for answer correctness, allowing it to
acquire the core capability of generating accurate responses and establishing a solid starting point
for further optimization. In the second stage, we introduce an additional efficiency reward that dis-
courages unnecessary retrieval, guiding the model to strike a balance between accuracy and compu-
tational cost. With these designs, PILOTRAG can achieve both high accuracy and retrieval efficiency
in complex multi-hop reasoning tasks.

Our main contributions lie in three aspects:

• We propose PILOTRAG, an RL-based framework for multi-turn and hybrid RAG. The
model learns a unified generation policy that interleaves reasoning, adaptive graph-text
hybrid retrieval, and answer formulation through a two-stage training framework.

• We design a reward function that jointly optimizes answer accuracy and retrieval efficiency,
encouraging the model to retrieve selectively and to reason effectively over retrieved evi-
dence across multiple steps.

• Extensive experiments on five Question Answering (QA) benchmarks demonstrate that
PILOTRAG outperforms prior multi-turn and graph-based RAG systems significantly.

2 RELATED WORK

2.1 RAG

RAG has become a key paradigm for enhancing LLMs with external knowledge, thus mitigating
hallucination and improving factual grounding (Guu et al., 2020; Gao et al., 2023). Traditional RAG
systems retrieve relevant text chunks from an external knowledge base according to the query, and
then feed the query into the LLM together with those text chunks to generate a final answer (Lewis
et al., 2020; Yu et al., 2022). Beyond such one-shot retrieve-then-generate pipelines, recent research
has explored multi-turn retrieval to provide more fine-grained and incremental supplementation of
external knowledge, interleaving reasoning with evidence acquisition. For instance, IRCoT (Trivedi
et al., 2023) shows that alternating chain-of-thought reasoning with retrieval improves the perfor-
mance of LLM on knowledge-intensive multi-hop QA. Search-o1 (Li et al., 2025) further develops
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this line by introducing a reason-in-documents module to alleviate the issue of redundant informa-
tion in retrieved documents.

As an alternative route for deep knowledge integration, graph-based RAG methods incorporate struc-
tured knowledge graphs to aggregate evidence across passages and to make relational connections
explicit (Peng et al., 2024; Zhao et al., 2023). By exposing entities and relations directly, these
methods are particularly effective for multi-hop questions that require linking facts across disparate
documents (Edge et al., 2024; Jimenez Gutierrez et al., 2024; Gutiérrez et al., 2025). However,
graph retrieval is often more computationally expensive than text retrieval, and existing methods
commonly perform one-shot retrieval. Although recent work such as HybGRAG (Lee et al., 2025b)
demonstrates that multi-turn hybrid text-graph retrieval is feasible through predefined multi-step
procedures, these methods rely on fixed heuristics rather than a learnable policy.

These limitations call for a unified and trainable hybrid framework in which the system can dynam-
ically decide between text and graph retrieval as reasoning unfolds.

2.2 RL FOR LLM REASONING

RL has played a central role in improving the reasoning capabilities of LLMs. RL from Human
Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022) has established a standard paradigm,
where a reward model trained from human preferences directs the optimization of policies (Lambert
et al., 2025), allowing models to adhere to instructions and reason with greater accuracy. Proximal
Policy Optimization (PPO) (Schulman et al., 2017) remains the predominant algorithm for achieving
these goals. More recently, GRPO (Shao et al., 2024) has been proposed as a more efficient variant,
which leverages group-wise relative rewards to stabilize training and reduce variance. Building
on these advances, researchers have begun to apply RL directly to the training of multi-turn RAG
systems (Jin et al., 2025; Song et al., 2025). For instance, Search-R1 (Jin et al., 2025) trains LLMs
with RL to decide when and what to search in the middle of reasoning, using only outcome rewards.
While this reward design effectively improves correctness, it does not explicitly address retrieval
cost or efficiency.

These developments highlight the potential of RL to move beyond static templates, endowing LLMs
with adaptive and context-aware retrieval strategies, while also motivating methods that optimize
both accuracy and efficiency.

3 PILOTRAG

In this section, we present PILOTRAG, an RL-based framework for multi-turn hybrid RAG. We first
describe the multi-turn workflow and the mechanism for hybrid knowledge access (Section 3.1).
Subsequently, we introduce our two-stage RL framework (Section 3.2), encompassing the formula-
tion of outcome and efficiency rewards, alongside the GRPO-based training algorithm.

3.1 OVERALL FRAMEWORK

We begin by outlining the overall architecture of PILOTRAG. This framework integrates LLMs with
external retrievers in a multi-turn reasoning loop, where special tokens from the reasoning process
can trigger retrieval actions from text and graph knowledge sources. We describe the multi-turn
reasoning and retrieval workflow in Section 3.1.1 and the hybrid knowledge access mechanisms of
the external retriever in Section 3.1.2.

3.1.1 MULTI-TURN REASONING AND RETRIEVAL WORKFLOW

We formulate multi-turn retrieval-augmented generation as a sequential decision-making process.
Given an input query q, the policy model πθ interacts with external knowledge sources over a
sequence of steps b = {1, . . . , B}, where B is the maximum step budget. At each step, the
policy model conditions on the query and the current context to generate an action token. The
action space includes continuing internal reasoning, triggering a retrieval operation (<search>
... </search>), or producing a final answer (<answer> ... </answer>). The retrieval op-
eration further specifies a retrieval mode m ∈ {Passage,Graph,Hybrid} by special tokens
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y ∈ {[passage],[graph]} and a sub-query q′, which are used to obtain documents d from the
retrieverR(q′,m). The retrieved information is then appended to the context and becomes available
for subsequent reasoning, as summarized in Algorithm 1.

Algorithm 1 PILOTRAG Framework

Require: Input query q, policy model πθ, retrieverR, maximum step budget B.
Ensure: Final response y.

1: Initialize response y ← ∅, step count b← 0
2: while b < B do
3: Initialize current rollout yb ← ∅
4: while True do
5: Sample next token y′ ∼ πθ(· | q, y + yb)
6: yb ← yb + y′

7: if y′ ∈ {</search>, </answer>, <eos>} then break
8: y ← y + yb ▷ Combine rollout with history
9: if <search> ... </search> detected in yb then

10: if [passage] in yb then m← Passage ▷ Dense Passage Retrieval
11: if [graph] in yb then m← Graph
12: if [passage] and [graph] in yb then m← Hybrid
13: Extract query q′ ← ParseQuery(yb)
14: d← R(q′,m) ▷ Retrieve documents according to the retrieval mode m
15: Insert into rollout y ← y + <information>d</information>
16: else if <answer> ... </answer> detected in yb then
17: return final response y

18: b← b+ 1
19: return final response y

This workflow enables the model to progressively refine its knowledge state by deciding what to
retrieve and when to retrieve it, conditioned on the evolving reasoning trajectory. Moreover, the ex-
plicit action space over different retrieval modes allows the model to adaptively balance lightweight
passage retrieval with more expensive but structurally intricate graph retrieval, depending on the
requirements of the query.

3.1.2 HYBRID KNOWLEDGE ACCESS

In PILOTRAG, the retrieverR is responsible for providing external knowledge to support reasoning,
with three different retrieval modes.

Passage Retrieval. The passage retriever is implemented with Dense Passage Retrieval
(DPR) (Karpukhin et al., 2020), which encodes both the sub-query and all passages in the cor-
pus into a shared embedding space. Retrieval is performed by computing similarity scores between
the query vector and passage vectors, and the top-k passages are selected as evidence.

Graph-based Retrieval. The graph retriever is implemented with HippoRAG 2 (Gutiérrez et al.,
2025), which first constructs a knowledge graph over passages. Given a sub-query, the retriever ap-
plies personalized PageRank over the graph to propagate relevance from query-linked nodes, thereby
identifying passages that are related to the query through multi-hop connections.

Hybrid Retrieval. The hybrid retriever combines passage and graph retrieval using Reciprocal
Rank Fusion (RRF) (Cormack et al., 2009). Specifically, given two ranked lists, each document
is assigned a fused score that decreases with its reciprocal rank in each list, which ensures that
documents highly ranked by either retrieval mode are promoted in the merged list. Formally, the
fused score is defined as

RRF(d) =
∑

m∈{passage,graph}

1

k + rankm(d)
, (1)

where rankm(d) denotes the rank position of document d in retrieval mode m, and k is a smoothing
hyperparameter. Documents are then re-ranked according to RRF(d) to form the final hybrid list.
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Figure 1: Previous RL-based multi-turn RAG vs. PILOTRAG. Prior methods focus on interleaving
reasoning with passage retrieval and reward on answer correctness. PILOTRAG extends retrieval to
passage, graph, and hybrid modes, and is trained with a two-stage RL framework that optimizes
both accuracy and efficiency.

3.2 TWO-STAGE REINFORCEMENT LEARNING

To optimize the unified generation policy, PILOTRAG is trained with a two-stage RL framework
based on GRPO. The motivation is to first ensure that the model acquires the basic ability to pro-
duce correct answers, and then to further refine its retrieval strategy to improve efficiency without
sacrificing accuracy, as shown in Figure 1. In this section, we introduce the reward design that
guides the learning objectives (Section 3.2.1) and the training algorithm that realizes the optimiza-
tion procedure (Section 3.2.2).

3.2.1 REWARD DESIGN

RL optimization is fundamentally guided by the reward signal. To support the two-stage training,
we devise different rewards for each stage, i.e., outcome-oriented reward and accuracy–efficiency
reward.

Stage 1: Outcome-Oriented Reward. In the first stage, the reward is defined purely by the cor-
rectness of the model output. Specifically, the reward is set to 1 if the generated answer y exactly
matches the ground-truth label y∗, and 0 otherwise:

Rϕ(x, y) = EM(y, y∗). (2)

Stage 2: Accuracy–Efficiency Reward. In the second stage, we extend the reward function to
jointly optimize for correctness and retrieval efficiency. The reward is defined as

Rϕ(x, y) =

{
Routcome, if Routcome = 0

Routcome +Refficiency, if Routcome = 1
, (3)

where Routcome ∈ {0, 1} denotes exact match accuracy. The efficiency reward Refficiency is computed
from the total retrieval time across all reasoning steps. We apply a centered scaling by subtracting
the average retrieval time tavg, such that

Refficiency =
tavg − t

T
, (4)

where t is the total retrieval time for the current trajectory, tavg is the average retrieval time of the
current batch, and T is a normalization constant ensuring the value lies in [0, 0.5]. This design
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provides positive reward for trajectories that achieve the correct answer at a pace exceeding the
average, while imposing penalties on those that do not, thereby encouraging the model to retrieve
more selectively without sacrificing answer quality.

3.2.2 TRAINING ALGORITHM

We adopt GRPO (Shao et al., 2024; Guo et al., 2025) to train the unified generation policy πθ over
interleaved reasoning and retrieval actions. GRPO stabilizes learning by comparing trajectories
within a group, thereby reducing variance in sparse-reward settings.

The policy model πθ is optimized by maximizing the following objective:

JGRPO(θ) =Ex∼Q,{yi}G
i=1∼πθold (Y |q)

1

G

G∑
i=1

[
min

(
ri(θ)Ai, clip(ri(θ), 1− ϵ, 1 + ϵ)Ai

)
− β DKL[πθold∥πθ]

]
,

(5)

where ϵ and β are hyperparameters, πθold denotes the old policy, ri(θ) =
πθ(yi|x)
πθold (yi|x) , Ai denotes the

group-relative advantage for the i-th trajectory, and the KL penalty DKL[πθold∥πθ] regularizes the
new policy against deviating excessively from the old policy. Further theoretical analysis on the
effectiveness of the efficiency reward and GRPO is provided in Appendix A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Evaluation Datasets. Following Jimenez Gutierrez et al. (2024) and Gutiérrez et al. (2025),
we evaluate PILOTRAG on five widely used benchmarks for simple and multi-hop QA, namely
PopQA (Mallen et al., 2023), Natural Questions (NQ) (Kwiatkowski et al., 2019; Wang et al., 2024),
HotpotQA (Yang et al., 2018), 2WikiMultihopQA (2Wiki) (Ho et al., 2020), and MuSiQue (Trivedi
et al., 2022). PopQA is an open-domain QA dataset designed to evaluate factual recall over long-
tail knowledge, and NQ contains naturally occurring queries paired with answers from Wikipedia.
HotpotQA and 2WikiMultihopQA focus on multi-hop reasoning across Wikipedia passages, while
MuSiQue requires reasoning over compositional sub-questions. The statistics of these datasets are
shown in Table 1.

Table 1: Dataset statistics

PopQA NQ HotpotQA 2Wiki MuSiQue
Number of queries 1,000 1,000 1,000 1,000 1,000
Number of passages 8,678 9,633 9,811 6,119 11,656

Baselines. We compare PILOTRAG against several types of representative approaches: (1) Vanilla
RAG (Lewis et al., 2020), which performs single-shot dense passage retrieval and generation. (2)
Multi-turn RAG methods, including Search-o1 (Li et al., 2025) and Search-R1 (Jin et al., 2025),
wherein the latter utilizes RL to enhance multi-turn passage RAG. (3) graph-based RAG methods,
including GraphRAG (Edge et al., 2024), LightRAG (Guo et al., 2024), RAPTOR (Sarthi et al.,
2024), HippoRAG (Jimenez Gutierrez et al., 2024), and HippoRAG 2 (Gutiérrez et al., 2025),
which leverage structured knowledge graphs for retrieval.

Implementation Details. We conduct training using Qwen2.5-3B-Instruct (Yang et al., 2025b) as
the backbone model. The training data consists of 10k sampled queries from the HotpotQA train-
ing set (Yang et al., 2018), while the retrieval corpus is built from their associated documents. For
retrieval, we adopt Contriever (Izacard et al., 2022) as the dense retriever. To ensure comparabil-
ity across methods, the retrieval budget B is fixed at 4 turns, and the number of retrieved passages
per call is set to k = 3. PILOTRAG is optimized using the two-stage RL procedure described
in Section 3.2. Stage 1 is trained for 0.5 epoch with EM-based rewards only. Stage 2 continues
for an additional 0.5 epoch. For baseline evaluations, text-based RAG systems are assessed under
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Method
Simple QA Multi-hop QA Average

PopQA NQ HotpotQA 2Wiki MuSiQue

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

GPT-4o-mini

Direct Inference 16.1 22.7 35.2 52.7 28.6 41.0 30.2 36.3 11.2 22.0 24.3 34.9
Graph-based RAG
GraphRAG 30.7 51.3 38.0 55.5 51.4 67.6 45.7 61.0 27.0 42.0 38.6 55.5
LightRAG 1.9 14.8 2.8 15.4 9.9 20.2 2.5 12.1 2.0 9.3 3.8 14.4
RAPTOR 41.9 55.1 37.8 54.5 50.6 64.7 39.7 48.4 27.7 39.2 39.5 52.4
HippoRAG 42.5 56.2 37.2 52.5 46.3 60.0 59.4 67.3 24.0 35.9 41.9 54.4
HippoRAG v2 41.7 55.7 43.4 60.0 56.3 71.1 60.5 69.7 35.0 49.3 47.4 61.2

Qwen2.5-3B-Instruct

Vanilla RAG 30.3 41.6 18.1 31.8 29.5 41.8 19.7 27.4 10.3 17.5 21.6 32.0
Graph-based RAG
HippoRAG v2 29.1 40.1 20.3 33.5 31.2 45.0 21.5 33.8 12.2 20.2 22.9 34.5
Multi-turn RAG
Search-o1 17.1 23.8 19.9 29.1 18.7 26.3 16.9 20.9 3.9 10.5 15.3 22.1
Search-R1 45.8 53.3 46.2∗ 54.8∗ 45.2∗ 56.9∗ 42.4 50.8 22.2 30.9 40.4 49.3

PILOTRAG (ours) 49.4 56.8 44.1 53.4 53.2∗ 65.1∗ 57.5 64.1 30.7 39.3 47.0 55.7

Table 2: Main results on simple and multi-hop QA benchmarks. The best results within each back-
bone group are indicated in bold, while the underlined values represent the second-best results. ∗

represents in-domain datasets.

the same Qwen2.5-3B-Instruct backbone, while graph-based RAG systems utilize the GPT-4o-mini
backbone. In particular, HippoRAG v2 (Gutiérrez et al., 2025), the strongest graph-based baseline,
is evaluated employing both Qwen2.5-3B-Instruct and GPT-4o-mini backbones. For the strongest
text-based baseline, Search-R1 (Jin et al., 2025), we directly use their released GRPO-trained model
on Qwen2.5-3B-Instruct, which is trained on 170k samples from NQ and HotpotQA, thereby pos-
sessing a considerably larger training set in comparison to our 10k-sample dataset. We report Exact
Match (EM) and F1 scores as evaluation metrics. Additional implementation details, including the
training prompt template, hyperparameters, and training configuration, are provided in Appendix B.

4.2 MAIN RESULT

We conduct a comprehensive comparison of PILOTRAG against all the baseline methods, as shown
in Table 6. From the results, we make the following key observations:

(1) PILOTRAG substantially improves the performance of a small backbone, especially on
multi-hop QA. Graph-based methods such as HippoRAG v2 perform well with the strong GPT-
4o-mini backbone but drop sharply with the smaller Qwen2.5-3B-Instruct, indicating that small
LLMs struggle to handle complex reasoning chains. In contrast, PILOTRAG achieves much better
performance on this small backbone by jointly learning reasoning, retrieval, and answer generation
within a unified policy model. This shows that explicitly training the full decision process enables
small LLMs to effectively execute multi-turn reasoning and retrieval, which traditional graph-based
methods fail to elicit.

(2) PILOTRAG approaches GPT-4o-mini-based graph-based RAG systems despite using a
much smaller model. Despite the large performance gap usually observed between GPT-4o-mini
and Qwen2.5-3B-Instruct, PILOTRAG narrows this gap substantially and even surpasses several
graph-based systems built on GPT-4o-mini. This suggests that improving the policy for coordinating
reasoning and retrieval can be as impactful as scaling up the backbone itself. In particular, by train-
ing a unified policy model rather than only improving retrieval quality or graph coverage, PILOTRAG
allows a small open-source model to approximate the reasoning behavior of much stronger propri-
etary LLMs.
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Method
Simple QA Multi-hop QA Average

PopQA NQ HotpotQA 2Wiki MuSiQue

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

PILOTRAG 49.4 56.8 44.1 53.4 53.2 65.1 57.5 64.1 30.7 39.3 47.0 55.7
w/o efficiency reward 41.5 54.1 41.1 51.7 53.7 66.2 56.9 65.0 30.2 38.9 44.7 55.2

w/o training 26.2 41.3 18.6 30.5 35.4 46.9 24.4 37.9 15.4 24.4 24.0 36.2

Table 3: Ablation on RL training. “w/o training” denotes the base model without any RL training,
and “w/o efficiency reward” denotes training only with EM-based outcome rewards.

(a) Retrieval time comparison across datasets. (b) Efficiency vs. Accuracy.

Figure 2: Performance comparison of PILOTRAG and its variant without efficiency reward. (a)
Comparing total retrieval time across five datasets. (b) The average retrieval time vs. average EM
and F1.

(3) PILOTRAG outperforms the strongest RL-trained multi-turn baseline with much smaller
training cost. Search-R1, the strongest prior RL-based multi-turn system, jointly trains reason-
ing, retrieval query generation, and answer generation on 170k questions from NQ and HotpotQA.
In contrast, PILOTRAG is trained to additionally exploit graph-based retrieval and to dynamically
select among passage, graph, and hybrid retrieval modes based on the task context. These capabili-
ties enable it to construct more comprehensive evidence and adapt its retrieval strategy to different
question types. Despite being trained on a mere 10k HotpotQA instances, PILOTRAG outperforms
Search-R1 across all datasets, with the exception of NQ, their in-domain dataset, demonstrating
that structured retrieval and retrieval mode selection can yield more effective and sample-efficient
multi-turn RAG policies than scaling training data alone.

4.3 DETAILED ANALYSIS

In this section, we analyze the learning dynamics of PILOTRAG, highlighting how it simultaneously
preserves effectiveness, improves retrieval efficiency, and handles more complex reasoning chains.

4.3.1 PILOTRAG LEARNS TO AVOID SACRIFICING EFFECTIVENESS

We first examine whether incorporating efficiency-aware rewards compromises the effectiveness of
PILOTRAG. Table 3 compares the full model against two ablated variants: (1) a model trained only
with outcome rewards from Stage 1, and (2) the untrained backbone. To ensure a fair compari-
son, the Stage 1-only variant is trained for one full epoch with outcome rewards, while PILOTRAG
adopts a two-stage schedule with 0.5 epoch on outcome rewards followed by 0.5 epoch on accuracy–
efficiency rewards, resulting in the same total number of training steps.

The results show that PILOTRAG maintains comparable or even higher accuracy than its Stage 1
counterpart, while both substantially outperform the untrained model. This indicates that introduc-
ing the efficiency-aware objective does not trade off answer correctness for reduced retrieval cost.
Instead, the model continues to improve or preserve task performance as it learns to optimize re-
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(a) # of Actions. (b) Response length.

Figure 3: Training dynamics of PILOTRAG, showing the evolution of key performance indicators
throughout training. (a) Number of actions vs. Reward. (b) Response length vs. Reward.

trieval behaviors, demonstrating that efficiency can be enhanced without sacrificing effectiveness. A
further analysis of the retrieval modes and effectiveness can be found at Appendix C.

4.3.2 PILOTRAG LEARNS TO RETRIEVE EFFICIENTLY

We evaluate whether PILOTRAG learns to retrieve evidence more efficiently by comparing it against
a variant trained with outcome reward only. Figure 2a shows that PILOTRAG consistently reduces
total retrieval time across all datasets, with the largest savings observed on NQ and HotpotQA.
This demonstrates that incorporating efficiency rewards encourages the policy to avoid unnecessary
retrieval steps while still collecting sufficient evidence. Figure 2b further shows the trade-off be-
tween retrieval time and task accuracy. Arrows indicate the movement from the variant without
efficiency reward to PILOTRAG, highlighting that efficiency gains do not come at the cost of an-
swer quality. Mathematically, this phenomenon is captured by the normalized advantage function
Ai (Equation (9)), which balances outcome and efficiency rewards. A comprehensive theoretical
analysis is available in Appendix A.4.

These results confirm that PILOTRAG can effectively optimize retrieval efficiency while maintaining
high EM and F1 scores, validating the effectiveness of the two-stage RL training with batch-level
efficiency rewards and GRPO.

4.3.3 PILOTRAG LEARNS TO HANDLE COMPLEX REASONING CHAINS

To better understand how PILOTRAG evolves during training, we track the dynamics of several
behavioral and performance indicators, as shown in Figure 3. At the early stages of training, the
model exhibits limited reasoning ability, often producing short responses with only a few actions
and achieving low rewards. As training progresses, both the average number of actions and the
average response length gradually increase alongside the reward signal. This trend suggests that
the model is learning to construct more elaborate reasoning trajectories and to leverage multi-turn
interactions more effectively, which in turn leads to higher task performance. For a qualitative view
of how this behavioral shift manifests in practice, we present a set of case studies comparing model
outputs before and after training in Appendix E.

5 CONCLUSIONS

In this paper, we presented PILOTRAG, an RL framework for multi-turn hybrid RAG. Unlike prior
multi-turn RAG systems that rely on static prompting or single-mode retrieval, our approach learns
a unified policy that interleaves reasoning, retrieval mode selection, retrieval query generation, and
answer generation. By explicitly modeling retrieval actions and dynamically selecting between pas-
sage, graph-based, and hybrid retrieval, PILOTRAG enables fine-grained control over knowledge
access in complex reasoning tasks. Our two-stage training framework further ensures that the model
first acquires robust answer correctness and then improves retrieval efficiency without sacrificing
accuracy. Experiments conducted on five knowledge-intensive QA benchmarks demonstrate that
PILOTRAG significantly outperforms existing graph-based and multi-turn RAG systems, highlight-
ing that efficiency gains can be achieved without compromising answer quality.
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ETHICS STATEMENT

This work aims to advance the development of multi-turn hybrid RAG through RL. Our primary
objective is to enhance factual accuracy and retrieval efficiency in complex reasoning tasks, with
datasets utilized for both training and evaluation purposes that are publicly available.

REPRODUCIBILITY STATEMENT

In the appendix, we provide detailed descriptions of the model architecture, training hyperpa-
rameters, dataset preprocessing, and evaluation protocols. To facilitate replication, we release
all code, configuration files, and training scripts in an anonymized GitHub repository: https:
//anonymous.4open.science/r/PilotRAG. All experiments were conducted with pub-
licly available datasets. In addition, we will release the trained models upon acceptance of this paper,
enabling researchers to reproduce our results and build upon our framework.
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A THEORETICAL ANALYSIS OF EFFICIENCY REWARD

In this section, we provide a detailed theoretical analysis of why the efficiency reward designed in
PILOTRAG improves selective retrieval in GRPO-based training.

A.1 BATCH-LEVEL EFFICIENCY REWARD

Let τi denote the i-th trajectory in a group of G trajectories sampled from a batch of size B. The
total reward for trajectory τi is

Rϕ(τi) = Routcome(τi) +Refficiency(τi), (6)
where Routcome(τi) ∈ {0, 1} indicates the correctness of the answer.

The efficiency reward is centered on the batch-level average retrieval time rather than the group-level
average:

Refficiency(τi) =
tavg − ti

T
, tavg =

1

B

∑
τ∈batch

tτ , (7)

where ti is the total retrieval time of trajectory τi, and T is a normalization constant.

There are three main reasons for choosing batch-level efficiency reward together with GRPO-based
training, instead of using group-level efficiency:

• Variance reduction and stability. Batch-level averaging reduces the impact of noisy fluc-
tuations in retrieval time (e.g., hardware latency or network delays).

• Mitigating anomalies across queries. Although batch-level normalization may produce
unusually high or low raw efficiency rewards for certain queries, GRPO’s group-relative
advantage compensates for this effect.

• Encouraging selective retrieval. Combining batch-level centering with GRPO advantage
ensures that trajectories with unnecessary retrieval are penalized, while efficient yet accu-
rate trajectories are favored.

In the following, we analyze each of these points in detail.

A.2 VARIANCE REDUCTION AND STABILITY

Each GRPO group may contain only a few trajectories (e.g., G = 5). Raw retrieval times ti can
fluctuate due to hardware noise, network latency, or retriever stochasticity. If group-level averaging
were used, such fluctuations could lead to unstable rewards. By computing tavg across the entire
batch, we obtain a more stable reference signal that smooths out these random variations.

This reduces the variance of the group-relative advantage, which in turn stabilizes policy gradient
updates.

A.3 MITIGATING ANOMALIES ACROSS QUERIES

Batch-level normalization may produce unusually high or low raw efficiency rewards for certain
queries. For example, a simple question requiring little retrieval could yield a disproportionately
large positive Refficiency(τi). This is indeed a potential drawback of using batch-level efficiency
reward.

However, GRPO compensates for this issue through its group-relative formulation. Although
Refficiency(τi) is normalized at the batch level, the advantage Ai is computed relative to the group
mean reward within each GRPO group, i.e.,

Ai =
Rϕ(τi)− 1

G

∑G
j=1 Rϕ(τj)

std
(
{Rϕ(τj)}Gj=1

) . (8)

Even if a particular query obtains an abnormally large batch-normalized efficiency reward, its in-
fluence on learning is moderated by this group-relative centering. As a result, the combination of
batch-level normalization and group-level centering ensures that the learning signal remains consis-
tent across diverse query types.
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A.4 ENCOURAGING SELECTIVE RETRIEVAL

For trajectories that correctly answer the query (Routcome = 1), the numerator of Ai can be decom-
posed into outcome and efficiency components, yielding

Ai =

(
1−Routcome

)
+

(
Refficiency(τi)−Refficiency

)
std

(
{Rϕ(τj)}Gj=1

) , (9)

where Routcome and Refficiency are group means computed within the GRPO group, while Refficiency(τi)
itself is computed using the batch-level reference tavg.

From Equation (9) we see:

• If a trajectory answers correctly and its retrieval time is less than the group average, then
Refficiency(τi)−Refficiency > 0, and consequently, the numerator increases, thereby rewarding
the policy for selective retrieval.

• If a trajectory performs redundant retrieval, the efficiency term is negative and reduces Ai,
discouraging unnecessary retrieval.

Thus, GRPO guides the policy towards trajectories that balance correctness with efficient retrieval.

B IMPLEMENTATION DETAILS

B.1 TRAINING PROMPT TEMPLATE

The training prompt template for the policy LLM is shown in Table 4.

Table 4: Training prompt template for multi-turn reasoning and retrieval.

Training Prompt Template for the Policy LLM

Answer the given question. You must conduct reasoning inside <think> and </think> first
every time you get new information. After reasoning, if you find you lack some knowledge, you
can call a search engine using the following strict format:
1. You MUST first decide which retrieval mode to use (both modes will return relevant documents,
but use different retrieval methods):

- Use [passage] to find documents using semantic similarity-based dense retrieval

- Use [graph] to find documents through graph-based retrieval, which performs retrieval on a
structured knowledge graph constructed from documents using fact ranking and graph reason-
ing

- You can combine them as [graph][passage] to get documents from both retrieval meth-
ods

2. Then formulate your specific search query based on what information you need
3. Finally, wrap everything in <search> and </search> tags
For example:

- Using dense retrieval: <search> [passage] the capital of France </search>

- Using graph-based retrieval: <search> [graph] the capital of France </search>

- Using both methods: <search> [graph][passage] the capital of France </search>

The search results (relevant documents) will be returned between <information> and
</information> tags. You can search as many times as you want. If you find no further exter-
nal knowledge needed, you can directly provide the answer inside <answer> and </answer>,
without detailed illustrations. For example, <answer> Paris </answer>.
Question: {question}
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B.2 TRAINING DETAILS

Hyperparameters. For GRPO training of PILOTRAG, we set the policy LLM learning rate to 1 ×
10−6, a total batch size of 256, with a mini-batch size of 128 and a micro-batch size of 32. The KL
divergence regularization coefficient β is set to 0.001, and the clip ratio ϵ is set to 0.2. The retrieval
budget is fixed at B = 4, and the number of retrieved passages per call is k = 3. The maximum
sequence length is set to 4,096 tokens, with a maximum response length of 500 tokens, a maximum
start length of 2,048 tokens, and a maximum observation length of 500 tokens.

Training Configuration. Our training framework is adapted from the Search-R1 training frame-
work (Jin et al., 2025), which builds upon the verl (Sheng et al., 2025). Training is conducted on a
single node with 8×80GB NVIDIA A100 GPUs. Two GPUs are allocated for the retrieval service,
and four GPUs are used for model training. To improve memory efficiency, we enable gradient
checkpointing and apply Fully Sharded Data Parallel (FSDP) with CPU offloading for parameters,
gradients, and optimizer states. Rollouts are sampled with vLLM (Kwon et al., 2023) using a tensor
parallel size of 1 and a GPU memory utilization ratio of 0.6. The rollout sampling temperature is set
to 1.0.

Two-Stage Training. Stage 1 is trained for 20 steps (0.5 epoch) with EM-based rewards only,
ensuring correctness. Stage 2 continues for an additional 20 steps (0.5 epoch) with the efficiency-
aware reward introduced in Section 3.2. In both stages, we sample five responses per prompt during
training to compute group-relative advantages. Checkpoints are saved every 10 steps, and the final
checkpoint is used for evaluation.

Training Process. Figure 4 illustrates the evolution of key performance indicators during training,
including EM score, batch-level average retrieval time, and validation score, along with reward
signals. As training progresses, all three indicators exhibit a consistent upward trend, along with
a steady increase in rewards. These results indicate that the two-stage RL framework effectively
guides the model toward more accurate behaviors, while maintaining robust generalization to unseen
validation data.

(a) EM score. (b) Search time. (c) Validation score.

Figure 4: Training process of PILOTRAG, showing the evolution of key performance indicators
throughout training. (a) EM score vs. Reward. (b) Search time vs. Reward. (c) Validation score vs.
Reward.

C ANALYSIS OF RETRIEVAL MODES

Table 5 presents an ablation study comparing PILOTRAG with variants restricted to a single retrieval
mode. From the results, we make several observations:

(1) Complementary strengths of text and graph retrieval. Passage-only retrieval performs com-
petitively on simple QA benchmarks such as PopQA and NQ, where single-document evidence
is often sufficient. In contrast, graph-only retrieval is particularly advantageous on multi-hop QA
datasets such as HotpotQA and 2Wiki, where relational structures facilitate entity disambiguation
and multi-step reasoning.
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Method
Simple QA Multi-hop QA Average

PopQA NQ HotpotQA 2Wiki MuSiQue

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

PILOTRAG 49.4 56.8 44.1 53.4 53.2 65.1 57.5 64.1 30.7 39.3 47.0 55.7
w/ only passage retrieval 48.7 55.2 43.9 53.3 53.1 64.5 53.0 58.9 28.0 36.2 45.3 53.6

w/ only graph-based retrieval 49.3 56.8 43.8 53.0 53.4 65.5 57.4 64.2 29.7 38.3 46.7 55.6
w/ only hybrid retrieval 48.7 55.9 43.1 52.5 53.3 65.1 53.7 59.8 28.8 37.0 45.5 54.0

Table 5: Ablation on retrieval mode. We compare PILOTRAG with variants restricted to only passage
retrieval, only graph retrieval, or only hybrid retrieval.

Method
Simple QA Multi-hop QA Average

PopQA NQ HotpotQA 2Wiki MuSiQue

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Qwen2.5-7B

Graph-based RAG
HippoRAG v2 27.0 37.9 8.1 27.2 27.4 46.1 16.8 34.7 12.3 24.0 18.3 34.0
Multi-turn RAG
Search-o1 4.7 7.2 18.1 27.5 13.5 19.1 6.4 7.9 2.9 7.7 9.1 13.9
R1-Searcher 28.4 41.0 41.6 52.2 46.6∗ 56.7∗ 41.7∗ 49.0∗ 29.3 37.6 37.5 47.3
Search-R1 51.3 57.1 56.8∗ 65.3∗ 51.0∗ 62.0∗ 51.8 58.9 32.0 40.8 48.6 56.8

PILOTRAG (ours) 50.6 56.4 51.5 60.4 60.8∗ 72.5∗ 57.1 64.6 39.6 49.3 51.9 60.6

Table 6: Results on methods with Qwen2.5-7B backbone. The best results are indicated in bold,
while the underlined values represent the second-best results. ∗ represents in-domain datasets.

(2) Limitations of indiscriminate hybrid retrieval. Forcing the model to always use hybrid re-
trieval (i.e., consulting both passages and graphs simultaneously) yields lower performance than
graph-only retrieval. This suggests that indiscriminate combination of heterogeneous sources intro-
duces noise and inefficiency, and that adaptivity in retrieval choice is essential.

(3) Advantages of adaptive retrieval in PILOTRAG. The full PILOTRAG, which dynamically se-
lects between text, graph, and hybrid retrieval according to the evolving context, achieves the best
average performance across benchmarks. Notably, although PILOTRAG is not the strongest on the in-
domain HotpotQA dataset in isolation, it consistently delivers robust performance across all datasets,
leading to the highest overall accuracy. This indicates that PILOTRAG generalizes more effectively
across diverse unseen datasets, balancing the complementary strengths of different retrieval modes.

These findings demonstrate that PILOTRAG not only integrates the benefits of text and graph retrieval
but also learns to adaptively modulate its retrieval strategy, thereby achieving both higher robustness
and stronger generalization compared to fixed retrieval modes.

D EXPERIMENTS ON 7B LLMS

To further examine the scalability of our framework, we train a 7B version of PILOTRAG based on
Qwen2.5-7B-Instruct (Yang et al., 2025b). Unlike the 3B experiments, which rely on the Contriever
for dense retrieval, the 7B LLMs use the stronger NV-Embed-v2 (Lee et al., 2025a) embedding
model. This difference allows us to assess how the retrieval policy behaves under a higher-quality
text retriever and a more capable backbone LLM.

Table 6 presents detailed comparisons across both simple QA and multi-hop QA benchmarks.
PILOTRAG shows substantial gains over all graph-based and multi-turn baselines on multi-hop
reasoning tasks, outperforming strong methods such as Search-R1 (Jin et al., 2025) and R1-
Searcher (Song et al., 2025) by a large margin. Notably, PILOTRAG achieves the best average
EM and F1 scores among all 7B methods. Search-R1 remains strong on simple QA, which aligns
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with its training distribution bias toward single-hop reasoning. In contrast, R1-Searcher, trained
only on multi-hop data, performs competitively on complex tasks but falls behind on simple queries.
PILOTRAG exhibits a more balanced behavior, while slightly behind Search-R1 on simple QA, it sig-
nificantly surpasses both baselines on all multi-hop benchmarks. This suggests that RL with hybrid
graph-text retrieval allows the model to generalize both within and beyond the multi-hop domain.

These results demonstrate that PILOTRAG scales effectively to larger LLMs and benefits from
stronger retrieval components, achieving state-of-the-art performance on multi-hop QA tasks while
maintaining competitive results on simple QA.

E CASE STUDY

To further illustrate how our training framework improves model behavior, we present several qual-
itative case studies comparing the outputs of the base model (Qwen2.5-3B-Instruct) before training
and our proposed PILOTRAG after training, as shown in Tables 7–10. These cases reveal several
representative issues of the base model and how our training addresses them:

Irrelevant or spurious reasoning chains. The base model often generated lengthy reasoning traces
that wandered away from the actual question and were not grounded in retrieved evidence (Cases
1 & 3). In contrast, our trained model learns to anchor each reasoning step to retrieved content,
reducing unnecessary speculation and improving logical coherence.

Failure to understand or decompose complex questions. The base model frequently struggled
with multi-hop or compositional questions, failing to recognize their underlying structure or to plan
effective retrieval steps (Cases 2 & 4). Through training, our model acquires the ability to analyze
the question, break it down into subproblems, and issue precise retrieval queries for each part, which
leads to more accurate and complete answers.

Over-reliance on internal knowledge without validation. The base model tended to rely on its
parametric knowledge and give confident but unsupported answers, skipping the step of verifying
correctness against external evidence (Case 3). Our model, by contrast, learns to cross-check candi-
date answers with retrieved documents before finalizing its response, which reduces hallucinations
and increases factual accuracy.

Overall, after training, PILOTRAG shows clear improvements in its ability to understand complex
questions, decompose them into manageable subproblems, and construct concise yet targeted re-
trieval queries that lead to well-grounded, correct answers.
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Table 7: Case study 1. Before training, the model retrieved relevant evidence about both individuals
but produced a logically inconsistent conclusion, incorrectly claiming they are not both singers.
After training, it correctly integrates the retrieved evidence and arrives at the correct answer.

Question: Are Steve Perry and Leslie West both singers?

Ground Truth: Yes

Before Training (Qwen2.5-3B-Instruct)
<think> To determine if Steve Perry and Leslie West are both singers, I need to find informa-
tion about their careers and musical roles. </think>
<search> [passage] Steve Perry Leslie West singers </search>
<information> Doc 1(Title: Leslie West Live!) Leslie West Live! is a live album by Leslie
West, released in 1993.
Doc 2(Title: The Leslie West Band) The Leslie West Band is the third album released by Ameri-
can rock guitarist Leslie West... </information>

<think> From the search results, we can see that Leslie West is indeed a singer and guitarist.
However, there is no direct mention of Steve Perry’s musical career. Let’s look for more infor-
mation about Steve Perry. </think>
<search> [passage] Steve Perry singers </search>
<information> Doc 1(Title: Steve Perry (Oregon musician)) Stephen Henry Perry (born
October 8, 1963) is an American musician, best known as lead singer, songwriter and rhythm
guitarist for the Oregon ska-swing band the Cherry Poppin’ Daddies... </information>

<think> From the search results, we can see that Steve Perry is a singer, but he is not known for
being a member of a band. He is the lead singer of the band the Cherry Poppin’ Daddies, which
is a ska-swing band. Leslie West, on the other hand, is a founding member of the hard rock band
Mountain and a guitarist and vocalist. </think>
<answer>No, Steve Perry and Leslie West are not both singers. Steve Perry is a singer, but he is
not known for being a member of a band, while Leslie West is a singer and guitarist. </answer>

After Training (PILOTRAG)
<think> To determine if Steve Perry and Leslie West are both singers, I need to first iden-
tify who they are and then verify their profession. Let’s start with identifying who they are.
</think>
<search> [graph] Steve Perry </search>
<information> Doc 1(Title: Arrival (Journey album)) Arrival is the eleventh studio album
by the American rock band Journey, released in the United States in 2001...The album was the
band’s first full-length studio album with new lead vocalist Steve Augeri, who replaced popular
frontman Steve Perry... </information>

<think> From Doc 1, it’s clear that Steve Perry is a lead vocalist for Journey. Let’s now identify
Leslie West. </think>
<search> [graph] Leslie West </search>
<information> Doc 1(Title: The Leslie West Band) The Leslie West Band is the third album
released by American rock guitarist Leslie West... </information>

<think> From Doc 3, it’s evident that Leslie West is a rock guitarist and vocalist. Now that we
have identified both individuals, we can conclude whether they are singers. Since Steve Perry is a
lead vocalist for Journey and Leslie West is a vocalist and guitarist, both are singers. </think>
<answer> Yes </answer>
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Table 8: Case study 2. Before training, the model misunderstood the question and produced a long
query, leading it to return only the band name without addressing the actual question. After training,
it correctly interprets the question, decomposes it into sub-steps, and formulates concise, targeted
queries that retrieve the necessary evidence to answer it.

Question: The View from the Bottom is the fifth studio album by an American rock band best
known for what hit song?

Ground Truth: My Own Worst Enemy

Before Training (Qwen2.5-3B-Instruct)
<think> To answer this question, I need to identify the American rock band best known for a
hit song and then find their fifth studio album. The album “The View from the Bottom” is the
fifth studio album by this band. </think>
<search> [graph] The View from the Bottom American rock band hit song </search>
<information> Doc 1(Title: The View from the Bottom) The View from the Bottom is the
fifth studio album by the American rock band Lit, released on June 19, 2012 through Megaforce
Records... </information>

<answer> Lit </answer>
After Training (PILOTRAG)
<think> To answer this question, I need to identify the American rock band whose fifth studio
album is “The View from the Bottom” and then determine their best-known hit song. Let’s start
by identifying the band. </think>
<search> [graph] The View from the Bottom </search>
<information> Doc 1(Title: The View from the Bottom) The View from the Bottom is the
fifth studio album by the American rock band Lit, released on June 19, 2012 through Megaforce
Records... </information>

<think> From Doc 1, it is clear that “The View from the Bottom” is by the band Lit. Now, I
need to identify their best-known hit song. </think>
<search> [graph] Lit best known hit song </search>
<information> Doc 1(Title: Lit (band)) Lit is an American rock band, formed in 1995
in Fullerton, California. They are best known for their hit song “My Own Worst Enemy”...
</information>

<think> From Doc 1, it is evident that Lit’s best-known hit song is “My Own Worst Enemy”.
Therefore, the answer to the question is: </think>
<answer> My Own Worst Enemy </answer>
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Table 9: Case study 3. Before training, the model hallucinates incorrect internal knowledge, thus
wrongly claiming that Johnny Pemberton played Bo Thompson in “That ’70s Show” and that it
was created by Steven Molaro. After training, it avoids hallucinations, correctly decomposes the
question into sub-steps, and retrieves the right evidence to identify the creator as Justin Spitzer.

Question: Who created the NBC sitcom that Johnny Pemberton appears in as the character Bo
Thompson?

Ground Truth: Justin Spitzer

Before Training (Qwen2.5-3B-Instruct)
<think> To answer this question, I need to identify the NBC sitcom that Johnny Pemberton
appeared in as the character Bo Thompson. Let’s start with the reasoning: 1. Johnny Pemberton
is known for his role as Bo Thompson in the NBC sitcom “That ’70s Show.” 2. “That ’70s Show”
aired from 1998 to 2006. 3. The show was created by Steven Molaro, who wrote the pilot and
served as showrunner. Now, I will search for more detailed information about the creator of “That
’70s Show” to confirm the answer. </think>
<search> [passage] Steven Molaro That ’70s Show creator </search>
<information> Doc 1(Title: Bigfoot (TV series)) Bigfoot is an American animated
series television pilot created by Seth Rogen, Matt McKenna, and Evan Goldberg...
</information>

<think> Based on the search results, the information about Steven Molaro and “That ’70s
Show” is not found in the documents. However, the documents do not contain any information
about Johnny Pemberton or the show “That ’70s Show.” Since the documents do not provide the
necessary information, I will use graph-based retrieval to find the creator of “That ’70s Show.”
</think>
<search> [graph] That ’70s Show creator </search>
<information> Doc 1(Title: Parent show) Refers to a TV series that has spawned a spin-off...
</information>

<think> The search results do not provide the creator of “That ’70s Show.” Given the lack of
relevant information, I will conclude based on the initial reasoning: </think>
<answer> Steven Molaro </answer>
After Training (PILOTRAG)
<think> To answer this question, I need to first identify the NBC sitcom Johnny Pemberton
appears in as the character Bo Thompson. Then, I’ll find out who created that show. Let’s start
with the sitcom. </think>
<search> [graph] Johnny Pemberton Bo Thompson </search>
<information> Doc 1(Title: Johnny Pemberton) Johnny Pemberton (born in 1981) is an
American actor and comedian from Rochester, Minnesota. He is best known for his role as the
titular S̈on of Zornı̈n the short-lived Fox sitcom, and has also appeared as the recurring character
Bo Thompson in the NBC sitcom “Superstore”... </information>

<think> From Doc 1, it’s clear that Johnny Pemberton appeared as Bo Thompson in “Super-
store”. Now, I need to find out who created “Superstore”. </think>
<search> [graph] Superstore creator </search>
<information> Doc 1(Title: Superstore (TV series)) Superstore is an American single-
camera sitcom television series that premiered on NBC on November 30, 2015. The series was
created by Justin Spitzer... </information>

<think> From Doc 1, it’s evident that “Superstore” was created by Justin Spitzer. Therefore,
the answer to the question is: </think>
<answer> Justin Spitzer </answer>
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Table 10: Case study 4. Before training, the model failed to answer the question due to a lack of
reasoning and question decomposition. After training, the model correctly decomposed the question
into two steps, i.e., finding the surfer with the given birth date and then verifying his victory.

Question: What American professional Hawaiian surfer born 18 October 1992 won the Rip Curl
Pro Portugal?

Ground Truth: John John Florence

Before Training (Qwen2.5-3B-Instruct)
<think> To answer this question, I need to find information about a professional Hawaiian
surfer born on 18 October 1992 who won the Rip Curl Pro Portugal. Let’s start with a search
using both dense and graph-based retrieval methods. </think>
<search> [graph][passage] American professional Hawaiian surfer born 18 October
1992 won the Rip Curl Pro Portugal </search>
<information> Doc 1(Title: MEO Rip Curl Pro Portugal) MEO Rip Curl Pro Portugal...The
defending champion is the 2016 WSL champion, John John Florence who won the event...
Doc 3(Title: Coco Ho) Coco Malia Camille Hapaikekoa Ho (born April 28, 1991) is a profes-
sional Hawaiian surfer born in Honolulu, Hawaii. </information>

<think> From the search results, it seems there is no information about a surfer born on 18
October 1992 winning the Rip Curl Pro Portugal. However, Coco Ho is mentioned in Doc 3, and
she was born on April 28, 1991, not October 18, 1992. Given the discrepancy, let’s refine our
search to focus on the Rip Curl Pro Portugal winner. </think>
<search> [graph][passage] Rip Curl Pro Portugal winner born 18 October 1992
</search>
<information> Doc 1(Title: MEO Rip Curl Pro Portugal)...</information>

<think> The search results still do not provide the specific information we need. Let’s try a
more direct search focusing on the Rip Curl Pro Portugal winner. </think>
<search> [graph][passage] Rip Curl Pro Portugal winner 18 October 1992
</search>
<information> Doc 1(Title: MEO Rip Curl Pro Portugal)...</information>

<think> After reviewing the documents, it appears there is no surfer born on 18 October 1992
who has won the Rip Curl Pro Portugal. The defending champion in 2016 was John John Flo-
rence, but he was born on 14 March 1992, not 18 October 1992. </think>
<answer>No surfer born on 18 October 1992 has won the Rip Curl Pro Portugal. </answer>

After Training (PILOTRAG)
<think> To answer this question, I need to identify the American professional Hawaiian surfer
born on 18 October 1992 who won the Rip Curl Pro Portugal. Let’s start by finding the surfer
born on that date. </think>
<search> [graph] born 18 October 1992 American professional Hawaiian surfer
</search>
<information> Doc 1(Title: Coco Ho) Coco Malia Camille Hapaikekoa Ho...
Doc 2(Title: John John Florence) John John Alexander Florence (born 18 October 1992) is an
American professional surfer... </information>

<think> From the retrieved documents, Doc 2 clearly mentions John John Florence, who was
born on 18 October 1992 and is an American professional surfer. Now, I need to confirm if he
won the Rip Curl Pro Portugal. </think>
<search> [graph] John John Florence Rip Curl Pro Portugal </search>
<information> Doc 1(Title: Supertubos) The Supertubos (Portuguese for S̈upertubes)̈ is a
beach located in Peniche, Portugal...
Doc 2(Title: MEO Rip Curl Pro Portugal)... </information>

<think> From the retrieved documents, Doc 2 clearly mentions John John Florence as the
defending champion and winner of the MEO Rip Curl Pro Portugal in 2016. Therefore, the
answer to the question is: </think>
<answer> John John Florence </answer>
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