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ABSTRACT

Foundation models have shown remarkable capabilities in various domains, but
their performance on complex, multimodal engineering problems remains largely
unexplored. We introduce SoM-1K, the first large-scale multimodal benchmark
dataset dedicated to evaluating foundation models on problems in the strength
of materials (SoM). The dataset, which contains 1,065 annotated SoM problems,
mirrors real-world engineering tasks by including both textual problem statements
and schematic diagrams. Due to the limited capabilities of current foundation
models in understanding complicated visual information, we propose a novel
prompting strategy called Descriptions of Images (DoI), which provides rigorous
expert-generated text descriptions of the visual diagrams as the context. We evalu-
ate eight representative foundation models, including both large language models
(LLMs) and vision language models (VLMs). Our results show that current foun-
dation models struggle significantly with these engineering problems, with the
best-performing model achieving only 56.6% accuracy. Interestingly, we found
that LLMs, when provided with DoI, often outperform VLMs provided with vi-
sual diagrams. A detailed error analysis reveals that DoI plays a crucial role in
mitigating visual misinterpretation errors, suggesting that accurate text-based de-
scriptions can be more effective than direct image input for current foundation
models. This work establishes a rigorous benchmark for engineering AI and high-
lights a critical need for developing more robust multimodal reasoning capabilities
in foundation models, particularly in scientific and engineering contexts.

1 INTRODUCTION

Strength of Materials (SoM) or Mechanics of Materials is a cornerstone of engineering, studying
how solid objects deform and fail under loads. Solving SoM problems requires seamlessly inte-
grating multimodal information, both textual and visual. For instance, an engineer must analyze
the text describing material properties, while simultaneously interpreting diagrams that illustrate the
geometry of the structure and its boundary conditions. This ability to reason across modalities is a
fundamental engineering skill, yet it remains a significant challenge for AI (Wang et al., 2025).

SoM is also a high-stakes domain, where reasoning errors can lead directly to unsafe designs and
structural failures. Reliability is therefore not optional but essential: any AI system deployed in
this context must meet the same rigorous standards of safety and precision expected of human engi-
neers. These demands make SoM particularly challenging for AI, as models must not only perform
accurate calculations but also correctly interpret schematics and integrate them with textual problem
statements.

While foundation models have shown strong performance in text-based mathematical reason-
ing (Cobbe et al., 2021; Ahn et al., 2024; Seßler et al., 2024), they often struggle with special-
ized vision-language tasks in engineering. The main reason is that existing vision-language models
(VLMs), typically trained on natural images, lack the domain-specific knowledge needed to interpret
engineering schematics (Doris et al., 2024). To be useful in engineering, AI must evolve to reason
from visual information with the same precision as human experts (Hao et al., 2025).

A key obstacle of developing reliable foundation models for SoM is the lack of suitable datasets.
Current datasets are poorly aligned with the unique demands of engineering problem-solving (Pi-
card et al., 2023). Text-only datasets omit critical visual cues, while popular multimodal datasets
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focus on everyday imagery (Schuhmann et al., 2022) and exclude the specialized symbols and phys-
ical principles central to engineering. As a result, no standardized benchmark exists yet to evaluate
foundation models on authentic, visually rich SoM problems. Existing evaluations largely empha-
size conceptual or text-based questions (Marino et al., 2019), neglecting the multimodal reasoning
required to arrive at physically grounded solutions (Bakhtin et al., 2019; Yi et al., 2020). Developing
such a benchmark is therefore essential to systematically assess models’ capabilities and advance
their reliable use in engineering practice.

To bridge this gap, we introduce SoM-1K, the first domain-specific multimodal benchmark that
integrates text, equations, and engineering diagrams to reflect the authentic reasoning demands of
engineering problems. Unlike prior datasets relying primarily on texts (Hendrycks et al., 2021; Wang
et al., 2019), SoM-1K captures the multimodal nature of real engineering practice and establishes a
standardized platform for rigorous evaluation. Our contributions are threefold: (1) we present the
first large-scale multimodal benchmark tailored to mechanics problems, which can be found in the
supplementary materials; (2) we systematically evaluate leading foundation models, revealing their
current limitations in visual-textual reasoning; and (3) we propose and validate the use of text-based
diagram descriptions (DoI) as an effective prompting strategy to reduce reasoning errors. Together,
these contributions not only fill a critical gap in AI evaluation resources but also provide actionable
insights for developing the next generation of AI systems capable of reliable engineering reasoning.

2 RELATED WORK

Foundation Models in STEM (Science, Technology, Engineering, and Mathematics). The
use of Large Language Models (LLMs) in STEM has grown rapidly. Initially, models like Min-
erva (Lewkowycz et al., 2022) and PaLM (Chowdhery et al., 2022) excelled at solving complex math
and physics problems by using techniques like chain-of-thought (CoT) prompting (Wei et al., 2023).
This success has expanded into various engineering disciplines, where LLMs assist with design,
simulations (Liu et al., 2024), and inverse problems, often by integrating with external tools (Nike-
tan et al., 2025). For instance, LLMs are being applied in bridge engineering to interpret and process
the vast amount of unstructured data found in inspection reports, transforming it into structured, ac-
tionable insights for decision support (Kumar & Agrawal, 2025). The development of VLMs has
also been crucial, allowing models to interpret diagrams and schematics (Picard et al., 2024), a core
part of engineering education. These VLMs are now used in educational settings to provide inter-
active, step-by-step guidance by analyzing visual inputs (Bewersdorff et al., 2025; Scarlatos et al.,
2025).

Benchmarking in Engineering Domains. Existing benchmarks in engineering domains have high-
lighted the challenges faced by AI models in interpreting and reasoning over technical diagrams
and textual information. For instance, the DesignQA benchmark evaluates VLMs on tasks involv-
ing engineering documentation, CAD images, and textual design requirements, revealing significant
gaps in model performance when both visual and textual information are required (Doris et al.,
2024). Similarly, the EEE-Bench benchmark assesses VLMs on practical engineering tasks in elec-
trical and electronics engineering, demonstrating that current models often struggle with complex
visual and textual integration, achieving average performance ranging from 19.48% to 46.78% (Li
et al., 2025b). These studies underscore the necessity for benchmarks that rigorously evaluate AI
models’ abilities to handle multimodal engineering problems, including the integration of schematic
diagrams and textual descriptions.

AI Assistance in Mechanics of Materials. In the field of mechanics of materials, several projects
have explored the use of AI and LLMs (Tian & Zhang, 2024; Buehler, 2023; Ni & Buehler, 2023;
Liu et al., 2025). For instance, the AutoGen (Tian & Zhang, 2024) aimed to presents a framework
where multiple LLM-based agents collaborate to solve mechanics problems using the Finite Element
Method. The MechAgent (Ni & Buehler, 2023) introduced a novel multi-agent paradigm where a
team of AI agents with specialized roles collaboratively automates the process of solving complex
mechanics tasks.

To the best of our knowledge, however, no multimodal benchmark study has yet evaluated the rea-
soning capabilities of foundation models in solving mechanics problems.
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3 THE SOM-1K DATASET

3.1 BACKGROUND IN SOM

SoM is a fundamental branch of engineering that studies how solid objects respond to external
forces, such as tension, compression, torsion, and bending. Problems in this domain typically fo-
cus on analyzing why materials fail, a fundamental concern underlying nearly all engineered sys-
tems, from bridges and aircraft to robots and microchips. For this reason, SoM is a core subject in
civil, mechanical, aerospace, and materials engineering curricula worldwide, and accurate problem-
solving in this domain underpins real-world engineering design and decision-making. Hence, SoM
provides an ideal domain for evaluating foundation models’ reasoning capabilities, as it requires
the integration of physical principles, mathematical formulations, and the logical application of
boundary conditions, paralleling the forms of reasoning demanded in complex coding and scientific
problem-solving.

3.2 SCOPE OF THE DATASET

Our multimodal benchmark dataset, SoM-1K, is designed to evaluate AI models on authentic me-
chanics problems. It includes the three fundamental problem types: axial loading (bars), torsion
(shafts), and bending (beams and frames) (Hibbeler, 2012). SoM-1K spans a wide range of calcu-
lation tasks, including computation of internal forces, stresses, strains, and deformations, diagram
construction, and design-oriented optimizations.

Problems were carefully selected from widely-used university textbooks (Sun et al., 2009; Huang,
2009; Dai, 2015; Ma, 2011; Hibbeler, 2012; Gere & Goodno, 2009; Guo & Liu, 2010) and ad-
vanced mechanics competitions, ensuring a hierarchical dataset encompasses both routine exercises
and more challenging tasks. We consolidate all source materials into PDF format, with textbooks
scanned from physical copies and competition problems obtained from official exam websites (Chi-
nese Society of Theoretical and Applied Mechanics & Zhou Peiyuan Foundation, 2025).

Table 1: Statistics of dataset composition in SoM-1K.

Category Quantity Proportion
Classified by deformation modes

Axial loading (bars) 201 18.87%
Torsion (shafts) 137 12.86%
Bending-I (beams) 630 59.15%
Bending-II (frames) 54 5.07%
Integrated tasks 43 4.04%

Overall 1065 100%

Classified by statical indeterminacy
Statically determinate (easy) 917 86.10%
Statically indeterminate (hard) 148 13.90%

In total, SoM-1K comprises 1,065 anno-
tated problems, summarized in Table 1,
categorized into five groups based on
structural components and loading condi-
tions: (1) Axial loading (bars), (2) Tor-
sion (shafts), (3) Bending-I (beams), (4)
Bending-II (frames), and (5) Integrated
tasks. Integrated problems, sourced from
mechanics competitions, require multi-
concept reasoning, combining static anal-
ysis with dynamic concepts such as vibra-
tion, impact, and rigid-body motion. Ex-
ample problems from each category are
provided in Figure 7 (Appendix A).

3.3 COMPONENTS OF THE DATASET

An illustrative example of the dataset structure is shown in Figure 1. Each problem consists of four
standardized components:
(1) Problem Statement (PS): A concise textual description of the problem that specifies the given
information and the quantity or outcome to be determined.
(2) Schematic Diagram (Image, I): A graphical representation of the structure or an object, pro-
vided in image format. Throughout this work, the term Image refers to such schematic diagrams.
(3) Description of the Image (DoI): Expert-validated text describing schematics (e.g., geometry,
boundary conditions), providing a precise representation of visual information for evaluating model
performance.
(4) Ground Truth (GT): The correct solution to the problem, including equations, reasoning steps,
and final answers.
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Problem statement (PS)
A simple beam with an overhang supports a
uniform load of intensity q on span AB and
a concentrated load P at end C of the over-
hang. Determine the deflection δC and angle
of rotation θC at point C. (Use the modified
form of Castigliano’s theorem.)

Image (I)
P

q

A

B C

L
L
2

Description of the image (DoI)
This diagram shows a simply supported beam structure with an overhang.
Structure: Beam AC is supported by two supports: the left end A is a hinge support, and point
B is a roller support. Segment AB is the main span of the beam, with a length of L. Segment
BC is the overhanging part extending beyond support B, with a length of L/2.
Loading: The beam is subjected to two combined loads: a uniform load with an intensity of q
acts on the main span AB downward; a concentrated load with a magnitude of P acts at point
C, the end of the overhang downward.

Ground Truth (GT)
Deflection δC at the end of the overhang. Since the load P corresponds to this deflection, we
do not need to supply a fictitious load. Instead, we can begin immediately to find the bending
moments throughout the length of the beam. [. . . ]
After carrying out the integrations and combining terms, we obtain

θC =
7PL2

24EI
− qL3

24EI
.

Figure 1: An illustrative example of the dataset structure : problem statement (PS), image (I), de-
scription of the image (DoI), and ground truth (GT).

Our workflow began with scanned files of textbooks and problem sets, followed by a two-step pre-
processing pipeline. First, schematic diagrams were manually extracted and stored as PNG images.
Second, textual content, including PS and GT, was extracted using Doubao (ByteDance, 2025) Op-
tical Character Recognition (OCR). If the GT includes internal force diagrams (Hibbeler, 2012) or
other elements that cannot be extracted via OCR, the annotation team manually supplement the de-
scription of these diagrams. The extracted text was then carefully reviewed and manually refined
to correct OCR errors, ensuring accurate and high-quality representations. The annotation team in-
cludes experienced researchers and educators in structural engineering and mechanics of materials,
including a PhD candidate, two lecturers, and four teaching assistants.

During preliminary testing, we observed that foundation models struggled to process LaTeX-
formatted expressions in batch inference. To mitigate this, we employed the DeepSeek-V3-0324
API (SiliconCloud, 2025) to convert all LaTeX equations into natural-language descriptions, thereby
providing consistent textual representations for model inputs.

3.4 DOI ANNOTATION PROCESS

The DoI is derived from the PNG schematics (see Figure 2). Each image is first processed by
the Doubao (ByteDance, 2025) VLM, which generates an initial textual description capturing key
aspects of the structural diagrams, including geometry, loading conditions, and boundary conditions.
These auto-generated descriptions are then carefully reviewed and refined by the annotation team to
correct errors and incorporate missing information critical for problem-solving.

It is important to note that our DoI is fundamentally different from a typical CoT prompt (Wei
et al., 2023). The DoI is designed to only describe the information visually present in the image
and does not provide any additional insights or step-by-step reasoning to help the model solve the
problem. This clear distinction allows us to isolate and measure the specific impact of descriptive
image information on the model’s performance.
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Image (I)

P
q

A

B C

L
L
2

Prompt: Describe this image.

Doubao

Doubao’s response

This is a diagram of a beam structure. The beam
extends from point A to point C.
Supports: Point A is a hinged support, and point
B is a roller support.
Loading: There is a uniformly distributed load q
acting on the segment AB, where the length of
AB is L. Additionally, a concentrated load P is
applied at point C, and the distance from point B
to point C is L

2 .

Description of the image (DoI)

This diagram shows a simply supported beam structure with an
overhang.
Structure: Beam AC is supported by two supports: the left end A
is a hinge support, and point B is a roller support. Segment AB
is the main span of the beam, with a length of L. Segment BC is
the overhanging part extending beyond support B, with a length
of L

2 .
Loading: The beam is subjected to two combined loads: a uni-
form load with an intensity of q acts on the main span AB down-
ward; a concentrated load with a magnitude of P acts at point C,
the end of the overhang downward.

The highlighted section in-
dicates the information that
was manually corrected.

Corrected info type
Red : Structure type

Blue : Boundary condition/
Geometry info

Green : Load direction

Figure 2: Workflow illustrating the process from the input image to the DoI: an image is first pro-
cessed by the Doubao VLM, which generates an initial description of the image. This response is
then carefully reviewed and corrected by human experts to produce the final DoI. (For improved
readability of this colored figure, please refer to the digital version of the paper.)

4 EVALUATION

4.1 MODELS SELECTED

We evaluate eight representative foundation models on our collected dataset. To ensure a diverse rep-
resentation of the current landscape, we include both closed-source models (e.g., GPT-4o (OpenAI,
2024), Qwen-plus (Alibaba Cloud, 2025a), Qwen-VL (Alibaba Cloud, 2025b), GPT-3.5 (OpenAI,
2023) and Doubao (ByteDance, 2025)) and leading open-source models (e.g., Llama-70B (Meta AI,
2024), GPT-oss-120b (OpenAI, 2025) and DeepSeek-R1 (DeepSeek, 2025)).

Among them, LLMs include GPT-oss-120b, Qwen-plus, DeepSeek-R1, GPT-3.5, and Llama-70B,
while VLMs include Doubao, Qwen-VL, and GPT-4o. This selection provides a broad range of
training architectures and accessibility. A full list is provided in Table 2 (Appendix B).

4.2 EVALUATION PROTOCOL

Prompting Strategy. To comprehensively evaluate the performance of different foundation mod-
els, we designed three prompting strategies, (1) PS+I; (2) PS+I+DoI; (3) PS+DoI, as illustrated
in Figure 3. VLMs were evaluated under all three prompting strategies according to their multi-
modal capabilities. In contrast, LLMs were evaluated only under the PS+DoI setting, reflecting
their text-only input constraints. This design enables a systematic comparison across modalities: (i)
whether textualizing diagrams improves reasoning, (ii) whether incorporating schematics enhances
performance, and (iii) how visual versus textual representations differentially affect outcomes.

5
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Prompt 1:

PS + I

Prompt 2:

PS + I +DoI

Prompt 3:

PS + DoI

LLMsVLMs

Question Input

Five independent responses

Majority Response

Experts Manual Scoring [0/1]

Image (I)

Problem Statement (PS) Problem Statement (PS)

Image (I)

Description of the image (DoI) 

Problem Statement (PS)

Description of the image (DoI) 

Figure 3: Each problem is tested under 14 model–prompt
settings (three strategies × three VLMs, plus PS+DoI ×
five LLMs). For each setting, five responses are generated,
majority-voted, and scored by experts with binary labels (1
= correct, 0 = incorrect)

Majority Voting. To mitigate ran-
dom variability in the model’s out-
put, we adopt a robust evaluation
protocol. For each problem and
prompt strategy, we generated five in-
dependent responses. The final an-
swer was then determined using a
majority-vote mechanism, which was
implemented using the DeepSeek-
V3-0324 (SiliconCloud, 2025) API.
This helps to ensure the reliability of
our results.

Human Evaluation. The main-
stream approach in recent work
for evaluation is to use LLMs-as-
Judge (Li et al., 2025a). Our pilot
study tested on the Qwen-plus (Al-
ibaba Cloud, 2025a) API on 200 sam-
ple problems showed that automated
grading achieved an 83% agreement
with expert judgments. Despite this
encouraging result, we ultimately
chose to rely on manual evaluation
by human experts for the full dataset,
given its manageable size and the im-
portance of performing detailed error analyses that automated systems currently cannot provide with
sufficient reliability.

For the human evaluation, the DoI annotation expert team collectively examined each model-
generated response across all 1,065 problems. The evaluation proceeded in two stages: first, verify-
ing whether the reasoning process followed a logically valid sequence of steps, and second, checking
whether the final answer was correct. A response was awarded a score of 1 only if both criteria were
satisfied; otherwise, it received a score of 0. In cases where decisions were difficult or the outcome
was ambiguous, the evaluators engaged in discussion until consensus was reached. This process not
only provided high-quality ground truth labels but also enabled the identification of systematic error
patterns. The overall model performance is reported using Accuracy.

0 10 20 30 40 50 60
Final Accuracy Rates (%)

Qwen-plus_PS+DoI
Deepseek_PS+DoI

Doubao_PS+DoI
Doubao_PS+I+DoI

Doubao_PS+I
GPT-oss-120b_PS+DoI

Qwen-VL_PS+I+DoI
Qwen-VL_PS+DoI

Qwen-VL_PS+I
GPT-4o_PS+DoI

GPT-4o_PS+I+DoI
Llama-70B_PS+DoI

GPT-4o_PS+I
GPT-3.5_PS+DoI

Models
56.6

52.4
48.5

47.9
40.0

39.0
16.2

15.6
14.6

11.5
9.4
9.1

7.2
1.0

Figure 4: Accuracy for each evaluated model with different prompting strategies.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.3 RESULTS

We report results for all compared foundation models with different prompting strategies for our
proposed benchmark dataset SoM-1K in Figure 4. We have the following observations: (1) The
best-performing model, Qwen-plus achieved an accuracy of 56.6% using the PS+DoI prompt strat-
egy, while GPT-3.5 scored the lowest at 1.0%. The observed low ratings highlight the significant
challenges that current foundation models face when addressing engineering problems. (2) The
top-performing models were Qwen-plus (56.6%), Deepseek-R1 (52.4%), and Doubao (48.5%),
all of which achieved their best results using the PS+DoI prompting strategy. It is also interest-
ing to note that, for VLMs like Doubao and GPT-4o, including an image in the prompt (PS+I or
PS+DoI+I) barely improves performance compared to the text-only PS+DoI prompt. (3) With the
exception of Doubao, text-only reasoning models (Qwen-plus, DeepSeek-R1, and GPT-oss-120b)
generally outperformed the VLMs (Qwen-VL and GPT-4o) evaluated in this work. (4) Among
open-source models, larger LLMs generally perform better: DeepSeek-R1 (671B) achieves 52.4%
accuracy, GPT-oss (120B) 39.0%, and Llama (70B) only 9.1%.

These findings indicate (1) VLMs’ limited capabilities in interpreting and integrating domain-
specific information from schematic diagrams, suggesting the need for further advancement; and
(2) the relative effectiveness of well-structured textual information for aiding foundation models’
complex problem-solving, especially for larger models.

5 DISCUSSIONS

5.1 WHAT TYPES OF ERRORS CAN FOUNDATION MODELS MAKE IN SOM-1K?

To gain deeper insights into the capabilities of foundation models in solving mechanics problems,
we engaged human experts to examine 100 problems that none of the models were able to solve.
Following a thorough manual review, we developed a comprehensive error taxonomy, illustrated
with examples in Figure 5. Specifically, we classify the errors into four distinct categories:

• Type K (Knowledge-based Error): Failing to apply correct domain knowledge, e.g., mis-
judging internal loads in a structure.

• Type C (Calculation Error): Correct formulas used but numerical results are wrong.
• Type E (Extraction Error): Failing to interpret or extract information from the prompts,

producing misaligned answers.
• Type O (Other Error): Incomplete solutions or responses that entirely miss the problem.

K (Knowledge-based Error) C (Calculation Error)
Response:
• Taking moments about point D:

VB · a− P2 · b = 0

Response:
• It is calculated that:

d ≥
(
16000

30π

)1/3

≈ 2.123 cm

Comment:
The sign for P2 should be positive and the correct
equation should be: VB · a+ P2 · b = 0

Comment:
The result is miscalculated and the correct answer
should be:

d ≥
(

16

30000π

)1/3

≈ 55.4 mm

E (Extraction Error) O (Other Error)
PS: Draw the moment diagrams for the beam using
the method of superposition.
Response:
• 2. Segment 5 < x ≤ 20 (span A to B)
• Bending moment formula: M = −525+15s− s3

18
• Parameter definition: s = x− 5

Response:
• 1. Primary Structure:[. . . ]
• 2. Redundant Structure:[. . . ]
• Feel free to ask if you have any specific questions

or need further clarification on this process.

End of the response.
Comment:
The method of superposition is not used.

Comment:
The final solution is not provided.

Figure 5: Description of the four error types.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Knowledge-based (K) and calculation (C) errors typically indicate that the model has grasped the
problem but faltered in recalling domain knowledge or performing arithmetic mistakes that could
potentially be mitigated through external tools, e.g., retrieval augmentation and computational sim-
ulations. In contrast, extraction (E) and other (O) errors demonstrate that the model either failed to
interpret the problem correctly or was unable to construct a coherent solution pathway. Such failures
point to a breakdown in comprehension and reasoning, directly constraining the model’s ability to
engage with mechanics problems.

For each problem among the 100 error cases, the annotation team manually reviewed the majority
response from each model and categorized it into one of four predefined error types (K, C, E, O).
The reviewers first examined whether the response contained a complete problem-solving process.
If the model either failed to provide a full solution or made no attempt to solve the problem, the
response was labeled as Type O. Otherwise, the reviewers carefully traced the solution from the
beginning, identified the earliest mistake, and assigned it to Type E, C, or K.

5.2 ERROR ANALYSES OF DIFFERENT FOUNDATION MODELS MAKE?

The distribution of error types for all evaluated models with different prompting strategies was then
computed as the percentage of responses in each category out of the 100 problems. These propor-
tions are reported in Figure 6 as Percentage. Because O and E represent the most severe error types,
we also report their combined proportion (O+E) to emphasize the overall prevalence of these critical
failures.
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M5: Doubao_PS+I
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M9: Qwen-VL_PS+I
M10: GPT-4o_PS+DoI
M11: GPT-4o_PS+I+DoI
M12: Llama-70B_PS+DoI
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Figure 6: The percentage of error types of each model among 100 questions that all models fail to
solve. (a) Type O, (b) Type E, (c) Type O+E, (d) legend, (e) Type C, (f) Type K.
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As shown in Figure 6, while all models failed on these 100 problems, their error distributions dif-
fered markedly. In particular, Figure 6(a–c) show that GPT-3.5, GPT-4o PS+I, Qwen-VL PS+I, and
Llama-70B exhibited a high proportion of Type O and Type E errors, with more than 39% of their
failures reflecting a fundamental misunderstanding of the problem. This pattern is consistent with
their lower overall accuracy in Figure 4. In contrast, Qwen-plus and DeepSeek-R1 demonstrated
substantially fewer critical errors (Type O+E error rates of 7% or less), which aligns with their
stronger overall performance. These results suggest that the latter models possess a more reliable
grasp of the underlying problem-solving logic.

Notably, under PS+I, Qwen-VL and Doubao show high Type E errors (34% and 19%) versus
Type O errors (5% and 1%), reflecting difficulties in extracting visual information. In contrast,
GPT-4o PS+I, GPT-3.5, and Llama-70B exhibit the opposite trend, with Type O errors dominating
within the O+E category, indicating challenges in reaching final solutions in this domain due to
limited capabilities.

Our earlier results demonstrated that incorporating DoI enhances the performance of VLMs. To
better understand the mechanism driving this improvement, we compared Doubao, Qwen-VL, and
GPT-4o under three prompting strategies. The results, summarized in Figure 6b, show that prompt-
ing with DoI markedly reduces the frequency of Type E errors. For instance, Doubao’s Type E
error rate dropped from 19% under PS+I to 3% under PS+DoI and 5% under PS+I+DoI. Similarly,
Qwen-VL’s Type E error rate decreased from 34% (PS+I) to 6% (PS+DoI) and 5% (PS+I+DoI),
while GPT-4o’s rate fell from 10% (PS+I) to 2.0% (PS+DoI) and 3.0% (PS+I+DoI). These substan-
tial reductions highlight DoI’s effectiveness in mitigating misinterpretations of visual information,
thereby supporting more accurate problem-solving.

As illustrated in Figure 6e, arithmetic errors (Type C) still occur, demonstrating that models may
miscompute even when the correct formula is used. Among all four error types, Type K errors are
the most frequent (Figure 6f), reflecting gaps in engineering knowledge that could be mitigated via
supervised fine-tuning on domain-specific data.

5.3 CAN FOUNDATION MODELS PROVIDE BETTER SOLUTIONS THAN TEXTBOOKS?

While foundation models generally exhibit limited capabilities in solving SoM problems, we find
that interestingly, foundation models can sometimes generate better answers. As shown in Figure 8
(Appendix B), the correct solutions generated by Qwen-plus is not only correct but also more de-
tailed and pedagogically structured than the textbook solution. This highlights the potential of foun-
dation models in educational applications, where they can provide richer and more comprehensive
explanations for students, particularly for problems requiring multi-step derivations.

6 CONCLUSION

This study introduced SoM-1K, a novel multimodal benchmark for evaluating the problem-solving
abilities of foundation models in strength of materials. Unlike previous text-only benchmarks, SoM-
1K uses a combination of text and schematic diagrams to provide a more realistic and rigorous eval-
uation. Our findings reveal that even the most advanced LLMs and VLMs struggle with these com-
plex, domain-specific engineering problems, showing significant limitations in their reasoning ca-
pabilities. We also demonstrated that using DoI as a prompting strategy dramatically improves per-
formance by reducing misinterpretation errors, suggesting that for current models, well-structured
textual input is a more reliable foundation for complex reasoning than raw visual data.

Future research should focus on expanding the scope of multimodal benchmarks beyond the current
limitations of SoM-1K to include more advanced engineering domains like structural dynamics,
plasticity, and nonlinear mechanics. The persistent challenges observed in diagram-based reasoning
and calculation errors highlight a critical need for future models to enhance their multimodal rea-
soning capabilities and to integrate more effectively with specialized tools. This will enable them
not only to solve complex problems but also to reliably generate accurate scientific diagrams, such
as internal force diagrams or deformation shapes, which remains a significant hurdle for current
foundation models.
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A DATASET EXAMPLES

To illustrate the diversity of SoM-1K, Figure 7 shows one representative problem from each dataset
category.
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Axial loading (bars)

F

C
1

32 45°

The truss shown in the
figure is subjected to a
vertical load F at node
C, where rod 3 is a rigid
rod, and the length and
tensile and compressive
stiffness EA of rods 1

and 2 are the same. Find the internal force of
each rod.

Torsion (shafts)

0.4  kN·m 0.4  kN·m 0.8  kN·m

1 m 1.6 m

A circular shaft with a
diameter of 55mm is
loaded as shown in the
figure, and its allowable
shear stress is [τ ] =
30MPa. Try to draw the

torque diagram of the shaft and check its tor-
sional strength.

Bending-I (beams)

6  kN·m
4 kN/m

3 m 1.5 m

Draw the shear and mo-
ment diagrams for the
beam.

Bending-II (frames)

q

2qa²

2a

2a

Draw the axial force,
shear force and bending
moment diagrams of the
rigid frame shown.

Statically determinate

B

2 m

4 m

A

C

q

Both beam AB and rod
CB have circular cross-
sections and are made
of the same material.
The modulus of elastic-
ity is E = 200GPa,
the allowable stress is

[σ] = 160MPa, and the diameter of rod CB
is d = 20mm. Under the load shown in the fig-
ure, the measured axial elongation of rod CB is
∆lCB = 0.5mm. Find the value of the load q
and the safe diameter of beam AB.

Statically indeterminate

B

l

a

DC

1 2

F
a

In the structure shown,
the beam BD is a rigid
beam, and rods 1 and
2 are made of the same
material. The cross-
sectional areas are both
A = 300mm2, the al-

lowable stress is [σ] = 160MPa, and the verti-
cal load at point D is F = 50 kN. Check the
strength of rods 1 and 2.

Integrated tasks

30° 30°

45°45°A B

C

D E

4 m

2 m

100

160

σ/MPa

ε

a

b

aE

bE

( b )( a )

O

30° 30°

45°45°A B

C

D E

4 m

2 m

( c )

F

A planar truss structure consists
of four circular-section straight
bars made of the same material.
Among them, bar AC and bar
BC have the same length and a
diameter of d1 = 20mm, while
bar CD and bar CE have the
same length and a diameter of
d2 = 40mm. The design di-
mensions are shown in Figure

(a). The stress-strain curve of each bar’s material is shown in Figure (b) (piecewise linear), and the
elastic moduli of segments Oa and ab are Ea = 200GPa and Eb = 50GPa respectively. During
assembly, it is found that both bar AC and bar BC are shorter than the design dimension by 0.3mm.
Find the internal forces of each bar after assembly is completed;
After assembly is completed, apply a vertically downward force F = 90kN at point C, as shown
in Figure (c), find the internal forces of each bar.

Figure 7: Illustrative examples of one representative problem from each category in the SoM-1K
dataset.
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B ADDITIONAL TABLES AND FIGURES

Problem statement (PS)
A simply supported beam with a circular
tube cross-section is loaded as shown in the
figure. It is known that d/D = 7/10, and
the allowable stress of the material [σ] =
160MPa. Try to find the required outer di-
ameter D and inner diameter d.

Image (I)

20kN/m
20kN

1.5m 1.5m

Ground Truth (GT)
The maximum bending moment of the circular tube section:

Mmax =
pl

4
+

ql2

8
= 37.5 kN·m

From the maximum stress σmax = Mmax
W ≤ [σ], we get:

D3 =
32Mmax

π(1− α4)[σ]

Solving these equations, we obtain:

D = 147mm, d = 103mm

Qwen-plus Response (better than GT)
1. Force Analysis of the Beam
- Support Reactions
Due to the symmetric load, the support reactions are RA = RB = 80

2 = 40 kN.
- Maximum Bending Moment
The maximum bending moment occurs at the midpoint of the beam, caused by the com-
bined action of the uniformly distributed load and the concentrated force.

2. Bending Stress Condition
- Bending Stress Formula

σmax =
Mmax

Wz
≤ [σ]

Here, the allowable stress [σ] = 160MPa = 160N/mm2. Therefore:

Wz ≥ Mmax

[σ]
=

37.5× 106

160
= 234, 375mm3

3. Calculation of Section Modulus for Hollow Circular Section
- Section Modulus for Bending

Wz =
π(D4 − d4)

32D

Given d
D = 7

10 =⇒ d = 0.7D, substituting this into the formula gives:

Wz =
πD4(1− 0.74)

32D
=

πD3 × 0.7599

32
≈ 0.0746D3

- Solving for D
Let 0.0746D3 ≥ 234, 375, then:

D3 ≥ 234, 375

0.0746
≈ 3, 141, 593 =⇒ D ≥ 3

√
3, 141, 593 ≈ 146.5mm

- Solving for d
d = 0.7D = 0.7× 146.5 ≈ 102.55mm

Figure 8: Comparison between solutions generated by foundation models and textbook ground truth.
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Table 2: Overview of evaluated foundation models, including source availability, release year,
modality and size.

Model Full Name Open Source Team Year Modality Size
Doubao (ByteDance, 2025) Doubao-1.5-thinking-vision-pro-250428 Closed ByteDance 2025 VLM N/A
Qwen-plus (Alibaba Cloud, 2025a) Qwen-plus-2025-07-28 Closed Alibaba Cloud 2025 LLM N/A
Qwen-VL (Alibaba Cloud, 2025b) Qwen-VL-Max-2025-04-08 Closed Alibaba Cloud 2025 VLM N/A
Deepseek-R1 (DeepSeek, 2025) Deepseek-R1-0528 Open DeepSeek 2025 LLM 671B
GPT-oss-120b (OpenAI, 2025) GPT-oss-120b Open OpenAI 2025 LLM 120B
GPT-4o (OpenAI, 2024) GPT-4o-2024-08-06 Closed OpenAI 2024 VLM N/A
GPT-3.5 (OpenAI, 2023) GPT-3.5-turbo-0125 Closed OpenAI 2023 LLM N/A
Llama-70B (Meta AI, 2024) Llama-3.3-70B-instruct Open Meta AI 2024 LLM 70B

C STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we employed LLMs for grammar correction and language
refinement to enhance clarity and readability. All generated text was thoroughly reviewed, edited,
and, when necessary, substantially revised by the authors, who retain full responsibility for the final
content.

D SUPPLEMENTARY MATERIALS

We provide the problem statements (PS), images (with references), and ground truth (GT) answers
for all 1,065 annotated problems in a ZIP file, uploaded as Supplementary Material alongside this
paper.
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