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Abstract
Wildfires are escalating in frequency and severity, particularly in high-risk regions1
such as Alberta, Canada, where traditional detection systems are becoming increas-2
ingly insufficient. Existing approaches often rely on centralized control or overlook3
key constraints, such as partial observability, terrain complexity, and communication4
limitations. To address this gap, we propose a fully decentralized multi-agent re-5
inforcement learning (MARL) framework for wildfire detection using UAV swarms.6
Our method integrates real geographic data into a grid-based simulator and employs7
intrinsic-motivation-enhanced Independent Proximal Policy Optimization (IPPO), al-8
lowing each agent to learn independently and adaptively. This design is well-suited9
for large-scale, unstructured environments where centralized coordination is infeasible.10
Agents learn to balance exploration, fire detection, and risk mitigation through a hybrid11
reward scheme. Experimental results in simulation demonstrate the effectiveness of our12
method for early and reliable wildfire detection in large, remote landscapes. This work13
lays the foundation for scalable, robust, and communication-efficient UAV swarm sys-14
tems for wildfire monitoring, with significant potential to reduce ecological, economic,15
and human costs.16

1 Introduction17

Wildfires have surged in frequency and intensity over the past few decades. Jolly et al. (2015) found18
that from 1979 to 2013, the length of fire-weather seasons increased by nearly 19%. They also found19
that the area globally affected by these long fire seasons more than doubled (Jolly et al., 2015). This20
trend is particularly prominent in Alberta, Canada. Whitman et al. (2022) found that in Alberta, from21
1970 to 2019, the number of large wildfires, the area burned, as well as the size of fires increased22
significantly. During the 2023 Wildfire season, over 2.2 million hectares were burned (Beverly &23
Schroeder, 2025). This represented an increase of nearly 63% in total area burned from the prior24
record in 1981, amounting to ~4% of Canada’s total forest cover (Beverly & Schroeder, 2025; Jain25
et al., 2024). Research from Hanes et al. (2019) has shown that in Canada since 1959, the number26
of large fires has increased significantly, the fire season has become longer, and western Canada, in27
particular, is experiencing an increase in the area burned and the number of large fires.28

The social impact of such events can not be understated; over 200 communities and 232,000 people29
were evacuated across Canada during the 2023 wildfire season (Jain et al., 2024). The dramatic30
increase in wildfires strained existing fire suppression resources, with additional support being re-31
quired from international partners (Jain et al., 2024). Additionally, the long-term health impacts on32
the public are felt far downwind as smoke plumes are carried far distances (Jain et al., 2024; Zhang33
et al., 2025a). Research from Zhang et al. (2025a) shows that fine particulate matter exposure from34
wildfires poses a greater risk than other similarly sized particles and also suggests that air quality and35
policy measures be updated to reflect this (Zhang et al., 2025b). Findings by Wen & Burke (2022)36
indicate that higher daily smoke exposure attributed to wildfires can lead to lower student test scores,37
and Nan et al. (2025) show that wildfire disasters can induce trauma and impact cognitive decision-38
making. A study conducted in the United States by Dennin et al. (2025) found that communities39
already socially vulnerable face a disproportionate number of adverse effects from wildfires.40
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Emissions created by the 2023 Canadian wildfires alone amount to similar total annual emissions41
created by large developed nations (Byrne et al., 2024). While 2023 was an abnormally warm and42
dry year, Byrne et al. (2024) suggest that by the 2050s, such ranges will be typical, which in turn43
creates a positive feedback loop where intense wildfires accelerate warming trends, creating more44
wildfires (Liu et al., 2019).45

However, despite the scale and severity of wildfires, existing detection methods struggle to keep46
pace with them. Satellite-based sensing can take time to process data and can struggle to keep up47
with the dynamic, fast-moving natures of wildfires, while manned aircraft for detection have high48
associated costs1.49

Unmanned aerial vehicles (UAVs) can help fill this detection gap. Such UAV systems can be small50
enough to be deployed to remote regions of Canada and provide valuable data. Coordinated swarms51
of UAVs can provide real-time coverage and adapt to emerging wildfire behavior.52

Coordinating these drone systems over a dynamic and partially observable landscape is complex,53
and factors including limited communication range, energy consumption, and the scalability of co-54
ordination protocols all pose significant challenges (Yanmaz et al., 2018).55

Multi-agent reinforcement Learning (MARL) provides a way to learn policies that can balance ex-56
ploration, detection, and safety from data (Sutton et al., 1998; Tan, 1993). In this work, we show the57
first steps towards using MARL in a simulated setting to detect wildfires.58

This work proposes wildfire detection as a cooperative MARL problem over Alberta’s terrain fea-59
tures. We apply Independent Proximal Policy Optimization (IPPO) (de Witt et al., 2020), allowing60
each UAV to learn with only local observations.61

2 Related Work62

2.1 UAV-based wildfire monitoring63

UAV usage for real-time fire detection and mapping is a growing research field. Bailon-Ruiz et al.64
(2022) deployed a fleet of UAVs equipped with thermal and RGB cameras to track fire bound-65
aries in near real-time. Hopkins (2024) trained UAV teams via MARL in a simulated 3D wildfire66
response environment, focusing on navigation and hotspot identification. Recent work by Howard67
et al. (2024) on drone coordination leveraged state machines and Godot to create a highly customized68
virtual environment for drone simulation, citing that preexisting approaches lack flexibility.69

Pham et al. (2018) discussed distributed coverage schemes for UAV swarms to minimize the overlaps70
between the field of view for each agent. The FireDronesRL project2 explored a similar 2D approach71
to the one we detail in this work but in an entirely simulated world. Related simulation frameworks72
for disaster scenarios, such as DisasterReliefBot-CoppeliaSim3 focus on urban disaster recovery and73
detecting fire hazards. Tools such as MODIFLY by Cofield et al. (2025) provide an enhanced suite74
of tools for 3D UAV simulation, considering factors such as dynamic communication modeling.75
Ding et al. (2023) benchmarked cooperative MARL algorithms on drone routing tasks. More recent76
work by Zhao et al. (2025) augments multi-UAV MARL with noise-resilient communication and77
attention mechanisms to improve robustness under packet loss.78

Earlier work by Seraj et al. (2021) employed heterogeneous teams in randomly generated envi-79
ronments. The end user can specify specific parameters, such as the number of homes, trees, and80
hospitals. However, the approach outlined in Seraj et al. (2021) is incompatible, mainly with modern81
MARL frameworks like PettingZoo (Terry et al., 2021).82

1https://www.gao.gov/products/gao-25-108161
2https://github.com/yunijeong5/FireDronesRL
3https://github.com/amnotme/DisasterReliefBot-CoppeliaSim
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2.2 Multi-Agent RL algorithms83

For cooperative MARL robotics, methods can broadly fall into two categories: centralized training84
for decentralized execution (CTDE) and decentralized training and execution (DTE) (Amato, 2024).85
Sunehag et al. (2017) introduced value decomposition methods such as VDN, and Rashid et al.86
(2018) later proposed QMIX.87

Actor–critic methods like MADDPG (Lowe et al., 2017) and counterfactual-baseline COMA (Fo-88
erster et al., 2024) extend CTDE to continuous control. Independent learners, including IQL89
(Kostrikov et al., 2021) and IPPO (de Witt et al., 2020), use a decentralized critic, making these90
approaches more complex and realistic. Lacking centralized control makes them more robust in91
environments with limited communication. Huang et al. (2016) also found that under decentral-92
ized learning, agents can learn and develop communication protocols to solve coordination tasks in93
partially observable settings.94

Domain-specific adaptations of MARL include resource allocation in UAV networks (Cui et al.,95
2020) and comparisons of short-term vs. long–term coordination (Qin & Pournaras, 2024). Our96
work builds upon prior approaches by applying IPPO to train fully decentralized, communication-97
light UAV policies for wildfire detection over terrain in Alberta, Canada.98

3 Methods99

3.1 System Overview100

This work introduces a novel approach to wildfire monitoring by creating a simulation integrating101
real-world geographic data with IPPO online MARL.102

We obtained OpenStreetMap (OSM) data (OpenStreetMap contributors, 2017) via the API and con-103
verted the real-world geographic coordinates into a discretized grid-based simulation space while104
preserving spatial relationships and feature densities. This conversion enables our experimentation105
to be conducted in a 2D grid world environment while preserving the geographic features of the106
locations. We then simulated wildfires on top of the grid world features. This method enabled our107
UAV agents to learn monitoring strategies roughly based on real-world geographic data.108

For our work, we selected two cities in Alberta, Canada, that have been affected by severe wildfires:109
Fort McMurray4 (Mamuji & Rozdilsky, 2018) and Athabasca5. The cropped OSM maps during110
various processing steps can be found in Appendix A and B.111

3.2 Wildfire Simulation Environment112

The wildfire scenarios and modeling were implemented using a probabilistic cellular automa-113
ton (CA) fire–spread model in the grid world (see Appendix C). Each cell in the grid world114
s ∈ {EMPTY,TREE, . . . } has a terrain-specific vulnerability βs and finite burn duration. At each115
time step, any burnable neighbor ignites with the below probability:116

pspread = min
(
1, pf βs

[
1 + (u·w)wstr

])
, (1)

where pf is the base spread probability, u the unit vector toward the burning neighbor, and w the117
wind vector (Ramadan, 2024; Zadeh et al., 2025). Burnt cells may later regrow; additional details118
on this can be found in Appendix C. The CA model provides us a simple yet realistic way to test fire119
dynamics.120

4https://earthobservatory.nasa.gov/images/88039/fort-mcmurray-burn-scar
5https://globalnews.ca/news/11169138/athabasca-county-boyle-wildfire-may-2025
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3.3 UAV Agent Design121

Each UAV agent operates with partial observability of the environment through each agent’s local122
view. At each timestep t, an agent i receives the following observation tuple:123

Oi = {Vlocal, Pself , Pothers, Iglobal} (2)

The agent’s local view Vlocal is a (2r + 1) × (2r + 1) grid centered on the agent’s position, where124
r is the view range. This view is encoded as a multi-channel tensor representing different terrain125
features (trees, buildings, natural areas, fires) through one-hot encoding.126

Agents navigate using a discrete action space A ∈ {STAY,UP,DOWN,LEFT,RIGHT}, repre-127
senting possible movement directions in the grid. Constraints are included to ensure agents remain128
within the operational area. Additional information on the action space can be found in Appendix D.129

The agent design approach balances the need for local fire detection and broader environmental130
and situational awareness by using local and global information. Mathematical definitions of the131
observation and action spaces can be found in Appendix D, and the complete reward computation132
can be found in Appendix E.133

3.4 Independent Proximal Policy Optimization (IPPO)134

Our MARL approach utilizes IPPO, where each UAV agent learns independently using its own PPO135
algorithm (Schulman et al., 2017) while sharing the same environment. The reward structure com-136
bines both extrinsic and intrinsic motivations to encourage effective fire monitoring and exploration:137

At each time step t, each agent i receives an instantaneous reward138

Rt
total =

N∑
i=1

(
Rext

i +Rint
i

)
. (3)

The discounted return for agent i is then139

Gt
i =

T−t∑
k=0

γk Rt+k
i , (4)

Where N is the number of agents, Rext
i is the extrinsic reward for fire detection and monitoring, and140

Rint
i is the intrinsic reward for agent i. See Appendix F for the full update schedule and clipped-PPO141

objective.142

Our approach builds on the intrinsically motivated reinforcement learning framework first intro-143
duced by Chentanez et al. (2004). Early work on automatically discovering intrinsic rewards under144
constraints was explored in robotic settings by Uchibe & Doya (2008). In this work, we hand-specify145
strategic–level terms that align with the four roles introduced in Sec. ??. The instantaneous intrinsic146
reward is decomposed into five components; see Eq. (12) for the full definition.147

The hybrid signal presented to IPPO is the convex combination148

Rhybrid
i (t) = λ1 R

ext
i (t) + λ2 R

int
i (t), (λ1, λ2) = (0.7, 0.3), λ1 + λ2 = 1. (5)

Key scalars α, β, and the mixture weights γ balance detection, safety, and exploration; see the149
compact summary in Appendix F.150

The implementation leverages the AgileRL framework by Ustaran-Anderegg et al. (2025) for ef-151
ficient hyperparameter optimization, with each agent maintaining independent neural networks for152
both policy and value functions. Details on the architectures can be seen in Appendix H.153

The full coefficient grid (Table 2), strategy profiles, and derivative coupling derivations supporting154
Eq. (26) are provided in Appendix G.155
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4 Results156

We evaluated the system across the real-world environments of Fort McMurray and Athabascam157
focusing on detection performance, coordination efficiency, and strategic behavior under varying158
terrain conditions.159

Figure 1: Fort McMurray: Risk-Focused Strategic Monitoring (Episode 10). Top-left: Agent
strategy assignment over time. Bottom-left: coordination and strategic reward evolution. Top-
middle: fire coverage and prevention metrics (null in this case due to no fires). Top-right: overall
mathematical score evolution. Bottom-middle: final agent grid positions and fire risk map. Summary
(right): final reward, coordination, risk-awareness configuration, and performance metrics.

Figure 2: Athabasca Strategic Showcase: Exploration-Focused Configuration Analysis. Top-
left: distribution of overall coverage efficiency. Top-right: coordination score distribution. Bottom-
left: exploration strategy dominance ratio. Bottom-right: final overall performance score. Red
dashed lines indicate mean values across trials.
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Figure 3: Athabasca Strategic Showcase (Episode 10): Full Trajectory Breakdown. Top-left:
increasing coverage efficiency over the episode. Top-middle: fixed role assignment across time.
Top-right: agent coordination progression. Bottom-left: overall score decomposition. Bottom-
middle: strategy dominance indicator. Bottom-right: per-agent intrinsic reward evolution.

5 Discussion160

Our work showcases an early stage system for decentralized wildfire monitoring using UAV swarms161
trained via MARL. Our simulation-based results demonstrate the feasibility of combining intrinsic162
motivation, role-driven behavior, and decentralized decision-making to improve wildfire detection163
across complex, partially observable landscapes.164

While we have validated core mechanisms such as coverage efficiency, emergent coordination, and165
responsiveness to fire risk within a structured simulation, this study should be viewed as a proof-of-166
concept rather than a final solution. Several simplifying assumptions remain in place, including ide-167
alized UAV dynamics, perfect sensing within cells, and no explicit modeling of fire spread physics168
or wind. These choices enabled tractable learning but limit real-world fidelity.169

That said, the framework provides a valuable sandbox for rapidly iterating on MARL-based strate-170
gies for wildfire responses. Our results demonstrate that decentralized MARL, guided by intrinsic171
motivation and applied in a geographically realistic simulator, can effectively enable UAVs to detect172
wildfires under real-world constraints, including limited communication, partial observability, and173
terrain complexity.174

Across both Fort McMurray and Athabasca environments, our method achieved consistent improve-175
ments in coverage efficiency, coordination, and early detection timing compared to baseline or176
strategy-agnostic setups. The strategic optimizer was particularly beneficial in reducing overlap177
between agents and improving temporal coverage diversity, as evidenced by the analyses of Episode178
10 and the distributional shifts across 50-episode trials (see Figures 3 and 2).179

Agents were able to learn spatially diverse and context-aware behaviors, even without centralized180
coordination or access to global state. The intrinsic reward components were essential in enabling181
this. The reward decomposition and hybrid formulation enabled agents to resolve trade-offs between182
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exploration and responsiveness, allowing them to adapt flexibly to fire presence and environmental183
layout (Figure 1).184

We also observed that performance gains varied by environment type: in Athabasca, the exploration-185
focused strategy yielded higher mean coverage and lower risk, while in Fort McMurray, coordination186
and role-switching improved area monitoring near fire-prone river corridors. These findings support187
the claim that adaptive, localized strategy weighting can further boost robustness across terrain types.188

6 Conclusion and Future Work189

The strategic wildfire monitoring system represents a significant advancement in MARL for en-190
vironmental monitoring applications and situational awareness. The integration of intrinsic reward191
mechanisms with strategic role specialization demonstrates quantifiable improvements across all key192
performance metrics. The modular architecture enables flexible deployment across various wildfire193
scenarios while maintaining computational efficiency and scalability.194

The system’s ability to achieve emergent coordination without explicit communication, combined195
with adaptive strategy selection and risk-aware exploration, positions it as a robust solution for real-196
world wildfire monitoring applications.197

We expect to expand our research in the future to leverage CoppeliaSim6 to create a 3D environment198
based on real-world terrain data to train our UAVs in using MARL. During this period, we aim to199
test various communication protocols in a simulated setting similar to Arnab et al. (2023). After that,200
we hope to test our MARL implementation on small-scale real drones in a controlled environment.201
Currently, we only use UAVs with the intent of detecting fires; coordination with agents designed202
to extinguish such fires would be an important next step as well. Such an approach would require203
different agent designs, as action agents designed to extinguish fires would need to carry a large204
payload of water or fire retardant.205

Ongoing research into using large language models for robotic control in unpredictable environ-206
ments (Mon-Williams et al., 2025; 202, 2025) provides an interesting avenue for future research.207
Such foundation models could aid in dynamic wildfire-like settings, and large vision models in208
robots have been explored to support complex tasks, such as surgery (Min et al., 2025). Models209
such as Gemini have demonstrated strong spatial awareness and visual reasoning, and could be210
utilized to enhance UAV situational awareness (Gibney, 2025).211

Broader Impact Statement212

Our MARL UAV-based wildfire detection system shows promise to enable earlier and more reliable213
identification of wildfires in vast, remote regions. By translating our work to real-world drone214
systems, we hope to support faster response times and reduce ecological, economic, and human215
costs.216

6https://www.coppeliarobotics.com/
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A OSM Map to Grid Concersoon217

Figure 4: Athabasca, Alberta – OSM Grid-Map Alignment Validation. Top-left: Raw Open-
StreetMap (OSM) rendering of Athabasca, illustrating the urban layout, road network, surround-
ing forest areas, and the river. Top-right: Enhanced OSM feature map rendered as a 100×100
grid. Feature labels include trees/forest (green), roads (yellow), buildings (red), water (blue), and
unused (grey). Bottom-left: Agent’s internal environment state with cell-wise classification of fea-
tures. Summary includes: 4651 forest/tree cells, 1311 roads, 316 water bodies, and 122 buildings.
Bottom-right: Feature overlay map with the agent’s interpreted grid overlaid on the OSM back-
ground. Agent 2’s current location is indicated; transparency shows alignment quality. The legend
defines all color encodings including the agent’s starting position.
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B OSM Map to Grid fort mac218

Figure 5: Fort McMurray, Alberta – OSM Grid-Map Alignment Validation. Top-left: Actual Open-
StreetMap (OSM) rendering of Fort McMurray, showing the river system, urban infrastructure, and
surrounding forested terrain. Top-right: 100×100 grid-based enhanced OSM feature map with
cells labeled as trees/forest (green), roads (yellow), buildings (red), water bodies (blue), and un-
used (grey). Bottom-left: Agent’s internal environment state with feature class counts (trees/forest:
4425, roads: 1594, water: 310, buildings: 71), providing a structured grid representation of the
landscape. Bottom-right: Feature overlay showing the agent’s interpreted grid atop the actual OSM
map. Agent 2’s current position is marked; transparency indicates grid alignment with real-world
features. A legend defines all color codings, including the agent start position (black border).
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C Fire Spread Cellular Automaton219

This section summarizes the implementation of the fire spread CA approach. We simulated fire220
propagation on a 2D grid with synchronized updates.221

C.1 Cell States and Parameters222

Each cell si,j ∈ {EMPTY,TREE,BUILDING,NATURAL,LANDUSE,FIRE,BURNT}.223
Non-burnable states (EMPTY, FIRE, BURNT) have zero vulnerability, burn duration, and regrowth224
scaling. All other per-state constants (vulnerability βs, burn duration ds, and regrowth scaling γs)225
are summarized in Table 1.226

Table 1: State-specific parameters: vulnerability, burn duration (in units of d0), and regrowth scaling.

Cell state Vulnerability βs Burn duration ds Regrowth scaling γs

TREE 1.0 d0 0.5
BUILDING 0.7 1.5 d0 0.1
NATURAL 0.5 0.7 d0 1.5
LANDUSE 0.3 0.5 d0 2.0

C.2 Fire Spread and Duration227

At each step t→ t+ 1, a burnable cell with at least one burning neighbor ignites with228

pspread = min
(
1, pf βs

[
1 + (u·w)wstr

])
(6)

Where pf is the base spread probability, u the unit vector toward the burning neighbor, w the unit229
wind vector, and wstr its strength. Upon ignition, the burn timer is set to τ = ds (Table 1). When230
τ ≤ 0, the cell becomes BURNT.231

Each BURNT cell may regrow each step with base probability pg scaled by γs (Table 1) if it has232
enough neighbors of the corresponding type (1 BUILDING neighbor to regrow BUILDING, or 2 of233
TREE, NATURAL, or LANDUSE to regrow those); otherwise it defaults to NATURAL.234

C.3 Update Algorithm235

Algorithm 1 Wildfire CA Step (WildfireEnv.step())

1: for all cells (i, j) in parallel do si,j(t) FIRE
2: τi,j ← τi,j − 1
3: if τi,j ≤ 0 then si,j ← BURNT
4: end ifTREE, BUILDING, NATURAL, LANDUSE
5: if any neighbor is FIRE then
6: compute pspread
7: if rand< pspread then
8: si,j ← FIRE; τi,j ← dsi,j
9: end if

10: end ifBURNT
11: sample regrowth EMPTY
12: no regrowth
13: end for

This captures wind-driven anisotropy, flammability, terrain-dependent burn durations, and236
neighborhood-based regrowth, all in an O(1) update per cell.237
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D Observation and Action Specifications238

Observation Encoding239

For each agent i at time t, the observation is240

ot
i =

(
Lt
i, p

t
i, g

t
)
, (7)

with241

Lt
i(u, v) = grid

(
xt
i + u, yti + v

)
, (u, v) ∈ [−R,R]2,

pt
i =

1

G− 1
(xt

i, y
t
i)

⊤,

gt =
(
t/Tmax, F

t/G2
)⊤

.

(8)

In our implementation this corresponds to a Gym (Towers et al., 2024) Dict space with three242
entries:243

Local view Lt
i: a one-hot tensor of shape (2r + 1) × (2r + 1) × C (with C = 7 terrain channels)244

that encodes each cell in the agent’s view-range r as a binary feature vector (empty, tree, building,245
natural, fire, burnt, landuse). This multi-channel representation mimics real UAV sensor outputs and246
feeds directly into the CNN encoder.247

Normalized position pt
i: a Box(0, 1, (2, ),float32) vector containing the agent’s (x, y) scaled248

by 1/(G − 1). This two-layer MLP input allows learning of positional biases and edge-avoidance249
behavior.250

Global features gt: a Box(0, 1, (2, ),float32) vector whose first component is the fraction of251
elapsed steps t/Tmax and whose second is the fire density F t/G2. A separate MLP embeds temporal252
progress and overall environment severity.253

Together, these three modalities are encoded via specialized heads (CNN for L, MLPs for p and g),254
then concatenated into a single feature vector for downstream actor–critic.255

Action Space256

Each agent selects257
ati ∈ {0, 1, 2, 3, 4}. (9)

which maps to258

∆(a) =



(0, 0), a = 0,

(−1, 0), a = 1,

(1, 0), a = 2,

(0,−1), a = 3,

(0, 1), a = 4.

(10)

and updates position via259

(xt+1
i , yt+1

i ) = clip[0,G−1]2
(
(xt

i, y
t
i) + ∆(ati)

)
. (11)

This is implemented in Gym as a Discrete(5) space. Any move outside the grid is restricted by clip.260
When mutiple agents chose to move to the same target cell, a random tie breaker allows one agent261
to move to the cell and others remain in place.262
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E Reward Specification263

Intrinsic Reward264

The intrinsic signal fed to PPO is the same as Eq. (12):265

Rint
i (t) = γ1Ri,1(t) + γ2Ri,2(t) + γ3Ri,3(t) + γ4Ri,4(t) + γ5Ri,5(t), (12)

with mixture weights γ = (0.15, 0.10, 0.08, 0.20, 0.40) (see Table 2). The five components are266

Ri,1(t) = α
∑

(x,y)∈Vi(t)

1
[
G(x, y, t) = FIRE ∧ G(x, y, t−1) ̸= FIRE

]
, (detection) (13)

Ri,2(t) = β 1
[
(xi, yi) ∈ FIRE

]
, (safety penalty) (14)

Ri,3(t) = ξ
∑
c∈Vi

imp(c)

Vc(t) + 1
, (exploration) (15)

Ri,4(t) = −κ
1√

Vyi,xi
(t) + 1

, (anti–clustering) (16)

Ri,5(t) = ρ
∑
c∈Vi

wrisk[c]

dist(i, c)
, (risk awareness) (17)

where the scaling constants α, β, ξ, κ, ρ are listed in Table 2.267

The intrinsic signal is mixed with the task reward as268

Rhybrid
i (t) = λ1R

ext
i (t) + λ2R

int
i (t), (λ1, λ2) = (0.7, 0.3). (18)

Episodic Penalty269

At episode termination (t = T ) we penalise the fraction of terrain burnt:270

ri,epi = −η
#burnt cells

#total cells
, (19)

with η = 100 (identical for all agents).271

Total Return272

The per-step return used by IPPO is therefore273

Rtot
i (t) = Rhybrid

i (t) + 1t=T ri,epi. (20)

This specification is now perfectly aligned with the equations in Sec. 3 and the coefficient definitions274
in Table 2.275

The detection bonus drives agents to explore to efficiently identify new fires. We penalize the agent276
for entering cells currently burning to promote a more cautious approach. Using episodic alignment,277
we ensure that learned policies balance the goal of immediate detection and the global objective of278
minimizing total area burned.279
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F Agent–learning hyper-parameters280

Unless otherwise stated we keep the values in Tables 2 and 3 fixed for all experiments.

Table 2: Global coefficients used by every agent during training and evaluation.

Symbol Value Role

α 1.0 Fire-detection bonus
β 100 Episodic burn penalty
γ1:5 (0.15, 0.10, 0.08, 0.20, 0.40) Mixture weights of intrinsic reward terms
ξ 0.08 Exploration scale
κ 0.10 Anti-clustering scale
ρ 0.02 Risk-awareness scale
λ1 0.7 Extrinsic weight in hybrid reward
λ2 0.3 Intrinsic weight in hybrid reward
ω1 0.5 Coverage weight in overall score
ω2 0.3 Coordination weight in overall score
ω3 0.2 Response-time weight in overall score
r 5 Agent view range (App. D)

Table 3: Low-level PPO hyper-parameters shared by all agents.

Parameter Value Description

Discount factor γdisc 0.99 Immediate vs. future reward trade-off
GAE parameter λ 0.95 Advantage-estimation smoothing
PPO clip coefficient ϵ 0.20 Trust-region width
Entropy coefficient βent 0.01 Exploration incentive
Value-loss coefficient c1 0.50 Weight of critic loss
Policy-update frequency 2048 Env. steps between updates
PPO epochs per update 4 Passes over each mini-batch
Mini-batch size 512 Samples per gradient step
Learning rate 3× 10−4 Adam step size

281

IPPO Training Schedule and Objective282

In our implementation, the policy updates occur every 2048 steps, with four epochs of optimiza-283
tion per update. This allows each UAV to develop specialized behaviors while contributing to the284
collective monitoring objective through both extrinsic and intrinsic motivations.285

Training proceeds in iterations, with each iteration consisting of multiple episodes. The agents’286
policies are updated using the PPO objective:287

LCLIP(θ) = Et

[
min

(
rt(θ) Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)]
. (21)

Here288

rt(θ) =
πθ(at | ot)
πθold(at | ot)

, (22)

and289

Ât =

T−t∑
k=0

γk
disc

(
Rt+k

i − Vϕ(ot+k)
)
, (23)
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where each return Rt+k
i includes both extrinsic and intrinsic rewards. This objective ensures sta-290

ble policy improvements while preventing destructively large updates, allowing agents to balance291
immediate fire monitoring tasks with long-term exploration and coordination strategies.292
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G Strategic Optimisation293

Every 10 environment steps the coordinator decides which high-level monitoring strategy294 {
EXPLORATION, PATROL, FIRE_RESPONSE,RISK_MONITORING

}
each of the n agents should fol-295

low. We begin by building a cost matrix C ∈ Rn×n, where entry Ci,s quantifies how undesirable it296
is for agent i to play strategy s:297

Ci,s = ω1

(
1− cov

(s)
i

)
+ ω2 overlap

(s)
i + ω3 resp_time

(s)
i . (24)

Here cov
(s)
i is the predicted incremental coverage if agent i takes strategy s; overlap(s)i is the cor-298

responding redundant-coverage estimate; and resp_time
(s)
i is an empirical fire-response proxy. The299

weights ω1:3 are listed in Table 2.300

Greedy assignment rule. Instead of an O(n3) optimal solver we use the following O(n2) greedy301
heuristic (simple and fast for the default n=4):302

σ(1) = argmin
s

C1,s, σ(k) = arg min
s/∈σ(1:k−1)

Ck,s, k = 2, . . . , n. (25)

Processing the agents in a fixed order guarantees that each strategy column is used at most once.303
The selected mapping σ : {1, . . . , n} → {1, . . . , n} is broadcast as a one-hot vector and modulates304
every agent’s intrinsic reward:305

Rint
i (t) = γ Rexplore

i (t) + δ Rcoord
i (t) + η Rrisk

i (t) + ζ Rstrategy
i (t), (26)

Algorithm 2 Greedy role assignment (every 10 steps)

1: for all agents do
2: compute local fire density, visit counts, risk heatmap
3: end for
4: build cost matrix Ci,s via Eq. (24)
5: S ← {} ▷ already-assigned strategies
6: for k = 1 to n do
7: s⋆ ← argmins/∈S Ck,s

8: assign s⋆ to agent k; S ← S ∪ {s⋆}
9: end for

10: broadcast one-hot strategy vectors to agents

Link to intrinsic shaping. The cost entries in (24) and the intrinsic decomposition share the same306
heuristics:307

Rcoord
i (t) = −κ 1√

Vyi,xi(t) + 1
, κ = 0.10, (27)

Rrisk
i (t) = ρ

∑
c∈Vi

wrisk[c]

dist(i, c)
, ρ = 0.02, (28)

Rexplore
i (t) = ξ

∑
c∈Vi

imp(c)
Vc(t) + 1

, ξ = 0.08. (29)

These terms are used only for reward shaping; they do not alter the PPO objective beyond the308
standard clipped surrogate.309
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H Neural Network Architecture310

Each agent’s policy/value network fθ first encodes its multi-modal observation into a single feature311
vector312

zti =
[
fCNN(L

t
i), fPOS(p

t
i), fGLOB(g

t)
]
∈ R2d+

d
2 . (30)

Encoders:313
Spatial CNN fCNN:314

Conv2d(1→16, 3, p = 1) → ReLU → Conv2d(16→32, 3, p = 1) → ReLU
→ AdaptiveAvgPool2d(1× 1) → Flatten → Linear(32→d).

(31)

Position MLP fPOS:315

Linear
(
2→d

)
→ ReLU → Linear

(
d→d

)
. (32)

Global MLP fGLOB:316

Linear
(
2→ d

2

)
→ ReLU → Linear

(
d
2→

d
2

)
. (33)

Actor & Critic Heads:317

πθ(a | ot
i) = softmax

(
W2 ReLU(W1 z

t
i)
)
, (34)

Vϕ(o
t
i) = W4 ReLU(W3 z

t
i), (35)

where W1 : R2.5d → d, W2 : Rd → 5,

W3 : R2.5d → d, W4 : Rd → 1.
(36)
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Evşen Yanmaz, Saeed Yahyanejad, Bernhard Rinner, Hermann Hellwagner, and Christian Bettstet-468
ter. Drone networks: Communications, coordination, and sensing. Ad Hoc Networks, 68:469
1–15, January 2018. ISSN 1570-8705. DOI: 10.1016/j.adhoc.2017.09.001. URL http:470
//dx.doi.org/10.1016/j.adhoc.2017.09.001.471

Reza Bairam Zadeh, Atabak Elmi, Valeh Moghaddam, and Somaiyeh MahmoudZadeh. A concep-472
tual high level multiagent system for wildfire management. IEEE Transactions on Geoscience473
and Remote Sensing, 63:1–15, 2025. ISSN 1558-0644. DOI: 10.1109/tgrs.2025.3559062. URL474
http://dx.doi.org/10.1109/TGRS.2025.3559062.475

Yiwen Zhang, Rongbin Xu, Wenzhong Huang, Tingting Ye, Pei Yu, Wenhua Yu, Yao Wu, Yan-476
ming Liu, Zhengyu Yang, Bo Wen, Ke Ju, Jiangning Song, Michael J. Abramson, Amanda477
Johnson, Anthony Capon, Bin Jalaludin, Donna Green, Eric Lavigne, Fay H. Johnston, Ge-478
offrey G. Morgan, Luke D. Knibbs, Ying Zhang, Guy Marks, Jane Heyworth, Julie Arblaster,479
Yue Leon Guo, Lidia Morawska, Micheline S. Z. S. Coelho, Paulo H. N. Saldiva, Patricia Matus,480
Peng Bi, Simon Hales, Wenbiao Hu, Dung Phung, Yuming Guo, and Shanshan Li. Respiratory481
risks from wildfire-specific pm2.5 across multiple countries and territories. Nature Sustainabil-482
ity, 8(5):474–484, April 2025a. ISSN 2398-9629. DOI: 10.1038/s41893-025-01533-9. URL483
http://dx.doi.org/10.1038/s41893-025-01533-9.484

Yiwen Zhang, Rongbin Xu, Wenzhong Huang, Tingting Ye, Pei Yu, Wenhua Yu, Yao Wu, Yan-485
ming Liu, Zhengyu Yang, Bo Wen, Ke Ju, Jiangning Song, Michael J. Abramson, Amanda486
Johnson, Anthony Capon, Bin Jalaludin, Donna Green, Eric Lavigne, Fay H. Johnston, Ge-487
offrey G. Morgan, Luke D. Knibbs, Ying Zhang, Guy Marks, Jane Heyworth, Julie Arblaster,488
Yue Leon Guo, Lidia Morawska, Micheline S. Z. S. Coelho, Paulo H. N. Saldiva, Patricia Ma-489
tus, Peng Bi, Simon Hales, Wenbiao Hu, Dung Phung, Yuming Guo, and Shanshan Li. Health490
risks of exposure to wildfire-toxic air. Nature Sustainability, 8(5):472–473, April 2025b. ISSN491
2398-9629. DOI: 10.1038/s41893-025-01535-7. URL http://dx.doi.org/10.1038/492
s41893-025-01535-7.493

Zilin Zhao, Chishui Chen, Haotian Shi, Jiale Chen, Xuanlin Yue, Zhejian Yang, and Yang Liu.494
Towards robust multi-uav collaboration: Marl with noise-resilient communication and attention495
mechanisms, 2025. URL https://arxiv.org/abs/2503.02913.496

20

http://dx.doi.org/10.1016/j.neunet.2008.09.013
http://dx.doi.org/10.1016/j.neunet.2008.09.013
http://dx.doi.org/10.1016/j.neunet.2008.09.013
https://github.com/AgileRL/AgileRL
http://dx.doi.org/10.1038/s41893-022-00956-y
http://dx.doi.org/10.1088/1748-9326/ac60d6
http://dx.doi.org/10.1088/1748-9326/ac60d6
http://dx.doi.org/10.1088/1748-9326/ac60d6
http://dx.doi.org/10.1016/j.adhoc.2017.09.001
http://dx.doi.org/10.1016/j.adhoc.2017.09.001
http://dx.doi.org/10.1016/j.adhoc.2017.09.001
http://dx.doi.org/10.1109/TGRS.2025.3559062
http://dx.doi.org/10.1038/s41893-025-01533-9
http://dx.doi.org/10.1038/s41893-025-01535-7
http://dx.doi.org/10.1038/s41893-025-01535-7
http://dx.doi.org/10.1038/s41893-025-01535-7
https://arxiv.org/abs/2503.02913

